
Frend for Edge Servers: Reduce Server Number!
Keeping Service Quality!

Pengmiao Li1, Yuchao Zhang1, Wendong Wang1, Kaichuan Zhao2, Bo Lian2, Ke Xu3, Zhili Zhang4

1State key Laboratory Of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

Email:pengmiaoli@bupt.edu.cn, yczhang@bupt.edu.cn, wdwang@bupt.edu.cn
2Kuaishou Company, Beijing, China. Email:zhaokaichuan03@kuaishou.com, lianbo@kuaishou.com

3Computer Science and Technology, Tsinghua University, Beijing, China. Email:xuke@tsinghua.edu.cn
4 Computer Science and Engineering, University of Minnesota, Minneapolis, US. Email:zhzhang@cs.umn.edu

Abstract—To keep pace with the exploding data volume raised
from geographical distribution edge networks, more and more
edge servers have been built in recent years. As the computing
power and storage capacity are different on each server, requests
have to be transferred from one server to another before finally
being responded and returned back to users. Such server-to-
server transmission naturally introduce non negligible latency,
which inevitably affects the quality of service (QoS). To eliminate
this transmission latency, Internet Service Providers (ISPs) are
building or renting more edge servers (both computing servers
and storage servers) to reduce transmission distance and enhance
the server configuration, which brings great costs. Fortunately,
through a large number of real trace analysis, we found that it
is possible to reduce server number while keeping the QoS!

In this paper, we first disclose three key characteristics from
Kuaishou Company: (1) Unbalanced request frequencies on dif-
ferent servers; (2) Imprecise latency measure on server-to-server
transmission; (3) Nonlinear latency reduction to server number
increment. Based on these findings, we propose a frequency-
aware edge storage server deployment strategy Frend that is an
improved Genetic Algorithm to optimize the number of edge
storage servers by the internal diffusion capability that is a new
latency measure called S2SL. Through a series of experiments
using real application data, we demonstrate that while achieving
the same S2SL, Frend can reduce the number of required edge
storage servers by up to 56% compared with the state-of-the-art
Anveshak method.

Index Terms—Edge Computing, Edge Storage Server, Edge
computing Server, Server Deployment, Frequency Latency.

I. INTRODUCTION

The previous decade has witnessed substantial growth in

the Internet of Things (IoT) and mobile devices. With the

explosion of quantity in the Internet of Things devices and

mobile applications, the traffic scale of global data-center

increases from 6.8 ZB to 14.1 ZB per year during 2016-

2019. IoT devices will generate more than 175 ZB data by

2025 [1], which is an insupportable burden including limited

storage, an amount of computation, and congested network

for cloud data centers. Recently, edge computing technology

plays an essential role in solving the issues mentioned above

by edge servers deployed close to users. Data processed via

edge servers is expected to account for 30% of the total data

Yuchao Zhang (yczhang@bupt.edu.cn) is the corresponding author.

generated globally through creation, capture, and replication

by 2025 [1].

As artificial intelligence evolves, computational tasks be-

come increasingly time-consuming to finish [2]. These tasks

are assigned to high computing power edge servers called

edge computing servers (ECSs) to minimize the computation

time. However, the ECS and the edge storage server (ESS)

are generally not the same one because the limited storage

of ECS can not cache all data that computing tasks need.

This generates a transmission latency from Server-to-server

that increases the completion time and inevitably affects the

quality of service (QoS). Therefore, the problem to be solved

in this paper is how to reduce the server-to-server latency,

which is a kind of quick link problem between ECS and ESS,

called the CSQ-link problem.

To solve this problem, Internet Service Providers (ISPs)

can build or lease more edge servers to reduce transmission

distances and increase server configurations, which results

in huge costs and drives the need for a proper edge server

deployment strategy. Though most of the existing researches

is efficient in optimizing the latency of client-to-server and

minimizing the cost of edge servers, they ignore the server-to-

server transmission latency that inevitably affects the quality

of service (QoS). Therefore, to ensure the interests of ISPs

and the QoS, it is necessary to design a deployment strategy

of ESSs to reduce cost while ensuring that the link between

ECSs and ESSs is quick.

In this paper, we first disclose three key characteristics from

Kuaishou Company [3]: (1) Unbalanced request frequencies on

different servers; (2) Imprecise latency measure on server-to-

server transmission; (3) Nonlinear latency reduction to server

number increment. Based on these findings, we propose a

frequency-aware ESSs deployment strategy called Frend, is

an improved Genetic Algorithm to optimize the number of

edge storage servers by the ESSs’ internal diffusion capability

that is a new latency measure called S2SL. Frend mainly

includes three components: selecting candidates, choosing

ESSs, and updating the status information of edge servers.

Through a series of experiments using real applications trace,

we demonstrate that while achieving the same S2SL, Frend

107

2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th
Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application

978-1-6654-9457-1/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00041

20
21

 IE
EE

 2
3r

d
In

t C
on

f o
n

Hi
gh

 P
er

fo
rm

an
ce

 C
om

pu
tin

g
&

 C
om

m
un

ic
at

io
ns

; 7
th

 In
t C

on
f o

n
Da

ta
 S

ci
en

ce
 &

 S
ys

te
m

s;
 1

9t
h

In
t C

on
f o

n
Sm

ar
t C

ity
; 7

th
 In

t C
on

f o
n

De
pe

nd
ab

ili
ty

 in
 S

en
so

r,
Cl

ou
d

&
 B

ig
 D

at
a

Sy
st

em
s &

 A
pp

lic
at

io
n

(H
PC

C/
DS

S/
Sm

ar
tC

ity
/D

ep
en

dS
ys

) |
 9

78
-1

-6
65

4-
94

57
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HP
CC

-D
SS

-S
M

AR
TC

IT
Y-

DE
PE

N
DS

YS
53

88
4.

20
21

.0
00

41

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

can reduce the number of edge storage servers required by up

to 56% compared with the state-of-the-art Anveshak method.

The contributions of this paper are summarized as follows:

• We investigate the problem of quick link between ECSs

and ESSs, called CSQ-link problem.

• We introduce a new metric latency called S2SL to present

the internal diffusion capacity of ESSs.

• Presenting Frend, a frequency-aware strategy to reduce

the cost of ISPs deploys ESSs, is proposed.

• Demonstrating the benefits of Frend compare other algo-

rithms by real traces.

In the next section, we introduce the background of the CSQ-

link problem and the related work of server deployments

with different optimization objectives. Section III illustrates

perspectives about the potential performance that can be

improved, including the number of ESS, the request frequency,

and the metric latency S2SL. In section IV, it presents the

formulation of the CSQ-link problem and the design of Frend
architecture. Section V conducts experiments by detailed in-

troduction and analysis of the results. And our conclusion is

presented in Section VI.

II. BACKGROUND AND RELATED WORK

A. Background

With the development of 5G and mobile Internet technology

continuously, new applications appear constantly, such as

AR/VR [4] and Internet of Vehicles [5], which is required

more resources to ensure QoS for users. In addition to high

bandwidth, these resources involve the rich computing and

storage resources from edge servers are called ECS and

ESS. To reduce the computation time accounted for a high

percentage of the task response time, some edge servers with

high computing powers are allocated to computation tasks

usually. However, those edge servers cannot store all the data

for each task because of their limited amount and storage

volume, which makes the computing and storage resources

usually supported by different ones, then generate to form

ECSs and ESSs. Thus, it produces the transmission latency

from ECSs to ESSs (server-to-server latency), which increases

the task completion time and affects the user’s QoS.

To eliminate this transmission latency, ECSs need to obtain

data required from ESSs quickly when completing the com-

puting tasks, which is the CSQ-link problem proposed in this

paper. It is easy to assume that the more ESSs deployed in an

application, the faster the ECS can get computational data re-

quired, but the cost to the ISP is enormous. Therefore, suitable

edge servers need to be selected as ESSs for these ECSs to

reduce server-to-server latency, i.e., deploying (renting) ESSs

for ISPs in many edge servers to ensure low cost and high

performance.

B. Related Work

In studies about the deployment of edge servers, researchers

have proposed many solutions from different perspectives: (1)

minimizing the access latency and balancing the workload

of edge servers [6]–[18]; (2) minimizing the cost of edge

servers while limiting maximal latency [19]–[25], which in-

clude maintenance cost and the number of the request edge

servers; (3) and others [26]–[29], such as the computing

capacity. Presenting some related works in two-part: Latency

& Workload, and Cost & Number, which are the main factors

of this paper concern.

1) Latency & Workload: The latency between the edge

servers and users & the workload of edge servers are main

KPIs and attracted the attention of some researchers in edge

server deployment. Manasvi [6] proposes a Social network

Aware Dynamic Edge Server deployment (SADES) stregy

with low latency communication, which uses the information

from the overlay social network groups to efficiently identify a

few influential base stations to place the edge servers. Paper [7]

designs a novel algorithm, called PACK, to reduce application

latency and data transfer load in opportunistic Internet of

Things systems. Wang [8] minimizes the access latency and

balance the workloads of edge servers by adopting mixed

integer programming to study the edge server deployment

problem in mobile edge computing environments for smart-

cities. Yan [9] proposes an approximate approach that adopt

the K-means and mixed-integer quadratic programming to

balance the workload between edge clouds and minimize the

service communication latency of mobile users.

2) Cost & Number: The cost-efficient of deploying edge

servers becomes a crucial research field, which gains many re-

searchers’ focus. Yin [19] presents Tentacle, a decision support

framework to provision edge servers that can discover proper

unforeseen edge locations by considering various pragmatic

concerns in edge provisioning, which significantly improves

the efficiency and reduces the cost of edge provisioning.

The number of edge servers deployed affects the application

service providers’ cost. M [21] chooses an appropriate number

of nodes for deployment based on a fixed cost. Paper [22]

considers the maximum capacity of edge servers and provides

a partition of the edge node cluster, which integrates as much

communication as possible at the edge, is determined by

maximizing the number of connections with one area. Some

papers choose the lowest number of servers [23] [24] by

setting the highest client-to-server latency tolerated, which

can increase the workload of edge servers, improve resource

utilization, and reduce the number of edge servers.

Although these solutions can effectively optimize the la-

tency of client-to-server and the cost of edge servers, they

ignore the server-to-server latency that leads to high com-

pletion time and affects the user’s QoS. Therefore, to ensure

the interests of ISPs, it is necessary to design a deployment

strategy of ESS to reduce costs (the number of ESSs) while

ensuring that the link between ECSs and ESSs is quick.

III. POTENTIAL OF DEPLOYMENT ESSS

To find a potential ESSs deployment strategy that can reduce

cost and the server-to-server latency, we analyze the real

trace from Kuaishou and find three key characteristics: (1)

Unbalanced request frequencies on different servers, (2) Im-

108

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80
th
e
nu

m
be

ro
fE

SS

Province ID

High
Middle
Low

Figure 1. ESSs access frequency information in 31 regions.

� � � � �� �� ��

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te
nc
y
(m

s)

the number of ESS

Actual
Idealized

Figure 2. Traditional Latency and S2SL.

precise latency measure on server-to-server transmission, and

(3) Nonlinear latency reduction to server number increment.

A. Unbalanced request frequencies on different servers.
Theoretically, a region with high request frequency usually

needs to deploy more ESSs for applications to ensure the

user’s response time. However, some applications have many

less frequently requested ESSs in each region, which leads to

waste storage resources and thus higher costs for ISPs. Figure

1 shows that the number and the request frequency of each

ESS in Kuaishou from 31 provinces of China, where a bar is

composed of three sub-bars with different colors (red, blue,

and black). The bar represents the total number of ESSs in

one province, while the sub-bars represent the ESSs number

with different request frequency range Low, Middle, and High.
In this paper, we treat request frequency under 1,000 as Low,

Middle is from 1,000 to 100,000, and others as High. For

example, the total number of ESSs deployed is 72, where the

number of ESSs in Low, Middle, and High are 25 (red sub-

bar), 46-25 = 11 (blue sub-bar), and 72-46 = 26 (black sub-bar)

respectively. Middle is 46-25 = 11 (blue sub-bar), and High is

72-46 = 26 (black sub-bar). It is not difficult to find that the

request frequency of many ESSs is less than 1,000 (red sub-

bar) in each province (such as province 1), which leads to low

utilization in low-frequency ESSs. Therefore, these ESSs with

low frequency have higher promotion potential than others by

reducing the ESSs number via removing low-frequency ESSs,

which can improve the workload (frequency requested).

B. Imprecise latency measure on server-to-server transmis-
sion.

According to the analysis, we find the greater internal

diffusion capacity of ESS, which is the new metric latency

based on the request frequency and called S2SL, the lower

server-to-server transmission latency of ESS. The traditional

theoretical latency metric computes the transmission latency

by requesting ESSs once, which ignores the total latency from

more times request. For example, there are 3 ESSs: A, B, and

C with request frequency 10, 50, and 20, respectively, and

the latency of A-B is 3, B-C is 5, and A-C is 4. The tradi-

tional theoretical latency is (3+5+4)/3=4 (Actual). The based

frequency S2SL is equal (3*10+5*50+4*20)/(10+50+20)=4.5,

so the traditional latency is unequal S2SL. In Figure 2, we

calculate the traditional theoretical latency and the lowest

transmission latency S2SL that from the optimal solution to

deploy ESSs under a different number. It is easy to find that

the Idealized latency (red line) as S2SL is superior to the

Actual latency (black line). Based on the traditional theoretical

measure to deploy ESSs for applications, the actual latency

will be higher than the idealized. Therefore, using S2SL to

select ESS is a potential opportunity to reduce the transmission

delay of data required to obtain ECS tasks from ESS, thus

reducing the task’s completion time and improving the user’s

response speed.

C. Nonlinear latency reduction to server number increment.
In theory, applications could rent huge ESSs to reduce the

transmission latency of data acquired by ECS. However, this

is not a wise move, as analysis of the Kuaishou trace shows

that latency does not decrease linearly with the number of

ESSs increasing, and the result shown in 2 (red line). The

transmission latency of server-to-server is high when choosing

the number of ESSs in a range (as 1 to 4), and its rate

of decline gradually tends to flatten out in someone range

such as the number 5. This means that even if we choose to

lease a large number of servers, not only is the performance

increase minimal, but the cost is enormous. Therefore, there

is a potential perspective for reducing the cost of ISPs by

deploying a fit number of ESSs under add to a tiny latency

with user acceptable that we called it is without affecting QoS.
Based on the above analysis, reducing the cost of ISPs can

adopt to three potential perspectives including (1) Balancing
the request frequency of ESSs, (2) S2SL as a metric latency
to deploying ESSs, and (3) Choosing the suitable number of
ESSs without effecting QoS. Designing a deployment strategy

for edge storage servers through these perspectives is the focus

of this paper and is described in detail for Section IV.

IV. SYSTEM MODELS AND PROBLEM FORMULATION

In this section, we first introduce and formulate the quick

link problem between ECSs and ESSs (subsection IV-A), and

109

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

Figure 3. The framework overview.

then propose the deployment strategy Frend to minimize the

number of ESSs and reduce S2SL in subsection IV-B. Finally,

we give an overview of the framework in subsection IV-C.

A. Problem Formulation

The CSQ-link problem described in subsection II-A is how

to select some edge servers as ESSs for the application among

all edge servers, which minimizes the ESSs number required

under the S2SL constraints ζ. Edge server set are denoted by

X = {x1, x2, ..., xN}, and S = {s1, s2, ..., sm} is defined by

the ESSs set. Let S2SL = {s2sl1, s2sl2, ..., s2slN} denotes

each edge server’s S2SL computed by equation (1).

s2sli =

N∑
j=1

li,j × fi

N∑
j=1

fi

. (1)

N is present the total number of edge servers, and fi is the

frequency requested of edge server i from clients. li,j is the

latency between edge server i with edge server j is computed

by

li,j = min(dis(i, j), dis(i, p) + dis(p, j)), (2)

where ∀i, p, j ∈ S. According to the statements above, the

CSQ-link problem can be formulated as follows:

min
N∑
i=1

xi (3)

s.t.

N∑
i=1

xi × s2sli ≤ ζ, ζ > 0 (4)

xi ∈ {0, 1}, ∀i ∈ N (5)

Although it is possible to solve this problem and find the

optimal solution by computing all solutions, it is very time-

consuming because the solution space makes the characteristic

of exploding up with the enlargement of the number of

edge servers. Therefore, we propose an improved Genetic

Algorithm that can find the optimal solution to solve the CSQ-

link problem with high efficiency in the current environment,

which is called Frend and is introduced detailedly in the next

subsection.

B. Frend Strategy
The core of Frend is an ESSs deployment strategy that

selects a solution from all solutions that minimizes the number

of ESSs under the user-tolerated S2SL. Frend is mainly

composed of three components Selecting candidates, Choosing
ESSs, and Updating the state of edge servers as follows.

1) Selecting candidates: To reduce the Frend’s computing

time, some edge servers selected as the ESSs’ candidate set

Ŝ is necessary, which are high possibility to become ESSs

than other ones. Selecting a candidate set of ESSs into two

parts in this paper. On the one hand, the edge servers are

divided into several regions R = {r1, r2, ..., ro} based on the

110

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

location of the edge servers and clients. Some edge servers

with high latency are removed because these are too far away

from clients, and the remaining edge servers recognize as the

initial candidate set of ESSs for region o. On another hand,

many edge servers among the initial candidate set have been

occupied by other ISPs, which can be filtered out those based

on global information (state, location, and request frequency

et.al) G = {g1, g2, ..., gN} from the cloud. The remaining edge

servers X̂ = {x̂1, x̂2, ..., x̂N}, ∀r ∈ N as the ESSs’ candidate

set are obtained by equation (6).

x̂i =

{
1, if gi ≥ ĝ

0, otherwise
(6)

ĝ denotes the threshold of allowable available resources of

edge server. (Line 1-2 in algorithm 1)

2) Choosing ESSs: Genetic Algorithm not only can jump

out of the local optimal solution but also can have low

computation time compared with other heuristic algorithms.

However, it also has some shortcomings, such as depending

on the original population and the parallelism potential of

the algorithm is not stimulated which are impact the com-

putation time. Therefore, to improve Frend’s performance,

we respectively design two methods include Quickly locating
and Reducing the repeat computation workload for addressing

above shortcomings.

• Quickly locate.
Narrowing the candidate set dictionary of ESSs by

selecting candidates component, but it is difficult and

time-consuming to compute the best ESSs set for ISPs.

Because it includes deciding the edge server number

as ESS and selecting which one is ESSs set from the

2N combinations (chromosomes) of edge servers. The

candidate number of edge servers in the ESS set is

E = {1, 2, ..., N}. Let U = {u1, u2, ..., uv} denotes

the candidate set for the ESS number of their solutions.

To reduce the computation time, we lower the number

of E dictionary by pre-computation quickly, which is

called Quickly locate. Quickly locate adopts to a Binary

Search algorithm to find two edge server combinations

(chromosomes) are s′i and s′j with S2SL s2sli and

s2slj respectively, where s2sli < ζ < s2slj and∣∣num(s′i)− num(s′j)
∣∣ = v, ∀v ∈ N

+. It gives powerful

support to reduce the computation to find the best ESSs

set from huge combinations in the Genetic Algorithm.

That decreases the dependence on the original population

and then reduces the computation time.

• Reducing the repeat computation workload.
Although the computation time is reduced by quickly

locating, there is a lot of repeat computation workload

in choosing the best ESSs set. Such as, if ui and uj of

s′i and s′j are 5 and 6 receptively, the s′j’s S2SL can

be compute by adding one edge server based on s′i ,

which means double-counted in s′i. Therefore, to reduce
the repeat computation workload, we calculate the s2sli
of ui = 5 as well as save the s2sli as a part of s2slj

of ui = 6. That means this method can achieve partial

parallelism and then reduce the total computation time of

finding the best ESSs set for ISPs.

By two steps above, we gain ESSs candidates’ number

of the solution and reduce the repeat computation workload.

Finally, we combine 5 levels (Figure 3) including encoding,

initialization, computing fitness, choosing parents, crossover,

and mutation to find the optimal ESS set. Gene and chro-

mosome fitness are defined by each edge server and S2SL.

The chromosome development tends to a lower S2SL through

choosing parent, crossover, and mutation. The detailed steps

for obtaining the optimal solution are shown in line 3-22 of

algorithm 1.

3) Updating the state of edge servers: To ensure the

information of global edge servers is consistent that can

prevent the ones chosen as ESSs repetitively for different ISPs,

we need to update the state information of edge servers in the

cloud periodically (Line 23 in algorithm 1). Updating the ESS

set periodicity determined by client dynamic access patterns

[30] is necessary to improve users’ Qos, which is the focus of

our future work. At last, we summarize Frend in Algorithm

1.

Although we can obtain the solution to choose edge servers

as ESSs for ISPs through Frend, it is significant that how

to layout and apply Frend in the edge, which can affect the

performance of ESSs for ISPs. Therefore, we introduce the

Framework Overview of Frend in the next subsection.

C. Framework Overview

The edge networks that complete the edge computing task

mainly include three parts: Client, Edge Servers, and Cloud, as

shown in the left of Figure 3. The edge servers serve a client

when it is requested for the computing task. If the edge server

can meet the task requirements, it will directly return the task

result to the client. If the task requires not to meet, it will go

to the cloud for task calculation and then return the calculation

result. Our algorithm Frend is deployed in the cloud to obtain

the server’s information that is calculated based on the client

frequency requested and the S2SL.

The workflow of the whole architecture is as follows:

• Obtaining the frequency accessed of each edge server

through the access history data (1©);

• Choosing ESSs by Frend (2©);

• Calculating the edge server number of ESS set and the

ESSs’ location (3©);

• Deploying the content according to the edge servers

chosen as ESSs (4©);

• Updating the ESSs periodically (5©).

V. EVALUATION

In this section, we evaluate our approach Frend by real

traces from Kuaishou company, show the results of applying

Frend on them versus the existing representative policies,

and finally analyze the results in the average frequency of

provinces and the frequency requested range of ESSs.

111

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: The pseudo code of Frend
Input: The limit of the S2SL ζ;

The latency li,j between edge server i with j;
The total edge servers X including N edge servers;

The frequency requested of edge servers is F ;

The state of edge servers is G.

Output: the lowest number u′ and set s′ of ESSs.

1 Ŝ = Preliminary(G,X) ;

2 Calculating X̂ by equation (6);

3 U = BinarySearch(F, li,j , Ŝ);
4 Initializing the population with u′ = u1 edge servers;

5 while True do
6 evaluate the fitness s2sl′ of all chromosomes in

population;
7 if min(s2sl′) <= ζ then
8 s′ = the chromosomes with the lowest s2sl′;
9 if min(U) == u′ then

10 while True do
11 pop chromosome from matingPool and

elitePool u′ = u′ − 1 ;

12 Cross over and mutation generate the

population with u′ edge servers ;

13 evaluate the fitness s2sl′ of all

chromosomes in population;
14 if min(s2sl′) >= ζ then
15 u′ = u′ + 1 ;

16 Return u′,s′

17 updating s′ ;

18 else
19 Return u′,s′

20 else
21 append chromosome (edge server) to

matingPool and elitePool u′ = u′ + 1 ;

22 Cross over and mutation generate the

population with u′ edge servers;

23 update G periodically.

A. Experiment setting.

Algorithms:
In this experiment, we compare Frend with three algorithms

that are based on the traditional theoretical latency metric

introduced in subsection III-B, which are Random, GA, and

Anveshak as follows.

• Random: The deployment strategy Random [31] chooses

servers to fit the request number of ISPs randomly, and

then we choose the random servers as ESSs.

• GA: GA [32] based on latency between edge servers to

choose the lowest one to deploy, and then we regard the

lowest one above as ESSs.

• Anveshak: [23] based on latency between edge servers to

choose one that has single hops of the smallest latency to

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

70

80

Th
e
nu

m
be

ro
fE

SS
s

Province

ALL Random GA Anveshak Frend

Figure 4. [Performance comparison] Comparison of the number of chose
ESSs under the same S2SL.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Province

Random GA Anveshak Frend

S2
SL

(m
s)

Figure 5. [Performance comparison] Comparison of S2SL under the same
number ESSs.

provide the service for ISPs, and then we choose those

edge servers as ESSs.

Datasets: Datasets includes two parts as follows.

• Access frequency: The experiment dataset is one hour’s

real trace from Kuaishou [3], which includes 488 edge

servers are deployed at 31 provinces in China. The total

number of requested items exceeds 12 million, and the

number of short videos exceeds 10 million [33].

• Edge server latency: We randomly generate the network

topology and the latency between all the edge servers

based on the different provinces above as the edge server

latency information.

B. Performance comparison.
Comparing the ESS number with the same S2SL. Figure

4 shows the ESS number chosen by different algorithms

under the same S2SL, in which the abscissa represents the

provinces ID, and the ordinate represents the request number

of ESS. The black line is the total number of ESSs from

original data (kuaishou Datasets), while blue, green, purple,

and red represent the ESS number are chosen by Random,

GA, Anveshak, and Frend algorithms, respectively. It is not

difficult to find that the number of ESSs in our method is

112

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

0.30223 0.26676

0.431

0.04332
0.14946

0.80722

Low Middle High
0.0

0.2

0.4

0.6

0.8

1.0

Access Frequency Range

ALL
Frend

Figure 6. [Result Analysis] Access frequency range of all ESSs.

5 10 15 20 25 30
0.0

0.5

1.0

Fr
en

d

Province ID

High Middle Low

AL
L

0.0

0.5

1.0

Figure 7. [Result Analysis] The access frequency distribution of ESSs in 31
provinces.

reduced by up to 80%, 56% compared to the original data

and Anveshak. Our method is superior to other baselines in

each province with the same S2SL.

Comparing the S2SL under the same ESS number. To

show the flexibility of our strategies Frend, we compare the

S2SL of different algorithms under the same number of ESSs

and the result is shown in Figure 5. The abscissa represents

the province’s ID and the ordinate represents the ESSs set

S2SL. Blue, green, purple, and red lines respectively represent

the S2SL computed by Random, GA, Anveshak, and Frend
algorithms. It is not difficult to find that our method Frend
has the lowest S2SL compared with other algorithms in each

province with the same number of ESSs to provide service for

ISPs. For example, the S2SL is about 1.2 ms from Frend and

is about 3 ms from Anveshak in province 29, that the former

algorithm has 60% less latency than the latter one.

C. Result Analysis.

In Chapter III-A, we find that about 30% of ESSs have an

access frequency of less than 1,000. These ESSs are extremely

low resource utilization, which brings the chance to balance

the request frequency and reduce the number of ESSs with

low frequency requested by Frend.

Figure 6 shows a comparison of the range of ESSs’ fre-

quency requested from Frend result (red bar) and real trace

(black bar). We can find from this figure that the Low percent-

age of ESSs drops from 0.30 to 0.04, which means the number

of ones removed is more than 86.7% from ALL. Middle

dropped from 26% to 15%, and High increased from 43%

to 80%. The remaining ESSs with low frequency requested

cannot be removed because the total number of requested in

this region is low.

To clearly present the ESSs chose information of the

frequency requested range, we show the average frequency

distribution of ESSs in Figure 7. This figure is divided into two

parts: bottom and top, which present the access frequency in 31

provinces from ALL ESSs and Frend chose one, respectively.

From the point of view of each province, the proportion of

low frequency ESSs (red bar) is close to zero at the bottom

and the proportion of high frequency ESSs (black bar) at the

bottom is higher than the top one. We can hardly see the red

bar at the bottom of Figure 7.

The ESSs deployment strategy based on the edge server

frequency requested information, Frend, is verified by exper-

iments under real application request frequency. Frend can

choose the ESS with low S2SL among many edge servers.

That means we can reduce the number of ESSs and optimize

the server-to-server latency by proposed Frend. Therefore,

these ESSs with low S2SL can keep the QoS.

VI. CONCLUSION

In this paper, we investigate the CSQ-link problem and

introduce a new metric latency called S2SL. To resolve the

problem above, we analyze of real trace from Kuaishou and

find three characters: (1) Unbalanced request frequencies on

different servers, (2) Imprecise latency measure on server-

to-server transmission, and (3) Nonlinear latency reduction

to server number increment. Based on the characters above,

we propose a frequency-aware strategy Frend to minimize

the request number (the cost of ISPs) of ESSs for a single

application while ensuring low S2SL. Finally, we evaluate the

Frend strategy using real application data and demonstrate that

while achieving the same latency, Frend can reduce the number

of required edge storage servers by up to 56% compared

with the state-of-the-art Anveshak method. Therefore, we can

reduce the costs of ISPs by Frend to deployment ESSs with

low S2SL that can keep the QoS.

ACKNOWLEDGMENT

The work was supported in part by the National Natural Sci-

ence Foundation of China (NSFC) Youth Science Foundation

under Grant 61802024, BUPT-Chuangcache Joint Laboratory

under B2020009, the Key Project of Beijing Natural Science

Foundation under M21030, the National Key R&D Program of

China under Grant 2019YFB1802603, AND the NSFC under

Grant 62072047. The work of Pengmiao Li was supported in

part by the BUPT Excellent Ph.D. Students Foundation under

CX2019134.

113

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Davi, G. John, and R. John, “The digitization of the world from edge
to core,” https://www.idc.com/[R/OL], 2018.

[2] R. Singh, A. Dunna, and P. Gill, “Characterizing the deployment
and performance of multi-cdns,” in Proceedings of the Internet
Measurement Conference 2018, IMC 2018, Boston, MA, USA, October
31 - November 02, 2018. ACM, 2018, pp. 168–174. [Online].
Available: https://dl.acm.org/citation.cfm?id=3278548

[3] kuaishou, “Kuaishou,” https://www.kuaishou.com, 2019.

[4] S. N. B. Gunkel, R. Hindriks, K. M. E. Assal, H. M. Stokking,
S. Dijkstra-Soudarissanane, F. B. ter Haar, and O. Niamut,
“Vrcomm: an end-to-end web system for real-time photorealistic
social VR communication,” in MMSys ’21: 12th ACM Multimedia
Systems Conference, Istanbul, Turkey, 28 September 2021 - 1
October 2021. ACM, 2021, pp. 65–79. [Online]. Available:
https://doi.org/10.1145/3458305.3459595

[5] X. Shen, R. Fantacci, and S. Chen, “Internet of vehicles,” Proc.
IEEE, vol. 108, no. 2, pp. 242–245, 2020. [Online]. Available:
https://doi.org/10.1109/JPROC.2020.2964107

[6] G. Manasvi, A. Chakraborty, and B. S. Manoj, “Social network
aware dynamic edge server placement for next-generation cellular
networks,” in 2020 International Conference on COMmunication
Systems & NETworkS, COMSNETS 2020, Bengaluru, India, January
7-11, 2020. IEEE, 2020, pp. 499–502. [Online]. Available:
https://doi.org/10.1109/COMSNETS48256.2020.9027421

[7] T. Lähderanta, T. Leppänen, L. Ruha, L. Lovén, E. Harjula,
M. Ylianttila, J. Riekki, and M. J. Sillanpää, “Edge computing
server placement with capacitated location allocation,” J. Parallel
Distributed Comput., vol. 153, pp. 130–149, 2021. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2021.03.007

[8] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C. Hsu, “Edge server
placement in mobile edge computing,” J. Parallel Distributed
Comput., vol. 127, pp. 160–168, 2019. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2018.06.008

[9] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C. Hsu, “User
allocation-aware edge cloud placement in mobile edge computing,”
Softw. Pract. Exp., vol. 50, no. 5, pp. 489–502, 2020. [Online].
Available: https://doi.org/10.1002/spe.2685

[10] M. Tao, K. Ota, and M. Dong, “Foud: Integrating fog and cloud for
5g-enabled V2G networks,” IEEE Netw., vol. 31, no. 2, pp. 8–13, 2017.
[Online]. Available: https://doi.org/10.1109/MNET.2017.1600213NM

[11] D. Lu, Y. Qu, F. Wu, H. Dai, C. Dong, and G. Chen, “Robust server
placement for edge computing,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), New Orleans, LA,
USA, May 18-22, 2020. IEEE, 2020, pp. 285–294. [Online]. Available:
https://doi.org/10.1109/IPDPS47924.2020.00038

[12] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans.
Netw., vol. 24, no. 5, pp. 2795–2808, 2016. [Online]. Available:
https://doi.org/10.1109/TNET.2015.2487344

[13] I. Pelle, F. Paolucci, B. Sonkoly, and F. Cugini, “Latency-
sensitive edge/cloud serverless dynamic deployment over telemetry-
based packet-optical network,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 9, pp. 2849–2863, 2021. [Online]. Available:
https://doi.org/10.1109/JSAC.2021.3064655

[14] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao, and F. Li, “Edge
provisioning with flexible server placement,” IEEE Trans. Parallel
Distributed Syst., vol. 28, no. 4, pp. 1031–1045, 2017. [Online].
Available: https://doi.org/10.1109/TPDS.2016.2604803

[15] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Trans. Cloud Comput., vol. 5, no. 4, pp. 725–737, 2017. [Online].
Available: https://doi.org/10.1109/TCC.2015.2449834

[16] S. K. Kasi, M. K. Kasi, K. Ali, M. Raza, H. Afzal, A. Lasebae,
B. Naeem, S. ul Islam, and J. J. P. C. Rodrigues, “Heuristic edge server
placement in industrial internet of things and cellular networks,” IEEE
Internet Things J., vol. 8, no. 13, pp. 10 308–10 317, 2021. [Online].
Available: https://doi.org/10.1109/JIOT.2020.3041805

[17] F. Guo, B. Tang, and J. Zhang, “Mobile edge server placement based
on meta-heuristic algorithm,” J. Intell. Fuzzy Syst., vol. 40, no. 5,
pp. 8883–8897, 2021. [Online]. Available: https://doi.org/10.3233/JIFS-
200933

[18] X. Chen, W. Liu, J. Chen, and J. Zhou, “An edge server placement
algorithm in edge computing environment,” in 12th International
Conference on Advanced Infocomm Technology, ICAIT 2020, Taipa,
Macao, November 23-25, 2020. IEEE, 2020, pp. 85–89. [Online].
Available: https://doi.org/10.1109/ICAIT51223.2020.9315526

[19] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao, and F. Li, “Edge
provisioning with flexible server placement,” IEEE Trans. Parallel
Distributed Syst., vol. 28, no. 4, pp. 1031–1045, 2017. [Online].
Available: https://doi.org/10.1109/TPDS.2016.2604803

[20] B. Li, P. Hou, H. Wu, and F. Hou, “Optimal edge server deployment
and allocation strategy in 5g ultra-dense networking environments,”
Pervasive Mob. Comput., vol. 72, p. 101312, 2021. [Online]. Available:
https://doi.org/10.1016/j.pmcj.2020.101312

[21] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Trans. Cloud Comput., vol. 5, no. 4, pp. 725–737, 2017. [Online].
Available: https://doi.org/10.1109/TCC.2015.2449834

[22] M. Bouet and V. Conan, “Mobile edge computing resources
optimization: A geo-clustering approach,” IEEE Trans. Netw. Serv.
Manag., vol. 15, no. 2, pp. 787–796, 2018. [Online]. Available:
https://doi.org/10.1109/TNSM.2018.2816263

[23] N. Mohan, A. Zavodovski, P. Zhou, and J. Kangasharju, “Anveshak:
Placing edge servers in the wild,” in Proceedings of the 2018
Workshop on Mobile Edge Communications, MECOMM@SIGCOMM
2018, Budapest, Hungary, August 20, 2018. ACM, 2018, pp. 7–12.
[Online]. Available: https://doi.org/10.1145/3229556.3229560

[24] S. Mondal, G. Das, and E. Wong, “CCOMPASSION: A hybrid cloudlet
placement framework over passive optical access networks,” in 2018
IEEE Conference on Computer Communications, INFOCOM 2018,
Honolulu, HI, USA, April 16-19, 2018. IEEE, 2018, pp. 216–224.
[Online]. Available: https://doi.org/10.1109/INFOCOM.2018.8485846

[25] S. Zhao, X. Zhang, P. Cao, and X. Wang, “Design of robust and
efficient edge server placement and server scheduling policies,” in 29th
IEEE/ACM International Symposium on Quality of Service, IWQOS
2021, Tokyo, Japan, June 25-28, 2021. IEEE, 2021, pp. 1–7. [Online].
Available: https://doi.org/10.1109/IWQOS52092.2021.9521290

[26] B. Cao, S. Fan, J. Zhao, S. Tian, Z. Zheng, Y. Yan, and P. Yang,
“Large-scale many-objective deployment optimization of edge servers,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6, pp. 3841–3849, 2021.
[Online]. Available: https://doi.org/10.1109/TITS.2021.3059455

[27] S. Lu, J. Wu, and Z. Fang, “High-elasticity virtual cluster
placement in multi-tenant cloud data centers,” in 21st IEEE
International Conference on High Performance Computing and
Communications, HPCC 2019, Zhangjiajie, China, August 10-
12, 2019. IEEE, 2019, pp. 996–1003. [Online]. Available:
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00143

[28] H. H. Sinky, B. Khalfi, B. Hamdaoui, and A. Rayes, “Adaptive
edge-centric cloud content placement for responsive smart cities,”
IEEE Netw., vol. 33, no. 3, pp. 177–183, 2019. [Online]. Available:
https://doi.org/10.1109/MNET.2019.1800137

[29] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C. Hsu, “Edge server
placement in mobile edge computing,” J. Parallel Distributed
Comput., vol. 127, pp. 160–168, 2019. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2018.06.008

[30] Y. Zhang, P. Li, Z. Zhang, B. Bai, G. Zhang, W. Wang, B. Lian, and
K. Xu, “Autosight: Distributed edge caching in short video network,”
IEEE Netw., vol. 34, no. 3, pp. 194–199, 2020. [Online]. Available:
https://doi.org/10.1109/MNET.001.1900345

[31] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement
of web server replicas,” in Proceedings IEEE INFOCOM 2001, The
Conference on Computer Communications, Anchorage, Alaska, USA,
April 22-26, 2001. IEEE Comptuer Society, 2001, pp. 1587–1596.
[Online]. Available: https://doi.org/10.1109/INFCOM.2001.916655

[32] J. Sahoo, M. A. Salahuddin, R. H. Glitho, H. Elbiaze, and
W. Ajib, “A survey on replica server placement algorithms
for content delivery networks,” IEEE Commun. Surv. Tutorials,
vol. 19, no. 2, pp. 1002–1026, 2017. [Online]. Available:
https://doi.org/10.1109/COMST.2016.2626384

[33] Y. Zhang, P. Li, Z. Zhang, C. Zhang, W. Wang, Y. Ning, and
B. Lian, “Graphinf: A gcn-based popularity prediction system for
short video networks,” in Web Services - ICWS 2020 - International
Conference on Web Services, Honolulu, HI, USA, September 18-20,
2020, Proceedings, vol. 12406. Springer, 2020, pp. 61–76. [Online].
Available: https://doi.org/10.1007/978-3-030-59618-7_5

114

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:00:52 UTC from IEEE Xplore. Restrictions apply.

