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Abstract

Massive and diverse data is crucial to train 
a general deep learning model, while the data 
collection for model training is difficult, especial-
ly training on sensitive data (e.g., medical data 
and face imaging). The emerging collaborative 
learning addresses this issue well by allowing par-
ticipants to train a global model by uploading a 
subset of parameter changes, instead of the entire 
training data, to a centralized server. However, 
this privacy-preserving method can effectively 
enable privacy protection only when the involving 
entities are trusted (i.e., they honestly follow the 
protocol). Otherwise, the method may still leak 
private data. In this article, we propose a secure 
collaborative learning system named SecCL, 
which leverages a trusted bulletin board built on 
blockchain to enable strong privacy protection in 
collaborative learning by ensuring authentic and 
correct message interaction during the training 
process. Also, we develop a novel smart contract 
for SecCL so that participants can achieve con-
sensus to restrain malicious behaviors. Therefore, 
SecCL ensures that the server cannot deceive par-
ticipants and that participants behave well during 
the training process. We implement a prototype 
to evaluate its performance, and the promising 
experimental results demonstrate that SecCL can 
throttle malicious behaviors of participants and 
parameter servers while ensuring the accuracy of 
the global model.

Introduction
Deep learning has been widely applied in various 
artificial intelligence fields (e.g., computer vision 
and natural language processing). In order to 
achieve higher learning accuracy, a large amount 
of diverse training data is vital to train a learning 
model. Unfortunately, many privacy-sensitive sce-
narios (e.g., medical and financial data learning) 
do not allow direct collection of such data due 
to the privacy issue. Therefore, privacy-preserving 
learning methods are required to realize secure 
learning on private data. To solve the issue above, 
Shokri and Shmatikov [1] proposed a collaborative 
learning system called PPDL, where participants 
collaborate with each other to train a global model 
through uploading a subset of parameter changes 
to a server instead of centralized data collection. 
Recently, Google developed an instance of col-
laborative learning, that is, a federated learning 

framework [2], which enables millions of smart 
devices to train a joint prediction model while 
keeping datasets private. Moreover, homomor-
phic encryption helps to prevent a parameter 
server’s malicious behavior [3]. However, these 
existing systems cannot effectively preserve data 
privacy when the server or participants manipu-
late the learning process. For example, the current 
collaborative learning systems are still vulnera-
ble to data leakage, and malicious participants 
can still steal the private training data by training 
a generative adversarial network (GAN) [4]. Col-
luders can poison the global model by training 
their delicately designed backdoor data [5], which 
can significantly decrease the accuracy of global 
models. In practice, it is difficult to ensure that 
both servers and participants are trusted, that is, 
they correctly follow learning protocols. Thus, it is 
necessary to develop a secure collaborative learn-
ing system. 

It is challenging to develop such a system in 
a completely untrusted environment. To the best 
of our knowledge, there is no effective counter-
measure to throttle the attacks above. In this arti-
cle, we aim to answer the question: is it possible 
to develop a secure collaborative learning system 
even if the server and participants are untrusted? 
The answer is positive. Collaborative learning [1] 
(including federated learning [2]) is a typical dis-
tributed system, that is, multiple participants work 
together training a global model without exposing 
sensitive data. We can utilize the blockchain as a 
trust infrastructure to secure collaborative learn-
ing.

In this article, we propose a blockchain-based 
secure collaborative learning system named 
SecCL, which can restrict the malicious behaviors 
of participants and parameter servers while ensur-
ing the accuracy of the global model. First, we 
design a mechanism for participants to verify the 
behaviors of parameter servers. By leveraging the 
information recorded on a trusted bulletin board 
(TBB) built on blockchain, any malicious behav-
iors of the server against the uploaded parameters 
will be traced by participants (e.g., tampering with 
the uploaded parameters). Thus, SecCL ensures 
that parameter servers must correctly perform 
the message interaction protocol. Second, we 
develop a novel consensus smart contract (CSC) 
for SecCL to restrict behaviors of malicious par-
ticipants. CSC is built on multi-winner election 
rules and enables consensus among participants 
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to select the optimal parameter changes during 
each round of training. During the learning pro-
cess, each participant evaluates the latest upload-
ed parameter changes with F-score and uploads 
the evaluation results to CSC. At the end of each 
round, CSC selects a new list of candidates based 
on the evaluations submitted by all participants 
(i.e., a subset of participants) to update the global 
model. And the parameters uploaded by candi-
dates are optimal, which really contributes to the 
model training.

In what follows, we first review the develop-
ment of collaborative learning and present the 
advantages of using blockchain technology. Then 
we present the system design of SecCL and its 
advantages. We implement a prototype using 
a typical model convolutional neural network 
(CNN) to verify the feasibility of SecCL, and the 
promising results show that SecCL ensures the 
security of the learning process while the model 
achieves high accuracy. Finally, we discuss the 
challenges that SecCL faces and conclude with 
future directions.

Background

Collaborative Learning

To improve efficiency when training large deep 
models with massive data, distributed deep learn-
ing methods [6] aim to find a global solution and 
assign training tasks to various central/graphics 
processing unit (CPU/GPU) clusters. Each cluster 
is called a worker, which trains the model with 
partial data. A parameter server is used to aggre-
gate parameters from each worker and finally 
obtains a highly accurate global model. Inspired 
by distributed learning technology, Shokri and 
Shmatikov devised a system named PPDL [1], a 
privacy-friendly collaborative learning framework. 
PPDL treats each participant as a worker, in which 
the server collects each participant’s parameters 
(i.e., gradients) instead of private data. Mean-
while, PPDL uses differential privacy to prevent 
parameter sharing from leaking sensitive infor-
mation. Moreover, Google proposed federated 
learning [2] and secure aggregation protocol 
[7], which focus on training joint deep models 
on smartphones without collecting sensitive data. 
Each smartphone launches the training with its pri-
vate local data (e.g., typing history), and a server 
collects the parameters submitted by each device 
to improve the global model. Yang et al. [8] com-

bine federated learning with transfer learning, 
covering financial and medical scenarios among 
different enterprises. Furthermore, to enhance 
privacy, homomorphic encryption helps to pro-
tect messages interaction during the training pro-
cess [3]. In a nutshell, Google implemented an 
instance of the collaborative learning system at 
scale (i.e., federated learning), based on which 
millions of smartphones train a global next word 
prediction model without collecting user data. 
The typical workflow of collaborative learning is 
shown in Fig. 1.

Advantages of Collaborative Learning: First, in 
privacy-sensitive scenarios, different organizations 
can collaborate to train a model without exposing 
private data, such as medical data, online person-
al preference, and chat history. For example, Yang 
et al. [8] envisage the framework deployed in 
financial fields (e.g., multiparty borrowing detec-
tion). Second, enterprises can form an alliance 
and amplify the value of isolated data that exists 
in different organizations. Enterprises within the 
alliance can unify data standards and train a joint 
model, which avoids disappointing model perfor-
mance due to insufficient data.

Weaknesses of Current Solutions: The desired 
goal of privacy preserving can be sabotaged when 
malicious participants do not follow the learning 
protocol. For example, Hitaj et al. [4] point out 
that adversaries feed fake labels to the model 
and train a generative adversarial network (GAN), 
which can lead to the exposure of a private train-
ing sample of the victim. Besides, it is impossi-
ble to know who uploaded malicious parameters 
when using secure aggregation [7]. Thus, collusive 
adversaries can hide behind benign participants 
and stealthily launch their attacks to poison the 
global model by training their delicately designed 
backdoor data [5]. Meanwhile, a curious serv-
er may maliciously modify the parameters from 
a benign participant and launch similar attacks. 
Current solutions lack auditing assessment of par-
ticipants, which limits the practical deployment of 
collaborative learning.

Blockchain and Smart Contracts

The blockchain is essentially a reliable distributed 
database for recording transactions. Miners gener-
ate blocks and link them one by one to construct 
an immutable ledger. Each block includes multi-
ple transactions, which can record not only the 
money transferred from payer to payee but also 

Figure 1. The workflow of the collaborative learning system.
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data for a specific application. For example, Bit-
coin allows embedding at most 80 B statements 
to a transaction. In a public (or permissionless) 
blockchain such as Bitcoin, anyone can participate 
in it without a specific identity. Thus, sophisticat-
ed consensus mechanisms such as proof of work 
(PoW) are required to ensure the consistency of 
transactions in a fresh block. Different from the 
above, the permissioned blockchain can secure 
the interactions among a group of identified enti-
ties. These entities have a common goal (e.g., 
training a joint model) but may not fully trust each 
other. By relying on the identity of each entity, 
the blockchain nodes do not require costly min-
ing (e.g., PoW) to reach consensus, which makes 
SecCL ready for deployment. However, both 
blockchains ensure that data cannot be tampered 
with by a few untrusted entities once the trans-
action is included in a block and confirmed by 
miners. We can utilize this feature of blockchain 
to track and verify the server’s behaviors [9].

Smart contracts are executable programs 
deployed on the blockchain and can get cred-
ible results by leveraging blockchain’s security 
guarantee. Currently, many blockchain platforms 
support smart contracts (e.g., Ethereum, Hyper-
ledger Fabric). Smart contracts will be executed 
automatically once invoked by users. Thus, par-
ticipants can reach a consensus (e.g., selection 
of optimal parameters, incentives in crowdsourc-
ing [10]) without depending on any centralized 
servers, which may be manipulated by powerful 
adversaries. In a nutshell, blockchain can offer the 
following properties to SecCL.

Trusted Records: The TBB ensures that partic-
ipants cannot deny the parameters uploaded by 
themselves, and servers cannot manipulate the 
data recorded on the TBB.

Reliable Contribution Assessment: The CSC 
built on multi-winner election rules enables con-
sensus among participants to select the optimal 
parameter changes, which does not rely on any 
centralized authorities while ensuring that no 
party can tamper with the rules of the contribu-
tion assessment.

SecCL Design

Basic Idea

In SecCL, participants leverage TBB to verify 
parameters from the parameter server, which 
maintains the global model and receives parame-

ters to improve the learning performance. Mean-
while, by leveraging multi-winner election rules 
in the CSC, participants can reach consensus to 
select the best parameters. Figure 2 shows three 
entities in SecCL.

Participants (P) have the same training target 
and collaborate with each other by sharing a sub-
set of parameter changes. There are two types of 
interaction messages used by P to communicate 
with the server, and one round of training means 
that all participants have successfully uploaded 
the type (a) messages containing their selected 
parameter changes. Moreover, the participant 
who uploads a type (a) message will verify the 
hash recorded on TBB to ensure that the server 
cannot send fake parameters to other participants.

A parameter server interacts with P and TBB. 
The server maintains parameters of the glob-
al model, and receives messages from P. Once 
the server receives a message from pi (one par-
ticipant in SecCL), it will record the hash of the 
message on TBB and return the corresponding 
transaction-ID (Tx-ID) to pi for verification. The 
Tx-ID is a hash string (e.g., SHA-256) that uniquely 
identifies a transaction. At the end of each round 
of training, the server receives a list of candidates 
selected by CSC and updates the global model.

The TBB is built on the blockchain. The hash 
of a message is embedded in a transaction and 
cannot be tampered with once the transaction is 
included in a block. Besides, the CSC determines 
whose parameters are optimal to update the glob-
al model based on the evaluation values from P. 
Here, participants, whose uploaded parameter 
changes are finally adopted by the global model, 
are called candidates (C).

In the following subsections, we elaborate on 
the interactions between the entities and how 
the consensus among participants is achieved to 
securely train learning models.

Message Interaction Protocol

The message interaction protocol begins with 
the boot of the collaborative learning phase. As 
shown in Fig. 2, the message interaction protocol 
details are as follows.

Participant-Server Interaction: There are 
two types of messages in the protocol. Figure 3 
shows the workflow of a participant. First, at the 
beginning of each round of training, P download 
the latest global model from the server and start 
their local training via stochastic gradient descent 

Figure 2. High-level overview of SecCL.
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(SGD). When the local training is completed, P 
asynchronously select partial parameters with the 
largest changes to upload (i.e., Dql in Fig. 3) and 
send a type (a) message to the server. Second, 
when the server receives new parameters from pi, 
all the other participants will be notified to down-
load the message and the corresponding Tx-ID. 
Then they use the Tx-ID to verify the authentici-
ty of the downloaded message and evaluate pi’s 
uploaded parameter changes with their own pri-
vate validation datasets. After that, they send a 
type (b) message containing the evaluation value 
(i.e., Evalp2→p1 in Fig.3) to the server.

Server-TBB Interaction: First, the server 
embeds the hash of both types of messages in 
a transaction and broadcasts it to the blockchain 
network, after which the corresponding Tx-ID will 
return to P for public verification. For example, P 
can use the Tx-ID to query the hash value to verify 
the authenticity of the message (e.g., H(Msg1) in 
Fig. 2). Note that due to the consensus for block 
generation, there is a delay in confirming the 
transaction. However, this delay normally takes 
several seconds, which is negligible compared 
to the training process. Second, the server trans-
fers the evaluation values from P to CSC. At the 
end of each round, CSC selects new candidates 
based on evaluation values and then notifies the 
server of the list of C to update the global model. 
The invoking process of CSC is public on the TBB, 
so participants can trace the execution flow to 
ensure that the server correctly performs the pro-
posed protocols and transfers the evaluation val-
ues to CSC.

Consensus among Participants

The CSC is deployed on the TBB and implements 
the selection of C. The parameter changes from 
C should perform well on all participants’ valida-
tion datasets. Thus, CSC stores evaluation values 
from P and converts the selection into a multi-win-
ner problem, which has been extensively studied 
[11]. In SecCL, the multi-winner election consid-
ers the problem of selecting optimal parameters 
to update the global model. We use the Broda 
positional scoring function (PSF) as the basis for 
the selection. Considering that we choose M can-
didates, CSC first sorts all evaluation values from 
pi in descending order and selects a subset includ-
ing M participants of top evaluation values. Then 
the scores of the other participants are calculated 
based on PSF and their positions in the subset 
selected by pi. The total Broda score of a partic-

ipant is the accumulative PSF score from all the 
other participants. Finally, C should be the subset 
of P with the greatest total Broda score. When 
CSC receives the evaluation values from all partic-
ipants, it will select a new list of candidates based 
on the above and notify the server to update the 
global model. In a nutshell, the consensus among 
the participants ensures that only the optimal 
parameters can update the global model.

Advantages of SecCL
Obtaining Generalized Deep Models

Participants have the same training target in 
SecCL, for example, a specific task in the health-
care area. Therefore, the global model must per-
form well on all participants’ validation datasets. 
Previous work lacks verification mechanisms, so 
the low-quality parameters cause the model to 
converge slowly or even fail to get highly accu-
rate deep models. Moreover, participants may 
have non-IID data for local training. For example, 
each participant only has partial data when train-
ing a multi-class classifier. Thus, the parameter 
server cannot directly aggregate the parameters 
from all participants. Otherwise, the global model 
may deteriorate [2]. The consensus in SecCL 
ensures that the server only aggregates the opti-
mal parameters, which facilitates the global model 
converging in a stable manner.

Throttling Malicious Behaviors

Security against Passive Adversaries: “Passive” 
adversaries will loyally execute the message inter-
action protocol. However, some local training 
issues of each participant will delay the model 
convergence. For example, pi may have low-qual-
ity training data, and the obtained parameters do 
not contribute to improving accuracy. Based on 
the rules above, other participants will have a low 
evaluation value for pi, and the CSC will not select 
pi as a candidate to update the global model, 
which effectively restricts the negative effects and 
ensures the accuracy of the global model.

Security against Active Adversaries: “Active” 
adversaries will actively attempt to threaten the 
data from other participants or sabotage the 
model. Active adversaries can be divided into 
two categories: malicious participants and curious 
servers.

First, previous works [4, 5] have shown that an 
active malicious participant can poison the global 
model or even steal a victim’s local data through 

Figure 3. The steps taken by a participant to interact with the server. 
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uploading parameter gradients derived from train-
ing their delicately designed data. These param-
eters lead to the model diverging from the latest 
state, and the accuracy will drop sharply, which 
can be detected by F-score. SecCL enables partic-
ipants to observe and evaluate others’ behaviors 
for the consensus that only the optimal gradients 
from benign participants can update the model. 
Thus, a single adversary will not succeed in sabo-
taging the model.

Second, the parameter server collects and dis-
tributes the parameter changes. It may modify or 
drop the parameters from a benign participant 
on purpose and launch similar attacks as in [4, 
5]. By leveraging the records on the TBB, each 
participant is able to verify the authenticity of the 
parameters and check whether the parameters 
are modified by the server. Thus, any malicious 
behaviors of the server against the uploaded mes-
sages will be traced by all participants.

Security against Collusions: Note that the 
server is monitored by benign participants. Thus, 
we consider malicious participant collusion. Based 
on the algorithm of CSC, collusive adversaries 
may upload fake ranks and select one of them to 
affect the training process. However, the param-
eters uploaded by adversaries do not contribute 
to the model, that is, benign participants will have 
low evaluation values of them. Thus, SecCL can 
throttle adversaries’ malicious behaviors as long 
as the number does not exceed a threshold ratio 
of all participants. Moreover, the aggregation 
method (e.g., parameter averaging) also elimi-
nates occasional negative effects.

Experimental Evaluation
In this section, we implement a prototype using 
Ethereum geth, based on which we built the 
experimental blockchain network to verify the 
feasibility. The prototype runs on Ubuntu 16.04 
(Intel® Core™ i7-7700 CPU @ 3.60 GHz and 16 
GB memory). We implement CSC using Solidi-
ty language for the selection of optimal param-
eters in each round. We use the JSON RPC 
application programming interface (API) and 
the Web3 library to implement the interaction 
with the blockchain. For the training process, 
we implement a server prototype with python 
to simulate interaction with the participants and 
the blockchain. Then participants use the keras 

toolkit to train the model and the sklearn tool-
kit to evaluate the parameters from participants, 
where the F-score is the average of each class 
to evaluate a multi-class classifier. The numbers 
of participants belong to {20, 30}. We use l , e 
to represent the fraction of selected candidates 
and malicious adversaries, respectively. To unify 
experimental standards, each participant has the 
same local training strategy, that is, mini-batch 
size 32, learning rate 0.02, and the fraction of the 
sharing parameters 0.1.

Feasibility Verification

In this experiment, we focus on verifying the fea-
sibility of SecCL without considering the existence 
of adversaries. We randomly divide the MNIST 
dataset equally for each participant, that is, each 
participant may have different numbers of data 
for each class. Besides, we utilize the same set-
tings (e.g., mini-batch size, learning rate) to train 
the model on the entire dataset and use the accu-
racy as the baseline (0.9908).

Figure 4 shows the accuracy of the global 
model. Training models can achieve similar accu-
racy to the baseline for different settings of par-
ticipants and l . As the number of participants 
increases, the convergence time will increase 
slightly, but it will not affect the final accura-
cy of the global model. Moreover, without the 
existence of adversaries, we found that the CSC 
selecting more candidates will accelerate the 
accuracy improvement. For example, when 30 
participants collaborate for 10 rounds, l = 0.4 
enables the model to achieve a higher accuracy 
that is closer to the baseline than l = 0.1.

Effectiveness of Throttling Adversaries

In this experiment, we consider the case of 20 
participants to verify the effectiveness of throttling 
malicious behaviors of adversaries. They collude 
to feed fake labels to the training model (similar 
to [4]) when Round = 5.

As shown in Fig. 5, the collaborative learning 
process is not affected when e < 0.25. The accu-
racy of the global model sharply decreases when 
e ≥ 0.25, which can be detected by benign par-
ticipants on their validation datasets. Thus, SecCL 
can restrict the negative effect of low-quality 
parameters as long as the number of adversaries 
does not exceed a threshold.

Figure 4. Feasibility verification of SecCL: a) 20 participants, CNN; b) 30 participants, CNN.

(a) (b)
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Moreover, we found that there is a trade-off 
between security and efficiency. As shown in the 
first experiment, without the existence of adver-
saries, selecting more candidates will improve the 
efficiency of training as all the parameters con-
tribute to improving the global model. However, 
it also means that the system is more vulnerable 
to collusive adversaries, because the more can-
didates, the more easily collusive adversaries can 
sneak into the candidate group. Thus, it is essen-
tial to select a reasonable number of candidates 
when considering different factors (e.g., preferred 
security or efficiency).

Challenges and Opportunities
SecCL is a secure collaborative learning system, 
in which entities utilize the designed protocol for 
behavioral auditing. However, it still has some 
open issues.

Training Verification: In SecCL, partici-
pants share parameters to train a global model. 
Although SecCL ensures that forged parameters 
cannot affect the global model, current frame-
works lack a mechanism for verifying whether the 
parameters are derived from local training. For 
example, a malicious participant may not execute 
local training and steal others’ contributions by 
uploading modified parameters. Thus, we need 
to design more sophisticated proof-of-training 
mechanisms to prevent such behaviors. Naively, 
we can use smart contracts to execute verifica-
tion algorithms, which provide a more equitable 
assessment without any centralized authority.

Data Alliance and Incentives: In privacy-sensi-
tive scenarios, enterprises can form a data alliance 
for collaborative learning. The first essential step to 
put SecCL into practical use is to unify data stan-
dards. For example, data for lung disease may vary 
from different hospitals. Yang et al. have raised 
this issue [8] and attempt to solve it by transfer 
learning. Then the data owners can obtain incen-
tives based on the contribution assessment rules 
in the smart contract, which will attract enterprises 
to join the alliance (e.g., Smartretro [12]). How-
ever, related works indicate that bugs in smart 
contracts will affect the execution results [13, 14], 
and adversaries may manipulate the invocation of 
smart contracts [15]. We can leverage the existing 
mechanisms (e.g., cross-graph analysis [15]) to 
detect vulnerabilities before deploying the con-

tracts to avoid economic losses. Based on the 
above, AI companies can pay for the data without 
violating laws such as GDPR.

Deployments for More Scenarios: SecCL 
should be agile and compatible with more appli-
cation scenarios. For example, the required data 
is cross-industry in some scenarios. Take the rec-
ommendation system as a case. Vendors analyze 
personal preferences and want to recommend 
products that match users’ purchasing power, but 
the information usually exists in banks, which can-
not be collected to train a model. As mentioned 
above, we can leverage the permissioned block-
chain to form a data alliance. Each enterprise 
maintains blockchain nodes to record information 
during the collaboration. Meanwhile, the permis-
sioned chain offers the identity of each enterprise, 
based on which SecCL can utilize smart contracts 
to allocate the profit equitably during the training 
process.

Performance Improvement: First, we should 
optimize the training algorithm. For deep learning 
models, uploading parameters may cause more 
overhead than collecting user data. This issue has 
been proposed by Google [2] when they deploy 
the system to train a next-word-prediction model 
on millions of Android phones. As a counter-
measure, we can improve the performance to 
assign tasks based on the communication capa-
bility of participants and encode the parameters 
to upload. Second, in the experiments, we imple-
mented the prototype based on geth, which aims 
to verify the feasibility of SecCL. However, in prac-
tical deployment, we should build the infrastruc-
ture of SecCL on the permissioned blockchain 
such as Hyperledger Fabric, in which identified 
blockchain nodes use traditional consensus mech-
anisms without costly mining and provide suffi-
cient performance for SecCL.

Conclusion
In this article, we propose a blockchain-based 
secure collaborative learning system that can 
restrict the malicious behaviors of the parame-
ter server and participants while still ensuring the 
accuracy of the training model. Without exposing 
data to train deep learning models, collaborative 
learning will create a new business model and 
increase the enthusiasm of people for participat-
ing in collaboration. Combined with blockchain 
technology, we can use smart contracts to estab-
lish equitable mechanisms to assess the contri-
bution of participants, improving the model and 
providing incentives for them based on the assess-
ment, which enables personal control of private 
training samples and amplifies the value of pre-
cious but unshareable data. Moreover, we sum-
marize open issues in the current collaborative 
learning systems and point out potential solutions 
using blockchain.
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Combined with block-

chain technology, we 

can use smart contracts 

to establish equitable 

mechanisms to assess 

the contribution of par-

ticipants, improving the 

model and providing 

incentives for them 

based on the assess-

ment, which enables 

personal control of 

private training samples 

and amplifies the value 

of precious-but-unshare-

able data.

ZHANG_LAYOUT.indd   53ZHANG_LAYOUT.indd   53 1/21/20   10:25 AM1/21/20   10:25 AM


