
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3719027.3744824
.

.

RESEARCH-ARTICLE

RingSG: Optimal Secure Vertex-Centric Computation for Collaborative
Graph Processing

ZHENHUA ZOU, Tsinghua University, Beijing, China
.

ZHUOTAO LIU, Tsinghua University, Beijing, China
.

JINYONG SHAN, Beijing Smartchip Microelectronics Technology Co., Ltd., Beijing, China
.

QI LI, Tsinghua University, Beijing, China
.

KE XU, Tsinghua University, Beijing, China
.

MINGWEI XU, Tsinghua University, Beijing, China
.

.

.

Open Access Support provided by:
.

Tsinghua University
.

Beijing Smartchip Microelectronics Technology Co., Ltd.
.

PDF Download
3719027.3744824.pdf
23 December 2025
Total Citations: 0
Total Downloads: 762
.

.

.

.

Published: 19 November 2025
.

.

Citation in BibTeX format
.

.

CCS '25: ACM SIGSAC Conference on
Computer and Communications Security
October 13 - 17, 2025
Taipei, Taiwan
.

.

Conference Sponsors:
SIGSAC

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)
hps://doi.org/10.1145/3719027.3744824

ISBN: 9798400715259

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3744824
https://dl.acm.org/doi/10.1145/3719027.3744824
https://dl.acm.org/doi/10.1145/contrib-99660955717
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99659478510
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661366164
https://dl.acm.org/doi/10.1145/institution-60297255
https://dl.acm.org/doi/10.1145/contrib-99661064038
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-81384607628
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-81100195442
https://dl.acm.org/doi/10.1145/institution-60025278
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60297255
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3744824&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3744824&domain=pdf&date_stamp=2025-11-22

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

Zhenhua Zou

Tsinghua University

Beijing, China

zou-zh21@mails.tsinghua.edu.cn

Zhuotao Liu
∗

Tsinghua University

& State Key Laboratory of Internet

Architecture

Beijing, China

zhuotaoliu@tsinghua.edu.cn

Jinyong Shan

Beijing Smartchip Microelectronics

Technology Co., Ltd.

Beijing, China

shanjinyong@sgchip.sgcc.com.cn

Qi Li

Tsinghua University

& State Key Laboratory of Internet

Architecture

Beijing, China

qli01@tsinghua.edu.cn

Ke Xu

Tsinghua University

& State Key Laboratory of Internet

Architecture

Beijing, China

xuke@tsinghua.edu.cn

Mingwei Xu

Tsinghua University

& State Key Laboratory of Internet

Architecture

Beijing, China

xumw@tsinghua.edu.cn

Abstract
Collaborative graph processing refers to the joint analysis of inter-

connected graphs held by multiple graph owners. To honor data

privacy and support various graph processing algorithms, existing

approaches employ secure multi-party computation (MPC) proto-

cols to express the vertex-centric abstraction. Yet, due to certain

computation-intensive cryptography constructions, state-of-the-art

(SOTA) approaches are asymptotically suboptimal, imposing signifi-

cant overheads in terms of computation and communication. In this

paper, we present RingSG, the first system to attain optimal com-

munication/computation complexity within the MPC-based vertex-

centric abstraction for collaborative graph processing. This optimal

complexity is attributed to Ring-ScatterGather, a novel computa-

tion paradigm that can avoid exceedingly expensive cryptography

operations (e.g., oblivious sort), and simultaneously ensure the over-

all workload can be optimally decomposed into parallelizable and

mutually exclusive MPC tasks. Within Ring-ScatterGather, RingSG
improves the concrete runtime efficiency by incorporating 3-party

secure computation via share conversion, and optimizing the most

cost-heavy part using a novel oblivious group aggregation protocol.

Finally, unlike prior approaches, we instantiate RingSG into two

end-to-end applications to effectively obtain application-specific

results from the protocol outputs in a privacy-preserving manner.

We developed a prototype of RingSG and extensively evaluated

it across various graph collaboration settings, including different

graph sizes, numbers of parties, and average vertex degrees. The

results show RingSG reduces the system running time of SOTA

approaches by up to 15.34× and per-party communication by up to

10.36×. Notably, RingSG excels in processing sparse global graphs

∗
Zhuotao Liu is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3744824

collectively held by more parties, consistent with our theoretical

cost analysis.

CCS Concepts
• Security andprivacy→Cryptography; •Computingmethod-
ologies→ Distributed algorithms.

Keywords
Collaborative Graph Processing; Secure Multi-party Computation;
Vertex-Centric Computation

ACM Reference Format:
Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, and Mingwei Xu.
2025. RingSG: Optimal Secure Vertex-Centric Computation for Collaborative
Graph Processing. In Proceedings of the 2025 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’25), October 13–17, 2025, Taipei.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3744824

1 Introduction
Graph data, which constitutes a fundamental element of mod-

ern data infrastructure, often exhibits complex interdependencies
across organizations. A prime example is the banking sector, where
inter-bank transfers function as inter-edges connecting individual
banks’ transfer graphs into a comprehensive global graph. This
interconnected structure necessitates collaborative graph process-
ing [5, 6, 10, 18, 34, 38], which enables multiple organizations to
jointly analyze their interconnected graphs and derive insights
that would be unattainable through isolated analysis of individual
graphs. Anti-money laundering (AML) [16, 17, 39] represents a par-
ticularly significant application of such joint analysis. The detection
of malicious cross-border fund flows [44] becomes infeasible when
relying solely on isolated local graph data maintained by individual
banks. However, the growing emphasis on data privacy presents
a significant challenge, as direct sharing of graph data among dif-
ferent graph owners for collaborative processing raises substantial
privacy concerns and may violate regulatory requirements [1].

483

https://orcid.org/0009-0003-1681-3786
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0001-6237-986X
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0002-4847-4585
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744824
https://doi.org/10.1145/3719027.3744824
https://doi.org/10.1145/3719027.3744824

Zhenhua Zou et al.CCS ’25, October 13–17, 2025, Taipei

Secure Multi-party Computation (MPC) [9, 13, 15, 21, 29, 33, 40],
a suite of cryptographic protocols, offers a promising solution by
enabling collaborative graph processing with formally provable
privacy guarantees. Most existing MPC-based approaches employ
the fully outsourced computation setting, where the graph owners
employ several third-party computing servers to hold and com-

pute their private graph data in a secret-shared fashion. These
approaches either treat MPC as an arithmetic black box (ABB)
and focus on optimizing specific graph algorithms (like Shortest
Path [5–7, 22, 35]), or depend on specific MPC protocols (like Gar-
bled circuit, ABY3) to support general computation of various graph
algorithms [10, 12, 23, 27, 28, 34]. The latter branch is largely based
on GraphSC [34], a secure computation paradigm to execute various
graph algorithms under the vertex-centric abstraction [26].

However, the outsourced computation scheme exhibits two fun-
damental limitations. (i) It necessitates a one-time, yet exceedingly
costly, secure sort to rearrange the graph data, which can consume
up to 75% or more of the total execution time [10]. (ii) Since each
computing party retains an essential secret share of the global
graph, it is obligated for each of them to perform secure computa-

tion across the entire graph, even if certain sections of the global
graph are topologically disconnected from the party. This results in
substantial communication overhead between each pair of parties.

To address the above problem, CoGNN [41] proposes to integrate
distributed computing into the vertex-centric abstraction. Its core
idea is to decompose the overall secure computation workload into
concurrent two-party secure computation (2PC) tasks. This allows
each party to process only part of the global graph and to replace
the costly secure sort with more computation-efficient secure per-
mutations [14, 31]. However, CoGNN only achieves sub-optimal
asymptotic complexity in the vertex-centric abstraction because it
fails to attain optimal computation task partitioning. Consequently,
the proportion of global graph data associated with different tasks
overlaps, leading to redundant computations. Moreover, the secure
execution of the decomposed tasks is confined to 2PC, which lacks
the generality necessary to utilize more efficient MPC protocols.
See detailed discussion of CoGNN in § 3.2.

To advance the state-of-the-art (SOTA), we introduce RingSG, the
first collaborative graph processing system that attains an optimal
complexity within the vertex-centric abstraction. RingSG demon-

strates several key advantages over the SOTA approaches. First,
it introduces Ring-ScatterGather, a novel computation paradigm
that introduces grouped data parallelism into the vertex-centric ab-
straction. Unlike the outsourced computation schemes and CoGNN,
Ring-ScatterGather organizes the overall secure computation work-
load into rings of parallelizable and non-overlapping tasks, where
each task is securely computed by a group of relevant parties, as
shown in Figure 1. As a result, Ring-ScatterGather achieves the
communication complexity of 𝑂 (|𝑉 | + |𝐸 |) in the vertex-centric
abstraction, where |𝑉 | and |𝐸 | represent the numbers of vertices
and edges in the global graph, respectively. This is optimal because
it is linear to (|𝑉 | + |𝐸 |) and independent of the number of parties 𝑁 ,
making it more efficient than both outsourced computation schemes
(𝑂 ((|𝑉 | + |𝐸 |) log(|𝑉 | + |𝐸 |))) and CoGNN (𝑂 (𝑁 |𝑉 | + |𝐸 |)). We sum-

marize the communication/round complexities of RingSG and prior
SOTAs in Table 1. For GraphSC, we use its SOTA construction [23].

Ring of ScatterTasks Ring of GatherTasksShare
Redistribution

ScatterTask GatherTaskvertex
edge

edge

party border

(not in
this task)

from vertices
to edges

from edges
to vertices

a group
for a

ScatterTask

ScatterTasks in a ring are
parallel and non-overlapping

GatherTasks in a ring are
parallel and non-overlapping

a group for a
GatherTask

2-out-of-3 SS 2-out-of-3 SS

2-out-of-2 SS

Share
Conversion

Figure 1: A high-level illustration of RingSG. (i) MPC-based
vertex-centric computation is decomposed into parallel Scat-
ter/Gather tasks, each assigned to a group of parties. (ii)
Tasks in an iteration of vertex-centric computation are non-
overlapping and parallelized like a ring. (iii) Synchronization
occurs between rings, and share conversion/redistribution is
performed during the transition between consecutive rings.

Communication (Bandwidth) Round

GraphSC [23] 𝑂 ((|𝑉 | + |𝐸 |) log(|𝑉 | + |𝐸 |)) 𝑂 (log(|𝑉 | + |𝐸 |))
CoGNN [41] 𝑂 (𝑁 |𝑉 | + |𝐸 |) 𝑂 (log(|𝐸 |) + 𝑁)
RingSG 𝑶 (|𝑽 | + |𝑬 |) 𝑶 (log(|𝑬 |))

Table 1: The overall communication and round complexity
for executing one iteration of vertex-centric abstraction.

Second, unlike CoGNN relying on relatively expensive 2PC

to execute these decomposed MPC tasks, RingSG integrates ef-

ficient three-party secure computation (3PC). This is accomplished

through a share conversion and a share redistribution mechanism,

within the Ring-ScatterGather paradigm (also shown in Figure 1).

This mechanism dynamically establishes three-party replicated se-

cret shares on demand, enhancing task execution efficiency while

ensuring security. Meanwhile, we pinpoint the most computation-

ally intensive component in RingSG: obliviously aggregating the

edge-produced data targeting the identical vertices. To reduce

its overhead, we propose a novel cryptographic protocol to at-

tain Oblivious Group Aggregation (OGA) with identical compu-

tation/communication as the SOTA [8, 19, 20], but with halved

rounds. This further reduces the concrete running time of RingSG.
Finally, we present the end-to-end instantiation of RingSG in

two real-world anti-money laundering applications. We demon-

strate that the design of RingSG has enabled efficient and privacy-

preserving extraction of application-specific results from the proto-

col outputs, which has not been discussed in existing approaches.

Contributions. Our primary contribution is RingSG, the first sys-
tem that realizes the optimal communication/computation complex-

ity for the MPC-based vertex-centric abstraction in collaborative

graph processing. The optimal complexity is enabled by a novel

computation paradigm (Ring-ScatterGather) that decomposes the

holistic secure computation workload into parallelizable and non-

overlapping tasks, resulting in superior efficiency and scalability.

Within this paradigm, we incorporate 3PC based on replicated

secret share, and also propose a new OGA protocol to further im-

prove the concrete efficiency of RingSG. Finally, we discuss the

484

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing CCS ’25, October 13–17, 2025, Taipei

v0

v1

v2

v3
1

0

0

0

0

0

0 0

0

v0

v1

v2

v3
1

max(1, 0)

0

0

0

v0

v1

v2

v31

1

Scatter Gather

(a) (b) (c)

max(0, 0)

max(0, 0)max(0, 0)

max(0, 0)

1

0 0

0

0

0 0

Figure 2: An example showing an iteration of vertex-centric
abstraction for Connected Component Labeling (CC).

end-to-end instantiations of RingSG to confidentially and efficiently

obtain application-specific results from the protocol outputs. We

implement RingSG and experimentally compare it to the SOTA ap-

proaches across a wide range of settings, including different graph

sizes, numbers of parties and average vertex degrees. Evaluation

results show that RingSG reduces the overall system running time

of SOTA approaches by up to 15.34× and per-party communica-

tion by up to 10.36×. For sparse global graphs with a fixed average

vertex degree, RingSG exhibits a performance gain that grows as

the number of parties or graph size increases. This observation

aligns with our theoretical analysis, highlighting RingSG’s superior
asymptotic complexity and concrete efficiency advantages.

2 Preliminaries
Graph. A graph can be specified as 𝐺 = (𝑉 , 𝐸), where 𝑉 is a

vector of vertices and 𝐸 is a vector of edges. Each slot of𝑉 contains

a vertex 𝑣 = (𝑣 .id, 𝑣 .data), where 𝑣 .id is a unique identifier and

𝑣 .data is the vertex data. Each slot of 𝐸 stores a directed edge

𝑒 = (𝑒.src, 𝑒 .dst, 𝑒 .data), where 𝑒.src (𝑒.dst) is the identifier of the
source (destination) vertex.We call edge 𝑒 the outgoing edge of 𝑒.src
and the incoming edge of 𝑒.dst. The number of outgoing (incoming)

edges of a vertex is called its outgoing (incoming) degree. We use

𝑉 .id to represent the identifier vector of𝑉 , and use 𝐸.src (𝐸.dst) for
the identifier vector of 𝐸’s source (destination) vertices.

Graph Processing via Vertex-Centric Abstraction. Graph pro-

cessing essentially leverages graph algorithms to analyze a graph,

and produces either updated graph data or statistics extracted from

it. As proposed in Pregel [24, 26], most graph algorithms can be effi-

ciently and parallelly computed via three vertex-centric operations:

Gather, Apply and Scatter. This is called the vertex-centric abstrac-
tion. For classical graph algorithms like Connected Component

Labeling (CC) [2], Shortest Path (SP) [4] and PageRank (PR) [3],

Apply can be included in Gather and the graph algorithms are then

expressed as iterations of Scatter-Gather, as follows:

• Scatter. For all 𝑣 ∈ 𝑉 , traverse its outgoing edges, combining

the vertex data and edge data to generate an update on the

edge: 𝑢 ← FS (𝑣, 𝑒),∀𝑒 ∈ {𝑒 |𝑒.src = 𝑣 .id}.
• Gather. For all 𝑣 ∈ 𝑉 , aggregate the updates produced on

each of its incoming edges to produce the updated vertex

data: 𝑣 ′ ← FG (𝑣,𝑢),∀𝑢 ∈ {𝑢 |𝑢.dst = 𝑣 .id}.

FS and FG are graph algorithm-specific. Figure 2 illustrates a

single iteration of Scatter-Gather for CC, detecting downstream

vertices and edges connected to vertex v0. Bold numbers under each

vertex (𝑣 .data) and italic numbers over each edge (𝑒.data) represent
their current labels. A label of "1" indicates a connection.

Functionality ⟨𝑇 ′⟩ ← FOEP (⟨𝑇 ⟩, 𝜋)
Input: 1. FOEP receives ⟨𝑇 ⟩0 from 𝑃𝑖 and ⟨𝑇 ⟩1 from 𝑃 𝑗 ;

2. FOEP receives 𝜋 from 𝑃𝑖 , where 𝜋 : Z|𝑇 ′ | → Z|𝑇 | . 𝜋 can be

specified by a pair of vectors (src, dst), |src | = |𝑇 |, |dst | = |𝑇 ′ | .
Output: 1. FOEP sends ⟨𝑇 ′ ⟩0 to 𝑃𝑖 , where𝑇 ′ [𝑥] := 𝑇 [𝜋 (𝑥)];

2. FOEP sends ⟨𝑇 ′ ⟩1 to 𝑃 𝑗 , where𝑇
′ [𝑥] := 𝑇 [𝜋 (𝑥)].

Functionality 1: FOEP for Oblivious Extended Permutation

Functionality ⟨𝑇 ′⟩ ← FOGA (⟨𝑇 ⟩, G, F⊞)
Input: 1. FOGA receives ⟨𝑇 ⟩0 from 𝑃𝑖 and ⟨𝑇 ⟩1 from 𝑃 𝑗 ;

2. FOGA receives G from 𝑃𝑖 , where | G | = |𝑇 | and G can be

divided into segments 𝑔0 | | ... | |𝑔𝑚−1, each containing elements of the

same value. FOGA receives a binary merging operation F⊞.
Output: FOGA sends ⟨𝑇 ′ ⟩0 and ⟨𝑇 ′ ⟩1 to 𝑃𝑖 and 𝑃 𝑗 respectively, such

that if 𝑥𝑘 is the start index of 𝑔𝑘 , 𝑘 ∈ [𝑚], then ⟨𝑇 ′ ⟩ [𝑥𝑘] stores the
F⊞-aggregated result of 𝑔𝑘 ’s corresponding elements in ⟨𝑇 ⟩.
Functionality 2: FOGA for Oblivious Group Aggregation

• Scatter : The maximum value of 𝑣 .data and 𝑒.data (from out-

going edges) is assigned to 𝑢 on the edge (Figure 2(b)).

• Gather : The 𝑢 on each edge updates the destination vertex’s

label, assigning the maximum of 𝑢 and 𝑣 .data to 𝑣 .data′.

After this iteration, v3’s label updates while v1 and v2 remain un-

changed (Figure 2(c)), indicating v3 is connected to v0.
Fixed-Point Encoding and Secret Share. In RingSG, we encode
all the graph data as a Fixed-Point representation over the ring, Z𝐿 ,
where 𝐿 := 2

𝑙
. RingSG leverages two secret share schemes over Z𝐿 ,

i.e., 2-out-of-2 and 2-out-of-3 additive secret share. In particular,

the 2-out-of-2 secret share of 𝑥 ∈ Z𝐿 is denoted as 𝑥 ≡ ⟨𝑥⟩0 + ⟨𝑥⟩1
(mod 𝐿), where ⟨𝑥⟩0 is sampled uniformly and ⟨𝑥⟩0, ⟨𝑥⟩1 are held
by two different parties, respectively. We use ⟨𝑥⟩ to indicate that

𝑥 is 2-out-of-2 secret-shared. For 2-out-of-3 secret share, we have

𝑥 ≡ J𝑥K0 + J𝑥K1 + J𝑥K2 (mod 𝐿), where J𝑥K𝑘 , 𝑘 ∈ {0, 1} is sampled

uniformly. The three shares are replicated over three parties as

(J𝑥K0, J𝑥K1), (J𝑥K1, J𝑥K2), (J𝑥K2, J𝑥K0). So any two parties among

them can reconstruct J𝑥K and get 𝑥 . The share conversion [30] from

2-out-of-3 to 2-out-of-2 secret share can be performed locally as

⟨𝑥⟩0 ← J𝑥K0 + J𝑥K1 + 𝑟 (mod 𝐿), ⟨𝑥⟩1 ← J𝑥K2 − 𝑟 (mod 𝐿), where
𝑟 is uniformly random and is synchronized between the two parties

via PRG. The share conversion from 2-out-of-2 to 2-out-of-3 secret

share requires one round of communication and is performed as

J𝑥K0 ← −𝑟2 (mod 𝐿), J𝑥K1 ← ⟨𝑥⟩0 − 𝑟0 (mod 𝐿), J𝑥K2 ← ⟨𝑥⟩1 −
𝑟1 (mod 𝐿), where 𝑟0 + 𝑟1 + 𝑟2 ≡ 0 (mod 𝐿). See our technical

report [43] for the detailed protocol of share conversion.

General MPC on Secret-Shared Data. RingSG requires a general-

purpose and semi-honest secure computation protocol over 2-out-

of-3 additively secret-shared data, e.g., [29]. The protocol supports

common arithmetic operations (like add and multiplication) and
logic operations (like comparison and two-way multiplexer [36]).
Oblivious Permutation and Aggregation. In RingSG, we utilize
two special oblivious algorithms, called Oblivious Extended Permu-
tation (OEP) [32] and Oblivious Grouped Aggregation (OGA) [41].
Intuitively, OEP is for obliviously permuting a secret-shared vec-

tor ⟨𝑇 ⟩ according to a predefined permutation 𝜋 := (src, dst). By
extended we mean that 𝜋 might include replication or absence of

485

CCS ’25, October 13–17, 2025, Taipei Zhenhua Zou et al.

1 1

1 1

1

1

1

1

0

1
1

1

1
0

0
1

0

1

1

1 1
1

0

Group A

Group B

0

1 1 1

1
1

111

1

1

1

1

1

1

0
0

0

0
0

0

0

Figure 3: An example of collaborative graph processing: four-
party Connected Component Labeling.

vector elements. The functionality of OEP, i.e., FOEP, is provided in
Functionality 1. OGA is for aggregating elements in a secret-shared

vector ⟨𝑇 ⟩ according to a merge operation F⊞ and a predefined

partition G, which divides the secret-shared vector into contiguous

segments. F⊞ is commutative and associative. The aggregation re-

sult of each segment is finally stored in the first slot of each segment.

Functionality 2, i.e., FOGA, specifies OGA.

3 Problem Setting and Prior SOTA
This section introduces a cryptographic ideal functionality that

formally captures the computation setting/goal and threat model

of collaborative graph processing. After that, we provide a review

of the SOTA approaches, and analyze their major limitations.

3.1 Collaborative Graph Processing
The collaborative graph processing involves 𝑁 graph owners, de-

noted as (𝑃0, 𝑃1, ..., 𝑃𝑁−1) where the indices are taken modulo 𝑁 . 𝑃𝑖
holds a local graph𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖,𝑖). For each edge 𝑒 ∈ 𝐸𝑖,𝑖 , both 𝑒.src
and 𝑒.dst are within 𝑉𝑖 . Thus, the edges in 𝐸𝑖,𝑖 are referred to as

intra-edges. Different local graphs are interconnected by inter-edges.
We denote the vector of edges directed from 𝐺𝑖 to 𝐺 𝑗 as 𝐸𝑖, 𝑗 , 𝑖 ≠ 𝑗 .

For all 𝑒 ∈ 𝐸𝑖, 𝑗 , both 𝑃𝑖 and 𝑃 𝑗 are aware of (𝑒.src, 𝑒 .dst, 𝑒 .data). For
instance, in inter-bank transfers, both banks know the identifiers

of the source account and the destination account, along with the

transferred amount.

The goal of collaborative graph processing is to analyze the

global graph, constituted by local graphs and inter-edges, using

some graph algorithms, and to obtain insights unavailable from

siloed local graphs. In the representative example in Figure 3, 𝑃0
wants to detect the connections between two groups of vertices (A

and B). Although both groups are within 𝐺0, 𝑃0 cannot detect the

connections on its own, because A and B are inter-connected by

complex cross-graph links, rather than simple intra-edges. This is a

common money laundering strategy for financial criminals to hide

the source of illegal money [39, 44]. To detect such behaviors, all

four parties need to collectively analyze the global graph.

In the ideal world, we construct functionality FRingSG to realize

collaborative graph processing. FRingSG articulates the security

guarantees that we wish to achieve with real-world protocols. In

the input stage, FRingSG collects local graphs and inter-edges from

all 𝑁 parties. It also receives the graph algorithm specification, alg,
which specifies the detailed Scatter-Gather operations (FS and FG)
and algorithm iterations (𝑚𝑎𝑥𝐼𝑡𝑒𝑟) for processing graph data.

Functionality {⟨𝑉 ′
𝑖
⟩} ← FRingSG ({𝐸𝑖, 𝑗 }, {𝑉𝑖 }, alg)

Input:

1. ∀𝑖 ∈ [𝑁], 𝑃𝑖 sends ({𝐸𝑖,𝑗 }, {𝐸 𝑗,𝑖 },𝑉𝑖), 𝑗 ∈ [𝑁], to FRingSG;
2. All 𝑃𝑖 agree on a specification, alg := (FS, FG,𝑚𝑎𝑥𝐼𝑡𝑒𝑟) , and

send it to FRingSG. alg.𝑚𝑎𝑥𝐼𝑡𝑒𝑟 is the number of iterations.

Compute:

1. FRingSG constructs the global graph𝐺 , where𝐺 = (𝑉 , 𝐸) ,𝑉 :=

∪𝑉𝑖 and 𝐸 := ∪𝐸𝑖,𝑗 , 𝑖, 𝑗 ∈ [𝑁];
2. FRingSG processes𝐺 as required by alg, producing the updated

vertex vectors {𝑉 ′
𝑖
}, 𝑖 ∈ [𝑁].

Output:

1. ∀𝑖 ∈ [𝑁], FRingSG sends ⟨𝑉 ′
𝑖
⟩0 to 𝑃𝑖 , ⟨𝑉 ′𝑖 ⟩1 to 𝑃𝑖+1;

2. FRingSG sends sizes of edge/vertex vectors to 𝑃𝑖 , i.e., L :=

{ |𝐸𝑖,𝑗 |, |𝑉𝑖 | }, ∀𝑖, 𝑗 ∈ [𝑁].
Functionality 3: FRingSG for RingSG

In the computation stage, FRingSG first concatenates the local

graphs into a global graph based on inter-edges, i.e.,𝐺 = (𝑉 , 𝐸),𝑉 :=

∪𝑉𝑖 , 𝐸 := ∪𝐸𝑖, 𝑗 , 𝑖, 𝑗 ∈ [𝑁]. Afterwards, it executes the graph al-

gorithm as specified in alg, using the vertex-centric abstraction.

The computation result includes the updated vertex vectors, i.e.,

𝑉 ′
𝑖
, 𝑖 ∈ [𝑁]. In the output stage, FRingSG distributes the secret shares

of the updated vertex vectors to specific parties. Here we suppose

that 𝑉 ′
𝑖
is shared between 𝑃𝑖 and 𝑃𝑖+1. Apart from that, it also dis-

tributes sizes of vertex/edge vectors, denoted as L, to each party.

The specification of FRingSG is provided in Functionality 3.

Threat Model. We consider semi-honest parties (i.e., protocol-

compliant but curious) that interact with FRingSG. In addition, we

assume that they do not collude with each other. Throughout the

interaction with FRingSG, the information that each party 𝑃𝑖 can

observe is limited to: (i) the local graph 𝐺𝑖 ; (ii) the relevant inter-
edges 𝐸𝑖, 𝑗 , 𝐸 𝑗,𝑖 , 𝑗 ∈ [𝑁]\{𝑖}; (iii) the sizes of vertex/edge vectors.
𝑃𝑖 can not observe other parties’ local graphs, irrelevant inter-

edges and any data computed based on this information. The final

updated vertex vectors are secret-shared to enable composition

of FRingSG with other secure computation components to form

end-to-end graph processing applications (instantiations). Different

fromGraphSC (outsourced computation), both CoGNN and FRingSG
reveal the local graph sizes as graph owners themselves are protocol

participants. In § 8, we discuss the rationale behind this threat

model.

3.2 State-of-the-Art and Limitations
To support execution of various graph algorithms in a privacy-

preserving manner, GraphSC [34] is the de facto standard, mainly

because of its parallel efficiency, vertex-centric abstraction hiding

away algorithm-specific details and strong security guarantees of-

fered by the underlying MPC protocols. GraphSC organizes the

global graph as a vector with one vertex or edge occupying one slot.

The whole vector is secret-shared among several computing parties.

Given this input setting, GraphSC tries to express the vertex-centric

abstraction in a privacy-preserving (i.e., oblivious) way. For Scatter,

GraphSC first obliviously sorts the vector to place each vertex and

its outgoing edges in contiguous segments. Afterwards, it propa-

gates vertex data to edges using an oblivious propagate operation
on the sorted vector. For Gather, the vector is sorted again to place

486

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing CCS ’25, October 13–17, 2025, Taipei

1

23

1

2
3

Share
Redistribution

4 5 6 7

4

6
7

5

(a) The CoGNN paradigm.

1

1

Share
Redistribution

2

2

(b) The Ring-ScatterGather paradigm.

Figure 4: A 4-party example comparing CoGNN and the Ring-
ScatterGather paradigm.

each vertex and its incoming edges in contiguous segments, which

is followed by an oblivious aggregate operation to aggregate edge

data to vertices. Since the secret-shared vectors are sorted, both

propagate and aggregate can be obliviously executed in parallel

with low circuit depth. The overhead of GraphSC is primarily at-

tributed to the expensive secure/oblivious sort. Although several

approaches [10, 23] propose to replace the per-iteration sorts with

one-time preprocessing sort and per-iteration shuffles, the cost of

one-time sort still dominates the overall protocol running time

(over 70% [10]). Moreover, because each computing party has to

process the global graph, the per-party overhead grows rapidly as

the number of graph owners increases.

To address this problem, CoGNN [41] proposes to decompose the

overall computation workload into distributed tasks such that each

party only processes parts of the global graph and the oblivious

sort can be converted to computationally efficient permutation. We

illustrate the workflow of CoGNN using a four-party example in

Figure 4a. From the perspective of 𝑉0, CoGNN decomposes the

Scatter operation into four tasks, i.e., the Scatter from 𝑉0 to 𝐸0,0,

𝐸0,1, 𝐸0,2 and 𝐸0,3, respectively. Note that 𝑃0 knows the order of

inputs of the four tasks in clear, so the reordering operation can be

performed with secure permutation instead of sort. The first two

tasks are securely executed by (𝑃0, 𝑃1), while the latter two tasks

are assigned to (𝑃0, 𝑃2) and (𝑃0, 𝑃3), respectively. As a result, 𝑃1
is only responsible for the Scatter from 𝑉0 to 𝐸0,0 and 𝐸0,1, while

𝑃2 is responsible for 𝐸0,2 and 𝑃3 is responsible for 𝐸0,3. The total

communication/computation complexity of the four Scatter tasks

of 𝑉0 is 𝑂 (𝑁 |𝑉0 | +
∑

𝑗 |𝐸0, 𝑗 |). Summing up the Scatter tasks for all

𝑉𝑖 (𝑖 ∈ [𝑁]), the total complexity is 𝑂 (𝑁 |𝑉 | + |𝐸 |).

During the Gather phase, from the perspective of 𝑉0, it needs to

Gather four update vectors, i.e., 𝑈0,0,𝑈1,0,𝑈2,0,𝑈3,0. According to

the computation scheme of the Scatter phase, 𝑈0,0,𝑈1,0 are origi-

nally secret-shared between (𝑃0, 𝑃1), while𝑈2,0 is shared between

(𝑃0, 𝑃2), and𝑈3,0 is shared between (𝑃0, 𝑃3). For ease of Gather com-

putation, CoGNN performs share redistribution, to make𝑈0,0,𝑈1,0,

𝑈2,0,𝑈3,0 all secret-shared between (𝑃0, 𝑃1). After that, 𝑉0 Gathers
the four update vectors one by one, resulting in𝑂 (𝑁 |𝑉0 |) complex-

ity. The overall complexity of the Gather phase, summing up all

𝑉𝑖 ’s (𝑖 ∈ [𝑁]) Gather tasks, is 𝑂 (𝑁 |𝑉 |). Taken together, the overall

complexity of one vertex-centric iteration is 𝑂 (𝑁 |𝑉 | + |𝐸 |).
The constructions of the GraphSC-based SOTA and CoGNN

exhibit three key limitations:

• Sub-optimal Complexity: Their computation schemes are funda-

mentally sub-optimal. GraphSC is 𝑂 ((|𝑉 | + |𝐸 |) log(|𝑉 | + |𝐸 |))
due to secure sort. For CoGNN, it assigns 𝑁 Scatter tasks for the

same 𝑉𝑖 , 𝑖 ∈ [𝑁]. Consequently, the total complexity of Scatter

tasks is factored by 𝑁 . A similar limitation applies to Gather

tasks. Ideally, the complexity of an optimal scheme should be

linear to (|𝑉 | + |𝐸 |) and independent of 𝑁 . In § 4, we discuss our

computation paradigm that achieves the optimal complexity.

• Limited Concrete Efficiency: Within the CoGNN framework, each

decomposed task is securely executed via 2PC protocols. The

methodology for generalizing the execution to adopt more effi-

cient MPC protocols remains unclear. This significantly limits

the concrete runtime of CoGNN. The GraphSC-based SOTA and

CoGNN require tens of minutes to process a global graph of

millions of edges. In § 5, we present our novel cryptographic pro-

tocols that reduce this duration by up to an order of magnitude.

• Lack of End-to-end Instantiation: Both the GraphSC-based SOTA

andCoGNN simply leave the post-processing graph data in secret-

shared form or reveal it publicly. They lack the end-to-end proto-

col instantiation to properly obtain application-specific results

in a privacy-preserving manner. For instance, when tracing ab-

normal funding flow in anti-money-laundering, the parties want

to selectively open critical transfer paths, instead of the naively

opening whole updated global graph. In § 6, we elaborate on

the end-to-end instantiation of RingSG with protocols to extract

application-specific results from the updated graph.

4 The Ring-ScatterGather Paradigm
RingSG is underpinned by a novel computation paradigm, named

Ring-ScatterGather, which achieves optimal communication and
computation complexity within the vertex-centric abstraction. The

crucial distinction between Ring-ScatterGather and the computa-

tion scheme of CoGNN is that Ring-ScatterGather guarantees the
exclusivity of the graph data associated with different decomposed

tasks to avoid redundant computation.

4.1 An Illustrative Example
We illustrate the high-level idea of Ring-ScatterGather using the
four-party example in Figure 4b. The left part of Figure 4b shows

the Scatter phase of a vertex-centric iteration, while the right part

shows the subsequent Gather phase in the same iteration. During

the Scatter phase, Ring-ScatterGather constructs four parallelizable
Scatter tasks, represented as four double-headed arrows. The four

487

CCS ’25, October 13–17, 2025, Taipei Zhenhua Zou et al.

ScatterTask

1

ScatterTask

Figure 5: A ScatterTask of RingSG.

tasks handle the Scatter computation for each of 𝑉𝑖 , 𝑖 ∈ [4], and
are assigned to four different groups of parties, (𝑃𝑖 , 𝑃𝑖+1), 𝑖 ∈ [4]
accordingly for secure computation.

In Figure 4b, we zoom into the Scatter task for 𝑉0, which is

securely computed by the group (𝑃0, 𝑃1). The input of this task

includes ⟨𝑉0⟩ and ⟨𝐸0,0 | |𝐸0,1 | |𝐸0,2 | |𝐸0,3⟩, the vector of all edges origi-
nating from ⟨𝑉0⟩. 𝑃0 can track the order of ⟨𝑉0⟩ and ⟨𝐸0,0 | |𝐸0,1 | |𝐸0,2 | |𝐸0,3⟩
because it owns these data (i.e., 𝑃0 knows 𝑉0, and all the edge vec-

tors originating from 𝑉0 in the clear). Meanwhile, all of these data

are secret-shared to ensure that the other party 𝑃1 in the group

can not observe the private data of 𝑃0. Similarly, the other three

Scatter tasks handle the associated graph data for ⟨𝑉1⟩, ⟨𝑉2⟩ and
⟨𝑉3⟩, respectively. Therefore, the graph data processed by all four

Scatter tasks are mutually exclusive. Because these tasks form a

ring, we name our computation paradigm Ring-ScatterGather. The
complexity of all Scatter tasks regarding 𝑉𝑖 is 𝑂 (|𝑉𝑖 | +

∑
𝑗 |𝐸𝑖, 𝑗 |) in

communication/computation. Thus, the overall Scatter tasks in this

ring take 𝑂 (|𝑉 | + |𝐸 |). At the end of the Scatter phase, all Scatter

tasks are synchronized to ensure their completion.

After the Scatter phase, Ring-ScatterGather enters the subse-

quent Gather phase. Similarly, the Gather phase also includes a

ring of four parallel Gather tasks, each processing the Gather com-

putation for 𝑉𝑖 , 𝑖 ∈ [4]. The four tasks are mutually exclusive,

resulting in an overall complexity of 𝑂 (|𝑉 | + |𝐸 |). At the end of

the Gather phase, Ring-ScatterGather synchronizes all parties and
ensures that all Gather tasks in the ring are finished. Afterwards,

Ring-ScatterGather is ready to initiate the next iteration.

The cumulative cost of an iteration comprises the aggregate cost

of the Scatter and Gather phases, each of which encompasses a ring

of tasks. Consequently, the overall communication/computation

complexity of an iteration within RingSG is 𝑂 (|𝑉 | + |𝐸 |). This
complexity is optimal because each vertex and edge has to be visited
at least once in an iteration to ensure protocol obliviousness, and

the complexity is irrespective of the number of parties.

In this example, each task is computed by a group of two parties

in Figure 4b. In § 5, we generalize it to incorporate additional parties

in each task and use more efficient MPC schemes.

4.2 Paradigm Specification
Now, we present the formal specification of Ring-ScatterGather.
Scatter. For Ring-ScatterGather in the 𝑁 -party setting, during Scat-

ter, there are 𝑁 vertex vectors propagating data to their outgoing

edges at the same time. Ring-ScatterGather chooses to pack all

the Scatter computation relevant to one vertex vector as a sepa-

rate secure computation task, denoted as ScatterTask, and assign

Protocol ⟨𝑈 ⟩ ← ScatterTask(⟨𝑉 ⟩, ⟨𝐸⟩, FS)

Input. The secret-shared vertices ⟨𝑉 ⟩, edges ⟨𝐸⟩ and FS.
Output. The secret-shared updates ⟨𝑈 ⟩, where | ⟨𝑈 ⟩ | = | ⟨𝐸⟩ | .

1 ⟨𝑉 src ⟩ ← OEP(⟨𝑉 ⟩,𝑉 .id, 𝐸.src) ; # Copy vertex data to edges.
2 for 𝑖 ∈ Z|𝐸 | : # Generate a vector of updates.
3 ⟨𝑈 ⟩ [𝑖] ← FS (⟨𝑉 src ⟩ [𝑖], ⟨𝐸⟩ [𝑖]) .

Protocol 1: The Protocol of ScatterTask

it to one specific group of parties for execution. Figure 5 shows

the ScatterTask related to 𝑉𝑖 , 𝑖 ∈ [𝑁]. We can see that there are 𝑁

outgoing edge vectors connected to 𝑉𝑖 , i.e., 𝐸𝑖,0, ..., 𝐸𝑖,𝑁−1. RingSG
concatenates the 𝑁 edge vectors as one edge vector 𝐸𝑖,0 | |...| |𝐸𝑖,𝑁−1
and secret-shares it between (𝑃𝑖 , 𝑃𝑖+1). 𝑉𝑖 is also shared between

(𝑃𝑖 , 𝑃𝑖+1). It is worth noting that 𝑃𝑖 knows𝑉𝑖 .id, 𝐸𝑖, 𝑗 .src and 𝐸𝑖, 𝑗 .dst,
𝑗 ∈ [𝑁] in clear. Thus, we can invoke Protocol 1 to perform the

ScatterTask for 𝑉𝑖 . The protocol runs in two steps:

(1) Copy each vertex’s data to the vector slots of its outgoing

edges using an Oblivious Extended Permutation (OEP);

(2) Combine the copied vertex data and the edge data using FS
to generate an update on each edge.

In our execution of ScatterTask in Figure 5, 𝑉 .id corresponds to

𝑉𝑖 .id, while 𝐸.src corresponds to (𝐸𝑖,0 | |...| |𝐸𝑖,𝑁−1).src. Both vectors

are known by 𝑃𝑖 in clear but hidden from 𝑃𝑖+1.
Share Redistribution. Before discussing how Gather computa-

tion is performed, we take a look at the distribution of all the

updates targeting 𝑉𝑖 , among the 𝑁 parties. Right after all Scatter-
Tasks finish, there are 𝑁 generated update vectors that target𝑉𝑖 , i.e.,

𝑈0,𝑖 , ...,𝑈𝑁−1,𝑖 . According to the computation setting of ScatterTask,
these 𝑁 update vectors are secret-shared between different groups

of parties, i.e., (𝑃0, 𝑃1), (𝑃1, 𝑃2),..., and (𝑃𝑁−1, 𝑃0), respectively. For
the efficiency of Gather computation, we want to redistribute these

shares to make the 𝑁 update vectors secret-shared among a specific

group of parties (𝑃𝑖 , 𝑃𝑖+1), who are going to perform the following

Gather computation. Conversely, for the secret-shared update vec-

tor ⟨𝑈𝑖,0 | |...| |𝑈𝑖,𝑁−1⟩ originating from 𝑉𝑖 (by ScatterTask), we need
to break it into 𝑁 vectors ⟨𝑈𝑖,0⟩, ..., ⟨𝑈𝑖,𝑁−1⟩ and redistribute them

to (𝑃0, 𝑃1), ..., (𝑃𝑁−1, 𝑃0), respectively:

• For 𝑗 ∈ [𝑁], if 𝑗 ∉ {𝑖 − 1, 𝑖, 𝑖 + 1}, we have 𝑃𝑖 send ⟨𝑈𝑖, 𝑗 ⟩0 to
𝑃 𝑗 , and have 𝑃𝑖+1 send ⟨𝑈𝑖, 𝑗 ⟩1 to 𝑃 𝑗+1.
• Meanwhile, we have 𝑃𝑖+1 send ⟨𝑈𝑖,𝑖−1⟩1 to 𝑃𝑖−1, and have

𝑃𝑖 send ⟨𝑈𝑖,𝑖+1⟩0 to 𝑃𝑖+2.

After this delegation of secret shares,𝑈𝑖, 𝑗 , 𝑖 ∈ [𝑁] is secret-shared
between (𝑃 𝑗 , 𝑃 𝑗+1). Note that, before sending, we require 𝑃𝑖 and 𝑃𝑖+1
to randomize each secret-shared vector they hold independently

using a synchronized PRG. For example, ⟨𝑈𝑖, 𝑗 ⟩0 ← ⟨𝑈𝑖, 𝑗 ⟩0 − 𝑟

(mod 𝐿), ⟨𝑈𝑖, 𝑗 ⟩1 ← ⟨𝑈𝑖, 𝑗 ⟩1 + 𝑟 (mod 𝐿). The secret shares each

party receives during share redistribution are uniformly random,

mutually independent, and also independent of their local data.

They can only observe the transferred data size. Thus, the privacy

guarantee is preserved.

Gather. After share redistribution, 𝑉𝑖 and 𝑈∗,𝑖 = 𝑈0,𝑖 | |...| |𝑈𝑁−1,𝑖
are secret-shared between (𝑃𝑖 , 𝑃𝑖+1), as shown in Figure 6. The goal

of a GatherTask is to traverse the update vector 𝑈∗,𝑖 , and merge

each update with their corresponding vertex in𝑉𝑖 . RingSG privacy-

preservingly performs this in four steps, as specified in Protocol 2:

488

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing CCS ’25, October 13–17, 2025, Taipei

GatherTask

2
GatherTask

Figure 6: A GatherTask of RingSG.

Protocol ⟨𝑉 ′ ⟩ ← GatherTask(⟨𝑉 ⟩, ⟨𝑈 ⟩, FG)

Input. The secret-shared vertices ⟨𝑉 ⟩, updates ⟨𝑈 ⟩ and FG.
Output. The secret-shared updated vertices ⟨𝑉 ′ ⟩.

1 ⟨𝑈 ⟩ ← OEP(⟨𝑈 ⟩,𝑈 .dst,𝑈 .dst) ; # Sort update vector by dest.
2 ⟨𝑈 ′ ⟩ ← OGA(⟨𝑈 ⟩,𝑈 .dst, FG) # Group-wise update aggregation.
3 ⟨𝑈 dst ⟩ ← OEP(⟨𝑈 ′ ⟩,𝑈 .dst,𝑉 .id) .
4 for 𝑖 ∈ Z|𝑉 | : # Element-wise merge operation.

5 ⟨𝑉 ′ ⟩ [𝑖] ← FG (⟨𝑉 ⟩ [𝑖], ⟨𝑈 dst ⟩ [𝑖]) .
Protocol 2: The Protocol of GatherTask

ring of ScatterTasks

2-out-of-3 secret share 2-out-of-2 secret share

ring of GatherTasks Share Redistribution

Graph Secret Share

Share
Conversion

Figure 7: Share Conversion of RingSG for 𝑁 -party.

(1) Obliviously reorder𝑈∗,𝑖 to place updates sharing the same

destination vertex at adjacent slots in the vector using OEP.

The permutation required by the reordering is supplied by

𝑃𝑖 , since it knows𝑈∗,𝑖 .dst in clear. The update vector is now

turned into segments, each of which contains updates tar-

geting the same destination;

(2) Obliviously aggregate updates sharing the same destination

vertex and place the aggregation results in the first slot of

each segment, via Oblivious Group Aggregation (OGA). The

group information required by OGA is𝑈∗,𝑖 .dst, also supplied
by 𝑃𝑖 . The merge operation F⊞ between two updates is FG;

(3) Obliviously extract the update aggregation results from the

first slot of each segment and place them to the same slots

as the corresponding vertices in 𝑉𝑖 , using OEP;

(4) Perform element-wise merge operation (via FG) between
the extracted update vector and the vertex vector, producing

the updated vertex vector 𝑉 ′
𝑖
.

5 Protocols within Ring-ScatterGather
This section begins with introducing two critical protocol designs

forRingSGwithin theRing-ScatterGather paradigm, i.e., on-demand

incorporation of 3PC and a novel OGA protocol. After that, we

present the RingSG protocol that fulfills FRingSG.

5.1 On-demand Incorporation of 3PC
The Ring-ScatterGather paradigm above assumes two-party secure

computation (2PC). In this section, we incorporate more efficient

3PC based on 2-out-of-3 secret share to achieve better concrete

efficiency. Directly replacing 2-out-of-2 secret share with 2-out-of-

3 secret share is infeasible because it violates the security model

of RingSG. For example, in the share redistribution process of 𝑃𝑖
introduced in § 4.2 (visualized in [43]), if the parties use 2-out-

of-3 secret share, then 𝑃𝑖 , 𝑃𝑖+1 and 𝑃𝑖+2 hold (J𝑈𝑖,𝑖+2K0, J𝑈𝑖,𝑖+2K1),
(J𝑈𝑖,𝑖+2K1, J𝑈𝑖,𝑖+2K2) and (J𝑈𝑖,𝑖+2K2, J𝑈𝑖,𝑖+2K0) respectively. If 𝑃𝑖 del-
egates its shares (J𝑈𝑖,𝑖+2K0, J𝑈𝑖,𝑖+2K1) to 𝑃𝑖+2, then 𝑃𝑖+2 is able to
reconstruct𝑈𝑖,𝑖+2, violating intermediate data privacy.

Thus, in RingSG, we propose on-demand usage of 3PC with

replicated secret share. Specifically, as shown in Figure 7, we only

switch to 2-out-of-3 secret share when executing each Scatter-
Task/GatherTask, and keep using 2-out-of-2 secret share during the
initial graph secret share and share redistribution. Supposing that

the ScatterTask/GatherTask is assigned to (𝑃𝑖 , 𝑃𝑖+1), right before
task computation, RingSG performs share conversion from 2-out-of-

2 share between (𝑃𝑖 , 𝑃𝑖+1) to 2-out-of-3 share among (𝑃𝑖 , 𝑃𝑖+1, 𝑃𝑖+2).
This conversion requires transferring one piece of share between

each pair of parties. Then the task is executed using 3PC. Once the

task finishes, RingSG performs reversed share conversion and goes

back to 2-out-of-2 secret share between (𝑃𝑖 , 𝑃𝑖+1). This conversion
can be performed locally with synchronized PRG seeds. Then we

can consistently perform share redistribution to switch between

the Scatter phase and Gather phase as aforementioned under the 2-

out-of-2 secret sharing setting. Essentially, in this share conversion

scheme, we treat 𝑃𝑖+2 as a helper for accelerating the Scatter/Gather
tasks assigned to (𝑃𝑖 , 𝑃𝑖+1). Before the tasks begin, 𝑃𝑖+2 receives its
shares, which are immediately invalidated after the tasks finish.

With replicated secret share, the OEP functionality in RingSG is

then instantiated using the three-party Oblivious Switching Net-

work protocol (corresponding to FSWITCH) proposed in [30].

Generalization. As we explained above, the core idea of incor-

porating 3PC into Ring-ScatterGather is differentiating the secret
share schemes used in share redistribution and task execution. While

the share redistribution process requires 2-out-of-2 secret share,

the task execution has no restrictions on the secret share scheme.

Thus, Ring-ScatterGather can be generalized to use other secret

share schemes (along with corresponding MPC schemes) in task

execution with properly designed share conversion schemes from

and to 2-out-of-2 additively secret share. The overhead shall vary

according to the costs of share conversion and MPC schemes.

5.2 OGA with halved rounds
Oblivious group aggregation (OGA) is used for aggregating updates

targeting the same vertices. From our experimental results in § 7.4,

it takes up to 79% of the system running time and is indeed the most

cost-heavy part of RingSG. The communication rounds of RingSG
also mainly come from OGA, since it is logarithmic-round, while

the other operations are constant-round. In particular, the SOTA

OGA protocol [8, 19, 20] employs a Ladner-Fischer circuit variant,

which prioritizes circuit size over depth, achieving 2⌈log(𝑛)⌉-depth
with 2𝑛-merge operations. Prior efforts in optimizing the SOTA’s

circuit depth (communication rounds) include:

• Using the original Ladner-Fischer circuit, which has ⌈log(𝑛)⌉-
depth but introduces additional 2𝑛 merge operations;

489

CCS ’25, October 13–17, 2025, Taipei Zhenhua Zou et al.

Protocol Oblivious Group Aggregation

Input. 𝑃𝑖 provides ⟨𝑇 ⟩0, G and 𝑃 𝑗 provides ⟨𝑇 ⟩1, where | ⟨𝑇 ⟩ | =

G, 𝑅 := ⌈log(|𝑇 |) ⌉. ⟨𝑇 ⟩ and G satisfy the properties specified in

Theorem 1. 𝑃𝑖 and 𝑃 𝑗 agree on the merge operation F⊞.
Output. 𝑃𝑖 gets ⟨𝑇 ′ ⟩0 and 𝑃 𝑗 gets ⟨𝑇 ′ ⟩1.

1 ∀𝑟 ∈ [𝑅], ∀𝑥 ∈ {𝑚 · 2𝑟+1 |𝑚 · 2𝑟+1 ∈ Z|𝑇 |−2𝑟 ,𝑚 ∈ Z}:
2 ⟨𝑇 [𝑥] ⟩ ← FMUX2 (C𝑟 [𝑥], ⟨𝑇 [𝑥] ⟩, F⊞ (⟨𝑇 [𝑥] ⟩, ⟨𝑇 [𝑥 + 2𝑟] ⟩)),
3 C𝑟 [𝑥] = (G[𝑥]

?

= G[𝑥 + 2𝑟]) ∧ (¬𝑇 [𝑥 + 2𝑟] .dummy) .
4 ⟨𝑇 ′ ⟩ ← ⟨𝑇 ⟩.

Protocol 3: The Protocol of Two-Party Oblivious Group Ag-
gregation (Semi-honestly Secure)

• Optimizing the depth by introducing a segment tree construc-

tion [11], at the cost of
1

2
𝑛 additional branching operations

(OT) and increasing the memory footprint by 𝑂 (log𝑛).

In this section, we propose a new OGA protocol that yields the

halved rounds (depth) without introducing extra operations ormem-

ory overhead (indicating identical communication as the SOTA).

Specifically, our protocol achieves𝑂 (𝑛) communication and (⌈log𝑛⌉+
1)R rounds, compared to SOTA’s (2⌈log𝑛⌉ − 1)R rounds, where R
is the communication rounds of each round of merge operation.

According to the input requirements, elements of the same group

are placed in a contiguous segment of ⟨𝑇 ⟩. Our divide-and-conquer
idea is to merge every two neighboring elements (⟨𝑇 ⟩[𝑥], ⟨𝑇 ⟩[𝑥+1])
in the first round (𝑟 = 0) and similarly merge the results of the

previous round in each subsequent round (⟨𝑇 ⟩[𝑥], ⟨𝑇 ⟩[𝑥 +2𝑟]). The
key insight is that if group sizes and their order in ⟨𝑇 ⟩ meet specific
properties, the number of vector elements in each subsequent round

can be halved. In particular, if (i) the sizes of all groups are a power
of two and (ii) different groups are sorted in descending order

according to their group sizes, after round 𝑟 , the elements whose

indices not divisible by 2
𝑟+1

become redundant and can be dropped,

which means that the number of computed elements after each

merge round is halved. Thus, we obtain an overall communication

complexity of 𝑂 (|𝑇 |) and a round complexity of 𝑂 (log(|𝑇 |)).
The problem now is how to convert a normally secret-shared

vector ⟨𝑇 ⟩ into this special form. Our strategy is to obliviously

insert dummy elements into ⟨𝑇 ⟩ to round the size of each group as

a power of two. Recall that before each OGA invocation in RingSG,
an OEP invocation reorders the update vector, placing elements

of the same group together. Right before this OEP invocation, we

append dummy elements to the end of ⟨𝑇 ⟩. The permutation 𝜋 used

in OEP is a composite of three subpermutations.

(1) 𝜋0: placing elements of the same group in a contiguous seg-

ment as aforementioned;

(2) 𝜋1: inserting the least number of dummy elements at the

end of each group to round the group size as a power of two.

Supposing that the original group size is 𝑑 , then the rounded

group size is 2
⌈log(𝑑) ⌉

;

(3) 𝜋2: sorting the groups in descending order, and placing un-

used dummy elements at the end of the permuted vector.

The three subpermutations (𝜋0, 𝜋1, 𝜋2) composing the OEP per-

mutation (𝜋 := 𝜋2 ◦ 𝜋1 ◦ 𝜋0) are easily constructed locally by party

𝑃𝑖 since it holds G in clear. For 𝜋1, adding (|𝑇 | −1) dummy elements

suffices for rounding all groups (as the number of dummies per

group is less than half the group size). These dummy edges, inte-

grated into the OEP invocation before the OGA invocation, do not

increase the number of rounds in RingSG, only slightly increasing

OEP communication due to their inclusion in the permutation.

Our final OGA protocol is shown in Protocol 3. In particular,

FMUX2 is the two-way multiplexer functionality to obliviously de-

cide which pair of elements to merge and which not to. C𝑟 [𝑥], the
choice of FMUX2 , is defined to prevent merging elements of differ-

ent groups and merging dummy elements with authentic elements.

C𝑟 is computed by 𝑃𝑖 locally. ⟨𝑇 ⟩[𝑥] .dummy shows if ⟨𝑇 ⟩[𝑥] is
dummy. F⊞ is the operation merging the two elements. We provide

an illustrative example of our OGA protocol in our technical re-

port [43]. Notably, although Protocol 3 is specified in the two-party

setting, it can be naturally migrated to the three-party setting by

converting ⟨𝑇 ⟩ to J𝑇 K and having one of the three parties hold G.
Communication and Rounds. In merge round 𝑟 , only the ele-

ments, whose indices evenly divide 2
𝑟
, are computed. So the number

of involved elements is halved after each round, and the total num-

ber of conditional merge operations in line 2 is no more than 2|𝑇 |,
resulting in an overall communication complexity of 𝑂 (|𝑇 |).

Assuming that dummy elements have been inserted as afore-

mentioned, i.e., before Protocol 3 is invoked, the number of merge

rounds is 𝑅 := ⌈log(|𝑇 |)⌉ = ⌈log(|𝑇 ′ |)⌉ + 1, where |𝑇 ′ | is the vector
before inserting the dummy elements.

Correctness. Since FMUX2 and the construction of C𝑟 prevent

dummy elements frommergingwith authentic ones, the correctness

of Protocol 3 is straightforward from the following theorem:

Theorem 1. Suppose that ⟨𝑇 ⟩ and G satisfy: (i) the number of
elements in each group is a power of two and (ii) these groups are
sorted in descending order of group sizes. After the merge round 𝑟

of Protocol 3, the groups with sizes evenly dividing 2
𝑟+1 finish the

aggregation, and the first element of each of these groups stores the
corresponding aggregation result.

Inductive Proof of Theorem 1. After round 0, all size-1 groups

inherently store their aggregation result since they contain only a

single element. For size-2 groups (whose starting indices 𝑥 evenly

divide 2
1 = 2), the first element ⟨𝑇 ⟩[𝑥] has successfully aggregated

the value from ⟨𝑇 ⟩[𝑥 + 1], completing the group’s computation.

Thus, Theorem 1 holds for 𝑟 = 0.

Assuming Theorem 1 holds at round 𝑟 , we know that after round

𝑟 , groups whose sizes evenly divide 2
𝑟+1

have completed aggrega-

tion, with their first element storing the result. Moving to round

𝑟 + 1, the FMUX2 function in Protocol 3 (line 2) ensures that these

stored results (in groups of size dividing 2
𝑟+1

) are not overwritten.

Therefore, their first elements still hold the correct aggregation

results.

Now, consider a group of size 2
𝑟+2

starting at element ⟨𝑇 ⟩[𝑥]
(where 𝑥 evenly divides 2

𝑟+2
). This group comprises two consec-

utive subgroups of size 2
𝑟+1

: one starting at ⟨𝑇 ⟩[𝑥] and the other

at ⟨𝑇 ⟩[𝑥 + 2𝑟+1]. By our induction hypothesis (holding at round

𝑟), both ⟨𝑇 ⟩[𝑥] and ⟨𝑇 ⟩[𝑥 + 2𝑟+1] already store their respective

subgroup aggregation results before round 𝑟 + 1 begins.
During round 𝑟 + 1, ⟨𝑇 ⟩[𝑥] merges its result with ⟨𝑇 ⟩[𝑥 + 2𝑟+1]

and stores the combined result back in ⟨𝑇 ⟩[𝑥]. This merge operation

successfully aggregates the results of the two subgroups, producing

the full aggregation result for the entire group of size 2
𝑟+2

.

490

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing CCS ’25, October 13–17, 2025, Taipei

Protocol {⟨𝑉 ′
𝑖
⟩} ←RingSG ({𝑉𝑖 }, {𝐸𝑖, 𝑗 }, alg)

Input. 𝑃𝑖 ,∀𝑖 ∈ [𝑁] provides 𝑉𝑖 , 𝐸𝑖, 𝑗 , 𝐸 𝑗,𝑖 , 𝑗 ∈ [𝑁]. Negotiated
alg := (maxIter, FS, FG).
Output. (𝑃𝑖 , 𝑃𝑖+1),∀𝑖 ∈ [𝑁] get ⟨𝑉 ′𝑖 ⟩.

1 Secret-share𝑉𝑖 , 𝐸𝑖,∗ := 𝐸𝑖,0 | |𝐸𝑖,1 | |...| |𝐸𝑖,𝑁−1 between (𝑃𝑖 , 𝑃𝑖+1),
obtaining ⟨𝑉𝑖 ⟩, ⟨𝐸𝑖,∗⟩.

2 for 𝑖𝑡𝑒𝑟 ∈ [maxIter]:
3 parallel for 𝑖 ∈ [𝑁]: # . Scatter

4 (𝑃𝑖 , 𝑃𝑖+1):⟨𝑈𝑖,∗⟩
𝑃𝑖+2⇐==== ScatterTask(⟨𝑉𝑖 ⟩, ⟨𝐸𝑖,∗⟩, FS).

5 (𝑃𝑖 , 𝑃𝑖+1): ⟨𝑈𝑖,0⟩, ⟨𝑈𝑖,1⟩, ..., ⟨𝑈𝑖,𝑁−1⟩ ← ⟨𝑈𝑖,∗⟩.
6 parallel for 𝑖 ∈ [𝑁]: # Share Redistribution
7 for 𝑗 ∈ [𝑁]\{𝑖 − 1, 𝑖, 𝑖 + 1}:
8 𝑃𝑖 ⟨𝑈𝑖, 𝑗 ⟩0

−−−−−→
𝑃 𝑗 ; 𝑃𝑖+1 ⟨𝑈𝑖, 𝑗 ⟩1

−−−−−→
𝑃 𝑗+1.

9 if 𝑖 + 1 ≠ 𝑖 − 1:
10 𝑃𝑖+1 ⟨𝑈𝑖,𝑖−1⟩1−−−−−−−→

𝑃𝑖−1; 𝑃𝑖 ⟨𝑈𝑖,𝑖+1⟩0−−−−−−−→
𝑃𝑖+2.

11 parallel for 𝑖 ∈ [𝑁]: # . Gather
12 (𝑃𝑖 , 𝑃𝑖+1): ⟨𝑈∗,𝑖 ⟩ ← ⟨𝑈0,𝑖 ⟩, ⟨𝑈1,𝑖 ⟩, ..., ⟨𝑈𝑁−1,𝑖 ⟩.

13 (𝑃𝑖 , 𝑃𝑖+1): ⟨𝑉 ′𝑖 ⟩
𝑃𝑖+2⇐==== GatherTask(⟨𝑉𝑖 ⟩, ⟨𝑈∗,𝑖 ⟩, FG).

14 (𝑃𝑖 , 𝑃𝑖+1): ⟨𝑉𝑖 ⟩ ← ⟨𝑉 ′𝑖 ⟩.
Protocol 4: The RingSG Protocol (Semi-honestly Secure).

Since the theorem holds for groups of both sizes dividing 2
𝑟+1

and size 2
𝑟+2

after round 𝑟 + 1, we conclude that Theorem 1 holds

for round 𝑟 + 1. The induction is therefore complete.

5.3 The RingSG Protocol
We now put all parts together to present the holistic RingSG proto-

col in Protocol 4. The inputs of RingSG include vertex/edge vectors

from multiple parties and the graph algorithm specification. Specif-

ically, 𝑃𝑖 , 𝑖 ∈ [𝑁] provides𝑉𝑖 , 𝐸𝑖, 𝑗 , 𝐸 𝑗,𝑖 , which is in accordance with

the input of FRingSG. The algorithm specification alg defines the

maximum number of iterations maxIter, and the binary operations

required by Scatter and Gather, i.e., FS and FG, respectively.
Before all computation, 𝑃𝑖 secret-shares𝑉𝑖 and 𝐸𝑖,∗ := 𝐸𝑖,0 | |𝐸𝑖,1 | |

...| |𝐸𝑖,𝑁−1 to 𝑃𝑖+1. 𝑃𝑖+1 knows the size of each vector, but can not

observe the data inside. Each iteration of RingSG consists of three

consecutive steps, i.e., the Scatter phase, the share redistribution

phase and the Gather phase. The Scatter phase tries to propa-

gate vertex data to their outgoing edges. During Scatter, there

are 𝑁 parallel tasks executed by 𝑁 different groups of parties,

i.e., (𝑃𝑖 , 𝑃𝑖+1, 𝑃𝑖+2), 𝑖 ∈ [𝑁]. Each ScatterTask(⟨𝑉𝑖 ⟩, ⟨𝐸𝑖,∗⟩, FS) in
RingSG begins with a share conversion to make ⟨𝑉𝑖 ⟩, ⟨𝐸𝑖,∗⟩ replicat-
edly secret-shared among (𝑃𝑖 , 𝑃𝑖+1, 𝑃𝑖+2) as J𝑉𝑖K, J𝐸𝑖,∗K. Then the

task computation is efficiently performed using 3PC, producing

J𝑈𝑖,∗K as its output. Right after that, a reversed share conversion

turns J𝑈𝑖,∗K into ⟨𝑈𝑖,∗⟩, which is secret-shared between (𝑃𝑖 , 𝑃𝑖+1).
The share redistribution phase securely redistributes the se-

cret shares of all ⟨𝑈𝑖, 𝑗 ⟩, 𝑖 ∈ [𝑁], 𝑗 ∈ [𝑁] among the 𝑁 parties

to prepare for the Gather phase. Since the GatherTask for ⟨𝑉𝑗 ⟩, 𝑗 ∈
[𝑁]\{𝑖−1, 𝑖, 𝑖+1} is handled by (𝑃 𝑗 , 𝑃 𝑗+1, 𝑃 𝑗+2), while ⟨𝑈𝑖, 𝑗 ⟩ is origi-
nally secret-shared between (𝑃𝑖 , 𝑃𝑖+1), we have (𝑃𝑖 , 𝑃𝑖+1) randomize

their shares and send ⟨𝑈𝑖, 𝑗 ⟩0 to 𝑃 𝑗 , ⟨𝑈𝑖, 𝑗 ⟩1 to 𝑃 𝑗+1. If 𝑖 + 1 ≠ 𝑖 − 1,
⟨𝑈𝑖,𝑖−1⟩ is originally secret-shared between (𝑃𝑖 , 𝑃𝑖+1), we have 𝑃𝑖+1

send ⟨𝑈𝑖,𝑖−1⟩1 to 𝑃𝑖−1, and have 𝑃𝑖 keep ⟨𝑈𝑖,𝑖−1⟩0. Symmetrically,

⟨𝑈𝑖,𝑖+1⟩ is originally secret-shared between (𝑃𝑖 , 𝑃𝑖+1), we have 𝑃𝑖
send ⟨𝑈𝑖,𝑖+1⟩0 to 𝑃𝑖+2, and have 𝑃𝑖+1 keep ⟨𝑈𝑖,𝑖−1⟩1.

Before theGather phase, the secret shares of all ⟨𝑈 𝑗,𝑖 ⟩, 𝑖 ∈ [𝑁], 𝑗 ∈
[𝑁] have been redistributed to (𝑃𝑖 , 𝑃𝑖+1), who then locally concate-

nate ⟨𝑈 𝑗,𝑖 ⟩ and get ⟨𝑈∗,𝑖 ⟩ := ⟨𝑈0,𝑖 ⟩| |⟨𝑈1,𝑖 ⟩| |...| |⟨𝑈𝑁−1,𝑖 ⟩. During
Gather, there are also 𝑁 tasks parallelly executed by 𝑁 different

groups of parties. The execution of GatherTask(⟨𝑉𝑖 ⟩, ⟨𝑈∗,𝑖 ⟩, FG)
also goes through share conversion to replicated secret share, 3PC-

based computation and reversed share conversion. The updated

vertex data ⟨𝑉 ′
𝑖
⟩ is finally stored in ⟨𝑉𝑖 ⟩ (secret-shared between

(𝑃𝑖 , 𝑃𝑖+1)) so that we can move to the next iteration.

Asymptotic Cost Analysis. For each iteration of RingSG under

the vertex-centric abstraction, the computation/communication

cost comes from three parts, i.e., ScatterTask, share redistribution
and GatherTask.

Each ScatterTask/GatherTask begins with a share conversion

from 2-out-of-2 secret share to 2-out-of-3 secret share, while ending

with a reversed share conversion. The second conversion is local.

The communication of the first conversion is linear to the secret-

shared input size.When summing up all ScatterTasks in theparallel
for loop of line 3 of Protocol 4, the total input size is |𝑉 | + |𝐸 |. For
all GatherTasks in the parallel for loop of line 11, it is also |𝑉 | + |𝐸 |.
As a result, in total, the share conversion operations of all tasks

take 𝑂 (|𝑉 | + |𝐸 |) communication and 𝑂 (1) rounds.
Each ScatterTask requires one OEP and one FS, which are all with

linear communication/computation and constant rounds. Thus, the

total communication/computation summing up all ScatterTasks
is also 𝑂 (|𝑉 | + |𝐸 |), while the total rounds remain 𝑂 (1) since all
ScatterTasks are concurrent. For each GatherTask, there are two
invocations of OEP, one invocation of OGA and FG, which are

linear-communication, too. The total communication/computation

cost summing up allGatherTasks is linear to |𝑉 |+|𝐸 |, i.e.,𝑂 (|𝑉 |+|𝐸 |).
At the same time, since OGA has logarithmic rounds and its total

input size is bounded by |𝐸 |, GatherTasks take 𝑂 (log(|𝐸 |)) rounds.
The share redistribution beginning from line 6 has constant

rounds and the total size of secret shares transferred among all par-

ties is less than 2

∑
𝑖, 𝑗 |⟨𝑈𝑖, 𝑗 ⟩| = 2|𝐸 |. Now we can conclude that an

iteration of vertex-centric computation in RingSG is𝑂 (|𝑉 | + |𝐸 |) in
all parties’ communication/computation, and𝑂 (log(|𝐸 |)) in rounds.
Detailed Cost Analysis. In [43], we provide the detailed cost

analysis of RingSG (𝑂 (|𝑉 | + |𝐸 |)), along with the comparison with

CoGNN (𝑂 (𝑁 |𝑉 | + |𝐸 |)), to further prove that RingSG is more effi-

cient at computing sparse global graphs with more graph owners.

Security Theorem and Proof. Theorem 2 establishes RingSG’s
security in the hybrid model, assuming secure realizations of the

ScatterTask and GatherTask functionalities (FST and FGT). The
security of ScatterTask follows directly from its construction using

OEP and FS. For GatherTask, we prove a dedicated security lemma

for the OGA protocol. The full proof of Theorem 2 via hybrid

distribution construction appears in our technical report [43].

Theorem 2. Protocol 4 securely realizes Functionality 3 in the (FST,
FGT)-hybrid model against a semi-honest, non-uniform adversary A
corrupting one party at a time. Formally, for every PPT, semi-honest
and non-uniform adversary A that corrupts one party 𝑃𝑖 (𝑖 ∈ [𝑁]),
there exists a PPT, non-uniform simulatorS corrupting the same party

491

CCS ’25, October 13–17, 2025, Taipei Zhenhua Zou et al.

in the ideal world of FRingSG, which satisfies:

REALFST,FGTRingSG,A (𝜅, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, alg)

𝑐≡ IDEALFRingSG,S (𝜅, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, alg),

where REALFST,FGTRingSG,A (𝜅, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, alg) represents a joint dis-
tribution over the view of the adversary (the corrupted party’s input,

randomness, protocol transcript) and the protocol output, when

𝑃𝑖 and 𝑃 𝑗 ,∀𝑗 ∈ [𝑁]\{𝑖} interact in the (FST, FGT)-hybrid RingSG
protocol on inputs ({𝐸𝑖, 𝑗 }, {𝑉𝑖 }, alg), 𝑖, 𝑗 ∈ [𝑁] and computational

security parameter 𝜅; IDEALFRingSG,S (𝜅, {𝐸𝑖 }, {𝐸𝑖, 𝑗 }, {𝑉𝑖 }, alg) rep-
resents a joint distribution over the simulated view of the corrupted

party and the functionality output, when 𝑃𝑖 and 𝑃 𝑗 ,∀𝑗 ∈ [𝑁]\{𝑖}
interact in FRingSG on inputs ({𝐸𝑖, 𝑗 }, {𝑉𝑖 }, alg), 𝑖, 𝑗 ∈ [𝑁] and com-

putational security parameter 𝜅; and
𝑐≡means the two distributions

are computationally indistinguishable (in 𝜅).

Lemma 3. Protocol 3 securely realizes the Functionality 2 in the
(FMUX2 , F⊞)-hybrid model against a semi-honest, non-uniform adver-
saryA corrupting either 𝑃𝑖 or 𝑃 𝑗 . Formally, for every PPT, semi-honest
and non-uniform adversary A that corrupts either 𝑃𝑖 or 𝑃 𝑗 , there
exists a PPT, non-uniform simulator S corrupting the same party in
the ideal world of FOGA, which satisfies:

REAL
FMUX

2
,F⊞

OGA,A (𝜅, ⟨𝑇 ⟩, {C𝑘 })
𝑐≡ IDEALFOGA,S (𝜅, ⟨𝑇 ⟩, {C𝑘 })

Proof Sketch for Lemma 3. For corrupted parties 𝑃𝑖 or 𝑃 𝑗 , we

define simulators S𝑖 and S𝑗 , respectively. Each corrupted party

only observes: (i) the slots it participates in each round and (ii) in-
puts/transcripts/outputs of merge operations. Slot participation de-

pends solely on round 𝑟 and vector length, making it data-oblivious

and easily simulated. Merge computations are simulated using

FMUX and Fmerge simulators. Thus, S𝑖 and S𝑗 produce views
indistinguishable from real executions.

6 End-to-end System Instantiation
The "bare-metal" RingSG protocol produces an updated, secret-

shared global graph. To obtain certain application-specific outputs

from the graph, RingSG needs to be instantiated into end-to-end

application-aware systems. This section explores two anti-money

laundering applications: (i) Detecting close inter-bank connections

between groups of accounts; (ii) Revealing critical cross-bank trans-
fer chains between suspicious accounts.

In application instantiation, we focus on the form of vertex/edge

data, data initialization, the FS/FG computation, and application-

specific result extraction with minimal privacy leakage. To show

how RingSG’s design uniquely enables efficient result extraction,

we discuss the challenges of applying similar techniques to existing

SOTA methods in § 8.

6.1 Group Connection Detection
In this application, we apply the Connected Component Labeling

(CC) algorithm with RingSG to detect if there is a funding flow

from vertex group A to vertex group B. Without loss of generality,

we assume that all vertices of A are located in𝐺𝑖 and all vertices of

B are in 𝐺 𝑗 , where 𝑖, 𝑗 ∈ [𝑁] and can be different or the same. The

Application Detect Group Connection

Objective. Detect if there is a fund flow from group 𝐴 ⊆ 𝑉𝑖 to
group 𝐵 ⊆ 𝑉𝑗 .
Input. (𝑉𝑖 , 𝐸𝑖,𝑖), 𝑖 ∈ [𝑁] (accounts and intra-bank transfers of

bank 𝑃𝑖). 𝐸𝑖, 𝑗 , 𝑖, 𝑗 ∈ [𝑁], 𝑖 ≠ 𝑖 (inter-bank transfers from bank

𝑃𝑖 to 𝑃 𝑗). 𝑣 .id ∈ Z
2
𝑙 (account ID), 𝑣 .data ∈ Z2 (account flag,

indicating connected or not), 𝑒.data ∈ ∅.
Func. alg𝐶𝐶 :maxIter ∈ Z+ (a limit on the number of transfers),

FS (𝑥,𝑦) := 𝑥 , FG (𝑥,𝑦) := 𝑥 ∨ 𝑦.
Output. 𝑐 ∈ Z2 (flag, indicating connected or not).

1 Input Initialization. For 𝑣 ∈ 𝐴 ⊆ 𝑉𝑖 , 𝑃𝑖 sets 𝑣 .data← 1. For all

the other vertices in 𝐺 , 𝑣 .data← 0.

2 Protocol Invocation.
{⟨𝑉 ′

𝑖
⟩} ← RingSG({𝑉𝑖 }, {𝐸𝑖, 𝑗 }, alg𝐶𝐶), 𝑖, 𝑗 ∈ [𝑁].

3 Result Extraction.
(i) (𝑃 𝑗 , 𝑃 𝑗+1) execute ⟨𝑉 ′𝑗 ⟩ ← OEP(⟨𝑉 ′

𝑗
⟩,𝑉𝑗 .id, 𝜋 .dst) to re-

order 𝑣 ∈ 𝐵 to the beginning of ⟨𝑉 ′
𝑗
⟩.

(ii) (𝑃 𝑗 , 𝑃 𝑗+1) execute ⟨𝑉 ′𝑗 ⟩ ← OGA(⟨𝑉 ′
𝑗
⟩,G, FG), where

G[𝑥] = 0 if 𝑥 ∈ Z |𝐵 | . Otherwise G[𝑥] = 1.

(iii) (𝑃 𝑗 , 𝑃 𝑗+1) set ⟨𝑐⟩ ← ⟨𝑉 ′𝑗 ⟩[0] and reconstruct 𝑐 .

Application 1: Detect Group Connection

goal is to obtain a boolean flag indicating whether the two groups

are connected or not, within a specific number of transfers.

The Input and Output of Application 1 specify the exact data

stored in the vertex and edge vectors. Here we set 𝑣 .data over the
ring Z2 for efficiency. The corresponding secret sharing for 𝑣 .data
is also over Z2. The Func details alg with the definition of maxIter,
FS and FG. During input initialization, we assign 1 to each vertex

in group 𝐴 to indicate connected, while assigning 0 to all the other

vertices in the global graph, indicating unconnected. The protocol

invocation phase executes the CC algorithm to propagate the labels

across the global graph. The protocol outputs are secret-shared,

representing the updated labels stored in each vertex. Finally, the

result extraction phase aims to aggregate the flags (vertex data) of

all the vertices in 𝐺𝑖 , to finally output a flag indicating if there is

a flow from group A to group B. The result extraction has three

steps: (i) reorder the ⟨𝑉 ′
𝑗
⟩ secret-shared between (𝑃 𝑗 , 𝑃 𝑗+1) to place

vertices in group 𝐵 at the beginning of ⟨𝑉 ′
𝑗
⟩, with OEP; (ii) aggregate

the vertex data in group 𝐵 using OGA, by assigning group identifier

1 to vertices in 𝐵, and assigning group identifier 0 to all the other

vertices; (iii) the first element in group 𝐵, i.e., ⟨𝑉 ′
𝑗
⟩[0] stores the

aggregate flag that can be reconstructed as the application output.

6.2 Trace Transfer Chain
Besides detecting a connection between two suspicious account

groups, it is also crucial to trace the core transfer paths between

them in anti-money laundering efforts.

Application 2 employs a heuristic approach to discover and ex-

tract the most important transfer paths from group 𝐴 to 𝐵. In this

application, we utilize the Shortest Path algorithm and derive the

distance of each edge using the reciprocal of the corresponding

transferred amount. The smaller the distance is, the larger the

amount of money is transferred via this edge. As a result, the short-

est path tends to reflect an important transfer chain. Compared to

492

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing CCS ’25, October 13–17, 2025, Taipei

Application Trace Transfer Chain

Objective. Reveal themost important transfer paths from group

𝐴 ⊆ 𝑉𝑖 to group 𝐵 ⊆ 𝑉𝑗 .
Input. (𝑉𝑖 , 𝐸𝑖,𝑖), 𝑖 ∈ [𝑁] (accounts and intra-bank transfers

of 𝑃𝑖). 𝐸𝑖, 𝑗 , 𝑖, 𝑗 ∈ [𝑁], 𝑖 ≠ 𝑖 (inter-bank transfers from 𝑃𝑖
to 𝑃 𝑗). 𝑣 .id ∈ Z

2
𝑙 (account ID), 𝑣 .data := (flag, id, dist) ∈

Z2 | |Z2𝑙 | |Z2𝑙 (account data, (connection flag, ID of predecessor,

minimal distance)), 𝑒.data ∈ Z
2
𝑙 (distance).

Func. alg𝑆𝑃 : maxIter ∈ Z+ (a limit on the number of

transfers), FS ((𝑥0, 𝑦0, 𝑧0), 𝑧1) := (𝑥0, 𝑦0, 𝑧0 + 𝑧1), FG
((𝑥0, 𝑦0, 𝑧0), (𝑥1, 𝑦1, 𝑧1)) := (𝑥0 ∨ 𝑥1, 𝑦0, 𝑧0) if 𝑧0 < 𝑧1. Oth-

erwise := (𝑥0 ∨ 𝑥1, 𝑦1, 𝑧1).
Output. {𝑣 |𝑣 ∈ 𝑉 ∧ 𝑣 .data.flag = 1} (connected vertices).

1 Input Initialization. For 𝑣 ∈ 𝐴 ⊆ 𝑉𝑖 , 𝑃𝑖 sets 𝑣 .data = (1,⊥, 0).
For all the other vertices in 𝐺 , 𝑣 .data ← (0,⊥,∞). {𝑉𝑖 |𝑖 ∈
[𝑁]} copies {𝑉𝑖 |𝑖 ∈ [𝑁]}, but only sets 𝑣 ∈ 𝐵 ⊆ 𝑉𝑗 to (1,⊥, 0),
while setting other vertices to (0,⊥,∞).

2 Protocol Invocation.
(i) {⟨𝑉 ′

𝑖
⟩} ← RingSG({𝑉𝑖 }, {𝐸𝑖, 𝑗 }, alg𝑆𝑃), 𝑖, 𝑗 ∈ [𝑁].

(ii) {⟨𝑉𝑖
′⟩} ← RingSG({𝑉𝑖 }, {𝐸𝑖, 𝑗 }, alg𝑆𝑃), 𝑖, 𝑗 ∈ [𝑁]. {𝐸𝑖, 𝑗 }

represents reversed {𝐸𝑖, 𝑗 }.
3 Result Extraction.
(i) Each pair of parties (𝑃𝑖 , 𝑃𝑖+1), 𝑖 ∈ [𝑁] sets ⟨𝑉 ′𝑖 .data.flag⟩
to ⟨𝑉 ′

𝑖
.data.flag⟩ ∧ ⟨𝑉𝑖

′
.data.flag⟩. Then, they perform

⟨𝑉 ′′
𝑖
⟩ ← Shuffle(⟨𝑉 ′

𝑖
⟩) using two OEPs. ⟨𝑉 ′′

𝑖
.data.dist⟩ ←

⟨𝑉 ′
𝑖
.data.dist⟩| |⟨𝑉𝑖

′
.data.dist⟩.

(ii) (𝑃𝑖 , 𝑃𝑖+1) ∈ [𝑁] reconstruct 𝑉 ′′𝑖 .data.flag first. Then re-

construct {𝑣 |𝑣 ∈ 𝑉 ′′
𝑖
∧ 𝑣 .data.flag = 1}.

Application 2: Trace Transfer Chain

Application 1, the vertex data of Application 2 is more complex.

𝑣 .data stores a tuple, indicating (i) whether the vertex is connected;
(ii) the predecessor of this vertex that contributes to its shortest

path; (iii) the distance of this vertex. Meanwhile, 𝑒.data represents
the distance of the edge. FS adds up the vertex’s distance with the

edge’s distance to create an update for the destination vertex of the

edge. FG decides whether to relax the current distance using an

update.

The input initialization phase creates two sets of vertex vectors,

i.e., {𝑉𝑖 |𝑖 ∈ [𝑁]} and {𝑉𝑖 |𝑖 ∈ [𝑁]}, where the former one initializes

𝐴 as connected, but the latter one initializes 𝐵 as connected. The

protocol execution goes in two reversed directions at the same time,

based on {𝑉𝑖 |𝑖 ∈ [𝑁]} and {𝑉𝑖 |𝑖 ∈ [𝑁]} respectively. One direction
finds out the shortest paths from 𝐴 to the other vertices within

maxIter transfers. The opposite direction finds out the shortest

paths from 𝐵 to the other vertices. During result extraction, we

select out the vertices in the paths from group A to B by combin-

ing the connection flags produced by these two directions. The

selection requires an element-wise AND (∧) and a shuffle, which

includes two OEPs. Both operations have linear complexity. Finally,

we reconstruct these selected vertices, which constitute the major

transfer paths from group A to B with a high possibility.

7 Evaluation
Focusing on our core contributions, this section extensively evalu-

ates RingSG from the following aspects:

Q1 The efficiency of the Ring-ScatterGather paradigm:
How is the Ring-ScatterGather paradigm compared to prior SOTAs

in various settings with different sizes of graphs, numbers of parties

and average vertex degrees?

Q2The efficiency of on-demand incorporation of 3PC:Does
combining 2-out-of-2 secret share and 2-out-of-3 secret share via

share conversion bring better concrete efficiency?

Q3 The efficiency of the OGA protocol: What is the break-

down of RingSG’s running time, and does the new OGA design

really contribute to a lower overall system running time?

Q4 The efficiency of application-specific result extraction:
In the two end-to-end instantiations of RingSG, what is the addi-
tional cost of application-specific result extraction?

7.1 Implementation & Setup
7.1.1 Implementation. We implement a prototype of RingSG in

about 3000 lines of C++ code
1
. The 3PC backend of RingSG is

ABY3 [29], which also realizes the three-party OEP protocol pro-

posed in [30]. To provide a comprehensive performance evaluation

of RingSG, we implement the Ring-ScatterGather paradigm and

instantiate three canonical graph algorithms within it: Connected

Component Labeling (CC), Shortest Path (SP), and PageRank (PR).

These algorithms exhibit diverse computational patterns within the

Scatter-Gather abstraction, resulting in varying overheads across

different vertex-centric phases. We focus on traditional graph pro-

cessing workloads rather than Graph Neural Network (GNN) train-

ing/inference, as the latter is primarily dominated by non-graph

operations like secure matrix multiplication, which fall outside the

primary scope of RingSG.
To demonstrate the efficiency of our system, we employ two

SOTA approaches for comparison. First, we implement the SOTA

GraphSC approach [23] based on ABY3 (the same MPC scheme as

RingSG). Note that we exclude the cost of secure sort in this imple-

mentation, meaning the actual communication and computation

overhead of this baseline approach would be even higher. Second,

we implement the CoGNN [41] approach that incorporates 3PC

based on our share conversion mechanism. This implementation

achieves performance that is orders of magnitude faster than the

original 2PC prototype described in their paper [42]. Additionally,

in § 7.3, we present an ablation study comparing our system with

the original CoGNN implementation to specifically illustrate the

efficiency improvements achieved solely through the incorpora-

tion of 3PC when executing the decomposed MPC-based graph

processing tasks.

7.1.2 Setup. Our evaluation environment is a Linux server equipped

with a multi-core x86_64 Intel CPU at 2.60GHz. The network en-

vironments, i.e., bandwidth and latency of multiple parties, are

simulated using the tc command and network namespace provided

by Linux. The LAN environment is of (4000𝑀𝑏𝑝𝑠, 1𝑚𝑠), while the
WAN environment is of (200𝑀𝑏𝑝𝑠, 10𝑚𝑠). At the same time, since

different schemes run in different multi-threading patterns, for the

1
https://github.com/CBackyx/RingSG/tree/dev-graph

493

CCS ’25, October 13–17, 2025, Taipei Zhenhua Zou et al.

217 218 219 220 221

Size of Global Graph

0

100

Ru
nn

in
g

Ti
m

e
(s

) Algorithm CC - Duration
RingSG
CoGNN
GraphSC

217 218 219 220 221

Size of Global Graph

0

1

2

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm CC - Communication
RingSG
CoGNN
GraphSC

217 218 219 220 221

Size of Global Graph

100

200

300

Ru
nn

in
g

Ti
m

e
(s

) Algorithm SP - Duration
RingSG
CoGNN
GraphSC

217 218 219 220 221

Size of Global Graph

0

2

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm SP - Communication
RingSG
CoGNN
GraphSC

217 218 219 220 221

Size of Global Graph

200

400

Ru
nn

in
g

Ti
m

e
(s

) Algorithm PR - Duration
RingSG
CoGNN
GraphSC

217 218 219 220 221

Size of Global Graph

0

5

10

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm PR - Communication
RingSG
CoGNN
GraphSC

Figure 8: Running time and communication for different
global graph sizes (in LAN, 8 parties, 5 iterations).

4 6 8 10
Number of Parties

20

40

Ru
nn

in
g

Ti
m

e
(s

) Algorithm CC - Duration

RingSG
CoGNN
GraphSC

4 6 8 10
Number of Parties

1

2

3

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm CC - Communication
RingSG
CoGNN
GraphSC

4 6 8 10
Number of Parties

20

40

60

Ru
nn

in
g

Ti
m

e
(s

) Algorithm SP - Duration

RingSG
CoGNN
GraphSC

4 6 8 10
Number of Parties

2

4

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm SP - Communication
RingSG
CoGNN
GraphSC

4 6 8 10
Number of Parties

25
50
75

Ru
nn

in
g

Ti
m

e
(s

) Algorithm PR - Duration

RingSG
CoGNN
GraphSC

4 6 8 10
Number of Parties

5

10

15

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm PR - Communication
RingSG
CoGNN
GraphSC

Figure 9: Running time and communication for different
numbers of parties (in LAN, local graph of 216, 5 iterations).

fairness of comparison, we use the taskset –cpu-list command to

limit the computing resource each scheme can use.

The obliviousness of all compared schemes guarantees that the

running duration and communication depend only on the size

of graphs, the number of parties and the average vertex degree,

regardless of actual vertex/edge data or the ratio of inter-edges

among all edges (proved by detailed cost analysis in [43]). Thus, we

vary these three hyperparameters to fully evaluate RingSG under

a wide range of settings (each with a corresponding multi-party

global graph). The vertices are evenly distributed among all parties.

By default, we set the average vertex incoming/outgoing degree to

3, the ratio of inter-edges among all edges to 0.4, and the number of

parties to 8. In this default setting, supposing that each local graph

has 2
𝑥 (𝑥 ∈ Z+) vertices, the size of the global graph, i.e., |𝑉 | + |𝐸 |,

equals 4𝑁 · 2𝑥 , where 𝑁 is the number of parties. We set the ring

of our two secret share schemes to Z
2
64 . Each experiment is run for

five times and we take the average of the running durations.

2 4 6 8 10
Average Vertex Degree

0

25

50

Ru
nn

in
g

Ti
m

e
(s

) Algorithm CC - Duration

RingSG
CoGNN
GraphSC

2 4 6 8 10
Average Vertex Degree

2.5

5.0

7.5

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm CC - Communication
RingSG
CoGNN
GraphSC

2 4 6 8 10
Average Vertex Degree

25
50
75

Ru
nn

in
g

Ti
m

e
(s

) Algorithm SP - Duration
RingSG
CoGNN
GraphSC

2 4 6 8 10
Average Vertex Degree

2.5
5.0
7.5

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm SP - Communication
RingSG
CoGNN
GraphSC

2 4 6 8 10
Average Vertex Degree

50

100

150

Ru
nn

in
g

Ti
m

e
(s

) Algorithm PR - Duration
RingSG
CoGNN
GraphSC

2 4 6 8 10
Average Vertex Degree

0

20

Pe
r-p

ar
ty

 C
om

m
 (G

B) Algorithm PR - Communication
RingSG
CoGNN
GraphSC

Figure 10: Running time and communication for different
average vertex degrees (in LAN, 8-parties, 5 iterations).

7.2 Q1: Efficient Ring-ScatterGather Paradigm
7.2.1 Different sizes of global graphs. Figure 8 shows the running
time (duration) and per-party communication of different schemes

for different global graph sizes (from 2
17

to 2
21
). This experiment

is performed in a LAN environment with 8 parties. The three rows

of subfigures correspond to three different graph algorithms. Each

graph algorithm is run for 5 iterations. Compared to GraphSC,

when the graph size is 2
17
, RingSG reduces the running time by

2.55 ∼ 8.48×. When the graph size is 2
21
, RingSG reduces the run-

ning time by 3.25 ∼ 7.17×. As for the per-party communication,

RingSG reduces GraphSC’s communication by 3.92 ∼ 8.28× when

the graph size is 2
17
, and by 3.85 ∼ 8.29× when the graph size is

2
21
. The reduction ratio of both the running time and per-party

communication is stable as the graph size increases, since the cost

of GraphSC without secure sort is also linear to |𝑉 | + |𝐸 |. When

compared to CoGNN, we can see that the reduction ratio of per-

party communication is stable for different graph sizes, ranging

between 1.55 ∼ 5.66×. This is in conformity with our complexity

analysis of CoGNN and RingSG, which indicates that when the

number of parties and average vertex degree are fixed, the per-party

communication ratio between the two schemes is also fixed. The

running time reduction ratio of RingSG with respect to CoGNN is

2.59 ∼ 3.39× for 2
17
, and 1.64 ∼ 4.19× for 2

21
.

7.2.2 Different numbers of parties. Figure 9 shows the duration

and communication overhead of executing the three algorithms

under different schemes and with different numbers of parties (from

3 to 10). We set a LAN environment and set the number of ver-

tices in each local graph to 2
16
. The reduction ratios of running

time/communication of RingSG with respect to both GraphSC and

CoGNN are enlarged as the number of parties increases, which

confirms our cost analysis and shows RingSG’s superior scalabil-
ity. In particular, when there are 6 parties, compared to GraphSC,

RingSG reduces the communication of GraphSC by 2.95 ∼ 6.22×.
When there are 10 parties, it is 4.91 ∼ 10.36×. The communication

reduction ratio of RingSG with respect to CoGNN is 1.33 ∼ 4.29×
for 6 parties, and is 1.86 ∼ 7.01× for 10 parties. As for the running

494

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing CCS ’25, October 13–17, 2025, Taipei

GraphSC CoGNN-2PC CoGNN RingSG
CC 4.51 (0.47) 172.67 (2.11) 0.71 (0.18) 0.49 (0.11)
SP 7.98 (0.57) 172.32 (2.14) 5.77 (0.25) 1.97 (0.16)
PR 11.7 (2.48) 216.22 (3.45) 7.65 (1.74) 2.13 (0.31)

Table 2: Duration [s] and per-party communication [GB, in
bracket (*)] of various schemes (in LAN, 8 parties, local graph
of 216, amortized across 20 iterations). Note that CoGNN in-
corporates 3PC via our share conversion mechanism, while
CoGNN-2PC is the original 2PC-based implementation.

time, RingSG reduces GraphSC’s by 4.32 ∼ 9.94× for 6 parties, and

6.04 ∼ 15.34× for 10 parties. RingSG reduces CoGNN’s by 1.28 ∼
3.04× for 6 parties, and 1.65 ∼ 4.01× for 10 parties.

7.2.3 Different average vertex degrees. Figure 10 shows the du-

ration/communication overhead of different schemes for an in-

creasing average vertex degree (from 2 to 10). Performed in a

LAN environment, the experiment sets the number of parties to

8 and the number of vertices in each local graph to 2
16
. The dura-

tion/communication reduction of RingSG compared to GraphSC in-

creases with growing average vertex degree, whereas the reduction

compared to CoGNN diminishes. For SP and PR, RingSG’s per-party
duration/communication stays lower than CoGNN’s for all tested

settings. For CC, they have nearly identical duration/communication

when the average degree is 8 or more, and CoGNN appears to be

more efficient than RingSG as the degree grows.

In summary, the evaluation results, consistent with our detailed

cost analysis in the technical report [43], show that compared to

prior SOTAs, RingSG is more efficient in processing a large and

sparse global graph with more graph owners.

7.3 Q2: Efficient On-demand Incorporation of
3PC

To demonstrate the efficiency gains achieved through the on-demand

incorporation of 3PC, we compare the per-iteration costs across

four different schemes. The compared schemes include 3PC-based

GraphSC (GraphSC), the original 2PC-based CoGNN (CoGNN-2PC),

our re-implementation of CoGNN that incorporates 3PC via our on-

demand share conversion (CoGNN), and our system RingSG. The
results are summarized in Table 2, Note that we exclude the cost of

secure sort operations in GraphSC, indicating that its actual total

cost would be substantially higher. The substantial performance

gap between CoGNN-2PC and CoGNN demonstrates that, despite

the additional communication overhead introduced by share con-

version, the incorporation of three-party computation significantly

improves the efficiency of both CoGNN and our system. Specifically,

across the three evaluated algorithms, the on-demand incorpora-

tion of 3PC achieves up to 243× reduction in execution time and

up to 11× reduction in communication overhead.

7.4 Q3: Efficient OGA Protocol
In Table 3 and Table 4, we break down the running time of RingSG
and CoGNN into the Scatter and Gather phases. Additionally, we

measure the running time taken by the oblivious group aggrega-

tion (OGA) in these two schemes. Note that in RingSG, OGA is

performed in Gather, while in CoGNN it is performed in Scatter.

RingSG
Scatter

RingSG
Gather

(OGA)

RingSG
Total

CoGNN

Scatter

(OGA)

CoGNN

Gather

CoGNN

Total

CC 0.07

0.40
(0.24) 0.47 0.54

(0.33)

0.13 0.67

SP 0.18

1.75
(1.53) 1.93 4.81

(4.40)

0.78 5.59

PR 0.42

1.72
(1.44) 2.14 6.79

(4.27)

0.79 7.58

Table 3: Durations [s] in LAN (global graph of 221, 8 parties).

RingSG
Scatter

RingSG
Gather

(OGA)

RingSG
Total

CoGNN

Scatter

(OGA)

CoGNN

Gather

CoGNN

Total

CC 0.65

3.13
(1.76) 3.78 4.85

(2.33)

1.52 6.37

SP 1.79

15.91
(13.79) 17.60 45.40

(41.25)

6.64 52.04

PR 5.45

15.28
(13.15) 20.73 79.93

(39.57)

6.69 86.62

Table 4: Durations [s] in WAN (global graph of 221, 8 parties).

Scheme RingSG CoGNN GraphSC

Detect

Group

Connection

Protocol

Invocation

34.34
(4.55)

38.57

(14.52)

450.74

(39.40)

Result

Extraction

0.46
(0.02) / /

Total 34.80 (4.57) / /

Trace

Transfer

Chain

Protocol

Invocation

56.30
(6.47)

102.72

(20.03)

549.18

(47.40)

Result

Extraction

1.65
(0.28) / /

Total 57.95 (6.75) / /

Table 5: Duration [s] and per-party communication [GB,
in bracket (*)] of RingSG instantiations (In LAN, 8 parties,
global graph of 224). Prior works lack result extraction.

Table 3 and Table 4 are run in LAN and WAN respectively. The

number of parties is 8, while the local graph size is 2
16
. We can

see that, in LAN, OGA takes up 51% ∼ 79% of the running time of

RingSG, and 49% ∼ 79% of that of CoGNN. In WAN, OGA takes

up 47% ∼ 78% of the running time of RingSG, and 37% ∼ 79% of

that of CoGNN. Thus, in both LAN and WAN, OGA contributes to

an important part of the overall protocol running time, and there-

fore optimizing the construction of OGA is critical. Compared with

CoGNN, the OGA protocol in RingSG is highly efficient, reducing

the running time by 1.37 ∼ 2.97× in the LAN environment and 1.32

∼ 3.01× in the WAN environment.

Our technical report [43] provides a step-wise inspection of

RingSG costs to better compare OGA with other critical operations.

7.5 Q4: Efficient App-Specific Result Extraction
We measure the running time/communication of the two end-to-

end instantiations of RingSG (introduced in §6) under the setting

of 8 parties, LAN, and a global graph of size 2
24 = 16, 777, 216.

The number of iterations during protocol invocation is set to 10.

495

Zhenhua Zou et al.CCS ’25, October 13–17, 2025, Taipei

For comparison, we also run the two corresponding algorithms
(CC and SP) with CoGNN and GraphSC, which lack end-to-end
result extraction, for the same number of iterations. The evaluation
results are summarized in Table 5. For the two applications, the
result extraction design in RingSG accounts for only 1.3% ∼ 2.9%
of the overall running time, and 0.4% ∼ 4.2% of the overall commu-

nication. Notably, the total running time/communication of these
two RingSG instantiations are both less than that of CoGNN and
GraphSC, which only have protocol invocation and lack end-to-end
result extraction.

8 Discussion
Reveal Local Graph Sizes. RingSG and CoGNN address the same
collaborative graph processing paradigm, where graph owners per-
form the computational tasks directly. In contrast, GraphSC was
initially designed for outsourced computation scenarios. While
GraphSC can be adapted to the collaborative setting by distributing
secret shares of the global graph among graph owners serving as
computing parties, this adaptation necessarily reveals local graph
sizes during the secret sharing process. Consequently, all three
approaches provide equivalent privacy guarantees in practice.
Generalize to partially known inter-edges. RingSG can be gen-
eralized to cases when inter-edges are partially known by either
of the two parties. Specifically, the necessary information for the
source party of inter-edges is only the source-vertex identifiers,
while the destination party must know the destination-vertex identi-
fiers. Other inter-edge data (e.g., weights/distances) can be partially
known and computed via secret sharing. This extends our problem
setting of collaborative graph processing in § 3.1.
The Security Model. Unlike outsourced computation models, col-
laborative graph processing requires data owners to perform com-

putations directly rather than relying on third-party servers. Con-
sequently, collusion harms their own privacy, while malicious be-
havior undermines mutually beneficial collaboration. Given these
inherent safeguards, we adopt a non-colluding, semi-honest secu-
rity model and concentrate our efforts on optimizing computational
and communication efficiency.

Future enhancements to RingSG for malicious security can pro-
ceed in three phases: group-wise computations, share redistribu-
tion, and share conversion. For group-wise computations, we could
employ existing maliciously secure MPC protocols. The share re-
distribution and conversion phases could leverage techniques from
recent maliciously secure aggregation schemes [37]. To maintain
cross-phase consistency of secret shares, we could integrate com-

mitment/verification mechanisms similar to those in [25], ensuring
robust integrity preservation without efficiency loss.
Generalize to Other Secret Share and MPC Schemes. RingSG
requires 2-out-of-2 additively secret share (ASS) for share redistri-
bution. Yet, the group-wise computation can be generalized to use
other secret share and MPC schemes with properly designed share-
conversion schemes from 2-out-of-2 ASS. The per-party overhead
shall vary according to the share conversion and MPC costs.
Process Incremental/Streaming Data. A promising future direc-
tion of extending RingSG is to support the processing of stream-

ing/dynamic graph data with incremental costs. This extension

might involve two key components: (i) securely caching prior exe-

cution history as secret-shared states in each vertex, and (ii) iden-
tifying and obliviously updating the portion of the global graph

affected by new data through partial execution of RingSG. However,

the specifics of secure state storage and identifying the influenced

graph segment depend on the graph algorithm specifications.

Difficulties of Prior Approaches in Result Extraction. Directly
applying our designs to CoGNN and GraphSC to extract application-

specific results can be costly. In particular, the usage of homomor-

phic encryption in OEP of CoGNN makes result extraction rather

expensive due to high cipher-plaintext expansion rate. Meanwhile,

GraphSC must process the entire global graph even when only the

result of a single local graph is of interest. Thus, the novel compu-

tation paradigm and protocol constructions of RingSG are the keys

to enabling efficient and secure result extraction.

9 Conclusion
This paper presents RingSG, the first collaborative graph process-

ing system attaining the optimal communication/computation com-

plexity for the MPC-based vertex-centric abstraction. The core of

RingSG is the Ring-ScatterGather paradigm, which organizes the

overall secure graph computation workload into rings of paral-

lel and non-overlapping tasks and distributes them to different

groups of parties. Within Ring-ScatterGather, we propose to in-

corporate 3PC and a novel OGA protocol to improve its concrete

efficiency. Finally, for application-specific and privacy-preserving

result extraction, we present two efficient end-to-end instantiations

of RingSG. Rigorous evaluations across extensive experimental

settings confirm RingSG’s superiority over SOTA, especially for

large, sparse global graphs with growing numbers of parties.

10 Acknowledgements
We thank the anonymous reviewers for their insightful feedback.

The research is supported in part by the National Natural Sci-

ence Foundation of China (NSFC) under Grant 62472247, 62425201,

62132011 and 62221003, and the National Key R&D Program of

China under Grant 2024YFB2906803 and 2022YFB2403900, as well

as a CIE-Smartchip research grant. The corresponding author of

this paper is Zhuotao Liu.

References
[1] 2025. Complete guide to GDPR compliance. https://gdpr.eu/ Accessed: 2025-05-

01.

[2] 2025. Connected-component labeling — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/wiki/Connected-component_labeling, Accessed: 2025-

05-01.

[3] 2025. PageRank — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/

wiki/PageRank, Accessed: 2025-05-01.

[4] 2025. Shortest path problem — Wikipedia, The Free Encyclopedia. https:

//en.wikipedia.org/wiki/Shortest_path_problem, Accessed: 2025-05-01.

[5] Abdelrahaman Aly and Sara Cleemput. 2017. An Improved Protocol for Securely

Solving the Shortest Path Problem and its Application to Combinatorial Auctions.

IACR Cryptol. ePrint Arch. 2017 (2017), 971.
[6] Abdelrahaman Aly and Sara Cleemput. 2022. A fast, practical and simple shortest

path protocol for multiparty computation. In European Symposium on Research
in Computer Security. Springer, 749–755.

[7] Abdelrahaman Aly and Mathieu Van Vyve. 2015. Securely solving classical

network flow problems. In Information Security and Cryptology-ICISC 2014: 17th
International Conference, Seoul, South Korea, December 3-5, 2014, Revised Selected
Papers 17. Springer, 205–221.

[8] Mohammad Anagreh, Peeter Laud, and Eero Vainikko. 2021. Parallel privacy-

preserving shortest path algorithms. Cryptography 5, 4 (2021), 27.

496

https://gdpr.eu/
https://en.wikipedia.org/wiki/Connected-component_labeling
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing CCS ’25, October 13–17, 2025, Taipei

[9] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. 2016.

High-Throughput Semi-Honest Secure Three-Party Computation with an Honest

Majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery,

New York, NY, USA, 805–817.

[10] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin, and

Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale (CCS ’21). Association for

Computing Machinery, New York, NY, USA, 610–629.

[11] Nuttapong Attrapadung, Hiraku Morita, Kazuma Ohara, Jacob CN Schuldt, Tadanori

Teruya, and Kazunari Tozawa. 2022. Secure parallel computation on privately par-

titioned data and applications. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’22). Association for Computing

Machinery, New York, NY, USA, 151–164.

[12] Nuttapong Attrapadung, Hiraku Morita, Kazuma Ohara, Jacob C. N. Schuldt, Tadanori

Teruya, and Kazunari Tozawa. 2022. Secure Parallel Computation on Privately Parti-

tioned Data and Applications. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22). Association
for Computing Machinery, New York, NY, USA, 151–164.

[13] Zuzana Beerliová-Trubíniová and Martin Hirt. 2008. Perfectly-secure MPC with linear

communication complexity. In Theory of Cryptography: Fifth Theory of Cryptogra-
phy Conference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5. Springer,
213–230.

[14] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-shared shuffle. In

Advances in Cryptology–ASIACRYPT 2020: 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South Korea, December
7–11, 2020, Proceedings, Part III 26. Springer, 342–372.

[15] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell,

and Ariel Nof. 2018. Fast large-scale honest-majority MPC for malicious adversaries.

In Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part III 38. Springer,
34–64.

[16] Steven M. D’Antuono. 2018. Combating Money Laundering and Other

Forms of Illicit Finance: Regulator and Law Enforcement Perspectives on Re-

form. https://www.fbi.gov/news/testimony/combating-money-laundering-and-other-

forms-of-illicit-finance, Accessed: 2025-05-01.

[17] Frankfurt. 2022. Enhancing cooperation in the fight against money launder-

ing. https://www.bankingsupervision.europa.eu/press/blog/2022/html/ssm.

blog220524~8e08209118.en.html, Accessed: 2025-05-01.

[18] Daniel Günther, Marco Holz, Benjamin Judkewitz, Helen Möllering, Benny Pinkas,

Thomas Schneider, and Ajith Suresh. 2022. Privacy-Preserving Epidemiological Mod-

eling on Mobile Graphs. arXiv preprint arXiv:2206.00539 (2022).
[19] Koki Hamada, Dai Ikarashi, Ryo Kikuchi, and Koji Chida. 2023. Efficient decision tree

training with new data structure for secure multi-party computation. In Proceedings
on Privacy Enhancing Technologies Symposium (PoPETs). 343–364.

[20] Feng Han, Lan Zhang, Hanwen Feng, Weiran Liu, and Xiangyang Li. 2022. Scape:

Scalable collaborative analytics system on private database with malicious security. In

2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 1740–1753.
[21] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party computation. In

Proceedings of the 2020 ACM SIGSAC conference on computer and communications secu-
rity (CCS ’20). Association for Computing Machinery, New York, NY, USA, 1575–1590.

[22] Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures for MPC. In

Advances in Cryptology–ASIACRYPT 2014: 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, ROC,
December 7-11, 2014, Proceedings, Part II 20. Springer, 506–525.

[23] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal. 2024. Graphiti:

Secure Graph Computation Made More Scalable. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security (Salt Lake City, UT, USA)
(CCS ’24). Association for Computing Machinery, New York, NY, USA, 4017–4031.

[24] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-Scale Distributed Graph

Computing Systems: An Experimental Evaluation. Proc. VLDB Endow. 8, 3 (nov 2014),
281–292.

[25] Hidde Lycklama, Alexander Viand, Nicolas Küchler, Christian Knabenhans, and Anwar

Hithnawi. 2024. Holding secrets accountable: Auditing privacy-preserving machine

learning. In 33th USENIX Security Symposium (USENIX Security 24). USENIX Associa-

tion.

[26] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,

Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-Scale Graph

Processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data (Indianapolis, Indiana, USA) (SIGMOD ’10). Association for Computing

Machinery, New York, NY, USA, 135–146.

[27] Sahar Mazloom and S. Dov Gordon. 2018. Secure Computation with Differentially Pri-

vate Access Patterns. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). Association for Computing

Machinery, New York, NY, USA, 490–507.

[28] Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. 2020. Secure

parallel computation on national scale volumes of data. In 29th USENIX Security Sym-
posium (USENIX Security 20). USENIX Association, 2487–2504.

[29] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework for

Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). Association for Computing

Machinery, New York, NY, USA, 35–52.

[30] Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins and

PSI for Secret Shared Data. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (Virtual Event, USA) (CCS ’20). Association
for Computing Machinery, New York, NY, USA, 1271–1287.

[31] PaymanMohassel and Saeed Sadeghian. 2013. How to Hide Circuits inMPC an Efficient

Framework for Private Function Evaluation. In Advances in Cryptology – EUROCRYPT
2013, Thomas Johansson and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 557–574.

[32] Payman Mohassel and Saeed Sadeghian. 2013. How to hide circuits in MPC an efficient

framework for private function evaluation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 557–574.

[33] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable privacy-

preserving machine learning. In 2017 IEEE symposium on security and privacy (SP).
IEEE, 19–38.

[34] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and

Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In 2015 IEEE
Symposium on Security and Privacy. 377–394.

[35] Benjamin Ostrovsky. 2024. Privacy-Preserving Dijkstra. In Advances in Cryptology –
CRYPTO 2024, Leonid Reyzin and Douglas Stebila (Eds.). Springer Nature Switzerland,

Cham, 74–110.

[36] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya

Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-Party Se-

cure Inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). Association for Computing

Machinery, New York, NY, USA, 325–342.

[37] Mayank Rathee, Conghao Shen, SameerWagh, and Raluca Ada Popa. 2023. Elsa: Secure

aggregation for federated learning with malicious actors. In 2023 IEEE Symposium on
Security and Privacy (SP). IEEE, 1961–1979.

[38] Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wiggerman,

Jan Veldsink, Oscar Bloemen, and Daniël Worm. 2019. Secure multiparty PageRank

algorithm for collaborative fraud detection. In Financial Cryptography and Data Secu-
rity: 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February
18–22, 2019, Revised Selected Papers 23. Springer, 605–623.

[39] Connie Diaz De Teran. 2023. Collaboration Is Key in the Fight Against Anti-Money

Laundering. https://www.paymentsjournal.com/collaboration-is-key-in-the-fight-

against-anti-money-laundering/, Accessed: 2025-05-01.

[40] Andrew C. Yao. 1982. Protocols for secure computations. In 23rd Annual Symposium
on Foundations of Computer Science (SFCS 1982). 160–164.

[41] Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, andMingwei Xu. 2024. CoGNN:

Towards Secure and Efficient Collaborative Graph Learning. In Proceedings of the 2024
on ACM SIGSAC Conference on Computer and Communications Security (Salt Lake

City, UT, USA) (CCS ’24). Association for Computing Machinery, New York, NY, USA,

4032–4046.

[42] Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, and Mingwei Xu. 2024.

CoGNN: Towards Secure and Efficient Collaborative Graph Learning (Artifacts).

https://doi.org/10.5281/zenodo.11210094

[43] Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, and Mingwei Xu. 2025. RingSG:

Optimal Secure Vertex-Centric Computation for Collaborative Graph Processing. Cryp-

tology ePrint Archive, Paper 2025/1209. https://eprint.iacr.org/2025/1209

[44] David Lewis Zoë Newman, Howard Cooper. 2022. Collaboration is key: how central

banks are tackling money laundering. https://www.centralbanking.com/central-

banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-

money-laundering, Accessed: 2025-05-01.

497

https://www.fbi.gov/news/testimony/combating-money-laundering-and-other-forms-of-illicit-finance
https://www.fbi.gov/news/testimony/combating-money-laundering-and-other-forms-of-illicit-finance
https://www.bankingsupervision.europa.eu/press/blog/2022/html/ssm.blog220524~8e08209118.en.html
https://www.bankingsupervision.europa.eu/press/blog/2022/html/ssm.blog220524~8e08209118.en.html
https://www.paymentsjournal.com/collaboration-is-key-in-the-fight-against-anti-money-laundering/
https://www.paymentsjournal.com/collaboration-is-key-in-the-fight-against-anti-money-laundering/
https://doi.org/10.5281/zenodo.11210094
https://eprint.iacr.org/2025/1209
https://www.centralbanking.com/central-banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-money-laundering
https://www.centralbanking.com/central-banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-money-laundering
https://www.centralbanking.com/central-banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-money-laundering

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Setting and Prior SOTA
	3.1 Collaborative Graph Processing
	3.2 State-of-the-Art and Limitations

	4 The Ring-ScatterGather Paradigm
	4.1 An Illustrative Example
	4.2 Paradigm Specification

	5 Protocols within Ring-ScatterGather
	5.1 On-demand Incorporation of 3PC
	5.2 OGA with halved rounds
	5.3 The RingSG Protocol

	6 End-to-end System Instantiation
	6.1 Group Connection Detection
	6.2 Trace Transfer Chain

	7 Evaluation
	7.1 Implementation & Setup
	7.2 Q1: Efficient Ring-ScatterGather Paradigm
	7.3 Q2: Efficient On-demand Incorporation of 3PC
	7.4 Q3: Efficient OGA Protocol
	7.5 Q4: Efficient App-Specific Result Extraction

	8 Discussion
	9 Conclusion
	10 Acknowledgements
	References

