Check for
updates

~ PDF Download
e DIGITAL . Assaciaionfoe }
i acmopen A 3719027.3744824.pdf
A TErary @ S, pen) G >3 December 2025
Total Citations: 0
Total Downloads: 762

£ Latest updates: https://dl.acm.org/doi/10.1145/3719027.3744824

RESEARCH-ARTICLE
RingSG: Optimal Secure Vertex-Centric Computation for Collaborative
Graph Processing

Published: 19 November 2025

Citation in BibTeX format

ZHENHUA ZOU, Tsinghua University, Beijing, China CCS '25: ACM SIGSAC Conference on

ZHUOTAO LIU, Tsinghua University, Beijing, China gmge:lsf;zg”gt Security
JINYONG SHAN, Beijing Smartchip Microelectronics Technology Co., Ltd., Beijing, China Taipel, Taiwan
QI LI, Tsinghua University, Beijing, China ;%"Sf:(r:e“ce Sponsors:

KE XU, Tsinghua University, Beijing, China
MINGWEI XU, Tsinghua University, Beijing, China

Open Access Support provided by:
Tsinghua University
Beijing Smartchip Microelectronics Technology Co., Ltd.

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)
https://doi.org/10.1145/3719027.3744824
ISBN: 9798400715259

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3744824
https://dl.acm.org/doi/10.1145/3719027.3744824
https://dl.acm.org/doi/10.1145/contrib-99660955717
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99659478510
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661366164
https://dl.acm.org/doi/10.1145/institution-60297255
https://dl.acm.org/doi/10.1145/contrib-99661064038
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-81384607628
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-81100195442
https://dl.acm.org/doi/10.1145/institution-60025278
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60297255
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3744824&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3744824&domain=pdf&date_stamp=2025-11-22

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

Zhenhua Zou
Tsinghua University
Beijing, China
zou-zh21@mails.tsinghua.edu.cn

Zhuotao Liu*
Tsinghua University
& State Key Laboratory of Internet
Architecture
Beijing, China

Jinyong Shan
Beijing Smartchip Microelectronics
Technology Co., Ltd.
Beijing, China
shanjinyong@sgchip.sgcc.com.cn

zhuotaoliu@tsinghua.edu.cn

Qi Li Ke Xu Mingwei Xu
Tsinghua University Tsinghua University Tsinghua University
& State Key Laboratory of Internet & State Key Laboratory of Internet & State Key Laboratory of Internet
Architecture Architecture Architecture
Beijing, China Beijing, China Beijing, China
qliol@tsinghua.edu.cn xuke@tsinghua.edu.cn xumw@tsinghua.edu.cn

Abstract

Collaborative graph processing refers to the joint analysis of inter-
connected graphs held by multiple graph owners. To honor data
privacy and support various graph processing algorithms, existing
approaches employ secure multi-party computation (MPC) proto-
cols to express the vertex-centric abstraction. Yet, due to certain
computation-intensive cryptography constructions, state-of-the-art
(SOTA) approaches are asymptotically suboptimal, imposing signifi-
cant overheads in terms of computation and communication. In this
paper, we present RingSG, the first system to attain optimal com-
munication/computation complexity within the MPC-based vertex-
centric abstraction for collaborative graph processing. This optimal
complexity is attributed to Ring-ScatterGather, a novel computa-
tion paradigm that can avoid exceedingly expensive cryptography
operations (e.g., oblivious sort), and simultaneously ensure the over-
all workload can be optimally decomposed into parallelizable and
mutually exclusive MPC tasks. Within Ring-ScatterGather, RingSG
improves the concrete runtime efficiency by incorporating 3-party
secure computation via share conversion, and optimizing the most
cost-heavy part using a novel oblivious group aggregation protocol.
Finally, unlike prior approaches, we instantiate RingSG into two
end-to-end applications to effectively obtain application-specific
results from the protocol outputs in a privacy-preserving manner.
We developed a prototype of RingSG and extensively evaluated
it across various graph collaboration settings, including different
graph sizes, numbers of parties, and average vertex degrees. The
results show RingSG reduces the system running time of SOTA
approaches by up to 15.34X and per-party communication by up to
10.36X. Notably, RingSG excels in processing sparse global graphs

*Zhuotao Liu is the corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS °25, Taipei

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3744824

483

collectively held by more parties, consistent with our theoretical
cost analysis.

CCS Concepts
«Security and privacy — Cryptography; - Computing method-
ologies — Distributed algorithms.

Keywords

Collaborative Graph Processing; Secure Multi-party Computation;
Vertex-Centric Computation

ACM Reference Format:

Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, and Mingwei Xu.
2025. RingSG: Optimal Secure Vertex-Centric Computation for Collaborative

Graph Processing. In Proceedings of the 2025 ACM SIGSAC Conference on
Computer and Communications Security (CCS °25), October 13-17, 2025, Taipei.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3744824

1 Introduction

Graph data, which constitutes a fundamental element of mod-
ern data infrastructure, often exhibits complex interdependencies
across organizations. A prime example is the banking sector, where
inter-bank transfers function as inter-edges connecting individual
banks’ transfer graphs into a comprehensive global graph. This
interconnected structure necessitates collaborative graph process-
ing [5, 6, 10, 18, 34, 38], which enables multiple organizations to
jointly analyze their interconnected graphs and derive insights
that would be unattainable through isolated analysis of individual
graphs. Anti-money laundering (AML) [16, 17, 39] represents a par-
ticularly significant application of such joint analysis. The detection
of malicious cross-border fund flows [44] becomes infeasible when
relying solely on isolated local graph data maintained by individual
banks. However, the growing emphasis on data privacy presents
a significant challenge, as direct sharing of graph data among dif-
ferent graph owners for collaborative processing raises substantial
privacy concerns and may violate regulatory requirements [1].

https://orcid.org/0009-0003-1681-3786
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0001-6237-986X
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0002-4847-4585
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744824
https://doi.org/10.1145/3719027.3744824
https://doi.org/10.1145/3719027.3744824

CCS 25, October 13-17, 2025, Taipei

Secure Multi-party Computation (MPC) [9, 13, 15, 21, 29, 33, 40],
a suite of cryptographic protocols, offers a promising solution by
enabling collaborative graph processing with formally provable
privacy guarantees. Most existing MPC-based approaches employ
the fully outsourced computation setting, where the graph owners
employ several third-party computing servers to hold and com-
pute their private graph data in a secret-shared fashion. These
approaches either treat MPC as an arithmetic black box (ABB)
and focus on optimizing specific graph algorithms (like Shortest
Path [5-7, 22, 35]), or depend on specific MPC protocols (like Gar-
bled circuit, ABY3) to support general computation of various graph
algorithms [10, 12, 23, 27, 28, 34]. The latter branch is largely based
on GraphSC [34], a secure computation paradigm to execute various
graph algorithms under the vertex-centric abstraction [26].

However, the outsourced computation scheme exhibits two fun-
damental limitations. (i) It necessitates a one-time, yet exceedingly
costly, secure sort to rearrange the graph data, which can consume
up to 75% or more of the total execution time [10]. (ii) Since each
computing party retains an essential secret share of the global
graph, it is obligated for each of them to perform secure computa-
tion across the entire graph, even if certain sections of the global
graph are topologically disconnected from the party. This results in
substantial communication overhead between each pair of parties.

To address the above problem, COGNN [41] proposes to integrate
distributed computing into the vertex-centric abstraction. Its core
idea is to decompose the overall secure computation workload into
concurrent two-party secure computation (2PC) tasks. This allows
each party to process only part of the global graph and to replace
the costly secure sort with more computation-efficient secure per-
mutations [14, 31]. However, COGNN only achieves sub-optimal
asymptotic complexity in the vertex-centric abstraction because it
fails to attain optimal computation task partitioning. Consequently,
the proportion of global graph data associated with different tasks
overlaps, leading to redundant computations. Moreover, the secure
execution of the decomposed tasks is confined to 2PC, which lacks
the generality necessary to utilize more efficient MPC protocols.
See detailed discussion of CoOGNN in § 3.2.

To advance the state-of-the-art (SOTA), we introduce RingSG, the
first collaborative graph processing system that attains an optimal
complexity within the vertex-centric abstraction. RingSG demon-
strates several key advantages over the SOTA approaches. First,
it introduces Ring-ScatterGather, a novel computation paradigm
that introduces grouped data parallelism into the vertex-centric ab-
straction. Unlike the outsourced computation schemes and CoGNN,
Ring-ScatterGather organizes the overall secure computation work-
load into rings of parallelizable and non-overlapping tasks, where
each task is securely computed by a group of relevant parties, as
shown in Figure 1. As a result, Ring-ScatterGather achieves the
communication complexity of O(|V| + |E|) in the vertex-centric
abstraction, where |V| and |E| represent the numbers of vertices
and edges in the global graph, respectively. This is optimal because
it is linear to (|V|+|E|) and independent of the number of parties N,
making it more efficient than both outsourced computation schemes
(O((|V]+|E]) log(|V|+]E]))) and CoGNN (O(N|V| +|E[)). We sum-
marize the communication/round complexities of RingSG and prior
SOTAs in Table 1. For GraphSC, we use its SOTA construction [23].

484

Zhenhua Zou et al.

ScatterTask O vertex GatherTask
from vertices ; — edge from edges @F @)
to edges . edge (notin to vertices PADN
9 O O this task)
out of 3SS ---party border | 2-out-0f-3 SS
a group
- ScatterTask Pi+1 (Y
PO &
(P 1+’
a group for a
P, atherTask
P Conversion | P ()
pt P i+3
’L
> Share > o
Ring of ScatterTasks Redistribution Ring of GatherTasks
ScatterTasks in a ring are € 2-out-of-2 SS &€ GatherTasks in a ring are

parallel and non-overlapping parallel and non-overlapping

Figure 1: A high-level illustration of RingSG. (i) MPC-based
vertex-centric computation is decomposed into parallel Scat-
ter/Gather tasks, each assigned to a group of parties. (ii)
Tasks in an iteration of vertex-centric computation are non-
overlapping and parallelized like a ring. (iii) Synchronization
occurs between rings, and share conversion/redistribution is
performed during the transition between consecutive rings.

Round
O(log(|V| + |E]))

Communication (Bandwidth)
O((V1 + |E]) log(IV| + |E])
CoGNN [41] O(N|V| + E]) O(log(IE]) + N)
RingSG o(V] +|EJ) O(log(IE]))
Table 1: The overall communication and round complexity

for executing one iteration of vertex-centric abstraction.

GraphSC [23]

Second, unlike CoGNN relying on relatively expensive 2PC
to execute these decomposed MPC tasks, RingSG integrates ef-
ficient three-party secure computation (3PC). This is accomplished
through a share conversion and a share redistribution mechanism,
within the Ring-ScatterGather paradigm (also shown in Figure 1).
This mechanism dynamically establishes three-party replicated se-
cret shares on demand, enhancing task execution efficiency while
ensuring security. Meanwhile, we pinpoint the most computation-
ally intensive component in RingSG: obliviously aggregating the
edge-produced data targeting the identical vertices. To reduce
its overhead, we propose a novel cryptographic protocol to at-
tain Oblivious Group Aggregation (OGA) with identical compu-
tation/communication as the SOTA [8, 19, 20], but with halved
rounds. This further reduces the concrete running time of RingSG.

Finally, we present the end-to-end instantiation of RingSG in
two real-world anti-money laundering applications. We demon-
strate that the design of RingSG has enabled efficient and privacy-
preserving extraction of application-specific results from the proto-
col outputs, which has not been discussed in existing approaches.
Contributions. Our primary contribution is RingSG, the first sys-
tem that realizes the optimal communication/computation complex-
ity for the MPC-based vertex-centric abstraction in collaborative
graph processing. The optimal complexity is enabled by a novel
computation paradigm (Ring-ScatterGather) that decomposes the
holistic secure computation workload into parallelizable and non-
overlapping tasks, resulting in superior efficiency and scalability.
Within this paradigm, we incorporate 3PC based on replicated
secret share, and also propose a new OGA protocol to further im-
prove the concrete efficiency of RingSG. Finally, we discuss the

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

0
a

Figure 2: An example showing an iteration of vertex-centric
abstraction for Connected Component Labeling (CC).

end-to-end instantiations of RingSG to confidentially and efficiently
obtain application-specific results from the protocol outputs. We
implement RingSG and experimentally compare it to the SOTA ap-
proaches across a wide range of settings, including different graph
sizes, numbers of parties and average vertex degrees. Evaluation
results show that RingSG reduces the overall system running time
of SOTA approaches by up to 15.34X and per-party communica-
tion by up to 10.36X. For sparse global graphs with a fixed average
vertex degree, RingSG exhibits a performance gain that grows as
the number of parties or graph size increases. This observation
aligns with our theoretical analysis, highlighting RingSG’s superior
asymptotic complexity and concrete efficiency advantages.

2 Preliminaries

Graph. A graph can be specified as G = (V,E), where V is a
vector of vertices and E is a vector of edges. Each slot of V contains
a vertex v = (v.id,v.data), where v.id is a unique identifier and
v.data is the vertex data. Each slot of E stores a directed edge
e = (e.src, e.dst, e.data), where e.src (e.dst) is the identifier of the
source (destination) vertex. We call edge e the outgoing edge of e.src
and the incoming edge of e.dst. The number of outgoing (incoming)
edges of a vertex is called its outgoing (incoming) degree. We use
V.id to represent the identifier vector of V, and use E.src (E.dst) for
the identifier vector of E’s source (destination) vertices.

Graph Processing via Vertex-Centric Abstraction. Graph pro-
cessing essentially leverages graph algorithms to analyze a graph,
and produces either updated graph data or statistics extracted from
it. As proposed in Pregel [24, 26], most graph algorithms can be effi-
ciently and parallelly computed via three vertex-centric operations:
Gather, Apply and Scatter. This is called the vertex-centric abstrac-
tion. For classical graph algorithms like Connected Component
Labeling (CC) [2], Shortest Path (SP) [4] and PageRank (PR) [3],
Apply can be included in Gather and the graph algorithms are then
expressed as iterations of Scatter-Gather, as follows:

o Scatter. For all v € V, traverse its outgoing edges, combining
the vertex data and edge data to generate an update on the
edge: u — Fs(v,e),Ve € {e|e.src = v.id}.

e Gather. For all v € V, aggregate the updates produced on
each of its incoming edges to produce the updated vertex
data: o’ «— FG(v,u),Vu € {u|u.dst = v.id}.

¥s and ¥ are graph algorithm-specific. Figure 2 illustrates a
single iteration of Scatter-Gather for CC, detecting downstream
vertices and edges connected to vertex v0. Bold numbers under each
vertex (v.data) and italic numbers over each edge (e.data) represent
their current labels. A label of "1" indicates a connection.

485

CCS *25, October 13-17, 2025, Taipei

s 2

Functionality (T’) « Fogp ((T),)
Input: 1. Fogp receives (T) from P; and (T'); from Pj;

2. Foep receives 7 from P;, where 7 : Zj7/| — Z7). 7 can be
specified by a pair of vectors (src,dst), [src| = |T|, |dst| = |T”|.
Output: 1. Foep sends (T’)o to P;, where T’ [x] := T[x(x)];

2. Foep sends (T”); to Pj, where T’ [x] := T[x(x)].

J

Functionality 1: Fogp for Oblivious Extended Permutation

Functionality (T’) « Foca ((T), G, Fa)
Input: 1. Foga receives (T) from P; and (T'); from P;;
2. Foca receives G from P;, where |G| = |T| and G can be

divided into segments go||...||gm—1, each containing elements of the
same value. Foga receives a binary merging operation .

Output: Foca sends (T”) and (T”); to P; and P; respectively, such
that if xj is the start index of gg, k € [m], then (T’)[xy] stores the
Fm-aggregated result of gi’s corresponding elements in (T').

Functionality 2: Foga for Oblivious Group Aggregation

e Scatter: The maximum value of v.data and e.data (from out-
going edges) is assigned to u on the edge (Figure 2(b)).

o Gather: The u on each edge updates the destination vertex’s
label, assigning the maximum of u and v.data to v.data’.

After this iteration, v3’s label updates while v1 and v2 remain un-
changed (Figure 2(c)), indicating v3 is connected to v0.
Fixed-Point Encoding and Secret Share. In RingSG, we encode
all the graph data as a Fixed-Point representation over the ring, Zj,
where L := 2. RingSG leverages two secret share schemes over Zp,
i.e., 2-out-of-2 and 2-out-of-3 additive secret share. In particular,
the 2-out-of-2 secret share of x € Z is denoted as x = (x)o + (x)1
(mod L), where (x)¢ is sampled uniformly and (x)o, (x); are held
by two different parties, respectively. We use (x) to indicate that
x is 2-out-of-2 secret-shared. For 2-out-of-3 secret share, we have
x = [x]o + [x]1 + [x]2 (mod L), where [x], k € {0, 1} is sampled
uniformly. The three shares are replicated over three parties as
(IxTos TxD1)s ([x]1, [x]2)s ([x] 2, [x]o)- So any two parties among
them can reconstruct [x] and get x. The share conversion [30] from
2-out-of-3 to 2-out-of-2 secret share can be performed locally as
(x)o « [xJo+[x]1+r (mod L), {x); « [x]2—r (mod L), where
r is uniformly random and is synchronized between the two parties
via PRG. The share conversion from 2-out-of-2 to 2-out-of-3 secret
share requires one round of communication and is performed as
[xJo < =72 (mod L), [x]1 < {(x)o —ro (mod L), [x]2 « (x)}1 —
r1 (mod L), where ry + r1 + r = 0 (mod L). See our technical
report [43] for the detailed protocol of share conversion.

General MPC on Secret-Shared Data. RingSG requires a general-
purpose and semi-honest secure computation protocol over 2-out-
of-3 additively secret-shared data, e.g., [29]. The protocol supports
common arithmetic operations (like add and multiplication) and
logic operations (like comparison and two-way multiplexer [36]).
Oblivious Permutation and Aggregation. In RingSG, we utilize
two special oblivious algorithms, called Oblivious Extended Permu-
tation (OEP) [32] and Oblivious Grouped Aggregation (OGA) [41].
Intuitively, OEP is for obliviously permuting a secret-shared vec-
tor (T) according to a predefined permutation 7z := (src, dst). By
extended we mean that 7 might include replication or absence of

CCS 25, October 13-17, 2025, Taipei

Py | Go: (Vo, Eop) ‘«g‘-“‘) % Gi:(Vi,En) | P
L y
) A (Eoz2, E2p) (En2,
| j2) 0
(Eos, Eso) (Evs, Es.) ’
@\ | o
0
(Ea3, 0
)| ©
Py | Gs: (V3 Es) l ‘ Gy : (Va,Erp) | P,

Figure 3: An example of collaborative graph processing: four-
party Connected Component Labeling.

vector elements. The functionality of OEP, i.e., Fogp, is provided in
Functionality 1. OGA is for aggregating elements in a secret-shared
vector (T) according to a merge operation Fg and a predefined
partition G, which divides the secret-shared vector into contiguous
segments. ¥ is commutative and associative. The aggregation re-
sult of each segment is finally stored in the first slot of each segment.
Functionality 2, i.e., Foga, specifies OGA.

3 Problem Setting and Prior SOTA

This section introduces a cryptographic ideal functionality that
formally captures the computation setting/goal and threat model
of collaborative graph processing. After that, we provide a review
of the SOTA approaches, and analyze their major limitations.

3.1 Collaborative Graph Processing

The collaborative graph processing involves N graph owners, de-
noted as (Py, P1, ..., PN —1) where the indices are taken modulo N. P;
holds a local graph G; = (V;, E; ;). For each edge e € E; ;, both e.src
and e.dst are within V;. Thus, the edges in E;; are referred to as
intra-edges. Different local graphs are interconnected by inter-edges.
We denote the vector of edges directed from G; to Gj as E; j,i # j.
Forall e € Ej j, both P; and P; are aware of (e.src, e.dst, e.data). For
instance, in inter-bank transfers, both banks know the identifiers
of the source account and the destination account, along with the
transferred amount.

The goal of collaborative graph processing is to analyze the
global graph, constituted by local graphs and inter-edges, using
some graph algorithms, and to obtain insights unavailable from
siloed local graphs. In the representative example in Figure 3, Py
wants to detect the connections between two groups of vertices (A
and B). Although both groups are within Gy, Py cannot detect the
connections on its own, because A and B are inter-connected by
complex cross-graph links, rather than simple intra-edges. This is a
common money laundering strategy for financial criminals to hide
the source of illegal money [39, 44]. To detect such behaviors, all
four parties need to collectively analyze the global graph.

In the ideal world, we construct functionality FRingsc to realize
collaborative graph processing. FRringsc articulates the security
guarantees that we wish to achieve with real-world protocols. In
the input stage, Fringsc collects local graphs and inter-edges from
all N parties. It also receives the graph algorithm specification, alg,
which specifies the detailed Scatter-Gather operations (s and %)
and algorithm iterations (maxIter) for processing graph data.

486

Zhenhua Zou et al.

Functionality {(V/)} < Fringsc ({Ei;}, {Vi}, alg)

Input:

1. Vi € [N], P; sends ({E; j }, {Eji}, Vi), j € [N], to FRingscs
2. All P; agree on a specification, alg := (Fs, g, maxIter), and
send it to FRringsG- alg.maxIter is the number of iterations.
Compute:
1. FRingsG constructs the global graph G, where G = (V,E), V :=
UVi and E := UE,',J', i,j & [N],
2. FRingsG processes G as required by alg, producing the updated
vertex vectors {V/},i € [N].
Output:
1. Vi € [N], Frings sends (V;)o to Py, (V;)1 to Pis1;
2. FRingsG sends sizes of edge/vertex vectors to P;, i.e., L :=
{IEs;1, IVil}, Vi, j € [N].

Functionality 3: fRingsc for RingSG

In the computation stage, FRringsc first concatenates the local
graphs into a global graph based on inter-edges, ie.,G = (V,E),V :=
UV, E := UE; j,i,j € [N]. Afterwards, it executes the graph al-
gorithm as specified in alg, using the vertex-centric abstraction.
The computation result includes the updated vertex vectors, i.e.,
Vl.', i € [N].In the output stage, FRingsc distributes the secret shares
of the updated vertex vectors to specific parties. Here we suppose
that Vl.’ is shared between P; and P;.1. Apart from that, it also dis-
tributes sizes of vertex/edge vectors, denoted as L, to each party.
The specification of FRringsc is provided in Functionality 3.
Threat Model. We consider semi-honest parties (i.e., protocol-
compliant but curious) that interact with FRringsc. In addition, we
assume that they do not collude with each other. Throughout the
interaction with FRingsc, the information that each party P; can
observe is limited to: (i) the local graph G;; (ii) the relevant inter-
edges E; j, Ej i, j € [N]\{i}; (iii) the sizes of vertex/edge vectors.
P; can not observe other parties’ local graphs, irrelevant inter-
edges and any data computed based on this information. The final
updated vertex vectors are secret-shared to enable composition
of FRringsG With other secure computation components to form
end-to-end graph processing applications (instantiations). Different
from GraphSC (outsourced computation), both CoOGNN and FRringsc
reveal the local graph sizes as graph owners themselves are protocol
participants. In § 8, we discuss the rationale behind this threat
model.

3.2 State-of-the-Art and Limitations

To support execution of various graph algorithms in a privacy-
preserving manner, GraphSC [34] is the de facto standard, mainly
because of its parallel efficiency, vertex-centric abstraction hiding
away algorithm-specific details and strong security guarantees of-
fered by the underlying MPC protocols. GraphSC organizes the
global graph as a vector with one vertex or edge occupying one slot.
The whole vector is secret-shared among several computing parties.
Given this input setting, GraphSC tries to express the vertex-centric
abstraction in a privacy-preserving (i.e., oblivious) way. For Scatter,
GraphSC first obliviously sorts the vector to place each vertex and
its outgoing edges in contiguous segments. Afterwards, it propa-
gates vertex data to edges using an oblivious propagate operation
on the sorted vector. For Gather, the vector is sorted again to place

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

(Uo,)
Po(Go) Pl(Gl) share Po(Go) 251 o; Py(Gh)
(Bos)l® (Boa XD Redistribution <U§:g>
@
- < e,
P3(G3) Pz() P3(G3) PZ(G2)
(Uo,) < Scatter((Vo), (Eo,)) @ (Vg) « Gather((Vo), (Un,o))
) {(Uo 1) < Scatter((Vo), (Eo1)) ® (V') < Gather((Vy), (U1,))
@ (Vo) < Scatter((Vy), (Eop2)) ® (V§") + Gather((Vy'), (Uao))
® (Vo) < Scatter((Vo), (Eog)) @ (V§") « Gather({Vy"), (Usp))

[[[
Py(Go) Pi(Gy) Share Po(Go) Pi(G1)
Redistribution.
EEE——
@
S Cn <y I
P3(G3) P,(Gs) P5(G3) Py(G2)
® (Uool[Uo,l|Uo2l|Uos) @) «

Scatter

—~

(Vo), (Eol|Eoa | Eoy2| | Eos)) Gather((Vo), (Uo||U1,0[|U2,0/|Us,0))
(b) The Ring-ScatterGather paradigm.

Figure 4: A 4-party example comparing CoGNN and the Ring-
ScatterGather paradigm.

each vertex and its incoming edges in contiguous segments, which
is followed by an oblivious aggregate operation to aggregate edge
data to vertices. Since the secret-shared vectors are sorted, both
propagate and aggregate can be obliviously executed in parallel
with low circuit depth. The overhead of GraphSC is primarily at-
tributed to the expensive secure/oblivious sort. Although several
approaches [10, 23] propose to replace the per-iteration sorts with
one-time preprocessing sort and per-iteration shuffles, the cost of
one-time sort still dominates the overall protocol running time
(over 70% [10]). Moreover, because each computing party has to
process the global graph, the per-party overhead grows rapidly as
the number of graph owners increases.

To address this problem, CoGNN [41] proposes to decompose the
overall computation workload into distributed tasks such that each
party only processes parts of the global graph and the oblivious
sort can be converted to computationally efficient permutation. We
illustrate the workflow of CoGNN using a four-party example in
Figure 4a. From the perspective of ¥y, COGNN decomposes the
Scatter operation into four tasks, i.e., the Scatter from Vj to Eq g,
Eo,1, Eo2 and Ej 3, respectively. Note that Py knows the order of
inputs of the four tasks in clear, so the reordering operation can be
performed with secure permutation instead of sort. The first two
tasks are securely executed by (Py, P1), while the latter two tasks
are assigned to (P, P2) and (Py, P3), respectively. As a result, P;
is only responsible for the Scatter from Vj to Eg o and Ep 1, while
P, is responsible for Eg and Ps is responsible for Eg 3. The total
communication/computation complexity of the four Scatter tasks
of Vo is O(N[V| + X |Eo,j|). Summing up the Scatter tasks for all
Vi (i € [N]), the total complexity is O(N|V| + |E|).

487

CCS *25, October 13-17, 2025, Taipei

During the Gather phase, from the perspective of Vp, it needs to
Gather four update vectors, i.e., Uy o, Ut,0, Uz,0, Us 9. According to
the computation scheme of the Scatter phase, Uy, U; o are origi-
nally secret-shared between (P, P1), while U, is shared between
(Po, P2), and Us g is shared between (Py, P3). For ease of Gather com-
putation, CoOGNN performs share redistribution, to make Uy o, Uy 0,
Uz,0, Uz, all secret-shared between (Py, P1). After that, Vy Gathers
the four update vectors one by one, resulting in O(N|Vy|) complex-
ity. The overall complexity of the Gather phase, summing up all
Vi’s (i € [N]) Gather tasks, is O(N|V|). Taken together, the overall
complexity of one vertex-centric iteration is O(N|V| + |E]).

The constructions of the GraphSC-based SOTA and CoGNN
exhibit three key limitations:

o Sub-optimal Complexity: Their computation schemes are funda-
mentally sub-optimal. GraphSC is O((|V] + |E|) log(|V| + |E]))
due to secure sort. For COGNN, it assigns N Scatter tasks for the
same V;,i € [N]. Consequently, the total complexity of Scatter
tasks is factored by N. A similar limitation applies to Gather
tasks. Ideally, the complexity of an optimal scheme should be
linear to (|V| + |E|) and independent of N. In § 4, we discuss our
computation paradigm that achieves the optimal complexity.

o Limited Concrete Efficiency: Within the CoGNN framework, each
decomposed task is securely executed via 2PC protocols. The
methodology for generalizing the execution to adopt more effi-
cient MPC protocols remains unclear. This significantly limits
the concrete runtime of COGNN. The GraphSC-based SOTA and
CoGNN require tens of minutes to process a global graph of
millions of edges. In § 5, we present our novel cryptographic pro-
tocols that reduce this duration by up to an order of magnitude.

o Lack of End-to-end Instantiation: Both the GraphSC-based SOTA
and CoGNN simply leave the post-processing graph data in secret-
shared form or reveal it publicly. They lack the end-to-end proto-
col instantiation to properly obtain application-specific results
in a privacy-preserving manner. For instance, when tracing ab-
normal funding flow in anti-money-laundering, the parties want
to selectively open critical transfer paths, instead of the naively
opening whole updated global graph. In § 6, we elaborate on
the end-to-end instantiation of RingSG with protocols to extract
application-specific results from the updated graph.

4 The Ring-ScatterGather Paradigm

RingSG is underpinned by a novel computation paradigm, named
Ring-ScatterGather, which achieves optimal communication and
computation complexity within the vertex-centric abstraction. The
crucial distinction between Ring-ScatterGather and the computa-
tion scheme of CoGNN is that Ring-ScatterGather guarantees the
exclusivity of the graph data associated with different decomposed
tasks to avoid redundant computation.

4.1 An Illustrative Example

We illustrate the high-level idea of Ring-ScatterGather using the
four-party example in Figure 4b. The left part of Figure 4b shows
the Scatter phase of a vertex-centric iteration, while the right part
shows the subsequent Gather phase in the same iteration. During
the Scatter phase, Ring-ScatterGather constructs four parallelizable
Scatter tasks, represented as four double-headed arrows. The four

CCS 25, October 13-17, 2025, Taipei

Zhenhua Zou et al.

P; Py
i el
an ot

@DVi e [N] : Uil |[Usa]l. . |Uswbs) <
. ScatterTask((V;), (Eio||Eiall- - - || Bix-1), Fs) .

P P, Piyo

i E}Emm g;Ule

<Ei,* <Ui,*

Figure 5: A ScatterTask of RingSG.

tasks handle the Scatter computation for each of V;,i € [4], and
are assigned to four different groups of parties, (P;, Pi+1),i € [4]
accordingly for secure computation.

In Figure 4b, we zoom into the Scatter task for Vj, which is
securely computed by the group (P, P1). The input of this task
includes (Vp) and (Eo,0||Eo,1||Eo,2||E0,3), the vector of all edges origi-

nating from (Vp). Py can track the order of (Vo) and (Eo,0||Eo,1||Eo,2||Eo,3)

because it owns these data (i.e., Py knows Vj, and all the edge vec-
tors originating from Vj in the clear). Meanwhile, all of these data
are secret-shared to ensure that the other party P; in the group
can not observe the private data of Py. Similarly, the other three
Scatter tasks handle the associated graph data for (V;), (V2) and
(V3), respectively. Therefore, the graph data processed by all four
Scatter tasks are mutually exclusive. Because these tasks form a
ring, we name our computation paradigm Ring-ScatterGather. The
complexity of all Scatter tasks regarding V; is O(|V;| + 2; |E;;]) in
communication/computation. Thus, the overall Scatter tasks in this
ring take O(|V| + |E|). At the end of the Scatter phase, all Scatter
tasks are synchronized to ensure their completion.

After the Scatter phase, Ring-ScatterGather enters the subse-
quent Gather phase. Similarly, the Gather phase also includes a
ring of four parallel Gather tasks, each processing the Gather com-
putation for V;,i € [4]. The four tasks are mutually exclusive,
resulting in an overall complexity of O(|V| + |E|). At the end of
the Gather phase, Ring-ScatterGather synchronizes all parties and
ensures that all Gather tasks in the ring are finished. Afterwards,
Ring-ScatterGather is ready to initiate the next iteration.

The cumulative cost of an iteration comprises the aggregate cost
of the Scatter and Gather phases, each of which encompasses a ring
of tasks. Consequently, the overall communication/computation
complexity of an iteration within RingSG is O(|V| + |E|). This
complexity is optimal because each vertex and edge has to be visited
at least once in an iteration to ensure protocol obliviousness, and
the complexity is irrespective of the number of parties.

In this example, each task is computed by a group of two parties
in Figure 4b. In § 5, we generalize it to incorporate additional parties
in each task and use more efficient MPC schemes.

4.2 Paradigm Specification

Now, we present the formal specification of Ring-ScatterGather.

Scatter. For Ring-ScatterGather in the N-party setting, during Scat-
ter, there are N vertex vectors propagating data to their outgoing
edges at the same time. Ring-ScatterGather chooses to pack all
the Scatter computation relevant to one vertex vector as a sepa-
rate secure computation task, denoted as ScatterTask, and assign

488

Protocol (U) « ScatterTask({V'), (E), ¥s)

Input. The secret-shared vertices (V), edges (E) and Fs.

Output. The secret-shared updates (U), where [(U)| = |[(E)|.
1 (V) « OEP({V), V.id, E.src); # Copy vertex data to edges.

2 fori € Zgy:
3 (U)[i] < Fs((V) il (E)[i]).
Protocol 1: The Protocol of ScatterTask

Generate a vector of updates.

it to one specific group of parties for execution. Figure 5 shows
the ScatterTask related to V;,i € [N]. We can see that there are N
outgoing edge vectors connected to V;, i.e., Ei, ... Ei N—1. RingSG
concatenates the N edge vectors as one edge vector Ejgl|...||E; N1
and secret-shares it between (P;, Pi1+1). V; is also shared between
(P, Piy1). It is worth noting that P; knows V;.id, E; j.src and Ej ;.dst,
J € [N] in clear. Thus, we can invoke Protocol 1 to perform the
ScatterTask for V;. The protocol runs in two steps:

(1) Copy each vertex’s data to the vector slots of its outgoing
edges using an Oblivious Extended Permutation (OEP);

(2) Combine the copied vertex data and the edge data using Fg
to generate an update on each edge.

In our execution of ScatterTask in Figure 5, V.id corresponds to
V;.id, while E.src corresponds to (E;o||...||E; n—1).src. Both vectors
are known by P; in clear but hidden from P;;.

Share Redistribution. Before discussing how Gather computa-
tion is performed, we take a look at the distribution of all the
updates targeting V;, among the N parties. Right after all Scatter-
Tasks finish, there are N generated update vectors that target V;, i.e.,
Uo,i, --» UN—1,i- According to the computation setting of ScatterTask,
these N update vectors are secret-shared between different groups
of parties, i.e., (Py, P1), (P1, P2),..., and (Pn—1, Pp), respectively. For
the efficiency of Gather computation, we want to redistribute these
shares to make the N update vectors secret-shared among a specific
group of parties (P;, Pi+1), who are going to perform the following
Gather computation. Conversely, for the secret-shared update vec-
tor (Ui oll...||Ui N—1) originating from V; (by ScatterTask), we need
to break it into N vectors (Ui), ..., (U;n—1) and redistribute them
to (Po, Py), ..., (PN—1, Po), respectively:

e For j € [N],if j ¢ {i — 1,i,i+ 1}, we have P; send (Uj j)o to
Pj, and have P;41 send (U j)1 to Pjiq.

e Meanwhile, we have P;+1 send (Uj;—1)1 to P;—1, and have
P; send (Uj,i+1)0 to Piyo.

After this delegation of secret shares, U; j,i € [N] is secret-shared
between (Pj, Pj+1). Note that, before sending, we require P; and P;41
to randomize each secret-shared vector they hold independently
using a synchronized PRG. For example, (Uj j)o < (Uij)o —r
(mod L), (Ujj)1 « (Uij)1 +r (mod L). The secret shares each
party receives during share redistribution are uniformly random,
mutually independent, and also independent of their local data.
They can only observe the transferred data size. Thus, the privacy
guarantee is preserved.

Gather. After share redistribution, V; and U, ; = Upl|...||Un-1,;
are secret-shared between (P;, Pi41), as shown in Figure 6. The goal
of a GatherTask is to traverse the update vector U, ;, and merge
each update with their corresponding vertex in V;. RingSG privacy-
preservingly performs this in four steps, as specified in Protocol 2:

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

Pi Pi+1 T AP T —
o o =
[))

- @Vie|N]: (V) «
:, GatherTasK((V;), (Uoi||U1l|- - - [[Un\1,), Fo)

[) [)
Py P, Pio

(Uss)

Figure 6: A GatherTask of RingSG.

Protocol (V') « GatherTask({(V'), (U), FG)

Input. The secret-shared vertices (V'), updates (U) and ¥¢.

Output. The secret-shared updated vertices (V”).
1 (U) « OEP((U), U.dst, U.dst);
2 (U') — OGA((T), U.dst, 75)
3 (U9t — OEP((U’), U.dst, V.id).
4 forie YAvE
s (VO] « Fa() il (O*H[d]).

Protocol 2: The Protocol of GatherTask

Sort update vector by dest.

Group-wise update aggregation.

Element-wise merge operation.

Share
Conversion

2-out-of-3 secret share 2-out-of-2 secret share

ring of ScatterTasks

ring of GatherTasks | == % | Share Redistribution |

| Graph Secret Share |

Figure 7: Share Conversion of RingSG for N-party.

(1) Obliviously reorder Uy ; to place updates sharing the same
destination vertex at adjacent slots in the vector using OEP.
The permutation required by the reordering is supplied by
P;, since it knows Uy ;.dst in clear. The update vector is now
turned into segments, each of which contains updates tar-
geting the same destination;

Obliviously aggregate updates sharing the same destination
vertex and place the aggregation results in the first slot of
each segment, via Oblivious Group Aggregation (OGA). The
group information required by OGA is U, ;.dst, also supplied
by P;. The merge operation ¥ between two updates is Fg;
Obliviously extract the update aggregation results from the
first slot of each segment and place them to the same slots
as the corresponding vertices in V;, using OEP;

Perform element-wise merge operation (via) between
the extracted update vector and the vertex vector, producing
the updated vertex vector V;.

(2

~

3

~

©

5 Protocols within Ring-ScatterGather

This section begins with introducing two critical protocol designs
for RingSG within the Ring-ScatterGather paradigm, i.e., on-demand
incorporation of 3PC and a novel OGA protocol. After that, we
present the RingSG protocol that fulfills FRingsc-

5.1 On-demand Incorporation of 3PC

The Ring-ScatterGather paradigm above assumes two-party secure
computation (2PC). In this section, we incorporate more efficient
3PC based on 2-out-of-3 secret share to achieve better concrete

489

CCS *25, October 13-17, 2025, Taipei

efficiency. Directly replacing 2-out-of-2 secret share with 2-out-of-
3 secret share is infeasible because it violates the security model
of RingSG. For example, in the share redistribution process of P;
introduced in § 4.2 (visualized in [43]), if the parties use 2-out-
of-3 secret share, then P;, Piyq and Piy2 hold ([Ujiv2]o, [Uii+2]1)s
([Uiix2]1, [Uiix2]2) and ([Usis2]l2, [Usis2]0) respectively. If P; del-
egates its shares ([Uj,i+2]0, [Uii+2]1) to Pisa, then Py is able to
reconstruct Uj j42, violating intermediate data privacy.

Thus, in RingSG, we propose on-demand usage of 3PC with
replicated secret share. Specifically, as shown in Figure 7, we only
switch to 2-out-of-3 secret share when executing each Scatter-
Task/GatherTask, and keep using 2-out-of-2 secret share during the
initial graph secret share and share redistribution. Supposing that
the ScatterTask/GatherTask is assigned to (P;, Pi+1), right before
task computation, RingSG performs share conversion from 2-out-of-
2 share between (P;, Pi1+1) to 2-out-of-3 share among (P;, Pi4+1, Piy2).
This conversion requires transferring one piece of share between
each pair of parties. Then the task is executed using 3PC. Once the
task finishes, RingSG performs reversed share conversion and goes
back to 2-out-of-2 secret share between (P;, P;+1). This conversion
can be performed locally with synchronized PRG seeds. Then we
can consistently perform share redistribution to switch between
the Scatter phase and Gather phase as aforementioned under the 2-
out-of-2 secret sharing setting. Essentially, in this share conversion
scheme, we treat P; as a helper for accelerating the Scatter/Gather
tasks assigned to (P;, Pi+1). Before the tasks begin, P;1o receives its
shares, which are immediately invalidated after the tasks finish.

With replicated secret share, the OEP functionality in RingSG is
then instantiated using the three-party Oblivious Switching Net-
work protocol (corresponding to FswitcH) proposed in [30].
Generalization. As we explained above, the core idea of incor-
porating 3PC into Ring-ScatterGather is differentiating the secret
share schemes used in share redistribution and task execution. While
the share redistribution process requires 2-out-of-2 secret share,
the task execution has no restrictions on the secret share scheme.
Thus, Ring-ScatterGather can be generalized to use other secret
share schemes (along with corresponding MPC schemes) in task
execution with properly designed share conversion schemes from
and to 2-out-of-2 additively secret share. The overhead shall vary
according to the costs of share conversion and MPC schemes.

5.2 OGA with halved rounds

Oblivious group aggregation (OGA) is used for aggregating updates
targeting the same vertices. From our experimental results in § 7.4,
it takes up to 79% of the system running time and is indeed the most
cost-heavy part of RingSG. The communication rounds of RingSG
also mainly come from OGA, since it is logarithmic-round, while
the other operations are constant-round. In particular, the SOTA
OGA protocol [8, 19, 20] employs a Ladner-Fischer circuit variant,
which prioritizes circuit size over depth, achieving 2[log(n)]-depth
with 2n-merge operations. Prior efforts in optimizing the SOTA’s
circuit depth (communication rounds) include:

o Using the original Ladner-Fischer circuit, which has [log(n)]-
depth but introduces additional 2n merge operations;

CCS 25, October 13-17, 2025, Taipei

Protocol Oblivious Group Aggregation

Input. P; provides (T)o, G and P; provides (T);, where [(T)| =
G,R = [log(|T|)]. (T) and G satisfy the properties specified in
Theorem 1. P; and P; agree on the merge operation Fg.

Output. P; gets (T’)9 and P; gets (T');.

-

Vr e [R],¥x € {m- 2" m 2" € Zip|_pr,m € Z}:

2 (Tlx]) « Fmux, (Cr[x].(TIx1]), Fa (T[x]), (T[x +2"1))),
3 Crlx] = (Glx] £ Glx+27]) A (=T[x +2" |.dummy).
4 (T')y «(T).

Protocol 3: The Protocol of Two-Party Oblivious Group Ag-
gregation (Semi-honestly Secure)

o Optimizing the depth by introducing a segment tree construc-
tion [11], at the cost of %n additional branching operations
(OT) and increasing the memory footprint by O(log n).

In this section, we propose a new OGA protocol that yields the
halved rounds (depth) without introducing extra operations or mem-
ory overhead (indicating identical communication as the SOTA).
Specifically, our protocol achieves O(n) communication and ([log n]+
1)R rounds, compared to SOTA’s (2[log n] — 1)R rounds, where R
is the communication rounds of each round of merge operation.

According to the input requirements, elements of the same group
are placed in a contiguous segment of (T'). Our divide-and-conquer
idea is to merge every two neighboring elements ((T)[x], (T)[x+1])
in the first round (r = 0) and similarly merge the results of the
previous round in each subsequent round ((T)[x], (T)[x+2"]). The
key insight is that if group sizes and their order in (T) meet specific
properties, the number of vector elements in each subsequent round
can be halved. In particular, if (i) the sizes of all groups are a power
of two and (ii) different groups are sorted in descending order
according to their group sizes, after round r, the elements whose
indices not divisible by 2"+! become redundant and can be dropped,
which means that the number of computed elements after each
merge round is halved. Thus, we obtain an overall communication
complexity of O(|T|) and a round complexity of O(log(|T])).

The problem now is how to convert a normally secret-shared
vector (T) into this special form. Our strategy is to obliviously
insert dummy elements into (T’) to round the size of each group as
a power of two. Recall that before each OGA invocation in RingSG,
an OEP invocation reorders the update vector, placing elements
of the same group together. Right before this OEP invocation, we
append dummy elements to the end of (T). The permutation 7 used
in OEP is a composite of three subpermutations.

(1) mo: placing elements of the same group in a contiguous seg-
ment as aforementioned;

(2) m: inserting the least number of dummy elements at the
end of each group to round the group size as a power of two.
Supposing that the original group size is d, then the rounded
group size is 2108(D)1;

(3) ma: sorting the groups in descending order, and placing un-
used dummy elements at the end of the permuted vector.

The three subpermutations (7, 771, 72) composing the OEP per-
mutation (7 := 2 o 1 o mp) are easily constructed locally by party
P; since it holds G in clear. For 71, adding (|T|—1) dummy elements
suffices for rounding all groups (as the number of dummies per

490

Zhenhua Zou et al.

group is less than half the group size). These dummy edges, inte-
grated into the OEP invocation before the OGA invocation, do not
increase the number of rounds in RingSG, only slightly increasing
OEP communication due to their inclusion in the permutation.
Our final OGA protocol is shown in Protocol 3. In particular,
FMuX, is the two-way multiplexer functionality to obliviously de-
cide which pair of elements to merge and which not to. C[x], the
choice of Fmux,. is defined to prevent merging elements of differ-
ent groups and merging dummy elements with authentic elements.
Cr is computed by P; locally. (T)[x].dummy shows if (T)[x] is
dummy. Fg is the operation merging the two elements. We provide
an illustrative example of our OGA protocol in our technical re-
port [43]. Notably, although Protocol 3 is specified in the two-party
setting, it can be naturally migrated to the three-party setting by
converting (T) to [T] and having one of the three parties hold G.
Communication and Rounds. In merge round r, only the ele-
ments, whose indices evenly divide 2", are computed. So the number
of involved elements is halved after each round, and the total num-
ber of conditional merge operations in line 2 is no more than 2|T|,
resulting in an overall communication complexity of O(|T]).
Assuming that dummy elements have been inserted as afore-
mentioned, i.e., before Protocol 3 is invoked, the number of merge
rounds is R := [log(|T])] = [log(|T’|)] + 1, where |T’| is the vector
before inserting the dummy elements.
Correctness. Since Fpmyx, and the construction of C, prevent
dummy elements from merging with authentic ones, the correctness
of Protocol 3 is straightforward from the following theorem:

THEOREM 1. Suppose that (T) and G satisfy: (i) the number of
elements in each group is a power of two and (ii) these groups are
sorted in descending order of group sizes. After the merge round r
of Protocol 3, the groups with sizes evenly dividing 2" finish the
aggregation, and the first element of each of these groups stores the
corresponding aggregation result.

Inductive Proof of Theorem 1. After round 0, all size-1 groups
inherently store their aggregation result since they contain only a
single element. For size-2 groups (whose starting indices x evenly
divide 2! = 2), the first element (T)[x] has successfully aggregated
the value from (T)[x + 1], completing the group’s computation.
Thus, Theorem 1 holds for r = 0.

Assuming Theorem 1 holds at round r, we know that after round
r, groups whose sizes evenly divide 2"+! have completed aggrega-
tion, with their first element storing the result. Moving to round
r + 1, the Fpmux, function in Protocol 3 (line 2) ensures that these
stored results (in groups of size dividing 2"+!) are not overwritten.
Therefore, their first elements still hold the correct aggregation
results.

Now, consider a group of size 2"*? starting at element (T)[x]
(where x evenly divides 2"*2). This group comprises two consec-
utive subgroups of size 2"*1: one starting at (T)[x] and the other
at (T)[x + 2"*!]. By our induction hypothesis (holding at round
r), both (T)[x] and (T)[x + 2"*!] already store their respective
subgroup aggregation results before round r + 1 begins.

During round r + 1, {T)[x] merges its result with (T)[x + 2"+1]
and stores the combined result back in (T) [x]. This merge operation
successfully aggregates the results of the two subgroups, producing
the full aggregation result for the entire group of size 2"+2.

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

Protocol {(V/)} «RingSG ({Vi}, {E; ;},alg)

Input. P;,Vi € [N] provides V;, E; j, Ej;, j € [N]. Negotiated
alg := (maxlter, s, 7G).
Output. (P;, Pix1),Vi € [N] get <Vl,>
1 Secret-share V;, E; + := Ejo||Ei1ll...||E;n—1 between (P;, Piy1),
obtaining (V;), (E; «).
2 for iter € [maxlter]:
3 parallel fori e [N]: #
P;
1 (PuPi1)«(Upy) &= ScatterTask((Vi), (Ei), F5)-
5 (Pi, Piv1): (Uio), (Ui1), - (UiN—-1) < (Uix).
¢ parallel forie [N]: # Share Redistribution
7 for j e [N|\{i - 1,i,i+1}:
8 Pi (Ui j)o Pj; Pis1 Ui j)1 Pjr1.
_ _
9 ifi+1#i-1:
10 Piy1 (Uii-1)1 Pi-1; Pi (Ui is1)0 Pisa-
- -
11 parallel fori e [N]: #
12 (Pi, Pi+1): (Ui} < (Uo,i), (Un,i)s s (UN-1,i)-

B (P Piy): (V!) S22 GatherTask((Vi), (Us i),).
14 (Pi, Pix1): (Vi) & (V).

Scatter

Gather

Protocol 4: The RingSG Protocol (Semi-honestly Secure).

Since the theorem holds for groups of both sizes dividing 2"*!
and size 2"*2 after round r + 1, we conclude that Theorem 1 holds
for round r + 1. The induction is therefore complete.

5.3 The RingSG Protocol

We now put all parts together to present the holistic RingSG proto-
col in Protocol 4. The inputs of RingSG include vertex/edge vectors
from multiple parties and the graph algorithm specification. Specif-
ically, P;,i € [N] provides V;, E; j, Ej ;, which is in accordance with
the input of FRringsG- The algorithm specification alg defines the
maximum number of iterations maxlter, and the binary operations
required by Scatter and Gather, i.e., s and g, respectively.
Before all computation, P; secret-shares V; and E; . := E;o||Ei 1|
..||Ei,N-1 to Piy1. Piy1 knows the size of each vector, but can not
observe the data inside. Each iteration of RingSG consists of three
consecutive steps, i.e., the Scatter phase, the share redistribution
phase and the Gather phase. The Scatter phase tries to propa-
gate vertex data to their outgoing edges. During Scatter, there
are N parallel tasks executed by N different groups of parties,
ie., (P;, Pis1,Piv2),i € [N]. Each ScatterTask({V;), (Ei), Fs) in
RingSG begins with a share conversion to make (V;), (E; «) replicat-
edly secret-shared among (P;, Pi+1, Pis2) as [Vi], [Ei«]. Then the
task computation is efficiently performed using 3PC, producing
[Ui,] as its output. Right after that, a reversed share conversion
turns [U; «] into (U; «), which is secret-shared between (P, Pit1).
The share redistribution phase securely redistributes the se-
cret shares of all (U;;),i € [N],j € [N] among the N parties
to prepare for the Gather phase. Since the GatherTask for (V;), j €
[N]J\{i—1,i,i+1} is handled by (Pj, Pj1, Pj+2), while <Ui,j> is origi-
nally secret-shared between (P;, Piy1), we have (P;, Piy1) randomize
their shares and send (Uj j)o to Pj, (Ui j)1 to Pjyr. Ifi+ 1 #i—1,
(U; i—1) is originally secret-shared between (P;, Pi+1), we have P11

491

CCS *25, October 13-17, 2025, Taipei

send (Uj,;—1)1 to P;_1, and have P; keep (Uj,;—1)0. Symmetrically,
(Ui i+1) is originally secret-shared between (P;, Pi1+1), we have P;
send (Uj j+1)0 to Pi42, and have Piy keep (Uji—1)1-

Before the Gather phase, the secret shares of all (Uj ;),i € [N], j €

[N] have been redistributed to (P;, Pi+1), who then locally concate-
nate (Uj;) and get (U.;) = (Uo,)|[{Uri)Il...|[(UN-1,i). During
Gather, there are also N tasks parallelly executed by N different
groups of parties. The execution of GatherTask({V;), (Us.i), FG)
also goes through share conversion to replicated secret share, 3PC-
based computation and reversed share conversion. The updated
vertex data (V/) is finally stored in (V) (secret-shared between
(P;, Pi+1)) so that we can move to the next iteration.
Asymptotic Cost Analysis. For each iteration of RingSG under
the vertex-centric abstraction, the computation/communication
cost comes from three parts, i.e., ScatterTask, share redistribution
and GatherTask.

Each ScatterTask/GatherTask begins with a share conversion
from 2-out-of-2 secret share to 2-out-of-3 secret share, while ending
with a reversed share conversion. The second conversion is local.
The communication of the first conversion is linear to the secret-
shared input size. When summing up all ScatterTasks in the parallel
for loop of line 3 of Protocol 4, the total input size is |V| + |E|. For
all GatherTasks in the parallel for loop of line 11, it is also |V| + |E]|.
As a result, in total, the share conversion operations of all tasks
take O(|V| + |E|) communication and O(1) rounds.

Each ScatterTask requires one OEP and one Fs, which are all with
linear communication/computation and constant rounds. Thus, the
total communication/computation summing up all ScatterTasks
is also O(|V| + |E|), while the total rounds remain O(1) since all
ScatterTasks are concurrent. For each GatherTask, there are two
invocations of OEP, one invocation of OGA and ¥, which are
linear-communication, too. The total communication/computation
cost summing up all GatherTasks is linear to |V [+|E|, i.e., O(|V|+|E]).
At the same time, since OGA has logarithmic rounds and its total
input size is bounded by |E|, GatherTasks take O(log(|E|)) rounds.

The share redistribution beginning from line s has constant
rounds and the total size of secret shares transferred among all par-
ties is less than 2 3'; ; [(U;,j)| = 2|E|. Now we can conclude that an
iteration of vertex-centric computation in RingSG is O(|V| + |E|) in
all parties’ communication/computation, and O(log(|E|)) in rounds.
Detailed Cost Analysis. In [43], we provide the detailed cost
analysis of RingSG (O(|V| + |E|)), along with the comparison with
CoGNN (O(N|V| + |E])), to further prove that RingSG is more effi-
cient at computing sparse global graphs with more graph owners.
Security Theorem and Proof. Theorem 2 establishes RingSG’s
security in the hybrid model, assuming secure realizations of the
ScatterTask and GatherTask functionalities (Fs1 and Fg1). The
security of ScatterTask follows directly from its construction using
OEP and ¥s. For GatherTask, we prove a dedicated security lemma
for the OGA protocol. The full proof of Theorem 2 via hybrid
distribution construction appears in our technical report [43].

THEOREM 2. Protocol 4 securely realizes Functionality 3 in the (Fsr,
Fc1)-hybrid model against a semi-honest, non-uniform adversary A
corrupting one party at a time. Formally, for every PPT, semi-honest
and non-uniform adversary A that corrupts one party P; (i € [N]),
there exists a PPT, non-uniform simulator S corrupting the same party

CCS 25, October 13-17, 2025, Taipei

in the ideal world of FRingsc, which satisfies:

REALETCT (1 {Ei), {Vi}, alg)

e

IDEALg, .5 (6. {Ei j}, {Vi}, alg),

Fst.Far
where REALRingSG,ﬂ

tribution over the view of the adversary (the corrupted party’s input,
randomness, protocol transcript) and the protocol output, when
P; and P,V € [N]\{i} interact in the (¥sT1, FGT)-hybrid RingSG
protocol on inputs ({E; j}, {Vi}, alg), i, j € [N] and computational
security parameter k; [DEALTRingsc,S(’C’ {Ei}, {Eij}, {Vi}, alg) rep-
resents a joint distribution over the simulated view of the corrupted
party and the functionality output, when P; and P;,Vj € [N]\{i}
interact in FRringsg on inputs ({E; j}, {Vi}, alg), i, j € [N] and com-

(x,{Ei j},{Vi}, alg) represents a joint dis-

putational security parameter x; and < means the two distributions
are computationally indistinguishable (in k).

LEMMA 3. Protocol 3 securely realizes the Functionality 2 in the
(Fmux,, Fw)-hybrid model against a semi-honest, non-uniform adver-
sary A corrupting either P; or Pj. Formally, for every PPT, semi-honest
and non-uniform adversary A that corrupts either P; or Pj, there
exists a PPT, non-uniform simulator S corrupting the same party in
the ideal world of Foca, which satisfies:

Fuwg. T
pote:T® (1, (T), {Ck})

e

REAL IDEAL#,, s (k,(T), {Ci})

Proof Sketch for Lemma 3. For corrupted parties P; or Pj, we
define simulators S; and S, respectively. Each corrupted party
only observes: (i) the slots it participates in each round and (ii) in-
puts/transcripts/outputs of merge operations. Slot participation de-
pends solely on round r and vector length, making it data-oblivious
and easily simulated. Merge computations are simulated using
¥ MUX and # merge simulators. Thus, S; and S; produce views
indistinguishable from real executions.

6 End-to-end System Instantiation

The "bare-metal" RingSG protocol produces an updated, secret-
shared global graph. To obtain certain application-specific outputs
from the graph, RingSG needs to be instantiated into end-to-end
application-aware systems. This section explores two anti-money
laundering applications: (i) Detecting close inter-bank connections
between groups of accounts; (ii) Revealing critical cross-bank trans-
fer chains between suspicious accounts.

In application instantiation, we focus on the form of vertex/edge
data, data initialization, the ¥s/Fg computation, and application-
specific result extraction with minimal privacy leakage. To show
how RingSG’s design uniquely enables efficient result extraction,
we discuss the challenges of applying similar techniques to existing
SOTA methods in § 8.

6.1 Group Connection Detection

In this application, we apply the Connected Component Labeling
(CC) algorithm with RingSG to detect if there is a funding flow
from vertex group A to vertex group B. Without loss of generality,
we assume that all vertices of A are located in G; and all vertices of
B are in Gj, where i, j € [N] and can be different or the same. The

492

Zhenhua Zou et al.

Application Detect Group Connection

Objective. Detect if there is a fund flow from group A C V; to
group B C V;.

Input. (V;,E;;),i € [N] (accounts and intra-bank transfers of
bank P;). Ej j,i, j € [N],i # i (inter-bank transfers from bank
P; to Pj). v.id € Zy (account ID), v.data € Zjy (account flag,
indicating connected or not), e.data € 0.

Func. alg-: maxlter € Zy (a limit on the number of transfers),
Fs (x,y) = x, Fc (x,y) =x Vy.

Output. ¢ € Zy (flag, indicating connected or not).

-

Input Initialization. For v € A C V;, P; sets v.data «<— 1. For all
the other vertices in G, v.data « 0.

Protocol Invocation.

{(V!)} — RingSG({Vi}, {Ei ;) algee) i j € [N].

Result Extraction.

(i) (Pj,Pj+1) execute (VJ’) — OEP((V].’},Vj.id, 7.dst) to re-
order v € B to the beginning of (Vj’)

(i) (Pj,Pjs1) execute (Vj') — OGA((Vj'), G, ¥G), where
Glx] = 0if x € Z;|. Otherwise G[x] = 1.

(iii) (Pj, Pjt1) set (c) « <VJ.’>[O] and reconstruct c.

)

w

Application 1: Detect Group Connection

goal is to obtain a boolean flag indicating whether the two groups
are connected or not, within a specific number of transfers.

The Input and Output of Application 1 specify the exact data
stored in the vertex and edge vectors. Here we set v.data over the
ring Z; for efficiency. The corresponding secret sharing for v.data
is also over Zy. The Func details alg with the definition of maxlter,
Fs and Fg. During input initialization, we assign 1 to each vertex
in group A to indicate connected, while assigning 0 to all the other
vertices in the global graph, indicating unconnected. The protocol
invocation phase executes the CC algorithm to propagate the labels
across the global graph. The protocol outputs are secret-shared,
representing the updated labels stored in each vertex. Finally, the
result extraction phase aims to aggregate the flags (vertex data) of
all the vertices in G;, to finally output a flag indicating if there is
a flow from group A to group B. The result extraction has three
steps: (i) reorder the (V]’) secret-shared between (P}, Pj+1) to place
vertices in group B at the beginning of (Vj’), with OEP; (ii) aggregate
the vertex data in group B using OGA, by assigning group identifier
1 to vertices in B, and assigning group identifier 0 to all the other
vertices; (iii) the first element in group B, i.e., (Vj') [0] stores the
aggregate flag that can be reconstructed as the application output.

6.2 Trace Transfer Chain

Besides detecting a connection between two suspicious account
groups, it is also crucial to trace the core transfer paths between
them in anti-money laundering efforts.

Application 2 employs a heuristic approach to discover and ex-
tract the most important transfer paths from group A to B. In this
application, we utilize the Shortest Path algorithm and derive the
distance of each edge using the reciprocal of the corresponding
transferred amount. The smaller the distance is, the larger the
amount of money is transferred via this edge. As a result, the short-
est path tends to reflect an important transfer chain. Compared to

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

Application Trace Transfer Chain

Objective. Reveal the most important transfer paths from group
A C Vj to group B C Vj.

Input. (V;,E;;),i € [N] (accounts and intra-bank transfers
of P;). Ejj,i,j € [N],i # i (inter-bank transfers from P;
to Pj). v.id € Zy (account ID), v.data := (flag, id, dist) €
Z3||Zy1||1Zy; (account data, (connection flag, ID of predecessor,
minimal distance)), e.data € Zy (distance).

Func. alggp: maxlter € Z; (a limit on the number of
transfers), Fs ((x0,y0,20),21) = (x0,40.20 + 21), TG
((x0, Yo, 20), (x1,y1,21)) = (x0 V X1,Y0,20) if 20 < z1. Oth-
erwise := (xo V x1, Y1, 21)-

Output. {v|v € V A v.data.flag = 1} (connected vertices).

Input Initialization. For v € A C V;, P; sets v.data = (1, L, 0).
For all the other vertices in G, v.data « (0, L, o). {V;|i €
[N]} copies {V;]i € [N]}, but only setsv € B C Vj to (1, 1,0),
while setting other vertices to (0, L, 00).

Protocol Invocation.

() {(V{)} < RingSG({Vi}, {Ei;}. algsp). i, j € [N].

(i) {(Vi')} « RingSG({Vi}. {Ei;}.alggp).i.j € [N]. {Eij}
represents reversed {E; j}.

Result Extraction.

(i) Each pair of parties (P;, Piy1),i € [N] sets (Vi'.data.flag)
to (V/.data.flag) A (\7i,.data.f|ag). Then, they perform
(V") « Shuffle({V)) using two OEPs. (V;".data.dist) «
(V/ .data.dist)|| (ﬁl.data.dist).

(ii) (P;, Pi+1) € [N] reconstruct V/’.data.flag first. Then re-
construct {vfo € V" A v.data.flag = 1}.

[

[N}

[

Application 2: Trace Transfer Chain

Application 1, the vertex data of Application 2 is more complex.
v.data stores a tuple, indicating (i) whether the vertex is connected,;
(ii) the predecessor of this vertex that contributes to its shortest
path; (iii) the distance of this vertex. Meanwhile, e.data represents
the distance of the edge. Fs adds up the vertex’s distance with the
edge’s distance to create an update for the destination vertex of the
edge. 7 decides whether to relax the current distance using an
update.

The input initialization phase creates two sets of vertex vectors,
ie, {Vi|li € [N]} and {V;|i € [N]}, where the former one initializes
A as connected, but the latter one initializes B as connected. The
protocol execution goes in two reversed directions at the same time,
based on {V;|i € [N]} and {Vi|i € [N]} respectively. One direction
finds out the shortest paths from A to the other vertices within
maxlter transfers. The opposite direction finds out the shortest
paths from B to the other vertices. During result extraction, we
select out the vertices in the paths from group A to B by combin-
ing the connection flags produced by these two directions. The
selection requires an element-wise AND (A) and a shuffle, which
includes two OEPs. Both operations have linear complexity. Finally,
we reconstruct these selected vertices, which constitute the major
transfer paths from group A to B with a high possibility.

493

CCS *25, October 13-17, 2025, Taipei

7 Evaluation

Focusing on our core contributions, this section extensively evalu-
ates RingSG from the following aspects:

Q1 The efficiency of the Ring-ScatterGather paradigm:
How is the Ring-ScatterGather paradigm compared to prior SOTAs
in various settings with different sizes of graphs, numbers of parties
and average vertex degrees?

Q2 The efficiency of on-demand incorporation of 3PC: Does
combining 2-out-of-2 secret share and 2-out-of-3 secret share via
share conversion bring better concrete efficiency?

Q3 The efficiency of the OGA protocol: What is the break-
down of RingSG’s running time, and does the new OGA design
really contribute to a lower overall system running time?

Q4 The efficiency of application-specific result extraction:
In the two end-to-end instantiations of RingSG, what is the addi-
tional cost of application-specific result extraction?

7.1 Implementation & Setup

7.1.1 Implementation. We implement a prototype of RingSG in
about 3000 lines of C++ code!. The 3PC backend of RingSG is
ABY3 [29], which also realizes the three-party OEP protocol pro-
posed in [30]. To provide a comprehensive performance evaluation
of RingSG, we implement the Ring-ScatterGather paradigm and
instantiate three canonical graph algorithms within it: Connected
Component Labeling (CC), Shortest Path (SP), and PageRank (PR).
These algorithms exhibit diverse computational patterns within the
Scatter-Gather abstraction, resulting in varying overheads across
different vertex-centric phases. We focus on traditional graph pro-
cessing workloads rather than Graph Neural Network (GNN) train-
ing/inference, as the latter is primarily dominated by non-graph
operations like secure matrix multiplication, which fall outside the
primary scope of RingSG.

To demonstrate the efficiency of our system, we employ two
SOTA approaches for comparison. First, we implement the SOTA
GraphSC approach [23] based on ABY3 (the same MPC scheme as
RingSG). Note that we exclude the cost of secure sort in this imple-
mentation, meaning the actual communication and computation
overhead of this baseline approach would be even higher. Second,
we implement the CoGNN [41] approach that incorporates 3PC
based on our share conversion mechanism. This implementation
achieves performance that is orders of magnitude faster than the
original 2PC prototype described in their paper [42]. Additionally,
in § 7.3, we present an ablation study comparing our system with
the original CoOGNN implementation to specifically illustrate the
efficiency improvements achieved solely through the incorpora-
tion of 3PC when executing the decomposed MPC-based graph
processing tasks.

7.1.2 Setup. Our evaluation environment is a Linux server equipped
with a multi-core x86_64 Intel CPU at 2.60GHz. The network en-
vironments, i.e., bandwidth and latency of multiple parties, are
simulated using the tc command and network namespace provided
by Linux. The LAN environment is of (4000Mbps, 1ms), while the
WAN environment is of (200Mbps, 10ms). At the same time, since
different schemes run in different multi-threading patterns, for the

Uhttps://github.com/CBackyx/RingSG/tree/dev-graph

CCS 25, October 13-17, 2025, Taipei

I Algorithm CC - Duration 3 Algorithm CC - Communication

o — =

g —#— RingSG EZ' —#— RingSG

£ 100 CoGNN 5 CoGNN

o ’/’4/0/+ GraphsC | 2 1{ —4— Graphsc

) 5ol ¢

n:: 2i7 2is zig 2‘20 2‘21 % 2i7 2is zig 2‘20 2‘21
Size of Global Graph o Size of Global Graph

@ 300 Algorithm SP - Duration i) Algorithm SP - Communication

2 —#— RingSG / E —#— RingSG

= 200 CoGNN S 27 CoGNN

= ¢——¥ 4 Graphsc ‘; —4— GraphsC

E100], o e[| ¢ ——4—*

2 217 218 519 220 521 < 217 218 19 220 521
Size of Global Graph & Size of Global Graph

- Algorithm PR - Duration] Algorithm PR - Communication

2 4001 —#— RingSG E 10{ —# RingSG

= CoGNN 8 CoGNN

E‘ 2001 k/* —9— GraphsC 2 51 —4— GraphSC

c

c ,l,,__‘,—__q.———k‘/‘ 2 oA

e e T T T T s R B

a

Size of Global Graph Size of Global Graph

Figure 8: Running time and communication for different
global graph sizes (in LAN, 8 parties, 5 iterations).

% Algorithm CC - Duration 3 Algorithm CC - Communication
~ 40 = -
[} € 31 —#— RingSG
E - ngSG £
= 20 CoGNN S 2 CoGNN
? —4— GraphSC E‘ —#- GraphsC
£ 5 1
S o—d—d——f————— o e 4
= 10 & 4 6 8 10
Number of Partles Number of Parties
= Algorithm SP - Duration 3 Algorithm SP - Communication
=601 =
g € —#— RingSG
£ 40 —#— RingSG g CoGNN
o CoGNN < 21 4 Graphsc
'€ 20+ GraphsCc | E
: NP A S S & =
« 4 6 8 10 8 4 6 8 10
Number of Parties Number of Parties
% Algorithm PR - Duration 3 Algorithm PR - Communication
@ 754 £ 151 4 Ringsc
= 50 —#— RingSG g 104 CoGNN
o
2 CoGNN > —4— GraphsC
g% 4 Grephsc £ 5y
5 + F o _——
« 4 6 8 10 k3 4 6 8 10
Number of Parties Number of Parties
Figure 9: Running time and communication for different

numbers of parties (in LAN, local graph of 2!°, 5 iterations).

fairness of comparison, we use the taskset —cpu-list command to
limit the computing resource each scheme can use.

The obliviousness of all compared schemes guarantees that the
running duration and communication depend only on the size
of graphs, the number of parties and the average vertex degree,
regardless of actual vertex/edge data or the ratio of inter-edges
among all edges (proved by detailed cost analysis in [43]). Thus, we
vary these three hyperparameters to fully evaluate RingSG under
a wide range of settings (each with a corresponding multi-party
global graph). The vertices are evenly distributed among all parties.
By default, we set the average vertex incoming/outgoing degree to
3, the ratio of inter-edges among all edges to 0.4, and the number of
parties to 8. In this default setting, supposing that each local graph
has 2% (x € Z,) vertices, the size of the global graph, i.e., |V| + |E],
equals 4N - 2%, where N is the number of parties. We set the ring
of our two secret share schemes to Z,ss. Each experiment is run for
five times and we take the average of the running durations.

494

Zhenhua Zou et al.

— Algorithm CC - Duration 3 Algorithm CC - Communication
3] 275 *
. = T £ —#— RingSG
E CI;GgNN §501 CoGNN
(]
o
£25 ~4— GraphsC | >2.51 —+ G'aj’hff,‘
S olymtrpr—gr—dr @ & B[8 |fgpt T
« 2 4 6 8 105 2 4 6 8 10
Average Vertex Degree Average Vertex Degree
% Algorithm SP - Duration 2 Algorithm SP - Communication
O = =
2 75| < Rings6 M §7.5— —#— RingSG
= CoGNN S 5.0 CoGNN
504 o 2
2 —4— GraphSC > —4§— GraphSC
€ 251 £259 PR A
SRSt S = el gy == : :
« 2 4 6 8 10 3 2 4 6 8 10
Average Vertex Degree Average Vertex Degree
& Algorithm PR - Duration 3 Algorithm PR - Communication
= 150 —] = -
o —#— RingSG € —#— RingSG
E 1001 £
= CoGNN 5 201 CoGNN
2 5l —4— GraphSC ; —4— GraphsC
c j=
5 —t—p—t—p—dF| 3 4
« 2 4 6 8 0 9 2 4 6 8 10

Average Vertex Degree Average Vertex Degree
Figure 10: Running time and communication for different
average vertex degrees (in LAN, 8-parties, 5 iterations).

7.2 Q1: Efficient Ring-ScatterGather Paradigm

7.2.1 Different sizes of global graphs. Figure 8 shows the running
time (duration) and per-party communication of different schemes
for different global graph sizes (from 217 to 221). This experiment
is performed in a LAN environment with 8 parties. The three rows
of subfigures correspond to three different graph algorithms. Each
graph algorithm is run for 5 iterations. Compared to GraphSC,
when the graph size is 217, RingSG reduces the running time by
2.55 ~ 8.48x. When the graph size is 22!, RingSG reduces the run-
ning time by 3.25 ~ 7.17X. As for the per-party communication,
RingSG reduces GraphSC’s communication by 3.92 ~ 8.28x when
the graph size is 2!7, and by 3.85 ~ 8.29x when the graph size is
221, The reduction ratio of both the running time and per-party
communication is stable as the graph size increases, since the cost
of GraphSC without secure sort is also linear to |V| + |E|. When
compared to CoGNN, we can see that the reduction ratio of per-
party communication is stable for different graph sizes, ranging
between 1.55 ~ 5.66X. This is in conformity with our complexity
analysis of CoGNN and RingSG, which indicates that when the
number of parties and average vertex degree are fixed, the per-party
communication ratio between the two schemes is also fixed. The
running time reduction ratio of RingSG with respect to CoGNN is
2.59 ~ 3.39x for 27, and 1.64 ~ 4.19x for 221.

7.2.2 Different numbers of parties. Figure 9 shows the duration
and communication overhead of executing the three algorithms
under different schemes and with different numbers of parties (from
3 to 10). We set a LAN environment and set the number of ver-
tices in each local graph to 21°. The reduction ratios of running
time/communication of RingSG with respect to both GraphSC and
CoGNN are enlarged as the number of parties increases, which
confirms our cost analysis and shows RingSG’s superior scalabil-
ity. In particular, when there are 6 parties, compared to GraphSC,
RingSG reduces the communication of GraphSC by 2.95 ~ 6.22X.
When there are 10 parties, it is 4.91 ~ 10.36X. The communication
reduction ratio of RingSG with respect to COGNN is 1.33 ~ 4.29x
for 6 parties, and is 1.86 ~ 7.01x for 10 parties. As for the running

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

GraphSC | CoGNN-2PC | CoGNN | RingSG
CC | 451(0.47) | 172.67 (2.11) | 0.71(0.18) | 0.49 (0.11)
SP | 7.98 (0.57) | 17232 (2.14) | 5.77 (0.25) | 1.97 (0.16)
PR | 11.7 (2.48) | 216.22 (3.45) | 7.65 (1.74) | 2.13 (0.31)

Table 2: Duration [s] and per-party communication [GB, in
bracket (*)] of various schemes (in LAN, 8 parties, local graph
of 21°, amortized across 20 iterations). Note that CoGNN in-
corporates 3PC via our share conversion mechanism, while
CoGNN-2PC is the original 2PC-based implementation.

time, RingSG reduces GraphSC’s by 4.32 ~ 9.94X for 6 parties, and
6.04 ~ 15.34X for 10 parties. RingSG reduces CoGNN’s by 1.28 ~
3.04x for 6 parties, and 1.65 ~ 4.01X for 10 parties.

7.2.3 Different average vertex degrees. Figure 10 shows the du-
ration/communication overhead of different schemes for an in-
creasing average vertex degree (from 2 to 10). Performed in a
LAN environment, the experiment sets the number of parties to
8 and the number of vertices in each local graph to 21°. The dura-
tion/communication reduction of RingSG compared to GraphSC in-
creases with growing average vertex degree, whereas the reduction
compared to CoOGNN diminishes. For SP and PR, RingSG’s per-party
duration/communication stays lower than CoGNN’s for all tested
settings. For CC, they have nearly identical duration/communication
when the average degree is 8 or more, and CoGNN appears to be
more efficient than RingSG as the degree grows.

In summary, the evaluation results, consistent with our detailed
cost analysis in the technical report [43], show that compared to
prior SOTAs, RingSG is more efficient in processing a large and
sparse global graph with more graph owners.

7.3 Q2: Efficient On-demand Incorporation of
3PC

To demonstrate the efficiency gains achieved through the on-demand
incorporation of 3PC, we compare the per-iteration costs across
four different schemes. The compared schemes include 3PC-based
GraphSC (GraphSC), the original 2PC-based CoOGNN (CoGNN-2PC),
our re-implementation of CoGNN that incorporates 3PC via our on-
demand share conversion (CoGNN), and our system RingSG. The
results are summarized in Table 2, Note that we exclude the cost of
secure sort operations in GraphSC, indicating that its actual total
cost would be substantially higher. The substantial performance
gap between CoGNN-2PC and CoGNN demonstrates that, despite
the additional communication overhead introduced by share con-
version, the incorporation of three-party computation significantly
improves the efficiency of both CoGNN and our system. Specifically,
across the three evaluated algorithms, the on-demand incorpora-
tion of 3PC achieves up to 243X reduction in execution time and
up to 11x reduction in communication overhead.

7.4 Q3: Efficient OGA Protocol

In Table 3 and Table 4, we break down the running time of RingSG
and CoGNN into the Scatter and Gather phases. Additionally, we
measure the running time taken by the oblivious group aggrega-
tion (OGA) in these two schemes. Note that in RingSG, OGA is
performed in Gather, while in CoGNN it is performed in Scatter.

495

CCS *25, October 13-17, 2025, Taipei

RingsG | RM8SC | pinesG | COONN | CoGNN | CoGNN
Scatter Gather Total Scatter Gather Total
(OGA) (0GA)
0.40 0.54
CcC 0.07 (0.24) 0.47 (0.33) 0.13 0.67
1.75 4.81
SP 0.18 (1.53) 1.93 (4.40) 0.78 5.59
1.72 6.79
PR 0.42 (1.44) 2.14 (4.27) 0.79 7.58

Table 3: Durations [s] in LAN (global graph of 22!, 8 parties).

RingsG | N85C | RingsG | COSNN | 00NN | CoGNN

Scatter Gather Total Scatter Gather Total
(OGA) (OGA)
3.13 485

ccl o065 | Tre | 378 | 152 6.37
15.91 4540

SP 179 | gagey | 1760 | (e | 664 52.04
15.28 79.93

PR| sds | 20| 2073 | g | 669 86.62

Table 4: Durations [s] in WAN (global graph of 22!, 8 parties).

Scheme RingSG CoGNN | GraphSC
Detect Protocol 34.34 38.57 450.74
etee Invocation | (4.55) (1452) | (39.40)
Group
c i Result 0.46 / /
ONRECHon | gy traction (0.02)
Total 34.80 (4.57) / /
Protocol 56.30 102.72 549.18
Trace .
Invocation (6.47) (20.03) (47.40)
Transfer
Chain Result 1.65 / /
Extraction (0.28)
Total | 57.95 (6.75) / /

Table 5: Duration [s] and per-party communication [GB,
in bracket (*)] of RingSG instantiations (In LAN, 8 parties,
global graph of 22%). Prior works lack result extraction.

Table 3 and Table 4 are run in LAN and WAN respectively. The
number of parties is 8, while the local graph size is 2!°. We can
see that, in LAN, OGA takes up 51% ~ 79% of the running time of
RingSG, and 49% ~ 79% of that of CoGNN. In WAN, OGA takes
up 47% ~ 78% of the running time of RingSG, and 37% ~ 79% of
that of CoGNN. Thus, in both LAN and WAN, OGA contributes to
an important part of the overall protocol running time, and there-
fore optimizing the construction of OGA is critical. Compared with
CoGNN, the OGA protocol in RingSG is highly efficient, reducing
the running time by 1.37 ~ 2.97X in the LAN environment and 1.32
~ 3.01x in the WAN environment.

Our technical report [43] provides a step-wise inspection of
RingSG costs to better compare OGA with other critical operations.

7.5 Q4: Efficient App-Specific Result Extraction

We measure the running time/communication of the two end-to-
end instantiations of RingSG (introduced in §6) under the setting
of 8 parties, LAN, and a global graph of size 224 = 16,777, 216.
The number of iterations during protocol invocation is set to 10.

CCS 25, October 13-17, 2025, Taipei

For comparison, we also run the two corresponding algorithms
(CC and SP) with CoGNN and GraphSC, which lack end-to-end
result extraction, for the same number of iterations. The evaluation
results are summarized in Table 5. For the two applications, the
result extraction design in RingSG accounts for only 1.3% ~ 2.9%
of the overall running time, and 0.4% ~ 4.2% of the overall commu-
nication. Notably, the total running time/communication of these
two RingSG instantiations are both less than that of CoGNN and
GraphSC, which only have protocol invocation and lack end-to-end
result extraction.

8 Discussion

Reveal Local Graph Sizes. RingSG and CoGNN address the same
collaborative graph processing paradigm, where graph owners per-
form the computational tasks directly. In contrast, GraphSC was
initially designed for outsourced computation scenarios. While
GraphSC can be adapted to the collaborative setting by distributing
secret shares of the global graph among graph owners serving as
computing parties, this adaptation necessarily reveals local graph
sizes during the secret sharing process. Consequently, all three
approaches provide equivalent privacy guarantees in practice.
Generalize to partially known inter-edges. RingSG can be gen-
eralized to cases when inter-edges are partially known by either
of the two parties. Specifically, the necessary information for the
source party of inter-edges is only the source-vertex identifiers,
while the destination party must know the destination-vertex identi-
fiers. Other inter-edge data (e.g., weights/distances) can be partially
known and computed via secret sharing. This extends our problem
setting of collaborative graph processing in § 3.1.

The Security Model. Unlike outsourced computation models, col-
laborative graph processing requires data owners to perform com-
putations directly rather than relying on third-party servers. Con-
sequently, collusion harms their own privacy, while malicious be-
havior undermines mutually beneficial collaboration. Given these
inherent safeguards, we adopt a non-colluding, semi-honest secu-
rity model and concentrate our efforts on optimizing computational
and communication efficiency.

Future enhancements to RingSG for malicious security can pro-
ceed in three phases: group-wise computations, share redistribu-
tion, and share conversion. For group-wise computations, we could
employ existing maliciously secure MPC protocols. The share re-
distribution and conversion phases could leverage techniques from
recent maliciously secure aggregation schemes [37]. To maintain
cross-phase consistency of secret shares, we could integrate com-
mitment/verification mechanisms similar to those in [25], ensuring
robust integrity preservation without efficiency loss.

Generalize to Other Secret Share and MPC Schemes. RingSG
requires 2-out-of-2 additively secret share (ASS) for share redistri-
bution. Yet, the group-wise computation can be generalized to use
other secret share and MPC schemes with properly designed share-
conversion schemes from 2-out-of-2 ASS. The per-party overhead
shall vary according to the share conversion and MPC costs.

Process Incremental/Streaming Data. A promising future direc-
tion of extending RingSG is to support the processing of stream-
ing/dynamic graph data with incremental costs. This extension

496

Zhenhua Zou et al.

might involve two key components: (i) securely caching prior exe-
cution history as secret-shared states in each vertex, and (ii) iden-
tifying and obliviously updating the portion of the global graph
affected by new data through partial execution of RingSG. However,
the specifics of secure state storage and identifying the influenced
graph segment depend on the graph algorithm specifications.
Difficulties of Prior Approaches in Result Extraction. Directly
applying our designs to CoGNN and GraphSC to extract application-
specific results can be costly. In particular, the usage of homomor-
phic encryption in OEP of CoOGNN makes result extraction rather
expensive due to high cipher-plaintext expansion rate. Meanwhile,
GraphSC must process the entire global graph even when only the
result of a single local graph is of interest. Thus, the novel compu-
tation paradigm and protocol constructions of RingSG are the keys
to enabling efficient and secure result extraction.

9 Conclusion

This paper presents RingSG, the first collaborative graph process-
ing system attaining the optimal communication/computation com-
plexity for the MPC-based vertex-centric abstraction. The core of
RingSG is the Ring-ScatterGather paradigm, which organizes the
overall secure graph computation workload into rings of paral-
lel and non-overlapping tasks and distributes them to different
groups of parties. Within Ring-ScatterGather, we propose to in-
corporate 3PC and a novel OGA protocol to improve its concrete
efficiency. Finally, for application-specific and privacy-preserving
result extraction, we present two efficient end-to-end instantiations
of RingSG. Rigorous evaluations across extensive experimental
settings confirm RingSG’s superiority over SOTA, especially for
large, sparse global graphs with growing numbers of parties.

10 Acknowledgements

We thank the anonymous reviewers for their insightful feedback.
The research is supported in part by the National Natural Sci-
ence Foundation of China (NSFC) under Grant 62472247, 62425201,
62132011 and 62221003, and the National Key R&D Program of
China under Grant 2024YFB2906803 and 2022YFB2403900, as well
as a CIE-Smartchip research grant. The corresponding author of
this paper is Zhuotao Liu.

References

[1] 2025. Complete guide to GDPR compliance. https://gdpr.eu/ Accessed: 2025-05-
01.

2025. Connected-component labeling — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Connected-component_labeling, Accessed: 2025-
05-01.

2025. PageRank — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
wiki/PageRank, Accessed: 2025-05-01.

2025. Shortest path problem — Wikipedia, The Free Encyclopedia.
//en.wikipedia.org/wiki/Shortest_path_problem, Accessed: 2025-05-01.
Abdelrahaman Aly and Sara Cleemput. 2017. An Improved Protocol for Securely
Solving the Shortest Path Problem and its Application to Combinatorial Auctions.
IACR Cryptol. ePrint Arch. 2017 (2017), 971.

Abdelrahaman Aly and Sara Cleemput. 2022. A fast, practical and simple shortest
path protocol for multiparty computation. In European Symposium on Research
in Computer Security. Springer, 749-755.

Abdelrahaman Aly and Mathieu Van Vyve. 2015. Securely solving classical
network flow problems. In Information Security and Cryptology-ICISC 2014: 17th
International Conference, Seoul, South Korea, December 3-5, 2014, Revised Selected
Papers 17. Springer, 205-221.

Mohammad Anagreh, Peeter Laud, and Eero Vainikko. 2021. Parallel privacy-
preserving shortest path algorithms. Cryptography 5, 4 (2021), 27.

[2]

[3

[4] https:

)

https://gdpr.eu/
https://en.wikipedia.org/wiki/Connected-component_labeling
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem

RingSG: Optimal Secure Vertex-Centric Computation for
Collaborative Graph Processing

[9] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. 2016.

[10

(11

[12

[13

[14

[15

[16

[17

(18

[20

[21

[22

[23

[24

[25

[26

]

)

]

]

]

]

]

]

High-Throughput Semi-Honest Secure Three-Party Computation with an Honest
Majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery,
New York, NY, USA, 805-817.

Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin, and
Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale (CCS "21). Association for
Computing Machinery, New York, NY, USA, 610-629.

Nuttapong Attrapadung, Hiraku Morita, Kazuma Ohara, Jacob CN Schuldt, Tadanori
Teruya, and Kazunari Tozawa. 2022. Secure parallel computation on privately par-
titioned data and applications. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’22). Association for Computing
Machinery, New York, NY, USA, 151-164.

Nuttapong Attrapadung, Hiraku Morita, Kazuma Ohara, Jacob C. N. Schuldt, Tadanori
Teruya, and Kazunari Tozawa. 2022. Secure Parallel Computation on Privately Parti-
tioned Data and Applications. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22). Association
for Computing Machinery, New York, NY, USA, 151-164.

Zuzana Beerliova-Trubiniova and Martin Hirt. 2008. Perfectly-secure MPC with linear
communication complexity. In Theory of Cryptography: Fifth Theory of Cryptogra-
phy Conference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5. Springer,
213-230.

Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. 2020. Secret-shared shuffle. In
Advances in Cryptology—ASIACRYPT 2020: 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South Korea, December
7-11, 2020, Proceedings, Part III 26. Springer, 342-372.

Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell,
and Ariel Nof. 2018. Fast large-scale honest-majority MPC for malicious adversaries.
In Advances in Cryptology—CRYPTO 2018: 38th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III 38. Springer,
34-64.

Steven M. D’Antuono. 2018. Combating Money Laundering and Other
Forms of Illicit Finance: Regulator and Law Enforcement Perspectives on Re-
form. https://www.fbi.gov/news/testimony/combating-money-laundering-and-other-
forms-of-illicit-finance, Accessed: 2025-05-01.

Frankfurt. 2022. Enhancing cooperation in the fight against money launder-
ing. https://www.bankingsupervision.europa.eu/press/blog/2022/html/ssm.
blog220524~8e08209118.en.html, Accessed: 2025-05-01.

Daniel Giinther, Marco Holz, Benjamin Judkewitz, Helen Méllering, Benny Pinkas,
Thomas Schneider, and Ajith Suresh. 2022. Privacy-Preserving Epidemiological Mod-
eling on Mobile Graphs. arXiv preprint arXiv:2206.00539 (2022).

Koki Hamada, Dai Ikarashi, Ryo Kikuchi, and Koji Chida. 2023. Efficient decision tree
training with new data structure for secure multi-party computation. In Proceedings
on Privacy Enhancing Technologies Symposium (PoPETs). 343-364.

Feng Han, Lan Zhang, Hanwen Feng, Weiran Liu, and Xiangyang Li. 2022. Scape:
Scalable collaborative analytics system on private database with malicious security. In
2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 1740-1753.
Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party computation. In
Proceedings of the 2020 ACM SIGSAC conference on computer and communications secu-
rity (CCS °20). Association for Computing Machinery, New York, NY, USA, 1575-1590.
Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures for MPC. In
Advances in Cryptology—ASIACRYPT 2014: 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, ROC,
December 7-11, 2014, Proceedings, Part II 20. Springer, 506—525.

Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal. 2024. Graphiti:
Secure Graph Computation Made More Scalable. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security (Salt Lake City, UT, USA)
(CCS ’24). Association for Computing Machinery, New York, NY, USA, 4017-4031.

Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-Scale Distributed Graph
Computing Systems: An Experimental Evaluation. Proc. VLDB Endow. 8, 3 (nov 2014),
281-292.

Hidde Lycklama, Alexander Viand, Nicolas Kiichler, Christian Knabenhans, and Anwar
Hithnawi. 2024. Holding secrets accountable: Auditing privacy-preserving machine
learning. In 33th USENIX Security Symposium (USENIX Security 24). USENIX Associa-
tion.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-Scale Graph

497

[27]

[28

&~
20,

[30

[31

[32

@
&

[34

[35

[36

®
=

[38

[39

[40

[41

[42

[43

[44]

CCS *25, October 13-17, 2025, Taipei

Processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data (Indianapolis, Indiana, USA) (SIGMOD ’10). Association for Computing
Machinery, New York, NY, USA, 135-146.

Sahar Mazloom and S. Dov Gordon. 2018. Secure Computation with Differentially Pri-
vate Access Patterns. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 490-507.

Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. 2020. Secure
parallel computation on national scale volumes of data. In 29th USENIX Security Sym-
posium (USENIX Security 20). USENIX Association, 2487-2504.

Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework for
Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (Toronto, Canada) (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 35-52.

Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins and
PSI for Secret Shared Data. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (Virtual Event, USA) (CCS °20). Association
for Computing Machinery, New York, NY, USA, 1271-1287.

Payman Mohassel and Saeed Sadeghian. 2013. How to Hide Circuits in MPC an Efficient
Framework for Private Function Evaluation. In Advances in Cryptology — EUROCRYPT
2013, Thomas Johansson and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 557-574.

Payman Mohassel and Saeed Sadeghian. 2013. How to hide circuits in MPC an efficient
framework for private function evaluation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 557-574.

Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable privacy-
preserving machine learning. In 2017 IEEE symposium on security and privacy (SP).
IEEE, 19-38.

Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and
Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In 2015 IEEE
Symposium on Security and Privacy. 377-394.

Benjamin Ostrovsky. 2024. Privacy-Preserving Dijkstra. In Advances in Cryptology —
CRYPTO 2024, Leonid Reyzin and Douglas Stebila (Eds.). Springer Nature Switzerland,
Cham, 74-110.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-Party Se-
cure Inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS "20). Association for Computing
Machinery, New York, NY, USA, 325-342.

Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. 2023. Elsa: Secure
aggregation for federated learning with malicious actors. In 2023 IEEE Symposium on
Security and Privacy (SP). IEEE, 1961-1979.

Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wiggerman,
Jan Veldsink, Oscar Bloemen, and Daniél Worm. 2019. Secure multiparty PageRank
algorithm for collaborative fraud detection. In Financial Cryptography and Data Secu-
rity: 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February
18-22, 2019, Revised Selected Papers 23. Springer, 605-623.

Connie Diaz De Teran. 2023. Collaboration Is Key in the Fight Against Anti-Money
Laundering. https://www.paymentsjournal.com/collaboration-is-key-in-the-fight-
against-anti-money-laundering/, Accessed: 2025-05-01.

Andrew C. Yao. 1982. Protocols for secure computations. In 23rd Annual Symposium
on Foundations of Computer Science (SFCS 1982). 160-164.

Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, and Mingwei Xu. 2024. COGNN:
Towards Secure and Efficient Collaborative Graph Learning. In Proceedings of the 2024
on ACM SIGSAC Conference on Computer and Communications Security (Salt Lake
City, UT, USA) (CCS °24). Association for Computing Machinery, New York, NY, USA,
4032-4046.

Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, and Mingwei Xu. 2024.
CoGNN: Towards Secure and Efficient Collaborative Graph Learning (Artifacts).
https://doi.org/10.5281/zenodo.11210094

Zhenhua Zou, Zhuotao Liu, Jinyong Shan, Qi Li, Ke Xu, and Mingwei Xu. 2025. RingSG:
Optimal Secure Vertex-Centric Computation for Collaborative Graph Processing. Cryp-
tology ePrint Archive, Paper 2025/1209. https://eprint.iacr.org/2025/1209

David Lewis Zoé Newman, Howard Cooper. 2022. Collaboration is key: how central
banks are tackling money laundering. https://www.centralbanking.com/central-
banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-

money-laundering, Accessed: 2025-05-01.

https://www.fbi.gov/news/testimony/combating-money-laundering-and-other-forms-of-illicit-finance
https://www.fbi.gov/news/testimony/combating-money-laundering-and-other-forms-of-illicit-finance
https://www.bankingsupervision.europa.eu/press/blog/2022/html/ssm.blog220524~8e08209118.en.html
https://www.bankingsupervision.europa.eu/press/blog/2022/html/ssm.blog220524~8e08209118.en.html
https://www.paymentsjournal.com/collaboration-is-key-in-the-fight-against-anti-money-laundering/
https://www.paymentsjournal.com/collaboration-is-key-in-the-fight-against-anti-money-laundering/
https://doi.org/10.5281/zenodo.11210094
https://eprint.iacr.org/2025/1209
https://www.centralbanking.com/central-banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-money-laundering
https://www.centralbanking.com/central-banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-money-laundering
https://www.centralbanking.com/central-banks/governance/7937741/collaboration-is-key-how-central-banks-are-tackling-money-laundering

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem Setting and Prior SOTA
	3.1 Collaborative Graph Processing
	3.2 State-of-the-Art and Limitations

	4 The Ring-ScatterGather Paradigm
	4.1 An Illustrative Example
	4.2 Paradigm Specification

	5 Protocols within Ring-ScatterGather
	5.1 On-demand Incorporation of 3PC
	5.2 OGA with halved rounds
	5.3 The RingSG Protocol

	6 End-to-end System Instantiation
	6.1 Group Connection Detection
	6.2 Trace Transfer Chain

	7 Evaluation
	7.1 Implementation & Setup
	7.2 Q1: Efficient Ring-ScatterGather Paradigm
	7.3 Q2: Efficient On-demand Incorporation of 3PC
	7.4 Q3: Efficient OGA Protocol
	7.5 Q4: Efficient App-Specific Result Extraction

	8 Discussion
	9 Conclusion
	10 Acknowledgements
	References

