
Computer Networks 56 (2012) 1103–1117
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Measurement, modeling and enhancement of BitTorrent-based VoD system

Zhen Ma a, Ke Xu a,⇑, Jiangchuan Liu b, Haiyang Wang b

a Department of Computer Science & Technology, Tsinghua University, Beijing 100084, China
b School of Computing Science, Simon Fraser University, British Columbia, Canada V5A 1S6

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 March 2011
Received in revised form 6 October 2011
Accepted 24 October 2011
Available online 20 December 2011

Keywords:
BitTorrent-based VoD streaming
Hybrid BitTorrent system
Sliding buffer window
Closest-ahead peers
1389-1286/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.comnet.2011.10.030

⇑ Corresponding author.
E-mail addresses: mazhen@csnet1.cs.tsinghua.ed

singhua.edu.cn (K. Xu), jcliu@cs.sfu.ca (J. Liu), hwa17
BitTorrent is one of the most popular Peer-to-Peer (P2P) applications for file sharing over the
Internet. Video files take up a large proportion of space among the BitTorrent shared files.
Recently, BitTorrent has attracted researchers’ interests, as an alternative method of provid-
ing video on demand (VoD) service. In this paper, we concentrate on enabling BitTorrent to
support VoD service in existing swarms while maintaining the download efficiency of file-
sharing users. We first examine the content properties of the BitTorrent system to explore
the demands and challenges of VoD service in BitTorrent swarms. The efficiency of BitTor-
rent for various piece selection policies is then compared through measurement on Planet-
Lab. We also use an optimization mathematical model to analyze the hybrid BitTorrent
system in which downloading peers and streaming peers coexist. Both measurement results
and model analysis indicate the problem of system efficiency decline in the BitTorrent-
based VoD systems, in comparison with the original BitTorrent file-sharing system. Our pro-
posed approach, unlike existing strategies that are limited to changing the piece selection
policy to allow BitTorrent to support streaming services, modifies both piece and peer selec-
tion policies to provide a ‘‘streaming while downloading’’ service in the BitTorrent system
with downloading peers. For the peer selection policy, a CAP (Closest-Ahead Peers) method
is applied to make better use of the peers’ upload bandwidths. For the piece selection policy,
a sliding window-based hybrid method that combines the rarest-first policy with the
sequential policy is proposed. To demonstrate the performance of our proposed approach,
an evaluation is made using various metrics on PlanetLab. The results show that our pro-
posed method has higher throughput and better streaming continuity than the sequential
policy and BiToS.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The Peer-to-Peer (P2P) network has become a successful
architecture for file sharing over the Internet. BitTorrent is
one of the most popular P2P applications for file distribu-
tion. Video files take up a large proportion of the shared files.
Currently, BitTorrent users increasingly prefer to enjoy vid-
eos while they are still downloading. Researchers have also
reported a strong interest in using BitTorrent as an alterna-
tive to providing VoD service. According to the requirements
. All rights reserved.

u.cn (Z. Ma), xuke@t
@cs.sfu.ca (H. Wang).
of streaming systems, which consume a video’s pieces
sequentially from beginning to end, most research on Bit-
Torrent-based streaming is based on BitTorrent protocol
modifications, especially the piece selection mechanism
modification.

In this paper, we focus on how to provide VoD service in
existing BitTorrent swarms where streaming peers (the
peers that watch videos during the downloading process)
and downloading peers (the peers that simply download
video files) coexist. We first examine the shared contents
in the BitTorrent network with a large-scale measurement.
The results show that video files are popular among BitTor-
rent swarms and that video contents in BitTorrent swarms
are much larger than those in YouTube and PPVA, which

http://dx.doi.org/10.1016/j.comnet.2011.10.030
mailto:mazhen@csnet1.cs.tsinghua.edu.cn
mailto:xuke@t singhua.edu.cn
mailto:xuke@t singhua.edu.cn
mailto:jcliu@cs.sfu.ca
mailto:hwa17@cs.sfu.ca
http://dx.doi.org/10.1016/j.comnet.2011.10.030
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1104 Z. Ma et al. / Computer Networks 56 (2012) 1103–1117
makes the BitTorrent-based streaming service promising
but challenging. We also use a modified Ctorrent1 (a com-
mand line-based BitTorrent client in FreeBSD) client with
different piece selection policies to transfer files on Planet-
Lab and compare the performances of different policies.
According to the trace analysis, an optimization model is
proposed to analyze the BitTorrent-based VoD system with
both downloading and streaming users. Both real trace and
mathematical models indicate that the system throughput
will decrease when the sequential piece selection mecha-
nism is used instead of the rarest-first policy. Therefore,
making BitTorrent more efficient while fulfilling the de-
mands of streaming remains a challenging problem.

In light of the measurement results and model analysis,
we find that, apart from piece selection policy, peer selec-
tion also greatly affects the efficiency2 of a BitTorrent-based
VoD system. Hence, our method modifies both piece and
peer selection policies. For the peer selection policy, the
CAP (Closest-Ahead Peers) method is applied to make better
use of peers’ upload bandwidth. Peers will request pieces
from the closest-ahead peers whose sequential download
process is just ahead of the requesting peer’s.

For the piece selection policy, a sliding buffer window-
based hybrid method that combines the rarest-first policy
with the sequential policy is proposed in this paper. In
the new policy, peers request pieces sequentially in the
buffer window first in order to maintain fluent streaming;
they then adopt the rarest-first policy after buffering en-
ough pieces for play to obtain the rare pieces for sharing,
adapt to tit-for-tat, and maintain piece diversity.

Based on the model analysis, we evaluate the system
throughput and miss penalty in this hybrid BitTorrent-
based VoD system with downloading and streaming peers.
System throughput can be regarded as the inverse of the
download completion time, while the miss penalty is the
peers’ total playback lag time, defined in Section 4. In addi-
tion, the startup delay, piece distribution and upload vol-
ume distribution of peers in the BitTorrent-based VoD
system are analyzed in our evaluation. The performance
of different policies is evaluated with modified Ctorrent
on PlanetLab using various metrics. We also investigate
the performance of our approach in different situations,
such as situations with deferent window sizes and differ-
ent swarm compositions.

The main contributions of this paper are as follows:

(1) A multi-objective optimization model is proposed to
analyze the BitTorrent-based VoD system, in which
downloading and streaming peers coexist for the first
time. Model analysis results indicate that the system
efficiency will decline in a BitTorrent-based VoD sys-
tem as the number of streaming peers grows.

(2) As it has been shown that the modification of piece
selection is not enough to guarantee the perfor-
mance of a hybrid BitTorrent system with download-
ing and streaming peers, our proposed method
modifies both piece and peer selection policies to
1 http://ctorrent.sourceforge.net.
2 In this paper, we use the system throughput and user bandwidth

utilization to indicate the BitTorrent system efficiency.
provide better streaming service. Both peer and
piece selection modifications are compatible with
BitTorrent’s built-in tit-for-tat mechanism.

(3) Extensive evaluation has been performed on Planet-
Lab to compare different policies in hybrid BitTor-
rent systems with both downloading and streaming
peers. The evaluation results show that our method
is better than the sequential policy and other existing
work, such as BiToS [10].

The rest of this paper is organized as follows: In Section 2,
related work on the subject is presented. Section 3 presents
our measurement results. An optimization model is used to
analyze a BitTorrent-based VoD system in Section 4. Our
method is proposed in Section 5, and its evaluation is
presented in Section 6. The paper is concluded in Section 7.

2. Related work

P2P file sharing and the P2P streaming service are two
major applications of P2P technology, and their design
and measurement have attracted significant attention. Bit-
Torrent is the most popular of the P2P file sharing systems,
and much research has been conducted to analyze BitTor-
rent-like file sharing networks, such as [5–8]. Meanwhile,
researchers have also designed several peer-assisted
streaming systems to support the VoD streaming service,
such as PPLive [1], GridCast [2], Joost [4] and UUSee [3].

Much recent work has investigated supporting peer-as-
sisted VoD services with the BitTorrent protocol [11]. The
simplest method is to change BitTorrent’s piece selection
policy from the rarest-first policy to the sequential policy to
meet the playback requirements. Parvez et al. [9] presented
detailed fluid flow models for different piece selection poli-
cies and proposed three optional approaches. However,
these approaches have not yet been evaluated. Fan et al.
[23] used analytical models to analyze different schemes
in a P2P VoD system and described a fundamental tradeoff
that exists between system throughput, sequential down-
loading and system robustness, proving that no system
can achieve all of them simultaneously. Our model is differ-
ent from theirs in that we concentrate on providing P2P VoD
service in BitTorrent systems where downloading and
streaming peers coexist, not in a pure P2P VoD system. Unlike
Fan et al. [23], who disabled tit-for-tat, we keep this core fea-
ture of BitTorrent and make our method compatible with it.

Apart from model analysis, some methods have been
proposed to enable BitTorrent to support a streaming ser-
vice efficiently. It is a common belief that the sequential
download of pieces will reduce the swarm’s piece diver-
sity, resulting in poor system performance. Therefore,
existing research has mainly concentrated on ways of
meeting the sequential requirements of streaming while
maintaining piece diversity. Carlsson and Eager [15]
adopted a Zipf-based probabilistic piece selection policy.
In addition to the probabilistic-based approaches, there is
window-based work. Vlavianos et al. [10] proposed BiToS,
which provides a higher download possibility p to pieces in
a high priority set. Purvi and Jehan [12] prevented the
peers from requesting pieces outside of a sliding window
that contains pieces for the near future. Petri [19] proposed

http://ctorrent.sourceforge.net

3 http://bt.byr.cn.
4 CERNET2 (http://www.cernet2.edu.cn/) is the largest next-generation

Internet backbone. It is the core network of the China next-generation
Internet demonstration project CNGI and is the only nationwide academic
network. To date, it is the world’s largest native IPv6 backbone.

5 http://www.utorrent.com.
6 http://www.youtube.com.

Z. Ma et al. / Computer Networks 56 (2012) 1103–1117 1105
a stretching window algorithm to suit the tit-for-tat mech-
anism. Youmna Borghol et al. [18] presented an adaptive
window-based piece selection policy, with each peer
dynamically computing its window size. In addition to
the probabilistic and window-based approaches, LiveBT
[20] used a Most-wanted-Block-Download-First (MBDF)
scheme and a fast rescheduling scheme to enable BitTor-
rent to support VoD streaming service. Our previous work
[21] tried to solve this problem at the swarm level, rather
than at the peer level. Unlike most of the abovementioned
work that simply modifies the piece selection policy to al-
low BitTorrent to support streaming service, we modified
not only the piece selection policy but also the peer selec-
tion policy to provide better streaming service in hybrid
BitTorrent systems with both downloading and streaming
peers. As for piece selection policy, which is different from
existing window-based piece selection policies, we use dif-
ferent policies in and out of the window. The sequential
policy is used in the buffer window, and the rarest-first pol-
icy is used outside it.

Lucia D’Acunto et al. [25] extended a BitTorrent-like peer
selection mechanism with techniques that allow peers to
relax their reciprocity-based peer selection and upload
pieces to more random nodes. Zhenhua Li et al. [24]
designed an ‘‘Urgent Line’’ mechanism for every node to pre-
dict which pieces are likely to be missed and prefetch them.
However, these two mechanisms were not designed for
BitTorrent-based streaming service in hybrid swarms with
both downloading and streaming peers. Yang et al. [16] pro-
posed using LLP-P as a peer selection policy to better utilize
peers’ upload capacity and a DAS scheduling approach for
the service scheduling problem in a BitTorrent-like VoD sys-
tem. DAS changes peers’ policy of deciding which request to
serve, while our work changes the piece selection policy to
decide which piece to request next. For the peer selection
approach, contrary to LLP-P [16] and iPass [17], our ap-
proach is simple and easy to implement. We also make some
changes to consider hybrid swarms with both downloading
and streaming peers. Our work concentrates on providing
VoD service in BitTorrent systems with both downloading
and streaming peers coexisting, while Yang et al. [16]’s pro-
posal failed to solve this problem.

Although great efforts have been made to develop a Bit-
Torrent-based VoD system, until now, little progress has
been made in the area of hybrid BitTorrent swarms that
accommodate downloading peers and streaming peers
simultaneously. Further, most of these works have not
been evaluated with a real, large-scale BitTorrent system
measurement. Considering the complexity of P2P systems,
it is insufficient to evaluate P2P strategies with simulations
alone. In this paper, a comparison of policy performances is
conducted using measurement results from PlanetLab. Bi-
ToS [10] is chosen as a reference policy due to its easiness
and clearness of implementation. The results of the evalu-
ation presented in Section 6 show that our method
performs better than BiToS.

3. Measurement

This section aims to investigate the demands and
potential problems of the BitTorrent-based VoD system.
We analyze the content properties of a BitTorrent system
in Section 3.1, exploring the potential and challenges of
the BitTorrent-based streaming service. In Section 3.2, we
run real P2P file transference on PlanetLab using a modi-
fied Ctorrent, and compare the performances of the
Ctorrent with different piece selection policies.

3.1. BitTorrent video file measurement

In this subsection, we focus on exploring the content
properties of the BitTorrent system, as well as the poten-
tial and challenges of the BitTorrent-based streaming ser-
vice. Although measurement work on BitTorrent [8]
already exists, we believe that new measurement results
will be more precise because the network environment
changes rapidly. Our measurement results indicate that
video files are popular in BitTorrent swarms, and video
files now shared using BitTorrent are much larger than
those shared in other VoD applications, such as YouTube
[13] and PPVA [14]. This offers more opportunities and
challenges for a BitTorrent-based VoD system.

This study analyzes ByrBT,3 the most popular BitTor-
rent site in CERNET24 (The Second Generation China Educa-
tion and Research Network). ByrBT has more than 48,000
registered users, contains 17,831 torrent files and uses a
customized uTorrent5 as the BitTorrent client. The torrent
files and system logs were traced from its website on July
2nd, 2010.

Among the 17,831 torrent files, 12,600 video torrents
comprise 70% of the total. As we can see, video files are
the most popular files shared in the BitTorrent system.
Fig. 1(a) shows the cumulative distribution of the torrents’
sharing file sizes. Video files are larger than non-video files
on average (1405 MB median file size for video files and
549 MB for non-video files). The size of a BitTorrent shared
video file is also larger than it was in 2008 [21] (696 MB
median file size). The file distribution in BitTorrent swarms
is shown in Fig. 1(b), providing evidence that multi-file
content is very popular in both types of BitTorrent swarms
and that fewer than 30% of torrents consist of a single file.
Fig. 1(c) depicts the cumulative distribution of file sizes.
The size of single non-video content files is relatively small,
with a mean size of 32 MB; only 3.5% of non-video content
files are larger than 100 MB. The median object size of vi-
deo files is approximately 162 MB, and 65% of video con-
tent files are larger than 100 MB. Moreover, 6.6% of the
video files have sizes larger than 1 GB, and the size of some
Blu-ray videos reaches nearly 23 GB. In contrast, YouTube’s
median content size is just 8 MB [13]; that of PPVA is
15 MB [14]. YouTube6 has a small median video size be-
cause most videos are user-generated short videos and be-
cause videos uploaded by standard account holders are
limited to 15 min in duration. Furthermore, YouTube videos

http://bt.byr.cn
http://www.cernet2.edu.cn/
http://www.utorrent.com
http://www.youtube.com

100 102 104 1060

0.2

0.4

0.6

0.8

1

Total File Size/MB

C
D

F

NonVideo
Video

100 102 104 1060.2

0.4

0.6

0.8

1

File Number

C
D

F

NonVideo
Video

100 105 10100

0.2

0.4

0.6

0.8

1

Single File Size/Byte

C
D

F

NonVideo
Video

Fig. 1. BitTorrent file property measurement results.

1106 Z. Ma et al. / Computer Networks 56 (2012) 1103–1117
are usually of low quality, with a resolution of 320 �
240 pixels and mono MP3 audio before 2008.7 PPVA8 uses
P2P technology to accelerate video file downloading from vi-
deo sites like Youku.9 Some of the video files shared with
PPVA are user-generated like those on YouTube. Other types
of videos, such as movies, are usually split into several small
video fragments; therefore, videos shared with PPVA are
generally small in size. Because video files shared with Bit-
Torrent are usually high in quality or high definition, videos
shared with BitTorrent are usually much larger than those
shared in YouTube and PPVA.

Therefore, there is considerable evidence that the
majority of shared files are video files. Video files shared
using BitTorrent are much larger than those shared in
other VoD applications like YouTube [13] and PPVA
[14]. We believe that as users’ bandwidth grows, high-
quality video files will increasingly be shared using the
BitTorrent system and that BitTorrent-based streaming
services will become more popular as well. A BitTor-
rent-based VoD system offers several advantages in pro-
viding high-quality VoD service compared to general
P2P VoD applications like PPLive [1]. First, a BitTorrent-
based VoD system is low in cost because it provides
streaming service in existing BitTorrent swarms and re-
quires no server support. In addition, high-or low-band-
width users can download the same video files, and
users who watch streaming videos and those who down-
load them can share in the same swarm, making the Bit-
Torrent-based VoD system more scalable than a general
P2P VoD system. It should also be noted that without ser-
ver support, the user’s experience of a BitTorrent-based
VoD system can be worse than that of a general P2P
VoD system, especially for unpopular videos. Hence, pro-
viding good streaming service in a hybrid BitTorrent sys-
tem is a challenging problem.
3.2. PlanetLab BitTorrent swarm measurement

Because it is frequently used by users sharing high-
quality videos, there is a great demand for BitTorrent to
provide streaming service. To meet the playback require-
7 http://en.wikipedia.org/wiki/YouTube.
8 http://www.ppacc.com/.
9 http://www.youku.com.
ment, pieces should be requested using the sequential pol-
icy rather than the rarest-first policy. Although many
analyses show that the rarest-first policy performs better
than the sequential policy in BitTorrent file sharing, we will
present the results of an efficiency comparison of these
two piece selection policies based on the PlanetLab mea-
surements in this subsection using the results of these
measurements.

Two kinds of Ctorrent are used to run a real file transfer
on PlanetLab. Unmodified Ctorrent uses the rarest-first
policy as its piece selection policy, while modified Ctorrent
uses the sequential policy. Two transfer rounds are mea-
sured using these two policies. The shared file is 1 GB with
a piece size of 1 MB. Two hundred and fifty-four servers
were used on PlanetLab between June 4th, 2010, and June
10th, 2010. One node is chosen as a tracker, and another is
chosen as a seed. The rest of the nodes are the peers who be-
gin downloading the shared files simultaneously. The trans-
ferred file is self-generated and poses no copyright concerns.

Fig. 2(a) shows the distribution of peers’ download
completion times using both the rarest-first and sequential
piece selection policies. Most peer download completion
times are 20–100 min, but the peers using the rarest-first
policy achieve faster downloads than the peers using the
sequential policy. Piece finishing events and timestamps
are traced in logs; we can obtain a snapshot of each peer’s
piece procession. Fig. 2(b) describes the swarm’s piece dis-
tribution when half of the peers are finished downloading.
Pieces are distributed uniformly when the rarest-first pol-
icy is used; while using the sequential policy, the piece
count descends linearly as the pieces close to the end of
the file. Therefore, the sequential policy reduces piece
diversity. The piece selection policy also has a close con-
nection with upload bandwidth usage. The rarest-first pol-
icy makes peers upload more, as a peer will be requested
more frequently and upload more pieces when it has the
rarest pieces. However, using the sequential download pol-
icy, the peers downloading more slowly will have fewer
opportunities to upload pieces because they have no pieces
requested by other peers. Fig. 2(c) shows the distribution
of the peers’ upload volume. The upload volume of the rar-
est-first peers is more dispersed with smaller variance than
the sequential peers; hence, the rarest-first policy inspires
more peers to upload and is more suitable for the tit-for-
tat incentive mechanism.

http://en.wikipedia.org/wiki/YouTube
http://www.ppacc.com/
http://www.youku.com

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Download Complete Time/Minute

C
D

F

Rarest−First
Sequential

0 200 400 600 800 1000
120

140

160

180

200

220

240

260

Piece Index

Pi
ec

e
C

ou
nt

Rarest First
Sequential

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Upload Volume/MB

C
D

F Rarest First
Sequential

Fig. 2. PlanetLab BitTorrent swarm measurement results: comparison of different policies.

Z. Ma et al. / Computer Networks 56 (2012) 1103–1117 1107
The measurement results show that the sequential
policy reduces the swarm’s efficiency compared with the
original rarest-first piece selection policy; it also increases
download completion time and reduces upload bandwidth
usage and piece diversity. Hence, simply changing the
piece selection policy from rarest-first to sequential is insuf-
ficient to support streaming service. In the next section, we
will illustrate the problem of efficiency decline with math-
ematical models.
4. Model analysis

According to the measurement results presented in Sec-
tion 3, we can see that there is a great demand for BitTor-
rent-based VoD service, but a simple modification from a
rarest-first to a sequential download policy will reduce the
P2P system’s efficiency. In this section, we use mathemat-
ical models to analyze the problem of efficiency decline.
4.1. Optimization model analysis

In this subsection, we use an optimization model to
analyze a BitTorrent system with both downloading and
streaming peers. We also use a Matlab-based simulation
to compare the BitTorrent system’s throughput when dif-
ferent weights and different peer compositions between
downloading and streaming are used. The results show that
the more weight that is given to the streaming service and
the more peers that use the streaming service, the less
throughput the BitTorrent system will have.

This study focuses on methods of providing VoD stream-
ing service in existing swarms while maintaining the file-
sharing users’ download efficiency. In BitTorrent swarms,
peers are classified into two categories: downloading peers
(M(t)) that simply download video files and streaming ones
(N(t)) that play the videos while downloading them. These
two kinds of peers have different objectives: downloading
peers pay more attention to improving throughput and
reducing download completion time, while streaming peers
attach more importance to continuity of play. We use a mul-
ti-objective optimization model to describe a BitTorrent
system that shares a given video file while downloading
and streaming peers coexist. Table 1 provides a summary
of the main notations of the proposed model. For the
purpose of simplification, VCR operations such as drag,
pause, and stop are not supported in the model.

maximize
XT�1

t¼0

X
i2MðtÞ

X
j

X
k

XijkðtÞ

minimize
XT�1

t¼0

X
i2NðtÞ

X
k

PikðtÞ

subject to
X

k

X
j

XijkðtÞ 6 Di ð4:1:aÞ
X

k

X
i2LðtÞ

XijkðtÞ 6 Uj ð4:1:bÞ

XT�1

t¼0

X
j

XijkðtÞ 6 1� Gikð0Þ ð4:1:cÞ

XijkðtÞ 6 GjkðtÞ ð4:1:dÞ
XijkðtÞ 2 f0;1g ð4:1:eÞ
GikðtÞ 2 f0;1g ð4:1:f Þ

where PikðtÞ ¼
0 t 6 Ti þ kl
1� GikðtÞ t > Ti þ kl

�
ð4:1:gÞ

GikðtÞ ¼
Xt�1

t0¼0

X
j

Xijkðt0Þ þ Gikð0Þ ð4:1:hÞ

ð4:1Þ

In the model, we use t to represent time interval
[ts, ts + s), t = 0,1,2, . . . We assume that peers start request-
ing new pieces at ts and finish downloading those pieces in
one time unit, s. Xijk(t) 2 {0,1} denotes whether peer i
downloads piece k from peer or seed j during time interval
t, and Gik(t) 2 {0,1} represents whether peer i has down-
loaded piece k by time ts. Given one time period [0,Ts),
our goal is to find the value of Xijk(t) 2 {0,1} to maximize
system throughput and user salification during this period.
Hence, this optimization model is a zero-one programming
model. Two objectives are taken into consideration. The
first objective is to maximize the system throughput and
minimize the download completion time of downloading
users, and the other is to minimize miss penalties and en-
sure that streaming peers obtain smooth play. Model (4.1)
illustrates the BitTorrent-based system. Gik(t) is the accu-
mulated value of Xijk(t) during time interval [0, ts). Its initial
value at time 0 is shown in Eq. (4.1.h) for all i 2 L(t) [S(t)
and (k), and Gik(t) = 1 for all k, t if i 2 S(t). Miss penalty Pik(t)

Table 1
Summary of main notations.

Symbol Illustration

N(t) streaming peers set at time t
M(t) downloading peers set at time t
L(t) Peers set, namely, N(t) [M(t)
S(t) Seeds set at time t
Ui Upload capacity of peer i
Di Download capacity of peer i
Ti Start playing time of peer i
n Piece number of the sharing file
c Piece size, here c = 1 for simplicity
s Time unit
l Time slice that one piece plays
Xijk(t) Whether peer i downloads piece k from j in time interval t
Gik(t) Whether peer i finishes downloading piece k at time ts
Pik(t) Penalty of streaming peer i missing piece k in time

interval t

1108 Z. Ma et al. / Computer Networks 56 (2012) 1103–1117
is defined as a piecewise function in Eq. (4.1.g) for all
i 2 N(t) and (k). The miss penalty of streaming peer i
requesting piece k at time interval t is 0 before the piece’s
playback deadline and 1 � Gik(t) after the deadline. The
playback deadline of peer i for piece k is Ti + kl, which is
the former k pieces’ playtime since peer i started playing.
If peer i finishes downloading piece k before its playback
deadline, its miss penalty is only 0. In the long run, the
cumulative miss penalty of peer i requesting piece k is the
piece’s lag time interval count.

Constraints (4.1.a) for all i 2 L(t) and (4.1.b) for all
j 2 L(t) [S(t) guarantee that download and upload speeds
will not exceed the peers’ capacity. The uniqueness con-
straint (4.1.c) for all i 2 L(t) [S(t) and (k) ensures that each
peer can download only one copy of a given piece. The
source availability constraint (4.1.d) for all i 2 L(t),
j 2 L(t) [S(t) and (k) [22] means that peer j can only upload
piece k after it has finished downloading piece k.

The solution of model (4.1) is Xijk(t). Given peer i, it
should find the appropriate j and k at time t for Xijk(t).
The selection of j corresponds to peer selection policy,
while the selection of k corresponds to piece selection pol-
icy. To achieve an optimum solution, both peer and piece
selection policies should be optimized.

Many methods have been proposed to find a solution to
a multi-objective optimization problem by constructing a
single aggregate objective function, such as Weighted Lin-
ear Sum, Normal Boundary Intersection, and Normal Con-
straint.10 In this model, both system throughput and miss
penalty are integral multiples of piece size, so the download-
ing and streaming objective are of the same dimension. We
use an intuitive weighted linear sum approach to construct
a single aggregate objective function based on two objec-
tives. The weighted linear sum of the two objectives is ob-
tained by specifying scalar weights a and 1 � a for the two
objectives, respectively, as shown in (4.2). Scalar weights a
and 1 � a imply the relative importance of the downloading
peers’ throughput and the streaming peers’ miss penalty in
the BitTorrent system.
10 http://en.wikipedia.org/wiki/Multiobjective_optimization.
maximize a
XT�1

t¼0

X
i2MðtÞ;j;k

XijkðtÞ � ð1� aÞ
XT�1

t¼0

X
i2NðtÞ;j;k

PikðtÞ

ð4:2Þ

The simulation is built using the Matlab optimization
toolbox to solve the zero-one programming problem. The
variable number in (4.1) is H(T ⁄ jL(t)j ⁄ (jL(t)j + jS(t)j) ⁄ n),
and the constraints number is of the same level. It is diffi-
cult to solve this large-scale problem to achieve a global
optimum. Therefore, in the simulation, we obtain a greedy
local optimum result in each time interval and then aggre-
gate these local optimums to arrive at a local optimum for
all time intervals. Although the local optimum is worse
than the global optimum, it is closer to a practical situation
in which a peer selects peers and pieces based on the exist-
ing information at any time, not as planned in the global
optimum. The objective of the system in time interval t is
stated in (4.3).

maximize a
X

i2MðtÞ;j;k
XijkðtÞ � ð1� aÞ

X
i2NðtÞ;j;k

PikðtÞ ð4:3Þ

In the simulation, one seed exists in the swarm at the
beginning, and all peers begin the downloading process
simultaneously and continue until the file is completely
downloaded. We use the download completion time to re-
flect the system throughput. The sizes of the swarm and file
are restricted in the simulation due to the complexity of the
problem. First, the effect of a is analyzed in a hybrid swarm
with both downloading and streaming peers. Fig. 3(a) shows
that the download completion time and miss penalty
change as a changes when jM(t)j = jN(t)j = 5 and n = 10. As
a grows, the download completion time decreases, while

the miss penalty
PT�1

t¼0

P
i2NðtÞ;j;kPikðtÞ grows. In Fig. 3(b), we

present the system throughput and the downloading peers’
throughput of every time interval t when the same swarm
composition and different a are used. We can see that accu-
mulated system throughput of the swarm with a = 0.7 in
[0,T) (T = 1,2, . . . ,13) is equal to or greater than that with
a = 0.3, as is the throughput of exclusively downloading
peers. We also analyze the swarm composition’s impact
on system performance. Fig. 3(c) shows that the download
completion time and miss penalty change as jM(t)j (the
downloading peers count) changes when a = 0.5 and
jL(t)j = jM(t)j + jN(t)j = 10. As jM(t)j increases, the download
completion time decreases, and the average miss penalty

of the streaming peers
P

i2NðtÞ;j;k
PikðtÞ

jNðtÞj increases and then de-

creases. Fig. 3(d) presents the system throughput of every
round and shows that the system throughput is larger when
there are more downloading peers.

From the simulation result, we can see that the more
weight that is given to the streaming service and the more
peers that use the streaming service, the less throughput
the system will have. It is obvious that a BitTorrent-based
streaming service will encounter the problem of system
efficiency decline, reduce the system throughput and in-
crease the download completion time.

To support the streaming service, the piece selection
policy needs to be changed. Different piece selection poli-
cies lead to different piece distributions, as shown in
Fig. 2(b). We analyze the efficiency of BitTorrent when

http://en.wikipedia.org/wiki/Multiobjective_optimization

10

11

12

13

14

15

α

D
ow

nl
oa

d
C

om
pl

et
e

Ti
m

e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

M
is

s
Pe

na
lty

Download Complete Time
Miss Penalty

|M(t)|=|N(t)|=5
Di=Ui=2
Ti=1
μ=1
n=10

2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

Time

Th
ro

ug
hp

ut

System(α=0.3)
Downloading(α=0.3)
System(α=0.7)
Downloading(α=0.7)

2 4 6 810

11

12

13

14

15

Downloading Peers Count

D
ow

nl
oa

d
C

om
pl

et
e

Ti
m

e

2 4 6 8 0

5

10

15

20

M
is

s
Pe

na
lty

Download Complete Time
Miss Penalty

|L(t)|=10
Di=Ui=2
Ti=1
α=0.5
μ=1
n=10

2 4 6 8 100

2

4

6

8

10

12

14

16

Time

Th
ro

ug
hp

ut
Downloading Peers Count=3
Downloading Peers Count=7

Fig. 3. Simulation result.

Z. Ma et al. / Computer Networks 56 (2012) 1103–1117 1109
different piece selection policies are used in the next
subsection.
4.2. Bandwidth usage analysis

Consider a swarm with L = jL(t)j peers and S = jS(t)j
seeds sharing a file with n pieces. Each peer’s download
and upload capacity is Di = D and Ui = U, respectively. As-
sume that each piece is requested by the same number
of peers. The download capacity of all peers for a given
piece is then constant at L�D

n , and a piece’s upload capacity
is proportional to its count in the swarm. If the rarest-first
policy is used in the swarm, the pieces are distributed uni-
formly [5]. Hence, the upload capacity of all peers and
seeds for a given piece is also constant ðLþSÞ�U

n . As for the
sequential policy with the same count of the pieces in the
swarm, the piece count descends linearly in the pieces
close to the end of file. Piece k’s count in the peers is
ðn�kÞ�L

n , as the peers requesting piece k + 1,k + 2, . . . ,n have
piece k. The total piece count in the peers isPn

k¼1
ðn�kÞ�L

n ¼ L�ðn�1Þ
2 . Hence, the upload capacity of the peers

for a given piece k is 2�ðn�kÞ�L�U
n�ðn�1Þ . By adding the seeds’ upload

capacity, which is divided equally by the peers, we obtain

the upload capacity of piece k, which is 2�ðn�kÞ�L�U
n�ðn�1Þ þ S�U

n .

Because the upload capacity is usually the bottleneck, we
assume that U = kD where k 2 ½0; N
NþS�. For the rarest-first

policy, the upload capacity of each piece is less than the
download capacity; hence, the upload bandwidth can be
used efficiently with the rarest-first policy.
2 � ðn� KÞ � L � U
n � ðn� 1Þ þ S � U

n
6

L � D
n

ð4:4Þ

For the sequential policy, we solve Eq. (4.4) and obtain
K P n� ðL�kSÞðn�1Þ

2kL . For piece k < K, the upload capacity is lar-
ger than its download demand, and part of the upload
bandwidth for the pieces is wasted. In total,

W ¼
PK

k¼1
2�ðn�kÞ�L�U

n�ðn�1Þ þ S�U
n � L�D

n

� �
upload bandwidth is

wasted. The upload bandwidth usage ratio of the sequential
download can be defined as 1� W

ðLþSÞ�U. Fig. 4 shows the up-

load bandwidth-wasting ratio of the sequential download
as the peer number L changes and that the upload band-
width-wasting rate decreases slightly as L increases. How-
ever, more than 14% of the upload bandwidth is still
wasted. In a real system, the rare pieces k > K will use part
of the wasted upload bandwidth, but considerable band-
width will still be wasted. Hence, we can see that the ran-
dom peer selection and the sequential piece selection fail to
make the best use of the peers’ upload capacity and reduce
the system’s efficiency.

2000 4000 6000 8000 10000
14.2%

14.4%

14.6%

14.8%

15%

15.2%

15.4%

Peer Number

U
pl

oa
d

Ba
nd

w
id

th
 W

as
tin

g
R

at
e

M=1000
S=50
λ=0.8

Fig. 4. Upload bandwidth wasting rate changes as peer count changes.

1110 Z. Ma et al. / Computer Networks 56 (2012) 1103–1117
According to the model analysis and measurement re-
sults above, it is insufficient to support the streaming ser-
vice using BitTorrent by simply changing the piece
selection policy from the rarest-first policy to the sequential
policy. The peer and piece selection policies should both be
optimized. In the next section, our joint method will be
presented.
5. Policy modification

In this section, we present our method to make BitTor-
rent support downloading and streaming service simulta-
neously. Our method concentrates on peer selection
policy and piece selection policy optimization. The modi-
fied BitTorrent is compatible and can work together with
unmodified BitTorrent clients.
5.1. Peer selection policy

Unmodified BitTorrent selects peers randomly to re-
quest pieces. In Section 4, we showed that the sequential
piece selection and the random peer selection policies
waste the peers’ upload capacity and reduce the system’s
efficiency. In a streaming system, the former pieces are
abundant while the latter pieces are rare. The random peer
selection policy may choose older peers for former pieces
and occupy the latter pieces’ upload capacity while the
newcomer peers are idle.

We propose CAP (Closest-Ahead Peers) as the peer
selection policy to make the best use of the streaming
peers’ upload bandwidth. In this method, each peer sorts
its own connected streaming peers according to its sequen-
tial download process. Peers obtain the other peers’ down-
loading processes based on bitfield and the HAVE message.
CAP then picks one peer randomly from its closest-ahead
peers to request the next sequential piece, and the clos-
est-ahead peers’ newly downloaded pieces will be used
in the upload. Similarly to YNP in [16], we select several
peers to avoid overloading a few peers. The difference in
the CAP used in [16] is that their policy requests from
the least-loaded peers, while ours requests from the clos-
est-ahead peers. Our policy requires no extra information
interaction with trackers and other peers but obtains a
similar effect based only on the existing information.
Another advantage is that peers using CAP can obtain
continuous uploads from only a few closest-ahead peers,
and a more fluent playback experience will be achieved
with less fluctuation in peer connection.
In practical situations, streaming peers and downloading
peers coexist in the BitTorrent swarm. To better utilize
their upload bandwidth, we expand our CAP method for
used in hybrid swarms with both downloading peers and
streaming peers. Peer i splits its neighbors (also referred
to as peers) into three sets according to their bitfields,
i.e., streaming set Ni(t), downloading set Mi(t) and seed
set Si(t). Neighbor j’s piece holdings Gjk(t) and the sequential
download process Qj(t) (if it is a streaming peer) are also
available to peer i based on j’s bitfield. The peer selection
policy for peer i requesting piece k at time t is shown in
Algorithm 1. When peer i wants to request piece k, if there
are neighbors with piece k in the downloading set that are
not busy with other requests, peer i will request piece k
from a random neighbor with piece k in its downloading
set. Otherwise, peer i will use CAP to select a peer in the
streaming set to obtain that piece. If both downloading
set and streaming set are unavailable, peer i requests piece
k from seeds set randomly.

To achieve a larger download rate and better playback
continuity, the peers will exclude low-bandwidth and hea-
vy-loaded connected peers periodically, obtain new peers,
and update the downloading set, the streaming set and the
seeds set simultaneously. Hence, serious load balancing
problems will not occur. This policy is compatible with
the tit-for-tat incentive mechanism. Because streaming
peers first request pieces from downloading sets, the for-
merly downloaded pieces of the streaming peers can be
used in the upload for requests from peers in the down-
loading set because the peers using the rarest-first policy
do not have all the former pieces. However, a peer cannot
upload these pieces to its closest-ahead streaming peers

Z. Ma et al. / Computer Networks 56 (2012) 1103–1117 1111
because newcomer peers have few pieces for the older
peers. This problem can be addressed with our piece selec-
tion policy, described in the next subsection.

5.2. Piece selection policy

The original piece selection policy of BitTorrent is the
rarest-first policy. A peer keeps track of each piece’s count
among the peers it connects and selects the piece with
the lowest count to request. To support the streaming ser-
vice, the pieces near the play point should be downloaded
first, and sequential download is required while the video is
playing. However, as shown in Sections 3 and 4, sequential
download will significantly decrease the system’s effi-
ciency. Therefore, we propose a sliding window-based hy-
brid policy that combines the rarest-first and the sequential
policies to avoid a considerable degradation of efficiency
while supporting the streaming service.

In the proposed policy, two sliding windows are main-
tained while downloading:

Buffer window: it contains an appropriate number of
pieces close to the play point to buffer for smooth play-
back. The buffer window size is b (b = 10 in Fig. 5), and it
contains b continuous pieces from the next playing piece.

Request window: it contains only the requesting pieces
in the buffer window. The request window never slides out
of the buffer window. The window size is d = min{c � r,
b � f}, where c (c = 5 in Fig. 5) is the maximum number
of pieces that a peer can request simultaneously, r is the
number of requested but not downloaded pieces chosen
by the rarest-first policy, and f is the number of down-
loaded pieces in the buffer window.

The buffer window slides when a piece is played. If
users perform seek operations, the buffer window will
slide as well. When a piece in the request window is
Fig. 5. Sliding window based hybrid piece selection policy.
finished or missed, the request window slides and changes
its size to d = min{c � r,b � f}. Simultaneously, a peer will
select c � d pieces from the buffer window to download
using the rarest-first policy. Hence, the pieces in the buffer
window will be requested sequentially, and the other
pieces will be requested using the rarest-first policy when
the buffer window is full.

Fig. 5 shows how the sliding window-based hybrid
method works. In Fig. 5(a), before starting playback, the
peer first downloads the pieces into the buffer window
until the buffer window is full. All the requested pieces
are in the buffer window. The startup delay is the time
used to fill the buffer window. When the buffer window
is full, the peer starts playback, and the buffer window
slides, as shown in Fig. 5(b). The peer requests the newly
added piece as the buffer window slides, and the request
window size d is reduced to b � f = 1. The peer then re-
quests other c � d = 4 pieces using the rarest-first policy.
In Fig. 5(c), as the video plays and the buffer window
slides, the buffer window is no longer full. Next, all the
pieces are requested using the sequential policy in the
buffer window, and the request window is enlarged to
c � r = 5. During the playback process, pieces may be
missed, as shown in Fig. 5(d). When the buffer window
slides, the pieces in the buffer window will be down-
loaded first. The pieces in the buffer window will be
downloaded using the rarest-first policy. The downloaded
pieces using the rarest-first policy have a larger probabil-
ity of being used to respond to other peers’ requests; they
help the peer upload more pieces so that it can obtain
more downloads from other peers based on tit-for-tat pol-
icies. It should be noted that our method only works
when the peers’ download rate is greater than the video’s
bitrate. If this is not the case, the peer simply requests the
pieces sequentially.

In addition, video on demand systems need to provide
users with a large subset of VCR functionalities, including
pause, fast forward, fast rewind, slow forward, slow re-
wind, and jump to previous/future frame.11 It is easy for
our method to provide these functionalities simply by
changing the play point according to the VCR operation.
The buffer window slides as the video fast forwards or
jumps.

The buffer size b is crucial to the system’s performance.
If the buffer window size is too large, it becomes a sequen-
tial download; if it is too small, the video will not play
smoothly, and user satisfaction will decrease. If a peer’s
normal download rate is D (D P 1

l, to support streaming

service), the peer’s download rate decreases suddenly to
D0(D0 = kD, k 6 1). The rest time for smooth video play

t ¼ b�l
1
l�D0

c
is the most important performance index of the

buffer window, while c is the piece size. The continuous
time to play is in proportion to the buffer window size b
and in inverse proportion to the download rate D0. The buf-
fer window size b can be determined by the user’s band-
width, and peers with lower bandwidths require larger
buffer windows to obtain better playback continuity.
11 http://en.wikipedia.org/wiki/Video_on_demand.

http://en.wikipedia.org/wiki/Video_on_demand

1112 Z. Ma et al. / Computer Networks 56 (2012) 1103–1117
However, for simplicity, we use a constant buffer window
size in this evaluation.

In this section, we modified BitTorrent’s peer and piece
selection policies to make the BitTorrent system support
downloading and streaming service simultaneously. It
should be noted that these modifications are only suitable
for streaming peers. The downloading peers will use unmod-
ified BitTorrent.

6. Performance evaluation

This section evaluates various aspects of the perfor-
mance of our proposed method using PlanetLab. Although
there will be differences between the residential network
and PlanetLab, we still treat PlanetLab as a useful testbed
for P2P applications, considering the difficulty of deploying
a P2P application on a real network, especially for the lim-
ited purpose of comparing policies. We first modified Ctor-
rent with the different policies. Four different kinds of
Ctorrent clients are used:

(1) Unmodified Ctorrent using the rarest-first policy.
(2) Modified Ctorrent using the sequential policy.
(3) Modified Ctorrent using BiToS [10] with p = 0.8 and a

high-priority set size of 60.
(4) Modified Ctorrent using our proposed peer and piece

selection policy with a buffer window size of 60.
‘‘Sliding Window’’ is used to indicate our method.

Unlike the method proposed by [23], which disables tit-
for-tat, we keep the built-in incentive mechanism to make
the BitTorrent VoD system robust against selfish behaviors.
We use the Ctorrent clients to share a given file on Planet-
Lab for several rounds. In each round, only one kind of
Ctorrent is used in the swarm, except in hybrid swarms,
in which unmodified and modified Ctorrents are used on
different peers. The shared file is 1 GB in size with a piece
size of 1 MB. Five hundred and seventy-nine nodes are
added to our slice, and approximately 480 nodes work
properly. The nodes’ bandwidth can be set using Planet-
Lab12 or Ctorrent commands. However, we use the default
setting for simplicity. One node (cs-planetlab2.cs.sur-
rey.sfu.ca) is chosen as a tracker, and another (pl1.pku.e-
du.cn) is chosen as a seed; the rest of the nodes are peers
downloading the shared files simultaneously. To make all
the nodes start downloading at the same time, we first start
Ctorrent on each node then start the tracker. After the nodes
finish downloading the video, they remain in the swarms.
The evaluation was conducted between September 5th,
2010, and October 15th, 2010. To exclude the influence of
daily background traffic fluctuations, we begin transferring
and obtain the traced logs at the same time of day
(22:00(GMT+8) and 10:00(GMT+8) the next day, respec-
tively) for each round.

According to the model analysis of Section 4, the follow-
ing metrics are used to evaluate the performances of differ-
ent policies.

Download Completion Time: The time required for a
peer to download a whole file. We use this time to indicate
12 http://www.planet-lab.org/doc/BandwidthLimits.
the system throughput. The less time used, the higher the
system throughput is. In hybrid swarms with coexisting
downloading and streaming peers, we concentrate on the
download completion time of the downloading peers. In
streaming swarms with only streaming peers, although
the download completion time of the streaming peers has
no direct connection with user satisfaction, we still analyze
it to demonstrate the system’s throughput.

Miss Penalty: The peers’ miss penalty reflects their
playback continuity, which directly affects the user’s expe-
rience. In the experiment, we assume that the play time for
one piece is l = 5 s, so the video’s playback rate is
1.6 Mbps. Clients will start playing after the first b (buffer
window size) pieces are downloaded. The required down-
load completion time tr of peer i for piece k can then be
determined, which is the start time added to the former
k pieces’ playtime. Given the recorded download comple-
tion time td of piece k, the miss penalty of peer i for piece
k is max{0, td � tr}. The total miss penalty of one peer is
the sum of the miss penalties of all the pieces.

In addition to these two metrics, the following three
metrics are used to analyze the performance of the BitTor-
rent-based VoD system.

Startup Delay: The time used to download the first k
pieces is defined as the startup delay, which is another fac-
tor with a close connection to user satisfaction.

Upload Volume Distribution: We use the upload vol-
ume distribution to check whether the policy is suitable
for the built-in tit-for-tat mechanism. If the peers’ upload
volumes are decentralized with small variances, all peers
can contribute to one another. This policy cooperates well
with tit-for-tat.

Piece Distribution: We take one snapshot of the down-
load process when half of the peers finish downloading to
demonstrate the system piece diversity.

6.1. Policies comparison

We first compare the performance of different policies
in swarms in which all peers are streaming peers and join
the swarm simultaneously.

Fig. 6(a) shows the download completion time distribu-
tion. Peers using the rarest-first policy have the lowest
download completion times, while peers with the sequen-
tial download policy have the most. Eighty-eight percent
of peers using the rarest-first policy will finish their down-
load in less than 50 min; only 16% of the sequential peers
will do so. The peers with our method and BiToS’s down-
load completion time fall in between, but our method
can finish downloading in a much shorter time than BiToS
for high-bandwidth peers who would be potential stream-
ing service users. In Fig. 6(b), the peers’ upload volume dis-
tribution is presented. The cumulative distribution curves
of the rarest-first policy and our method are steeper than
the other two curves with a smaller variance; our method’s
improved fairness and efficiency will inspire more peers to
upload. Fig. 6(c) presents the piece distribution results.
Pieces are uniformly distributed when the rarest-first pol-
icy is used, while the sequential download has a decreasing
bias-like piece distribution. The piece distribution of BiToS
has a smaller slope than that of the sequential download,

http://www.planet-lab.org/doc/BandwidthLimits

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Download Time/Minute

C
D

F

Rarest First
Sequential
BiToS
Sliding Window

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Upload Volume/MB

C
D

F

Rarest First
Sequential
BiToS
Sliding Window

0 200 400 600 800 1000
250

300

350

400

450

500

Piece Index

Pi
ec

e
C

ou
nt

Rarest First
Sequential
BiToS
Sliding Window

Fig. 6. PlanetLab measurement result for different policies.

Z. Ma et al. / Computer Networks 56 (2012) 1103–1117 1113
but the counts of the different pieces differ greatly. With
our proposed method, only the beginning pieces have a
decreasing bias-like piece distribution, and the latter
pieces are distributed uniformly. Therefore, our method
can maintain the diversity of the pieces.

In addition to system throughput, the streaming service
performance is also analyzed. Because the rarest-first pol-
icy is not suitable for streaming service, we exclude it from
the figures. Fig. 7(a) shows the miss penalties of different
policies. The sequential policy has the worst effect, with
the largest miss penalties. Our proposed method is better
than BiToS. The miss penalty of the sequential policy is
around 10,000 s. Using our method, 85% of peers have a
miss penalty of less than 100 s, which is acceptable for a
5120 s video. Therefore, the bandwidth of the PlanetLab
network is sufficient for a BitTorrent-based VoD service.
The startup delay is presented in Fig. 7(b). The startup de-
lay is the time used to download the first b(b = 60) pieces.
The startup delay of the sequential download policy is in
the vicinity of 800 s, while more than 60% of peers’ startup
times using our method are less than 100 s. BiToS has a
similar performance. In summary, our method is much
better than the sequential policy and BiToS to support
streaming service.

In practice, streaming and downloading peers coexist in
BitTorrent swarms. We next analyze the performance of
different policies in hybrid swarms with both streaming
and downloading peers. In the hybrid swarm, 50% of peers
are downloading peers using unmodified CTorrent, while
100 102 104 106 1080

0.2

0.4

0.6

0.8

1

Miss Penalty/Second

C
D

F

Sequential
BiToS
Sliding Window

Fig. 7. PlanetLab measurement r
others are streaming peers using CTorrent with different
policies. Fig. 8(a) shows the downloading peers’ download
completion time distributions. Eighty-six percent of down-
loading peers finish the download process in fewer than
60 min with our method, while only 66% do so with BiToS
and 49% do so in the sequential swarms. Therefore, it is
obvious that our method is much better than the sequential
policy and BiToS. In Fig. 8(b), the miss penalty of streaming
peers using the different policies is presented. The miss
penalty of 70% of streaming peers using the sequential pol-
icy and our method is less than 100 s, while only 40% of
peers’ miss penalty is less than 100 s with BiToS. Compared
with Fig. 7(a), we can see that the miss penalty of streaming
peers in a hybrid swarm is larger than that in pure stream-
ing swarms. Fig. 8(c) shows the streaming peers’ startup de-
lay. Although there are more streaming peers that start up
in fewer than 100 s in swarms using the sequential policy
than in swarms using our method, our method with a med-
ian startup delay of 168 s is faster than the sequential pol-
icy, with a median of 478 s, and BiToS, with 1258 s.

Based on the above results, it is obvious that the effect
of our method is better than the sequential policy and BiToS
in both system throughput and streaming service
requirements.

6.2. Dynamic situation discussion

The above experiments consider only the flash-crowd
situation, in which all peers join the swarm simulta-
100 101 102 103 104 1050

0.2

0.4

0.6

0.8

1

Startup Delay/Second

C
D

F

Sequential
BiToS
Sliding Window

esult for different policies.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Download Time/Minute

C
D

F Sequential
BiToS
Sliding Window

100 102 104 106 1080

0.2

0.4

0.6

0.8

1

Miss Penalty/Second

C
D

F

Sequential
BiToS
Sliding Window

100 101 102 103 104 1050

0.2

0.4

0.6

0.8

1

Startup Delay/Second

C
D

F

Sequential
BiToS
Sliding Window

Fig. 8. PlanetLab measurement result for different policies in a hybrid swarm.

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Download Complete Time/Minute

C
D

F

Sequential
BiTos
Sliding Window

100 102 104 1060

0.2

0.4

0.6

0.8

1

Miss Penalty/Second

C
D

F Sequential
BiToS
Sliding Window

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

Startup Delay/Second

C
D

F

Sequential
BiToS
Sliding Window

Fig. 9. PlanetLab measurement result for dynamic scenario 1.

1114 Z. Ma et al. / Computer Networks 56 (2012) 1103–1117
neously. This subsection will discuss a dynamic situation
in which peers join and leave the swarm dynamically.
For simplicity, we consider only two scenarios: (1) peers
join uniformly, and seeds never leave the swarms; and
(2) peers join uniformly, and seeds leave the swarms
immediately after watching a video. In the first scenario,
one seed exists in the swarms at the beginning, and 5 peers
join the system every 3 min without leaving the swarm. In
the second one, 5 peers join the system every 3 min and
leave the system immediately after watching a video. The
peers will stay in the system for max{Td,Tw} in total, where
Td is a peer’s downloading completion time, Tw is the vi-
deo’s play time and Tw = l ⁄ n = 5 ⁄ 1024 = 5120 s.

Fig. 9(a)–(c) show the download completion time, miss
penalty and startup delay of scenario 1, respectively, while
Fig. 10(a)–(c)13 show the result of scenario 2. The evaluation
results show that our policy and BiToS have much smaller
download completion times and miss penalties than the
sequential policy in both scenarios and that our method is
slightly better than BiToS. For the startup delay, the three
policies have similar results, making it difficult to distinguish
13 It should be noted that this simulation is a measurement using
PlanetLab between September 1th 2011 and September 5th 2011. The
result cannot be used as a comparison with previous results because of the
differences in the network conditions. However, we believe it is sufficient
to distinguish the different policies’ performances.
between them using this criterion. In summary, the results
of these two scenarios provide evidence that our method
is much better than the sequential download policy and
slightly better than BiToS.
6.3. Buffer window size discussion

The size of buffer window b is critical to the effect of our
method. A buffer window that is too small leads to worse
play fluency, while a buffer window that is too large de-
grades to the sequential download policy. We ran our modi-
fied Ctorrent with different buffer window sizes in different
transfer rounds and compared their performances.

Fig. 11(a) presents the download completion time dis-
tribution when windows of different sizes are used. We
can see that for high bandwidth users, the download com-
pletion time is slightly different when the buffer window
size changes. Because it takes only a short time to fill in
the buffer window, most pieces are downloaded using
the rarest-first policy. However, for low-bandwidth end
users, the larger the buffer window size is, the more time
is used to download the whole file because a bigger win-
dow size means that more pieces are downloaded using
the sequential download policy. Fig. 11(b) and (c) show
the miss penalty and startup delay when using different
buffer window sizes. These results show that a larger

0 200 400 600 800
0.4

0.5

0.6

0.7

0.8

0.9

1

Download Time/Minute

C
D

F

Sequential
BiToS
Sliding Window

100 102 104 106 1080

0.2

0.4

0.6

0.8

1

Miss Penalty/Second

C
D

F Sequential
BiToS
Sliding Window

100 101 102 103 104 1050

0.2

0.4

0.6

0.8

1

Startup Delay/Second

C
D

F

Sequential
BiToS
Sliding Window

Fig. 10. PlanetLab measurement result for dynamic scenario 2.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Download Time/Minute

C
D

F

Window Size = 80
Window Size = 60
Window Size = 40

100 102 104 1060

0.2

0.4

0.6

0.8

1

Miss Penalty/Second

C
D

F

Window Size = 80
Window Size = 60
Window Size = 40

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

Startup Delay/Second

C
D

F

Window Size = 80
Window Size = 60
Window Size = 40

Fig. 11. PlanetLab measurement result for different window sizes.

Z. Ma et al. / Computer Networks 56 (2012) 1103–1117 1115
window size results in smaller miss penalties and a larger
startup delay.

6.4. Swarm composition discussion

The performance in hybrid swarms with different
swarm compositions is also measured on PlanetLab. In hy-
brid swarms, downloading peers use an unmodified BitTor-
rent client, while streaming peers use a modified BitTorrent
with our method. Different compositions of BitTorrent
swarms with these two kinds of peers are discussed. Three
situations are considered in our experiment: (1) 80% of
0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Download Complete Time/Minute

C
D

F

20%
50%
80%

100 1020

0.2

0.4

0.6

0.8

1

Miss Penal

C
D

F

Fig. 12. PlanetLab measurement result
peers use the rarest-first policy, while 20% use our method;
(2) 50% use the rarest-first, while 50% use our method; and
(3) 20% use the rarest-first, while the rest 80% use our
method. These three situations are indicated by ‘‘20%’’,
‘‘50%’’ and ‘‘80%’’, respectively. We then compare the
download completion times of the downloading peers and
the miss penalty and startup delay of the streaming peers
in different swarm compositions.

Fig. 12(a) shows the download completion time distri-
butions of the downloading peers. It is obvious that the
more peers that use the rarest-first policy, the less time is
used for the downloading peers to finish downloads, as
104 106

ty/Second

20%
50%
80%

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

Startup Delay/Second

C
D

F

20%
50%
80%

for different swarm composition.

1116 Z. Ma et al. / Computer Networks 56 (2012) 1103–1117
the rarest-first policy will promote system throughput.
Fig. 12(b) and (c) present the streaming performance of
different swarm compositions. We can see that the swarms
with 20% of peers or 80% of peers using our method have a
smaller miss penalty than those with 50% of peers using
our method, similar to the simulation result in Fig. 3(c).

However, for the startup delay, a composition with 50%
of peers using our method will perform the best, while a
composition with 20% of peers using our method has the
worst effect.

In this section, we evaluate the performance of our
method by comparing it with other policies, such as the
sequential policy and BiToS in streaming swarms and hy-
brid swarms. In addition to the flash-crowd situation, we
compare different policies in a situation in which peers
join a swarm dynamically. The results show that our meth-
od is better than the sequential policy and BiToS in both
system throughput and playback continuity. We also dis-
cuss the system’s performance in situations with different
window sizes and the swarm composition’s impact on sys-
tem performance.
7. Conclusion and future work

In this paper, we explored methods of providing VoD
service in existing BitTorrent swarms while maintaining
the download efficiency of the file-sharing users. We
examined the contents of BitTorrent swarms, especially vi-
deo files. The measurement results show that there is an
increasing demand for a BitTorrent-based streaming ser-
vice. Based on the real system measurement results and
the model analysis, we found that in hybrid BitTorrent sys-
tems with both downloading and streaming peers, system
efficiency would decline if we only modified the piece
selection policy from the rarest-first policy to the sequential
one. We modified both piece and peer selection policies to
create a BitTorrent support streaming service while main-
taining the throughput of downloading service. We
proposed a sliding window-based hybrid piece selection
policy that combines the rarest-first and the sequential pol-
icies, and the peer selection is also optimized with CAP.
The evaluation results obtained on PlanetLab show that
the proposed method has a higher performance than the
sequential policy and BiToS.

In our method and evaluation, the buffer window size
and startup buffer size are constant; we believe it is best
if they are dynamically adaptive to the peers’ properties,
such as network bandwidth. Therefore, the determination
of the best buffer size is a challenge for future work. Our
evaluative work is mainly based on flash-crowd situations,
but in reality, a steady situation with peers joining and
leaving is more common. However, a steady situation is
hard to measure or simulate; hence, making a more accu-
rate evaluation or deploying our strategy in a real applica-
tion will be part of our future work. In addition, we have
only considered situations in which peers download a sin-
gle file, while peers usually download multiple files at the
same time. Therefore, making the BitTorrent support
streaming service better in a multi-swarm situation will
be discussed in the future. Finally, we only modified
BitTorrent for streaming peers to support streaming service.
However, whether the downloading peers’ client should be
modified for swarms to provide better streaming service
remains an interesting question.
Acknowledgments

We would like to thank Professor Hongying Liu, the
reviewers and the editors for their constructive comments.
This work was supported in part by NSFC Project
(61170292, 60970104), 973 Project of China (2009CB320
501), 863 Project of China (2008AA01A323, 2008AA01A
326) and Program for New Century Excellent Talents in
University.
References

[1] Y. Huang, T.Z.J. Fu, D.M. Chiu, J. Lui, C. Huang, Challenges, design and
analysis of a large-scale p2p-vod system, in: ACM SIGCOMM, 2008.

[2] B. Cheng, L. Stein, H. Jin, X. Liao, Z. Zhang, GridCast: improving peer
sharing for P2P VoD, in: ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), vol 4,
issue no. 4, article 26, 2008.

[3] Z. Liu, C. Wu, B. Li, S. Zhao, Uusee: Large-scale operational on-
demand streaming with random network coding, in: IEEE INFOCOM,
2010.

[4] Jun Lei, Lei Shi, Xiaoming Fu, An experimental analysis of Joost peer-
to-peer VoD service, in: Peer-to-Peer Networking and Applications,
vol 3, no. 4, 2010, pp. 351–362.

[5] D. Qiu, R. Srikant, Modeling and performance analysis of BitTorrent-
like peer-to-peer networks, in: ACM SIGCOMM, 2004.

[6] A.R. Bharambe, C. Herley, V.N. Padmanabhan, Analyzing and
improving BitTorrent performance, in: IEEE INFOCOM, 2006.

[7] A.L.H. Chow, L. Golubchik, V. Misra, BitTorrent: an extensible
heterogeneous model, in: IEEE INFOCOM, 2009.

[8] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning Ding,
Xiaodong Zhang, Measurements, analysis, and modeling of
BitTorrent-like systems, in: ACM IMC, 2005.

[9] N. Parvez, C. Williamson, A. Mahanti, N. Carlsson, Analysis of
bittorrent-like protocols for on-demand stored media streaming,
in: ACM SIGMETRICS, 2008.

[10] A. Vlavianos, M. Iliofotou, M. Faloutsos, BiToS: Enhancing BitTorrent
for supporting streaming applications, in: IEEE INFOCOM Global
Internet Workshop, 2006.

[11] Y.R. Choe, D.L. Schuff, J.M. Dyaberi, V.S. Pai, Improving VoD server
efficiency with bittorrent, in: ACM Multimedia, 2007.

[12] P. Shah, J.F. Pâris, Peer-to-peer multimedia streaming using
BitTorrent, in: IEEE IPCCC, 2007.

[13] P. Gill, M. Arlitt, Z. Li, A. Mahanti, Youtube traffic characterization: A
view from the edge, in: ACM IMC, 2007.

[14] K. Xu, H. Li, J. Liu, W. Zhu, W. Wang, PPVA: A universal and
transparent peer-to-peer accelerator for interactive online video
sharing, in: IEEE IWQOS, 2010.

[15] N. Carlsson, D. Eager, Peer-assisted on-demand streaming of stored
media using BitTorrent-like protocols, in: IFIP NETWORKING, 2007.

[16] Y. Yang, A. Chow, L. Golubchik, D. Bragg, Improving QoS in
bittorrent-like vod systems, in: IEEE INFOCOM, 2010.

[17] C. Liang, Z. Fu, Y. Liu, C.W. Wu, ipass: Incentivized peer-assisted
system for asynchronous streaming, in: IEEE INFOCOM, 2009.

[18] Y. Borghol, S. Ardon, N. Carlsson, A. Mahanti, Toward efficient on-
demand streaming with BitTorrent, in: IFIP NETWORKING, 2010.

[19] P. Savolainen, N. Raatikainen, S. Tarkoma, Windowing bittorrent for
video-on-demand: Not all is lost with tit-for-tat, in: IEEE
GLOBECOM, 2008.

[20] J. Lv, X. Cheng, Q. Jiang, J. Ye, T. Zhang, S. Lin, L. Wang, LiveBT:
Providing video-on-demand streaming service over BitTorrent
systems, in: PDCAT, 2007.

[21] H. Wang, J. Liu, K. Xu, Measurement and enhancement of BitTorrent-
based video file swarming, Peer-to-Peer Networking and
Applications, 3, Springer, 2010. no. 3, pp. 1–17.

[22] J. Mundinger, R. Weber, G. Weiss, Optimal scheduling of peer-to-
peer file dissemination, Journal of Scheduling, 11, Springer, 2008. no.
2, pp. 105–120.

Z. Ma et al. / Computer Networks 56 (2012) 1103–1117 1117
[23] B. Fan, D.G. Andersen, M. Kaminsky, K. Papagiannaki, Balancing
throughput, robustness, and in-order delivery in P2P VoD, in: ACM
CoNext, 2010.

[24] Z. Li, J. Cao, G. Chen, ContinuStreaming: Achieving high playback
continuity of Gossip-based Peer-to-Peer streaming, in: IPDPS, 2008.

[25] L. D’Acunto, N. Andrade, J. Pouwelse, H. Sips, Peer selection strategies
for improved QoS in heterogeneous BitTorrent-like VoD systems, in:
IEEE ISM, 2010.

Zhen Ma received the BEng degree in com-
puter science from Beijing University of Posts
and Telecommunications, Beijing China. He is
currently a master student in the Department
of Computer Science of Tsinghua University.
His research interests include P2P and overlay
network.
Ke Xu received the BS, MS, and PhD degrees in
computer science from Tsinghua University,
China, in 1996, 1998, and 2001, respectively.
Currently he is a full professor in the Depart-
ment of Computer Science of Tsinghua Uni-
versity. His research interests include next
generation Internet, traffic management,
switch and router architecture, and Internet of
Things. He is a senior member of the IEEE and
a member of the ACM.
Jiangchuan Liu (S’01-M’03-SM’08) received
the BEng degree (cum laude) from Tsinghua
University, Beijing, China, in 1999, and the
PhD degree from The Hong Kong University of
Science and Technology, in 2003, both in
computer science. He was a recipient of
Microsoft Research Fellowship (2000), a reci-
pient of Hong Kong Young Scientist Award
(2003), and a co-inventor of one European
patent and two US patents. He coauthored the
Best Student Paper of the IWQoS’08 and the
Best Paper (2009) of the IEEE Multimedia

Communications Technical Committee (MMTC). He is currently an asso-
ciate professor in the School of Computing Science, Simon Fraser Uni-
versity, British Columbia, Canada, and was an assistant professor in the

Department of Computer Science and Engineering at The Chinese Uni-
versity of Hong Kong from 2003 to 2004. His research interests include
multimedia systems and networks, wireless ad hoc and sensor networks,
and peer-to-peer and overlay networks. He is an associate editor of the
IEEE Transactions on Multimedia, and an editor of the IEEE Communi-
cations Surveys and Tutorials. He is a senior member of the IEEE and a
member of the Sigma Xi.

Haiyang Wang is currently a Ph.D Student in
the School of Computing Science, Simon Fra-
ser University, British Columbia, Canada. He is
working in the Multimedia and Wireless
Networking Group and his research interests
include peer-to-peer networks, multimedia
systems/networks, IP routing and QOS.

	Measurement, modeling and enhancement of BitTorrent-based VoD system
	1 Introduction
	2 Related work
	3 Measurement
	3.1 BitTorrent video file measurement
	3.2 PlanetLab BitTorrent swarm measurement

	4 Model analysis
	4.1 Optimization model analysis
	4.2 Bandwidth usage analysis

	5 Policy modification
	5.1 Peer selection policy
	5.2 Piece selection policy

	6 Performance evaluation
	6.1 Policies comparison
	6.2 Dynamic situation discussion
	6.3 Buffer window size discussion
	6.4 Swarm composition discussion

	7 Conclusion and future work
	Acknowledgments
	References

