Check for
updates

% DIGITAL I PDF Download
ACM B e acmopen j‘)s 3719027.3765073.pdf
LIBRARY cammincine pen) : 23 December 2025
Total Citations: 0

Total Downloads: 1011

o

Published: 19 November 2025

£ Latest updates: https://dl.acm.org/doi/10.1145/3719027.3765073

RESEARCH-ARTICLE
Training Robust Classifiers for Classifying Encrypted Traffic under

Dynamic Network Conditions

Citation in BibTeX format
YUQI QING, Tsinghua University, Beijing, China CCS '25: ACM SIGSAC Conference on
Computer and Communications Security

QILEI YIN, Beijing Institute of Technology, Beijing, China October 13 - 17, 2025

XINHAO DENG, Tsinghua University, Beijing, China Taipel, Taiwan
XIAOLI ZHANG, University of Science and Technology Beijing, Beijing, China gl‘(’J"Sf:ée“ce Sponsors:

PEIYANG LI, Tsinghua University, Beijing, China
ZHUOTAO LIU, Tsinghua University, Beijing, China

View all

Open Access Support provided by:
Beijing Institute of Technology
George Mason University
Tsinghua University

University of Science and Technology Beijing

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)
https://doi.org/10.1145/3719027.3765073
ISBN: 9798400715259


https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3765073
https://dl.acm.org/doi/10.1145/3719027.3765073
https://dl.acm.org/doi/10.1145/contrib-99661764939
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99660482618
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/contrib-99659716233
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661766470
https://dl.acm.org/doi/10.1145/institution-60018273
https://dl.acm.org/doi/10.1145/contrib-99660584353
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99659478510
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/3719027.3765073
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/institution-60018319
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60018273
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3765073&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3765073&domain=pdf&date_stamp=2025-11-22

Training Robust Classifiers for Classifying Encrypted Traffic
under Dynamic Network Conditions

Yuqi Qing
INSC, Tsinghua University
Beijing, China
qyq21@mails.tsinghua.edu.cn

Xiaoli Zhang
University of Science and Technology
Beijing, China
xiaoli.z@ustb.edu.cn

Kun Sun
IST, George Mason University
Fairfax, Virginia, USA
ksun3@gmu.edu

Abstract

Most existing DL-based encrypted traffic classification methods suf-
fer performance degradation in real-world deployments due to dy-
namic network conditions, e.g., network environment changes and
traffic obfuscation. Dynamic network conditions cause encrypted
traffic to exhibit distinct feature patterns during training and test-
ing phases. To address this issue, we propose MetaTraffic, a novel
and general DL training framework built upon meta-learning that
enhances the performance of supervised DL models designed for
encrypted traffic classification against dynamic network conditions.
Our key observation is that the traffic of the same network behav-
iors share the same semantic features even under different network
conditions, which can be considered as stable feature representa-
tions. Therefore, MetaTraffic helps DL models learn stable feature
representations by minimizing the discrepancies in how the mod-
els represent traffic features under different network conditions,
thereby achieving robust classification under dynamic network
conditions. We implement MetaTraffic based on meta-learning with
three innovative facilitate modules to enhance its performance.
We evaluate MetaTraffic using three public datasets and three new
large-scale encrypted traffic datasets that cover multiple types of
network conditions. Experimental results show that, under dynamic
multiple types of network conditions, our framework improves the
accuracy of DL models by 8.94% and the F1-Macro score by 12.55%,
while existing robust training methods decrease the accuracy by
28.85% and the F1-Macro score by 33.52%.
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1 Introduction

With the widespread adoption of encrypted protocols, the pro-
portion of encrypted traffic has surged dramatically. For exam-
ple, approximately 97% of the world’s top 100 websites now use
HTTPS [63]. Encrypted traffic classification, which identifies the
category of applications or behaviors that generate traffic with-
out decrypting its payload, is essential for security and manage-
ment tasks such as intrusion detection [1, 2], user action identifica-
tion [10, 11], and application behavior analysis [22, 42].

Most existing encrypted traffic classification methods [15, 23,
39, 47, 52, 53, 56, 72, 73, 76] are based on supervised deep learning
(DL) models and have been extensively studied. However, their
performance often degrades when deployed in real-world networks
due to dynamic network conditions, which lead to discrepancies be-
tween the features observed during training and those encountered
after deployment. For example, training and newly incoming en-
crypted traffic may originate from different hosts, traverse different
network environments, and be obfuscated by different strategies.
These factors undermine the generalizability of the DL models
and result in higher classification errors. Recently, robust train-
ing methods [3, 48, 64, 67, 78] have been proposed to improve the
performance of DL models. They augment new traffic subject to


https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765073
https://doi.org/10.1145/3719027.3765073

CCS 25, October 13-17, 2025, Taipei

specific network conditions for DL model training. Unfortunately,
these methods are only effective when the incoming and training
traffic is under the same network conditions. Moreover, they can
only withstand the impact of a specific type of network condition.
Although Rosetta [64] and TrafCL [67] demonstrate robustness
against varying network environment conditions, they struggle
to generalize to traffic patterns arising from heterogeneous host
conditions. In real-world scenarios, encrypted traffic might be af-
fected by multiple network conditions simultaneously, which poses
a significant challenge to existing approaches.

To address the aforementioned issue, we propose MetaTraffic, a
novel and general DL training framework built upon meta-learning
that improves the performance of supervised DL models designed
for encrypted traffic classification under dynamic network condi-
tions. Our key observation is that the traffic of the same network
behaviors shares the same semantic features even under different
network conditions, which can be considered as stable feature repre-
sentations. Therefore, we aim to help DL models learn stable feature
representations by minimizing the discrepancies in how the mod-
els represent traffic features under different network conditions,
thereby achieving robust classification.

In particular, we devise MetaTraffic based on meta-learning with
three innovative modules. First, MetaTraffic divides the training
dataset into multiple tasks, each of which consists of training and
testing subsets that differ in network conditions, to simulate the
variability between model training and deployment environments.
For each task, a task-specific temporary DL model is trained on
the corresponding training subset. Here, we design a class-aware
representation augmentation module that adds class-aware and
stochastic noise into the feature representations during their train-
ing phase, mitigating the negative impacts of easy training traffic
samples on the temporary models’ representation capabilities. Sec-
ond, with the constructed temporary models, MetaTraffic calculates
the feature representation discrepancy between the training and
testing subsets of each task as the task’s loss. A cluster-based rep-
resentation alignment module is proposed here to accurately and
efficiently calculate the discrepancy. It applies an adaptive cluster-
ing algorithm to automatically identify a small number of highly
representative feature representations for traffic samples exhibit-
ing diverse behaviors, intended for discrepancy calculation. Third,
MetaTraffic jointly optimizes the original DL model based on all
tasks’ losses to minimize the feature representation discrepancy. We
design an adaptive task weight allocation module to accelerate the
convergence of the DL model while preventing it from overfitting
to specific tasks. It continuously evaluates the DL model’s optimiza-
tion progress by measuring the loss variations in successive training
iterations and allocates adaptive task weights that align with the
model’s optimization requirements at different optimization stages.
MetaTraffic optimizes the DL model iteratively. The DL model from
the previous iteration is used in the next iteration to construct tem-
porary models and is further optimized based on new task losses.
Upon convergence, the DL model learns to generate stable feature
representations for encrypted traffic under dynamic network condi-
tions and can be deployed for robust classification after fine-tuning
on all training traffic. We implement MetaTraffic based on meta-
learning because it can enhance DL models’ generalization ability,
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enabling them to generate stable feature representations for previ-
ously unseen encrypted traffic after deployment rather than simply
for the training traffic.

We choose three public datasets and collect three new datasets to
perform extensive evaluations. Overall, we collected over 880,000
encrypted traffic flows from 20 cloud servers across five countries
Each new dataset is collected under three types of different network
conditions: (i) the encrypted traffic is generated by different hosts,
(ii) the encrypted traffic is transmitted through different network en-
vironments, and (iii) the encrypted traffic is obfuscated by different
strategies. To the best of our knowledge, the three datasets are the
first large-scale encrypted traffic datasets generated under multiple
types of network conditions. We evaluate our framework’s perfor-
mance under dynamic single type and multiple types of network
conditions using both public and newly collected datasets.

The contributions of this paper are fourfold:

e We propose a novel DL training framework, MetaTraffic, to im-

prove the classification performance of any supervised DL mod-

els designed for encrypted traffic classification under dynamic
network conditions.

Our framework enables DL models to generate stable feature

representations for encrypted traffic under dynamic network

conditions, ensuring accurate classification. This is achieved by
minimizing the discrepancies in how DL models represent traffic
features under different network conditions.

o We release three large-scale encrypted traffic datasets!, which
comprise over 880,000 flows and incorporate three common types
of network conditions. To the best of our knowledge, these are
the first publicly available encrypted traffic datasets generated
under multiple types of network conditions.

o We prototype MetaTraffic and evaluate its performance on three
public datasets and our newly collected datasets. The experimen-
tal results show that our framework can improve the DL models’
accuracy by 8.94% and F1-macro score by 12.55% on average un-
der dynamic multiple types of network conditions, while existing
robust training methods decrease the accuracy by 28.85% and
F1-macro score by 33.52%.

2 Problem Statement

This paper aims to develop a training framework that can improve
the performance of any supervised DL models designed for en-
crypted traffic classification under dynamic network conditions.
These DL models require a certain amount of encrypted traffic
Dyrain for training to classify the newly incoming traffic Dyes; (also
referred to as testing traffic). In real-world networks, both D;4in
and Dy are subject to diverse network conditions. Since the pro-
cess of collecting Dyqin is controlled, we can identify the specific
network conditions that affect Dy 4i, in advance, i.e., the network
conditions that affect Dsrq4in are known. However, the dynamic
nature of network conditions results in inconsistencies between
the specific network conditions affecting testing encrypted traffic
and those influencing training encrypted traffic. Moreover, multiple
types of network conditions may impact both D;rqin and Djest

!The collected encrypted traffic datasets and the source code of our framework are in
https://github.com/XXnormal/MAML-Training-ETC
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simultaneously. In this paper, we consider three common types of
network conditions that can alter the features of encrypted traffic:

e Encrypted traffic is generated by different hosts. Different
hosts often vary in hardware, operating systems, and encryp-
tion protocols, which leads to generating encrypted traffic with
dissimilar features. For instance, since the TLS 1.3 encryption
protocol has fewer handshake rounds than TLS 1.2, the encrypted
traffic generated by hosts adopting TLS 1.3 has a smaller hand-
shake data size features [12].

o Encrypted traffic is transmitted through different network
environments. The link layer, network layer, and transport
layer protocols, along with their configurations, often vary across
different network environments, rendering the encrypted traffic
transmitted through different network environments exhibiting
distinct features. For instance, a larger maximum transmission
unit (MTU) setting can increase the maximum packet size per
flow while reducing the number of packets [64]. Due to common
network operations such as routing selection and load balancing,
network traffic is often transmitted through different network
environments at different times.
Encrypted traffic is being obfuscated by different strate-
gies. Traffic obfuscation refers to the process of concealing the
category information of encrypted traffic by actively altering
its features. Numerous traffic obfuscation strategies have been
proposed to prevent the identification of malicious encrypted
traffic or users’ web browsing behaviors. These strategies modify
traffic features in various ways, such as by injecting dummy pack-
ets [24, 30, 46] or regularizing traffic of different categories into
similar transmission patterns [5, 6, 13, 19, 26, 61]. Each strategy
typically includes multiple parameter settings to adjust the de-
gree of feature alteration. As a result, encrypted traffic obfuscated
using different strategies and parameter settings often exhibits
distinct feature patterns.

The dynamic, multiple types of network conditions result in train-
ing and testing encrypted traffic of the same category exhibiting
dissimilar feature patterns. As a result, the DL models that are
trained on D¢, qipn usually perform poorly on Dyes;. Our framework
aims to improve the DL models’ performance on Dy.g; only using
Di¢rain, regardless of their architectures or the features they used.
Our objective is also to address the shortcomings of existing
robust training methods [3, 48, 64, 67, 78]. First, we consider clas-
sifying encrypted traffic under dynamic network conditions, in
which the training and testing encrypted traffic is subject to incon-
sistent network conditions. This is a more realistic yet challenging
scenario, whereas existing studies assume that training and testing
encrypted traffic share the same known network conditions. Second,
we consider that network conditions may come in various types,
whereas previous studies are only capable of defending against spe-
cific single types of network conditions in most cases. Additionally,
we also consider applicability. Existing robust training methods
only augment new encrypted traffic in specific feature formats, re-
stricting their use to DL models specifically tailored to these feature
formats. For example, Rosetta [64] and NetAugment [3] are limited
to augmenting new encrypted traffic in packet length sequence
formats. In contrast, our framework does not rely on augmenting
new traffic and can enhance the performance of any supervised
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Dynamic Network Condition Type Applic-

Method Network Network . Ppic

Conditions Host Environment Obfuscation | - ability
Rosetta[64] X X v X X
TrafCL[67] X X v X X
2DA[78] X X v X X
NetAugment[3] X v v X X
AAAttack[48] X X v v X
Ours ‘ v ‘ v v v ‘ v

Table 1: The comparison between existing robust training
methods and our framework. Dynamic Network Conditions
indicates the method’s effectiveness when the training and
testing encrypted traffic is subject to inconsistent network
conditions. Network Condition Type indicates the method’s
resistance to a specific network condition type. Applicability
means whether the method can be applied to any supervised
DL models for encrypted traffic classification.

Train with support set from all conditions
—
— - Performance loss on all scenarios

= Optimize the original model with the loss

'f/\o%. .
\\\A

Figure 1: The process of the Model-Agnostic Meta-Learning
algorithm.

DL models. We compare our work with existing robust training
methods in Table 1.

3 Preliminary: Meta-Learning

Meta-learning is an effective training method that enables DL mod-
els to achieve good generalization ability across various learning
tasks. We illustrate the core idea of meta-learning by introducing the
classical Model-Agnostic Meta-Learning (MAML) algorithm [21]
and show its process in Figure 1. Specifically, the input of MAML
is an untrained DL model ¢ and multiple datasets, each of which
is regarded as a specific learning task. In the first iteration, one or
several tasks are selected, and an independent temporary model is
constructed for each selected task by training ¢ on a support set
and is evaluated on a query set, where the two sets are disjoint and
both are randomly selected from the dataset corresponding to the
task. Then, the original ¢ (i.e., before temporary model construc-
tion) is optimized based on the performance of each constructed
temporary model. The optimized model in the first iteration, de-
noted as ¢1, serves as the input for the second training iteration, i.e.,
a new temporary model is created based on ¢1, and its performance
will be used to optimize ¢;1. Once the DL model has converged, it
will perform well on different tasks. Moreover, since meta-learning
does not directly optimize the DL model using the existing data of
all tasks (i.e., it optimizes based on the performance of temporary
models), it prevents the DL model from overfitting to the existing
data, thereby improving its generalization ability for previously
unseen data [4, 17, 36].
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Meta-learning has been widely adopted in various domains,
such as few-shot classification [8, 31], personalized recommen-
dation [18, 69], and robot manipulation [28, 58]. In this paper, we
divide training encrypted traffic under different known network
conditions into many pairs of condition-disjoint training and testing
subsets. Each pair serves as an independent task that simulates sce-
narios where DL models encounter encrypted traffic under dynamic
network conditions. Thus, by optimizing the DL model through
meta-learning on these tasks, the DL model will learn to generate
stable feature representations for both training traffic and newly
incoming traffic, thereby ensuring accurate classification results
upon deployment under dynamic network conditions.

4 Methodology

4.1 Overview

To achieve robust encrypted traffic classification under dynamic
network conditions, MetaTraffic helps DL models learn stable fea-
ture representations by minimizing the discrepancies in how the
models represent traffic features under different network condi-
tions. Typically, a DL model designed for classification tasks con-
sists of multiple layers: the former layers process the raw features
of data into representations that encapsulate essential attributes,
while the latter layers learn classification knowledge from these
representations to categorize testing samples. With stable feature
representations, the classification knowledge learned by the DL
model from training traffic can be effectively applied to classify
testing traffic, regardless of how its features vary under dynamic
network conditions, thereby ensuring accurate results.

We show the training process of MetaTraffic in Figure 2. In partic-
ular, MetaTraffic randomly divides the training dataset into multiple
tasks, each of which consists of training and testing subsets that
differ in network conditions. The initial untrained DL model used
for encrypted traffic classification is denoted as ¢. In the first itera-
tion, an independent temporary model ¢* is constructed for each
task by training ¢ on the task’s training subset. Next, the feature
representations of all training and testing traffic samples in each
task are obtained using the corresponding temporary model, and
the discrepancy between them is calculated as the task’s loss. Then
¢ is jointly optimized based on the losses of all tasks. The optimized
¢ is used in the next training iteration to construct the temporary
models, further optimized based on newly calculated task losses,
and the cycle continues. Once the DL model converges after mul-
tiple iterations, the optimized model can generate stable feature
representations for encrypted traffic under dynamic network con-
ditions. Finally, the DL model is fine-tuned using all training traffic
before being deployed for encrypted traffic classification.

To facilitate the training process, MetaTraffic includes three mod-
ules: the class-aware representation augmentation module, the
cluster-based representation alignment module, and the adaptive
task weight allocation module. The class-aware representation aug-
mentation module introduces class-aware and stochastic noise into
the feature representations during the training of temporary mod-
els to enhance their representation capabilities. The cluster-based
representation alignment module automatically identifies a small
number of highly representative feature representations using an
adaptive clustering algorithm for accurate and efficient feature
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representation discrepancy calculation. The adaptive task weight
allocation module continuously evaluates the optimization process
of the DL model and allocates adaptive task weights to accelerate
its convergence while preventing overfitting.

4.2 Training Task-specific Temporary Models

MetaTraffic constructs a temporary model for each task using the
task’s training samples and either the initial, untrained DL model
(in the first iteration) or the optimized DL model from the previous
iteration (in subsequent iterations). In particular, let D;, be the
training subset of a task and (x, y) be an encrypted training traffic
sample belonging to it, where x and y denote the features and class
label, respectively, the temporary model’s initial parameters (also
be denoted as ¢) are copied from the initial, untrained DL model or
the optimized DL model from the previous iteration. Then, we can
apply the traditional supervised training method [34] to update the
temporary model’s parameters:

$ =p-mVy > LIC(Z(x:9):9).9),

(x,y) €Dy

1)

where ¢* is the updated parameters, £L(-) is the classification loss
function (e.g., the cross entropy), 11 is the learning rate, Z(-) and
C(-) are the outputs of the feature representation and classification
layers of the model, respectively.

However, this straightforward strategy has a critical drawback:
easy training traffic samples may limit the representation capability
of the temporary model. Easy samples are those with features that
directly infer the class label, such as malicious encrypted traffic
containing specific handshake metadata rarely observed in normal
traffic [27]. They can lead the temporary model to rely solely on
specific features that directly infer the class label rather than explor-
ing the intrinsic correlations among all features to generate feature
representations. Consequently, the representation capability of the
temporary model becomes constrained, making it inadequate for
producing accurate representations when all features undergo sig-
nificant changes due to dynamic network conditions. Furthermore,
since the DL model is optimized based on the temporary model’s
performance, its representation capability will also be restricted.

To overcome the above issue, we design a class-aware repre-
sentation augmentation module. It directly adds noise to the fea-
ture representations generated by the temporary model during its
training phase. The noise directly enhances the diversity of the
generated feature representations, particularly for monotonous fea-
ture representations corresponding to easy training traffic samples.
Note that the temporary model performs classification based on its
generated feature representations. Therefore, diverse feature repre-
sentations increase the classification difficulty for the temporary
model, preventing it from relying solely on specific features to gen-
erate feature representations with insufficient information. Instead,
they encourage the temporary model to explore the intrinsic corre-
lations among all features, producing feature representations with
richer information for more accurate classification, i.e., enhancing
the model’s representation capability. Furthermore, compared to
traditional data augmentation methods used to enhance feature
representation diversity [7, 25], our module does not incur addi-
tional training overhead because it does not synthesize any new
training samples.
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Figure 2: The overview of MetaTraffic.

Our module utilizes existing methods [9, 37, 59] to generate these
two types of noise. In particular, let the class label set of all training
samples be C and the output of the feature representation layers
of the temporary model be d-dimensional vectors. In each training
iteration of the temporary model, our representation augmentation
method works as follows: 1) it obtains the original feature repre-
sentations of all training samples from the output of the temporary
model’s representation layers; 2) it calculates the variance of all
training samples belonging to each class in each dimension of the

representatlon vectors and denote it as o = {ayo, Oy C‘} where

yl € R4 represents the variance 1nformat10n of all samples be-
longing to the i-th class; 3) For each training sample (x,y), it adds

noises on its original feature representation z to create a new z:
@

where a ~ N(1L,A1 - I),f ~ N(0,A2 - I) and y ~ N(O,diag(ai)),
and A and Ay are two hyper-parameters; 4) The new feature repre-
sentations of all training samples are input into the classification
layers of the temporary model to calculate the classification loss
and update the parameters of the temporary model:

$*=¢-mVy > LCEP.Y).

(x,y) €Dy

Z=a0z+f+y,

©)

Note that we add two types of noise to the feature representation
of each training sample. The y noise is sampled from a multivari-
ate normal distribution with a zero-mean vector and a covariance
matrix formed by the variance information of the feature repre-
sentations of the samples belonging to the same class. This design
avoids generating noise located in the distribution area of feature
representations of other class samples, i.e., maintaining the seman-
tic integrity of each class in the training subset, enhancing the
diversity of feature representations without preventing the tempo-
rary model from learning incorrect classification knowledge. The
a and f noise is sampled from two other normal distributions to
further increase the diversity of feature representations, and we
usually set A1, A2 to small values. In this paper, we implement our
method with A1 = A,.

Identifying the representation layers. For a supervised DL
model used for classifying encrypted traffic, if its representation
layers are explicitly defined in its design, we obtain the feature
representations of each encrypted traffic sample from the output of
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the pre-defined representation layers. For example, the representa-
tion layer of the FS-Net model [40] is designed as the intermediate
layer between its encoder and decoder modules. Otherwise, we
consider the last fully connected layer as the classification layer
and all preceding layers as the representation layers, as [78] does.

4.3 Calculating Task-specific Representation
Discrepancy

For each task, MetaTraffic obtains the feature representations of all
traffic samples in the training and testing subsets using the con-
structed temporary model corresponding to this task and calculates
the discrepancy between them as the task’s loss. To achieve this
goal, a straightforward loss function design is to calculate the sum
of the distances between each pair of feature representations be-
longing to the same class from the training and the testing subsets,
respectively. However, its time complexity is O(n?d), where n is the
number of samples in each class and d denotes the dimensionality
of feature representation, which significantly increases the training
overhead. A widely used alternative design [17, 55, 70] is to obtain
the mean feature representation vector (i.e., the prototype) of each
class and calculate the sum of the distances between prototypes.
However, in certain encrypted traffic classification tasks, traffic sam-
ples that represent diverse behaviors may be labeled as the same
class. For example, the traffic generated by various users accessing
different types of websites may all be labeled as normal. This leads
to significant variations in feature representations within the same
class. A coarse-grained single prototype is insufficient to represent
these varying feature representations, which results in the single-
prototype-based loss function design being unable to calculate the
discrepancy between feature representations accurately.

To overcome the above limitations, we design a cluster-based
representation alignment module. It utilizes an adaptive clustering
algorithm, i.e, DP-Means [33], to automatically identify a small
number of highly representative feature representations for traffic
samples exhibiting diverse behaviors in each class, thereby enabling
accurate and efficient discrepancy calculation. In a nutshell, the
DP-Means method fits all input data into a Gaussian mixture dis-
tribution and calculates the lower bound of the distance between
two data points belonging to different Gaussian distributions as
the threshold of determining whether a data point belongs to an
existing cluster. Therefore, the DP-Means method can automatically
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identify the minimum number of compact clusters that encapsulate
all input data without knowing the number of clusters in advance,
where each cluster corresponds to an independent Gaussian distri-
bution, and its Gaussian center can accurately represent all the data
within the cluster. Moreover, compared with other typical cluster-
ing methods such as DBSCAN [20] and hierarchical clustering [29],
which have a time complexity larger than O(n?d), the DP-Means
method is significantly more efficient with a time complexity of
only O(nkd), where k represents the maximum number of clusters
belonging to each class and d denotes the dimensionality of the
feature representation, respectively. Since k < n in most cases,
O(nkd) is considerably smaller than O(n?d), making DP-Means a
more efficient choice.

In particular, we use DP-Means to cluster the feature represen-
tations of all traffic samples in the training and testing subsets,
respectively, while ensuring that the feature representations within
each cluster belong to the same class and calculate the Gaussian
center of each cluster as a prototype of the corresponding class. We
show the process in Alg.1. By using these few but highly represen-
tative prototypes, we can efficiently and accurately compute their
discrepancy as the loss of the task. We denote the set of prototypes

for class c obtained from the training and testing subsets as Pt(rC )

and Pt(g) respectively and calculate the discrepancy between these
prototypes from two different aspects as the task’s loss £:

1 2
Lecontent = E ZEﬂiEPt(?’HJEPt(Z) log [|pi — pjll°, 4
d(p1, p2) = KL(C(p)|IC(p2)) + KL(C(p2)lIC(111)),  (5)
1
Lsemantic = ﬁ ; E,Uiepl(k:),/ljept(? d(/li, ,Uj), (6)
L = w1 - Leontent + @2 * Lsemantics (7)

where KL(p||q) = plog(p/q) and w1, wz are weight parameters.

The Lcontent term quantifies the content discrepancy between
prototypes, while the Lsemantics term captures the semantic dis-
parity between prototypes, i.e., whether they can be classified into
the same class by the temporary model. This loss design ensures
that, upon optimization, the DL model produces feature representa-
tions for encrypted traffic affected by different network conditions
that are both content- and semantically similar, i.e., stable feature
representations.

4.4 Jointly Optimizing DL Model

MetaTraffic jointly optimizes the DL model in the original state
(i.e., before temporary model construction) based on the loss of
all tasks, enabling it to generate stable feature representations. A
straightforward joint optimization approach is to calculate the sum
of the second-order derivatives of each task’s loss with respect to
the DL model parameters, using this as the optimization gradient.
However, this approach overlooks the fact that tasks may contribute
differently to the DL model’s representation capability due to each
task containing different training and testing samples. To accelerate
the optimization process, greater weights can be assigned to tasks
with higher losses. Nevertheless, this strategy risks causing the
DL model to overfit to high-loss tasks, thereby compromising its
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Algorithm 1: Class Prototype Identification

Data: feature representation set Z, hyper-parameter o, class
label set C
Result: prototype set P(°) = {;;;} for each class ¢
// calculate cluster threshold
1 p « the mean of the standard deviations of all feature
representations in Z on each dimension

2 2 2010 v )

// clustering all samples with the threshold
3 P(©) — {center of all vectors in class c} for all ¢ € C;
4 for (z,y) € Z do
5 if distance between z and any center in P(©) > ) then
PW « PW) 4 {z} // create new cluster
7 end

||

s end

// calculate Gaussian center as class prototype
9 forc € Cdo
for y1; € P() and (zj,yj) € Z withy; = cdo
N(zjlpi,0)

11 Tij & =7
Y S epto N(zjlmo)
12 end
13 p(C)&{M“:L...Jp(CM}
2 TTij
14 end

generalization ability, i.e., only capable of generating stable repre-
sentations for encrypted traffic belonging to specific tasks rather
than a variety of scenarios.

To accelerate the optimization of the DL model while preventing
it from overfitting to specific tasks, we design an adaptive task
weight allocation module. Its core idea is to continuously evaluate
the optimization progress of the DL model and allocate task weights
that align with the model’s optimization requirements at different
optimization stages. Typically, in the early optimization stage, due
to the DL model’s limited representation capability, the loss of each
task tends to fluctuate significantly between consecutive training
iterations. Thus, higher weights should be assigned to high-loss
tasks to accelerate the optimization process. In the later optimiza-
tion stage, as the DL model’s representation capability improves,
the loss of each task tends to exhibit only minor variations between
training iterations. Thus, the weights should be more evenly dis-
tributed across tasks to prevent the DL model from overfocusing
on high-loss tasks. In particular, assume there are T tasks in total
and we denote the loss of ¢-th task in the e-th training iteration of
our framework as L¢, the weight vector W* for each task in this
iteration is computed by:

®)

| o

where 73 is the learning rate for updating w and the weight in the
first training iteration, i.e, w!, is a pre-defined hyper-parameter.

Note that the optimization process is evaluated based on £~ — L€,

we :Softmax([we LY we Lf]l)’

T

et - L)

wé=wel. (1 —argtan ’7?3
t=1
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i.e,, loss variation in successive training iterations. Our design en-
sures that when loss variations are significant during the early
optimization stage, larger weight coefficients w are obtained, allow-
ing tasks with higher losses to receive greater weights. In the later
optimization stage, as loss variations become smaller, our design
decreases the weight coefficients, thereby minimizing the differ-
ences between task weights. With the weight vector W, the update
of the DL model in the e-th training iteration is as follows:

T
9¢ =9 =z ) WEH] - Vy L, (10)
t=1
where 73 is the hyper-parameter of the learning rate. Note that £
is computed based on ¢, while ¢ is obtained by performing first-
order optimization on ¢. Thus, V4 L7 is the second-order derivative
of L{ with respect to ¢. When the DL model converges after mul-
tiple iterations, it can generate stable feature representations for
encrypted traffic under dynamic network conditions. Finally, we
fine-tune it using all training traffic, and then it can be deployed for
robust encrypted traffic classification. The entire training process
of our framework is shown in Alg.2.

Algorithm 2: Meta learning-based robust training

Input: initial DL model ¢°, T training tasks {(Dyr, Dse)}
Output: converged DL model ¢
1 while ¢¢ is not converged do

2 e«—e+1;
3 for t-th task with subsets (Dyr, Dte) do
4 for every temporary model training epoch do
5 Perturbate features in D;, with Eq.(2);
6 Train temporary model ¢; with Eq.(3);
7 end
8 Cluster Pt(rc ) and Pt(ec ) for each ¢ with Alg.1;
9 Calculate meta-loss £ through Eq.(4)-(7);
10 end
1 Optimize the parameter w with Eq.(9);
12 Calculate the weight of each task with Eq.(8);
13 Update the ¢¢ with Eq.(10);

14 end
15 Finetune ¢ « ¢¢ with all training data;

5 Evaluation

In this section, we evaluate our training framework with three
public datasets and three newly collected datasets. We also compare
its performance with several SOTA robust training methods.

5.1 Experimental Setup

Public Datasets. We choose three public encrypted traffic datasets

for evaluation, each is subject to a specific single type of network

condition. We show their information in Table 2. They have been

widely used in existing studies [14, 49, 50, 54, 56, 57, 64, 71, 74].

o Application-Host [74] contains encrypted traffic generated by
hundreds of applications on 177 hosts using 5 operating systems:
Android 6, 7, 8, 9, and 10. We use it to evaluate the performance
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Dataset Network Condition Type(s) ‘ Number of flows
Applicati
pplication Different Hosts 3,023,734
-Host
DoHB:
ororw Different Network Environments 4,985
-NetEnv
Tor . .
. Different Obfuscation Events 105,730 X 13
-Obfuscation
Application Different Hosts,
L Different Network Environments, 281,935 x 13
Different Obfuscation Events
Different Hosts
DoHB ’
(_) ALEW Different Network Environments, 631,700 X 13
Different Obfuscation Events
Tor DlﬁerenF Hosts & Networ‘k Environments, 149701 X 13
-ALL Different Obfuscation Events

Table 2: The network conditions affecting each public and
newly collected dataset, as well as the number of network
flows they include. Each newly collected dataset contains
both the original unobfuscated traffic and the traffic obfus-
cated by 12 obfuscation events.

of classifying encrypted traffic produced by different applications
under dynamic host conditions.

DoHBrw-NetEnv [64] is generated by replaying the normal and
malicious DNS over HTTPS (DoH) traffic, which is extracted
from the CIRA-CIC-DoHBrw-2020 dataset [45], in three differ-
ent network environments: China-to-China(cn2cn), China-to-
Korea(cn2kr), and China-to-United States(cn2us). We use this
dataset to evaluate the performance of identifying malicious en-
crypted traffic under dynamic network environment conditions.
Tor-Obfuscation [56] contains Tor-encrypted traffic generated by
accessing 95 websites using the Tor browser. We apply four repre-
sentative encrypted traffic obfuscation methods, including WTF-
PAD [30], FRONT [24], TrafficSliver [13], and RegulaTor [26],
where each strategy is with three different parameter settings
individually, to perform traffic obfuscation, resulting in Tor traffic
affected by 12 different obfuscation events. Note that each obfus-
cation event, comprising one strategy and one parameter setting,
is considered a network condition. The parameter settings for
each obfuscation strategy are listed in Table 3. We use this dataset
to evaluate the performance of classifying the websites visited
via Tor traffic under dynamic obfuscation conditions.

Newly Collected Datasets. To comprehensively evaluate the per-
formance of classifying various encrypted traffic under dynamic
single type and multiple types of network conditions, we collect
three new datasets. Specifically, we deploy four cloud servers in
each of the following five countries: Japan (JP), the United States
(US), the United Kingdom (UK), South Africa (SA), and Australia
(AU). Then, we collect new datasets by replaying existing encrypted
traffic between cloud servers or using these servers to collect new
encrypted traffic in the wild. Moreover, we use the same 12 obfus-
cation events as in the Tor-Obfuscation dataset to obfuscate the
newly collected traffic. As shown in Table 2, these datasets include:

o Application-ALL is created by replaying the original encrypted
traffic from the Application-Host dataset [74], generated by dif-
ferent hosts, in four different network environments, and further
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Obfuscation Strategy Three parameter settings

WTFPAD normal, normal/2, normalx2
FRONT start_padding_time =0, 7, 8
TrafficSliver bi-direction, weighted_random, batch_weighted_random
RegulaTor budget = 260, 520, 780

Table 3: The parameter settings of each obfuscation strategy.
The normal represents the default probability that WTF-
PAD inserts dummy packets, while normal/2 and normalx2
means half and double the default probability, respectively.
The start_padding time represents the time when FRONT
starts inserting dummy packets. The three parameters of
TrafficSliver represent three regularization algorithms used
by this strategy. The budget represents the overhead limit of
obfuscation imposed by RegulaTor.

obfuscating it. We randomly select a cloud server in each country
and replay the encrypted traffic between cloud servers in Japan
and the United States (JP-US), Japan and the United Kingdom
(JP-UK), Japan and South Africa (JP-SA), and Japan and Australia
(JP-AU), respectively. We replay 56,387 encrypted traffic flows
between each pair of servers. The encrypted traffic replayed be-
tween different cloud server pairs traverses different network
environments. We show the throughput, number of retransmis-
sion packets, and latency between different server pairs in Table 4
to indicate their differences. We use this dataset to evaluate the
performance of classifying encrypted traffic produced by different
applications under dynamic network environments, obfuscation,
and multiple types of network conditions.

DoHBrw-ALL is created by replaying the original normal and
three types of malicious DoH traffic from the CIRA-CIC-DoHBrw-
2020 dataset [45] between the same four cloud server pairs used
in the Application-ALL dataset and further obfuscating it. The
original DoH traffic is generated by four different DNS servers,
including AdGuard, Cloudflare, Google, and Quad9, which can be
regarded as different hosts. We replay 126,340 encrypted traffic
flows between each pair of servers. We use this dataset to eval-
uate the performance of identifying various types of malicious
encrypted traffic under dynamic hosts, obfuscation, and multiple
types of network conditions.

Tor-ALL is created using 20 cloud servers to capture real Tor
traffic, which is then further obfuscated. We installed the Tor
browser of version 13.0.10 and 13.5 on these cloud servers as
Tor clients, configuring them to access the top 100 websites on
the Alexa Top list while recording the generated Tor traffic. The
collection process lasted from June to August 2024, accumulating
149,701 Tor flows in total. Note that each Tor client establishes
an independent circuit for data transmission, meaning that Tor
traffic generated by different hosts is also transmitted through dis-
tinct network environments, i.e., host and network environment
conditions vary simultaneously. We use this dataset to evaluate
the performance of classifying the websites visited via Tor traffic
under dynamic multiple types of network conditions.

DL models for Encrypted Traffic Classification. We choose two
representative supervised DL-based encrypted traffic classification
methods that utilize different DL models, including DF [56] and
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Cloud Server Pair ‘ JP-US JP-UK JP-SA JP-AU

Throughput(bps) | 1.01G 584M 737M  835M
#Retransmission 1005 12 70 2799
Latency(ms) 161 230 198 114

Table 4: The differences in network environments between
different cloud server pairs.

ARES [15], to evaluate their performance in the presence of dy-
namic network conditions, with or without our framework. Specifi-
cally, DF utilizes a multi-layer convolutional neural network (CNN),
where its CNN layers function as feature representation layers,
and its final fully connected layer serves as the classification layer.
ARES employs a Transformer-based architecture, with its preceding
Transformer layers handling feature representation and its final
fully connected layer performing classification. Both models are
directly applicable to various encrypted traffic classification tasks.
Baselines. We first choose three SOTA robust training methods
as baselines, including Rosetta [64], NetAugment [3] (NA), and
Augmentation-Assisted Attack (3A) [48]. These methods aim to im-
prove the performance of DL models in classifying encrypted traffic
in real-world networks. They augment new training traffic affected
by specific known network conditions and use the new traffic to
train the DL model. We also introduce the SelfReg method [32] as
another baseline. SelfReg is a general approach for enhancing the ro-
bustness of DL models against feature fluctuations, typically caused
by data collected under varying conditions, and has been widely
applied across numerous domains. [16, 35, 41, 60, 65, 68, 75, 77]. It
incorporates additional regularization terms into the loss function.
Additionally, we construct two new baselines by combining the
above methods: 3A+Rosetta+SelfReg, and 3A+NA+SelfReg. The im-
plementations of all baselines with the two DL models are described
in Appendix A. Note that all baselines and our framework do not
change the architectures of the DL models for encrypted traffic
classification.

Implementation. We implement our training framework using
Python 3.10.13, NumPy 1.26.3, Pytorch 2.1.2, and Cuda 12.6. The
default hyper-parameters of our framework are listed in Table 5.
Besides, we apply a grid search to find the suitable learning rates,
i.e., n1,2,3, for different DL models and datasets. The baselines are
implemented based on their publicly available codes, and their
default parameters are applied. We run our framework and all
baselines on a Linux server (6.5.0-41-generic) with Intel(R) Xeon(R)
Gold 6258R CPU and NVIDIA GeForce RTX 4090 GPU.

Module ‘ Hyper-parameter ‘ Description
Class-aware =1 standard deviations of
Representation Augmentation Ay =1 Gaussian noise in augmentation
Cluster-based st.anda}'d c{levi?tmn O.f
. - o=5 Gaussian distribution satisfied
Representation Alignment
by each prototype cluster
w=1

the coefficient for task loss

Adaptive Task
Weight Allocation

‘ initial value of

Table 5: Hyper-parameter settings of our framework.

Metirc. We use two widely adopted metrics for classification per-
formance evaluation: accuracy (Acc) and F1-macro (Flmgero)- Let
TP, FP., TN, FN; be the number of true-positive, false-positive,
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true-negative, and false-negative samples with each class c in the
TP,

class label set C respectively, we can obtain Pripygcro = ﬁ 2 TPAFP-
c c

and Remacro = ﬁ De %, then Acc and Fl,,4cr0 are calcu-

lated as follows:

e (TP: + TN,)

Acc =
= 3. (TP. + TN, + FP, + FN,)

(11)

Prmacro - Remacro

(12)

Flmacro =2+
Prmacro + Remacro

5.2 Performance under Dynamic Single Type of
Network Conditions

We evaluate the performance of our framework and all baselines
under dynamic single-type of network conditions in this section.
For each network condition type, we use the encrypted traffic corre-
sponding to different conditions of this type as the training and test-
ing traffic, and ensure that the conditions affecting the testing traffic
are unseen in the training traffic. The DL model is trained on the
training traffic using its original training method, our framework,
and each baseline separately, and then evaluated on the testing traf-
fic. To eliminate experimental bias, we construct multiple different
combinations of training and testing traffic for each dataset, where
three independent experiments are conducted for each combination.
Note that each DL model uses the features directly extracted from
the encrypted traffic, formatted according to the model’s require-
ments, with no additional preprocessing. The sizes of all training
and testing traffic combinations are listed in Appendix B. We report
the average performance across all combinations and experiments
as the final result.

Dynamic Host Conditions. We use the Application-Host and
DoHBrw-ALL dataset to perform evaluation and construct four
training and testing traffic combinations for each dataset. In par-
ticular, for the Application-Host dataset, we categorize all hosts
into four host groups based on their OS versions (i.e., Android 6 &
7, 8,9, and 10). In each combination, the traffic generated by one
host group is used for testing, while the traffic generated by the
other groups is used for training. For the DoHBrw-ALL dataset, we
extract training and testing traffic from the unobfuscated encrypted
traffic of the original environment. This is to reduce the impacts
of other types of network conditions. In each combination, we use
the traffic from a particular DNS server (i.e., AdGuard, Cloudflare,
Google, or Quad9) for testing while training on the traffic from
other DNS servers. We show the performance of our framework
and the baselines in Figure 3a. Our framework enhances the Acc
and Flmgcro of DL models (i.e, DF and ARES) by an average of
14.87% and 15.46%, respectively, while the baselines reduce Acc and
Flmacro by an average of 30.17% and 36.23%, respectively.
Dynamic Network Environment Conditions. We utilize the
DoHBrw-NetEnv and Application-ALL dataset to perform eval-
uation. In particular, for the DoHBrw-NetEnv dataset, we con-
struct two training and testing combinations, where the encrypted
traffic collected in the cn2us and cn2kr network environments is
separately used for testing, while the encrypted traffic collected
from other network environments is used for training. For the
Application-ALL dataset, we create four training and testing traffic
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combinations, each time using the unobfuscated traffic collected
from one new network environment (i.e., JP-US, JP-UK, JP-SA, or
JP-AU) for testing while training on the unobfuscated traffic from
other new environments. The performance is shown in Figure 3b.
Note that we do not evaluate the baseline NA and 3A+NA+SelfReg
on the DoHBrw-NetEnv dataset. This is because this dataset only
provides the packet length sequences of the encrypted traffic with-
out directions, while NA requires the packet directions as features.
Specifically, our framework enhances the Acc and Fl,g¢r0 0of DL
models by an average of 8.90% and 8.84%, respectively. In contrast,
the baselines reduce Acc and Fly4¢r0 by an average of 35.21% and
37.25%, respectively.

Dynamic Obfuscation Conditions. We use the Tor-Obfuscation,
Application-ALL, and DoHBrw-ALL datasets to perform evaluation
and construct four training and testing traffic combinations for
each dataset. For the Tor-Obfuscation dataset, in each combination,
we select all obfuscation events belonging to a specific obfuscation
strategy (i.e., WTFPAD, FRONT, TrafficSliver, or RegulaTor) and
one event from each of the other strategies and use the obfuscated
traffic under these events for testing. The obfuscated traffic under
all other events is used for training. For the Application-ALL and
DoHBrw-ALL dataset, we extract training and testing traffic from
the obfuscated encrypted traffic of the original environment using
the same method as the Tor-Obfuscation dataset. The performance
is shown in Figure 3c. Our training framework enhances the Acc
and F1yqcro of DL models by an average of 5.96% and 7.59%, re-
spectively. In contrast, the baselines reduce Acc and F14cr0 by an
average of 38.71% and 42.64%, respectively.

Overall, our framework enhances the performance of two DL
models across all datasets and dynamic single types of network
conditions. It achieves an average improvement of 9.91% in Acc and
10.63% in F1pyacro, demonstrating its effectiveness in improving
the robustness of DL models against dynamic network conditions.
In contrast, the baselines lead to performance degradation in most
cases, causing an average reduction of 34.69% in Acc and 38.71% in
Flmacro- This is because the baselines rely on augmenting new en-
crypted traffic impacted by specific network conditions to train DL
models, which makes DL models more prone to classifying based on
the unique feature patterns induced by those network conditions.
However, testing encrypted traffic often exhibits distinct feature
patterns that are absent in the training traffic under dynamic net-
work conditions. Thus, the classification knowledge learned from
the augmented encrypted traffic becomes ineffective, ultimately
impairing the DL models’ performance. Our framework overcomes
this issue by creating tasks that simulate testing encrypted traf-
fic with previously unseen feature patterns and enabling the DL
model to generate stable feature representations for such tasks. To
further verify this point, we visualize the feature representations
generated by the DF model in the Dynamic Host Conditions exper-
iment. Specifically, we train the DF model using encrypted traffic
from hosts running Android 8, 9, and 10, with and without our
framework, while traffic from hosts running Android 6&7 is used
for testing. We then randomly select 2,000 encrypted traffic sam-
ples belonging to the applications “WiFi Master Key” and “TikTok”
from both the training and testing sets, obtain their corresponding
feature representations, project them to one-dimensional space us-
ing the t-SNE method [44], and show their density distributions
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DF ARES DF
original Acc 688 579 653 581 .837 815
Ours  +12.79%  +14.68% +7.04% +24.96% +10.16% +6.63%
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Figure 3: The performance of our framework and baselines under dynamic network conditions of different single types. The
upper and lower subfigures show the original Acc and F1,,4cr, of DF and ARES under dynamic conditions across the datasets,
respectively, as well as the performance improvements after applying our framework and baselines.
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Figure 4: Visualization of feature representations generated
by the DF Model (trained with or without MetaTraffic) un-
der dynamic host conditions. Encrypted traffic from hosts
running Android 8, 9, and 10 is used for training, while traf-
fic from hosts running Android 6&7 is used for testing. We
randomly select 2,000 traffic samples associated with the ap-
plications “WiFi Master Key” and “TikTok” from both the
training and testing sets, extract their feature representa-
tions, project them into one-dimensional space using the
t-SNE method, and display their density distributions.

in Figure 4. It can be seen that, for encrypted traffic belonging to
the same application categories but subject to different host con-
ditions, the feature representations generated by the original DF
model differ significantly. In contrast, the DF model trained using
our framework produces more consistent representations, demon-
strating that our framework enables DL models to generate stable
feature representations across varying network conditions.

5.3 Performance under Dynamic Multiple
Types of Network Conditions

We evaluate the performance of our framework and all baselines
under dynamic multiple types of network conditions in this section.
The experimental method is consistent with that in § 5.2. Besides,
we divide all hosts in the Application-ALL dataset into two Android
host groups based on their OS versions (i.e., Android 6 & 7 & 8,
9 & 10), the four new network environments for traffic replaying
into two groups (i.e., JP-SA & JP-UK, JP-US & JP-AU), the four DNS
servers in the DoHBrw-ALL dataset into two DNS server groups
(i.e., AdGuard & Cloudflare, Google & Quad9), all the cloud servers
into two groups based on their locations (i.e., SA & UK, US & AU),
and the four obfuscation strategies into two groups (i.e., RegulaTor
& WTFPAD, FRONT & TrafficSliver). We use these disjoint groups
to create training and testing traffic combinations under dynamic
multiple types of network conditions. The sizes of all training and
testing traffic combinations are listed in Appendix B.

Dynamic Host and Network Environment Conditions. The
Application-ALL, DoHBrw-ALL, and Tor-ALL datasets are used to
perform evaluation. In particular, for the Application-ALL dataset,
we create four training and testing traffic combinations, each time
selecting the unobfuscated traffic from one Android host group and
one new network environment group for testing while training
on the unobfuscated traffic from other groups. Based on the DNS
server groups, we create four training and testing traffic combi-
nations for the DoHBrw-ALL dataset using the same method as
the Application-ALL dataset. Besides, for the Tor-ALL dataset, we
construct two training and testing traffic combinations, each time
using the unobfuscated traffic collected by Tor browsers (version
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Figure 5: The performance of our framework and baselines under dynamic network conditions of different multiple types. The
upper and lower subfigures show the original Acc and F1,,4cro of DF and ARES under dynamic conditions across the datasets,
respectively, as well as the performance improvements after applying our framework and baselines. HOS, ENV, and OBF
represent host, network environment, and obfuscation conditions, respectively.

13.5) installed on one cloud server group for testing, while the unob-
fuscated traffic collected by Tor browsers (version 13.0.10) installed
on the other cloud server group is for training. The performance of
our framework and the baselines is shown in Figure 5a. Specifically,
our training framework enhances the Acc and F1,,4¢r0 0of DL mod-
els by an average of 10.38% and 14.85%, respectively. In contrast,
the baselines reduce Acc and Fl,,4¢r0 by an average of 43.73% and
45.91%, respectively.

Dynamic Host and Obfuscation Conditions. Then we use the
Application-ALL and DoHBrw-ALL dataset to perform evaluation.
For the Application-ALL dataset, we create four training and testing
traffic combinations based on the obfuscated encrypted traffic of
the original environment, each time selecting the obfuscated traffic
belonging to one Android host group and four random obfuscation
events within one obfuscation strategy group for testing, while
training on the obfuscated traffic belonging to other host groups
or obfuscation events. Based on the DNS server groups, we create
four training and testing traffic combinations for the DoHBrw-ALL
dataset using the same method as the Application-ALL dataset.
As shown in Figure 5b, our training framework enhances the Acc
and F1lpqcro of DL models by an average of 7.06% and 7.80%, re-
spectively. In contrast, the baselines reduce Acc and Flpmgcro by an
average of 12.6% and 14.71%, respectively.

Dynamic Network Environment and Obfuscation. We use
the Application-ALL and DoHBrw-ALL datasets to perform eval-
uation. For the Application-ALL dataset, we create four training
and testing traffic combinations, each time selecting the obfuscated
encrypted traffic from one new network environment group and
four random obfuscation events within a particular obfuscation
strategy group for testing while training on the obfuscated traffic
from other new environment groups or obfuscation events. For the

DoHBrw-ALL dataset, four training and testing traffic combinations
are constructed in the same method. The performance is shown
in Figure 5c. Specifically, our training framework enhances the
Acc and Flpgero of DL models by an average of 5.55% and 5.65%,
respectively. In contrast, the baselines reduce Acc and Flmgero by
an average of 14.88% and 20.18%, respectively.

Dynamic Host, Network Environment and Obfuscation Con-
ditions. We use the Tor-ALL dataset to perform evaluation and
construct four training and testing traffic combinations. In each
combination, we use the obfuscated traffic belonging to one strat-
egy group, collected by Tor browsers (version 13.5) installed on one
cloud server group for testing, while the obfuscated traffic belong-
ing to the other strategy group, collected by Tor browsers (version
13.0.10) installed on the other cloud server group is for training. The
performance is shown in Figure 5d. Our framework enhances the
Acc and Flpgcero of DL models by an average of 12.78% and 21.89%,
respectively. In contrast, the baselines reduce Acc and Flpmgero by
an average of 44.15% and 53.28%, respectively.

Our framework consistently improves the performance of two
DL models across all datasets and various dynamic network con-
ditions. It achieves an average improvement of 8.94% in Acc and
12.55% in F1pqcro, indicating the effectiveness of our framework in
improving the robustness of DL models against dynamic multiple
types of network conditions. The effectiveness of our framework
stems from its ability to construct tasks that simulate testing en-
crypted traffic with previously unseen feature patterns, which often
occur under dynamic network conditions of multiple types. In con-
trast, the baselines result in performance degradation in most cases,
with an average reduction of 28.85% in Acc and 33.52% in F1pacro-
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Figure 6: Acc and F1,,4cr0 of the DF and ARES trained by our
complete framework and the variants. Ours, No AUG, No
CLS, No ATS represent our complete framework, the vari-
ant without the class-aware representation augmentation
module, the variant without the cluster-based representation
alignment module and the variant without the adaptive task
weight allocation module, respectively. The dashed lines rep-
resent the DL model’s original performance.

5.4 Evaluating Individual Component

In this section, we evaluate the effectiveness of the three modules
in our framework individually. To achieve this, we create three new
variants of our framework by replacing each of the three modules
with alternative designs, evaluate their performance, and compare
it with the performance of the complete framework. Specifically, to
assess the effectiveness of the class-aware representation augmen-
tation module, we create a variant, No AUG, that directly constructs
the temporary model without adding noise to the feature represen-
tations. For the cluster-based representation alignment module, we
design a variant, No CLS, which uses the mean feature representa-
tion vector of each class (i.e.,, without clustering) as its prototype
for discrepancy calculation. Additionally, to evaluate the adaptive
task weight allocation module, we introduce another variant, No
ATS, that assigns equal weight to each task during the DL model
optimization. Using the three public datasets and the same method
described in § 5.2, we conduct experiments under dynamic single
type of network conditions for performance evaluation.

As shown in Figure6, we can see that removing any module
from our framework will result in a non-negligible performance
degradation. Overall, compared with our complete framework, the
Acc and F1,4¢r0 of the two DL models (i.e., DF and ARES) trained
by these three variants decrease by 7.19% and 8.10% on average
across all datasets, respectively. These experimental results demon-
strate that the three modules we designed significantly enhance our
framework’s capability to generate stable feature representations,
enabling more accurate classification of encrypted traffic.

5.5 Parameters Deep Dive

Our framework has several hyper-parameters, ie., A1(= Az) in
task-specific temporary model training, o in task-specific loss cal-
culating, and w in jointly DL model optimizing, and we evaluate
its performance under different hyper-parameter values in this
section. Specifically, we choose four different values for each hyper-
parameter around its default value in Table 5, including 0.6, 0.8,
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Figure 7: Acc and Flp4cr0 of DF and ARES that trained using
our framework with different hyper-parameter values.

1.2, 1.4 for A1 (= A2), 3, 4, 6, 7 for o, and 0.6, 0.8, 1.2, 1.4 for w. We
also adopt the three public datasets and the same method as in
§ 5.2 to conduct experiments of dynamic single type of network
conditions for performance evaluation. Note that when evaluating
our framework with a specific hyper-parameter value, all other
hyper-parameters are set to their default values in Table 5.

As shown in Figure 7, our framework only exhibits slight perfor-
mance fluctuations across different hyper-parameter values. Specif-
ically, after being trained using our framework with different hyper-
parameter values, the standard deviations of the average ACC and
Flacro of the two DL models (i.e., DF and ARES) across three
public datasets are 0.005, 0.016, 0.014, and 0.006, 0.015, 0.019, re-
spectively. This indicates that our framework’s good performance
stems from its innovative design rather than parameter tuning.

6 Discussion

Training Acceleration. Compared to traditional supervised DL
training methods, our framework requires more time. This is pri-
marily because it involves multiple iterations, during which task-
specific temporary models are constructed, and task losses are
calculated to optimize the DL model. We evaluate the training time
of our framework when applied to the DF model using the DoHBrw-
NetEnv dataset under dynamic network environment conditions.
The training time of our framework is about 500s, whereas the su-
pervised training method used by the original DL model takes about
150s. We argue that these additional training overheads are accept-
able in practice, as our framework delivers significant performance
improvements, e.g., the accuracy of the DF model improved from
0.837 to 0.922. Furthermore, two strategies can be applied to acceler-
ate training. First, we can parallelize the processes of constructing
task-specific temporary models and calculating task-specific losses.
Second, we can implement the annealing method [51] to dynam-
ically adjust the learning rates for both the temporary and DL
models, i.e., set higher learning rates in initial iterations to acceler-
ate training and gradually reduce them in subsequent iterations to
ensure the generalization capability.

Training Traffic Collection. Our framework requires training
encrypted traffic subject to different known network conditions
to construct multiple tasks. When the number of known network
conditions affecting the training traffic decreases, the number of
tasks we can construct decreases, resulting in a slight decline in
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our framework’s performance. For example, in the dynamic net-
work environment conditions experiment of the Application-ALL
dataset, the accuracy of the DL model trained by our framework
declines from 0.869 to 0.836 when the number of network condi-
tions affecting training traffic decreases from 3 to 2. However, we
argue that collecting encrypted traffic subject to diverse known
network conditions is not a challenge in practice. For instance, we
can deploy multiple cloud servers in various countries to collect
new encrypted traffic or replay existing traffic. Even in extreme
cases where encrypted traffic can only be collected under a single
network condition, we can apply existing robust training meth-
ods [3, 48, 64, 67, 78] to augment new traffic subject to different
network conditions. The collected and augmented encrypted traffic
can then be used to construct tasks.

Classifying New Traffic Classes. Supervised DL models require
a sufficient number of training samples for each known traffic class.
However, in real-world networks, new traffic classes continuously
emerge, and we often can access only a few training samples (i.e.,
few-shot classification) or none at all (i.e., zero-shot classification).
Our framework can facilitate DL models in classifying these new
traffic classes. Specifically, in few-shot classification scenarios, our
framework can prevent DL models from overfitting to the feature
patterns of known classes, thus enhancing their generalization
capability [38]. As a result, DL models can quickly adapt to new
traffic classes using only a small number of training samples. In
zero-shot classification scenarios, our framework can enable DL
models to distinguish between known and novel traffic classes.
To achieve this, we need to introduce an additional class in the
training dataset to represent new traffic classes and incorporate the
distinction between known and new classes into the learning task of
MetaTraffic. We leave the evaluation of MetaTraffic’s performance
in classifying new traffic classes as future work.

7 Related Work

DL-based Encrypted Traffic Classification. Most encrypted traf-
fic classification methods [15, 23, 39, 43, 47, 52, 53, 56, 62, 66, 72, 73,
76] are built upon supervised DL models. These methods utilize
DL models with different architectures to extract various types
of essential information from the features of encrypted traffic as
classification knowledge, and they generally perform well in lab-
oratory settings. For instance, FS-Net [40] uses an autoencoder
architecture combined with gated recurrent units (GRU) to extract
the temporal relationships within the packet length sequence of
encrypted traffic, obtaining a True Positive rate of 99.14% when
classifying the encrypted traffic of different applications. DF [56]
adopts a multi-layer CNN architecture to incorporate the spatial
correlations of encrypted traffic, achieving over 98% accuracy on a
Tor traffic dataset. ARES [15] uses a Transformer architecture to in-
tegrate the global correlations between local features of encrypted
traffic, achieving an F1-score of 0.907 on a multi-tab Tor traffic traf-
fic. However, these methods often face performance degradation in
real-world networks due to dynamic network conditions.

Robust Training for DL-based Encrypted Traffic Classifica-
tion. Several robust training methods have been proposed to im-
prove the performance of DL models in classifying encrypted traffic
in real-world networks. In general, these methods augment new
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encrypted traffic affected by specific known network conditions
to train the DL model. For instance, TrafCL [67] targets network
environments with increased packet loss rates in encrypted traffic
and augments new traffic by randomly discarding packets from the
original encrypted traffic. Rosetta [64] focuses on network environ-
ments employing different underlying layer protocols, e.g., 3G and
4G, and augments new encrypted traffic by merging, reordering,
and duplicating packets from the original encrypted traffic. Besides,
Qian et al. [48] aim to defend the WTFPAD and Walkie-Talkie obfus-
cation strategies. They augment new training traffic through direct
obfuscation of the original traffic using these two strategies. How-
ever, these methods become ineffective under network conditions,
in which the training and testing encrypted traffic is subject to
inconsistent network conditions, and they can only defend specifc
single types of network conditions in most cases.

8 Conclusion

We propose a novel DL training framework MetaTraffic to improve
the classification performance of any supervised DL models de-
signed for encrypted traffic classification under dynamic network
conditions. This framework enables DL models to generate stable
feature representations for encrypted traffic under different net-
work conditions, thereby ensuring accurate classification under
dynamic network conditions. Additionally, we also release three
new large-scale encrypted traffic datasets featuring multiple types
of network conditions. The experimental results show that, under
dynamic multiple types of network conditions, our framework im-
proves the DL models’ accuracy by 8.94% and F1-macro score by
12.55% on average, while existing robust training methods decrease
the accuracy by 28.85% and F1-macro score by 33.52%.
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A The Implementation of Baselines

The Rosetta and NA methods first augment new encrypted traffic
data and use it to pretrain the representation layers of DL mod-
els in an unsupervised manner. Consequently, when training DF
and ARES with these methods, we follow this procedure and then
fine-tune the classification layers of DF and ARES using the origi-
nal training traffic and their original supervised training method.
The 3A method does not include a pretraining step; instead, it di-
rectly performs supervised training on DL models using both the
augmented and original training traffic. We follow this procedure
when using 3A to train DF and ARES. Additionally, SelfReg im-
proves DL models by incorporating regularization terms into the
loss functions. Therefore, we integrate these regularization terms
into the original loss functions of DF and ARES and train them
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using their original supervised training methods. When implement-
ing 3A+Rosetta+SelfReg and 3A+NA+SelfReg, we first augment new
training traffic using 3A. Then, we further augment the training
traffic using Rosetta or NA and use it to pretrain the representa-
tion layers of DF and ARES. Finally, we fine-tune the classification
layers of DF and ARES using the original training traffic and their
supervised training method. The regularization terms in SelfReg
are incorporated into the loss functions during both the pretraining
and fine-tuning steps.

B The Sizes of All Training and Testing Traffic
Combinations

For each dataset in each dynamic network condition experiment, we
construct a training and testing encrypted traffic combination. The
traffic in each combination is randomly selected from the dataset

according to the settings of the corresponding dynamic network
condition experiment (see § 5.2 and § 5.3). The sizes of these com-

binations are presented in Table 6.

Network Condition ‘ Dataset ‘ Training Size ‘ Testing Size
Dynamic Host Application-Host 6000 2000
Conditions DoHBrw-ALL 6000 2000
Dynamic Network DoHBrw-NetEnv All All
Environment Conditions Application-ALL 6000 2000
Dynamic Obfuscation Tor-Obfuscation 33250 28500
Y o o Application-ALL 7000 6000
DoHBrw-ALL 7000 6000
. Application-ALL 8000 8000
Dynamic Host and Network DoHBrw-ALL 8000 8000
Environment Conditions
Tor-ALL 12000 12000
Dynamic Host and Application-ALL 10000 10000
Obfuscation Conditions DoHBrw-ALL 10000 10000
Dynamic Network Environment | Application-ALL 10000 10000
and Obfuscation Conditions DoHBrw-ALL 10000 10000
Dynamic Host,
Network Environment, 30000

Tor-ALL 30000

and Obfuscation Conditions

Table 6: The sizes of all training and testing traffic combi-
nations. The "Training/Testing Size" refers to the size of the
training/testing traffic flows. The "All" means "All traffic that
satisfies conditions".
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