
Provenance of Training without Training Data:
Towards Privacy-Preserving DNN Model Ownership Verification

Yunpeng Liu Kexin Li Zhuotao Liu Bihan Wen
liuyp20@mails.tsinghua.edu.cncassiekx.li@mail.utoronto.ca zhuotaoliu@tsinghua.edu.cn Bihan.wen@ntu.edu.sg

Tsinghua University University of Toronto Tsinghua University Nanyang Technological University
Zhongguancun Laboratory

Ke Xu Weiqiang Wang Wenbiao Zhao Qi Li∗

xuke@tsinghua.edu.cn weiqiang.wwq@antgroup.com wenbiao.zwb@antgroup.com qli01@tsinghua.edu.cn
Tsinghua University Ant Group Ant Group Tsinghua University

Zhongguancun Laboratory Zhongguancun Laboratory

Abstract
In the era of deep learning, it is critical to protect the intellectual
property of high-performance deep neural network (DNN) models.
Existing proposals, however, are subject to adversarial ownership
forgery (e.g., methods based on watermarks or fngerprints) or re-
quire full access to the original training dataset for ownership veri-
fcation (e.g., methods requiring the replay of the learning process).
In this paper, we propose a novel Provenance of Training (PoT)
scheme, the frst empirical study towards verifying DNN model
ownership without accessing any original dataset while being ro-
bust against existing attacks. At its core, PoT relies on a coherent
model chain built from the intermediate checkpoints saved during
model training to serve as the ownership certifcate. Through an
in-depth analysis of model training, we propose six key properties
that a legitimate model chain shall naturally hold. In contrast, it
is difcult for the adversary to forge a model chain that satisfes
these properties simultaneously without performing actual training.
We systematically analyze PoT’s robustness against various possi-
ble attacks, including the adaptive attacks that are designed given
the full knowledge of PoT’s design, and further perform extensive
empirical experiments to demonstrate our security analysis.

CCS Concepts
• Computer systems organization → Neural networks; • Se-
curity and privacy → Digital rights management.

Keywords
Deep neural network, ownership verifcation, IP protection

∗Qi Li is the corresponding author.

This work is supported in part by the National Key Research and Development Project
of China under Grant 2021ZD0110502, NSFC under Grant 62132011 and 61825204,
Beijing Outstanding Young Scientist Program under Grant BJJWZYJH01201910003011,
and Ant Group.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583198

ACM Reference Format:
Yunpeng Liu, Kexin Li, Zhuotao Liu, Bihan Wen, Ke Xu, Weiqiang Wang,
Wenbiao Zhao, and Qi Li. 2023. Provenance of Training without Training
Data: Towards Privacy-Preserving DNN Model Ownership Verifcation. In
Proceedings of the ACM Web Conference 2023 (WWW ’23), April 30–May 04,
2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3543507.3583198

1 Introduction
Recent advances in deep learning (DL) enable revolutionary break-
throughs for a wide range of Web applications, e.g., recommenda-
tion systems, fraud detection and auto speech recognition [6, 26, 41].
Many Web service providers allow users to deploy their DNN mod-
els on their platforms so that the models can be accessed by third
parties. Also, users can use DNN models sold by these providers
without any training costs. However, it is challenging for model
owners to ensure that the intellectual property (IP) of the models
will not be violated, e.g., by redistributing the models or construct-
ing model stealing attacks [8, 19, 21, 23, 28, 34].

Existing studies [28, 35] protect the IP security of DNN mod-
els via verifying the model ownership. DNN ownership verifca-
tion schemes should achieve robustness and exclusiveness so that
the adversary can neither invalidate the ownership certifcate of
the model trainer nor forge a fraudulent ownership certifcate.
Existing methods can be classifed into the following three cat-
egories. Watermarking schemes [2, 35] require model owners to
embed digital signatures into DNN models. For example, feature-
based watermarking schemes implant a piece of code into the
internal of models [7, 31, 35], and trigger-set-based watermark-
ing schemes embed backdoor functions into the protected mod-
els [2, 11, 16, 18, 20, 22, 28, 38, 39]. These designs not only sacrifce
model performance but are not robust nor exclusive, since adver-
saries can remove the existing watermarks or embed their own wa-
termarks into the illegally acquired models [3, 8, 11, 19, 23, 28, 37].
Meanwhile, fngerprint-based methods extract fngerprints from
trained models as proofs of ownership while ensuring the model
utility [5, 25, 36, 42]. However, adversaries can invalidate the orig-
inal fngerprints via model modifcation and construct their own
fngerprints to claim ownership [11, 19]. The computation-based
method verifes ownership by replaying the training history to
validate the training efort of model owners. One critical draw-
back of the existing computation-based method, Proof of Learning

1980

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583198
https://doi.org/10.1145/3543507.3583198
https://doi.org/10.1145/3543507.3583198
mailto:weiqiang.wwq@antgroup.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583198&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yunpeng Liu et. al.

(PoL) [17], is that it inevitably requires model owners to expose the full
training data to the verifer. Given that training data is often propri-
etary and contains sensitive information, the practical application
of such kind of method is signifcantly limited.

To address limitations of existing approaches, we propose PoT,
a model ownership verifcation mechanism that simultaneously
achieves robustness, exclusiveness, and training data privacy pro-
tection. Unlike watermark-based or fngerprint-based methods that
only verify the ownership certifcate in the protected model, PoT
leverages entire provenance of the model training process, which is
naturally bound to the specifc model. The core is building a coher-
ent model chain from the intermediate model checkpoints saved
during model training from scratch, such that the model owner can
easily verify the model chain coherence without exposing any train-
ing data, while it is difcult for adversaries to forge at a reasonable
cost.

We systematically study the characteristics of coherent model
chains with measurement experiments and then provide the de-
tailed design of PoT based on our observations. We also analyze
the security of PoT against both existing attacks and adaptive at-
tacks, and conduct empirical evaluations to validate our analysis.
The results show that PoT can defend against all possible model
ownership forgery attacks in our consideration. Overall, we make
the following contributions:
• A novel DNN model ownership verifcation scheme. We
present PoT, a novel model ownership verifcation scheme that
verifes the training provenance without accessing original training
data. PoT relies only on a chain of intermediate checkpoints saved
during training, introducing trivial adoption overhead.
• Defning robust properties for verifcation. Based on a thor-
ough analysis on model training, we discover and formalize six
properties that will hold in a coherent model chain naturally, while
being difcult for the adversary to forge.
• Thorough security analysis and experimental evaluations
against possible attacks. We systematically investigate the possi-
ble attacks against PoT analytically and experimentally to demon-
strate its robustness. We consider adaptive attacks with complete
knowledge of PoT along with the existing attacks.

2 Background and Problem Statement
2.1 DNN Model IP Protection
Training a high-performance DNN model requires a substantial
amount of computational and data resources. For example, accord-
ing to Strubell et al. [33], to tune a model performing four NLP tasks
in a full research and deployment cycle, 239,942 hours and about
$103k to $350k are required. Due to the excessive eforts of training,
it is appealing for the adversary to steal the model ownership using
various types of attacks, e.g., model extraction attack [21, 34, 43]
and model modifcation attack based on fne-tuning or parameter
pruning [24]. Therefore, it is important to protect the intellectual
property (IP) of high-performance models.

The common practice for IP protection is to generate an unforge-
able certifcate during model training to verify the training eforts
committed by real model owner in case of a model ownership dis-
pute. A model ownership dispute typically involves three types of
entities: the original model owner who performed the actual train-
ing, the adversary aiming to illegally claim ownership after model

stealing, and the verifer responsible for regulating the ownership
dispute by checking ownership proofs.

2.2 Threat Model
Adversaries could employ several possible techniques to fraudu-
lently claim ownership. For example, adversaries can conduct model
piracy attack by leveraging existing model ownership verifcation
schemes to forge ownership proofs. To this end, we assume that the
adversary (i) has white-box access to the illegally acquired model
� , and (ii) may even have a labelled auxiliary dataset Daux that
shares a similar distribution to the original training dataset Dtrain
of � . Yet, we assume that the size of Daux is much smaller than that
of Dtrain (e.g., no greater than 10%). Similarly, we assume that the
verifer possesses a validation dataset Dval with similar distribution
to that of the original owner.

We clarify the assumption of limited knowledge on the origi-
nal training dataset is one key diferentiator separating PoT from
PoL [17] which requires a fully trusted verifer to have complete
access to Dtrain. In contrast, PoT enables the verifer to validate
ownership with zero-knowledge on Dtrain, i.e., the verifer learns
no additional knowledge about the owner’s Dtrain (except for the
knowledge that the verifer already obtains, such as Daux).

3 Observations
In this section, we introduce the key observations behind the design
of PoT with measurement studies on the basic properties of the
model checkpoints generated during training. These properties are
based on common assumptions in DNN training and validation:
• The training and validation data are drawn from similar under-
lying data distribution. Therefore, the validation accuracy of the
model improves continuously as the training accuracy does.

• The DNN model is usually trained with a sufciently small learn-
ing rate (e.g., 0.1 for the SGD optimizer), and the parameters are
initialized randomly and independently.

• The convergence of the model training algorithm is well-behaved.
Thus, the parameters of the intermediate checkpoints gradually
approach those of a nearby local optimum.

Based on these assumptions, we focus on the following quantitative
measures of intermediate model checkpoints: validation accuracy,
parameter distribution distance, independence among initial parame-
ters and weight distance. We empirically study these quantitative
measures to show that their unique behaviors can be used to verify
whether intermediate checkpoints are generated from training.

3.1 Validation Accuracy
Validation accuracy is an important metric to evaluate the per-
formance of a model. By training the DNN model properly (e.g.,
without gradient explosion or vanishing), the training loss is likely
to decrease monotonically until convergence. Therefore, when the
validation data share a distribution similar to the training data with-
out overftting, the validation accuracy of the model is expected to
be monotonically non-decreasing as the training proceeds.

To demonstrate such property in practice, we conduct measure-
ment experiments by training DNN models over popular computer
vision datasets. Figure 1 plots each validation accuracy as a function
of the epoch number. The result aligns with our analysis. Note that
although intermediate checkpoints with non-monotonic accuracy
are typical in practice due to the local minima in the loss function
and unstable gradients, the overall trend still holds.

1981

Provenance of Training without Training Data:
Towards Privacy-Preserving DNN Model Ownership Verification WWW ’23, April 30–May 04, 2023, Austin, TX, USA

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.25

0.50

0.75

1.00

Va
lid

at
io

n
Ac

cu
ra

cy

CNN MNIST
CNN CIFAR10
CNN CIFAR100

ResNet18 CIFAR10
ResNet18 CIFAR100

Figure 1: Trend of validation accuracy.
The validation accuracy is continuously
improving over training epochs with
small fuctuations.

0 50 100 150 200
Epoch

0.2

0.3

0.4

Ex
pl

ai
ne

d
Va

ri
an

ce
 R

at
io

Conv2d_1
Conv2d_2
Conv2d_3
Conv2d_4
Conv2d_5
Conv2d_6

Figure 2: Trend of the explained vari-
ance ratio of the frst principle com-
ponent in a CNN model trained on CI-
FAR100 dataset over training epochs.

0 25 50 75 100 125 150 175 200
Epoch

0.000

0.001

0.002

0.003

Pa
ra

m
et

er
 D

is
ta

nc
e

CNN MNIST
CNN CIFAR10
CNN CIFAR100
ResNet18 CIFAR10
ResNet18 CIFAR100

Figure 3: Trend of parameter distance be-
tween the checkpoint and the fnal con-
verged model over training epochs.

0.2 0.1 0.0 0.1 0.2 0.3
Parameter Value

0

5

10

Pr
ob

ab
lis

ti
c

D
en

si
ty

0 epoch
10 epoch
20 epoch
100 epoch

0 50 100 150 200
Epoch

0.05

0.10

0.15

D
is

tr
ib

ut
io

n
D

is
ta

nc
e

Conv2d_1
Conv2d_2
Conv2d_3

Conv2d_4
Conv2d_5
Conv2d_6

(a) The change of the parameter distribu- (b) The parameter distribution distance
tion in the fourth convolutional layer. between consecutive checkpoints.

Figure 4: The trend of parameter distribution of an 8-layer
CNN model trained on CIFAR100 dataset.

3.2 Parameter Distribution Distance
To ensure convergence, deep learning models are usually trained
with a sufciently small learning rate (e.g., 0.1 for SGD algorithm).
Meanwhile, the magnitude of gradients decreases as the model con-
verges. Hence, the parameters are updated by a small step in each
iteration. This leads to the observation that the parameter distribu-
tion should evolve continuously without sharp changes. To measure
the change of parameter distribution, we formally defne the param-
eter distribution distance as the Earth Mover’s Distance [32] between
parameter distributions. In practice, the parameter distribution can
be approximated by the histogram.

To demonstrate the above observation, we train an 8-layer CNN
model on CIFAR100 dataset and analyze the parameter distributions.
We initialize the model parameters with a special Gaussian Mixture
Model (GMM) distribution to make the distribution change obvi-
ously. Figure 4a shows the distribution for the parameters in the 4th
convolutional layer at diferent training stages. It is clear that the
parameter distribution gradually evolves from the original GMM
distribution to a Gaussian distribution. Figure 4b shows the trend of
parameter distribution distances between consecutive checkpoints.
Throughout the training process, the parameter distribution dis-
tance remains relatively small, demonstrating the coherence of
parameter distribution in a normal training process.

3.3 Independence among Initial Parameters
It is common to randomly initialize the parameters of DNN models
before training, making parameters mutually independent. During
model training, the parameters will become correlated with each
other to empower the functionality of corresponding neurons.

To demonstrate this, we use the Principal Component Analysis
(PCA) algorithm to decompose the weights of the convolutional
layers of a trained CNN model. The basic idea here is that the
explained variance ratio of the frst principle component (i.e., the
component with the largest explained variance) will be small if
diferent features of analyzed data samples are independent. By
grouping parameters into instances of high-dimension parameter
vectors according to their relationship, we can apply PCA algorithm

Table 1: Comparison of model distances. The random re-
initialization is repeated 1000 times for each model to report
the mean and standard deviation of � (�rand, �fnal).

Model Dataset � (�init, �fnal) � (� rand, �fnal)
mean std

MNIST 1.54e-3 5.11e-3 1.12e-5
CNN CIFAR10 1.48e-3 3.76e-3 7.29e-6

CIFAR100 3.76e-3 6.17e-3 9.80e-6

ResNet18 CIFAR10
CIFAR100

2.32e-4
2.91e-4

1.22e-3
1.30e-3

8.85e-7
9.36e-7

TextCNN DBpedia
SOGOU

5.51e-4
3.84e-3

4.36e-3
5.04e-3

9.70e-6
1.18e-5

TextRNN DBpedia 2.85e-3 1.36e-2 1.78e-4

to reveal the intra-group parameter correlation. The explained vari-
ance ratio of the frst principle component reaches the smallest
possible value if parameters are randomly initialized. As long as
the parameters become correlated, e.g., the training process intro-
duces latent parameter correlation, the ratio will increase. Figure 2
shows the trend of the explained variance ratio of the frst prin-
ciple component with respect to the number of training epochs.
The explained variance ratios in all layers increase as the training
proceeds, which validates our analysis.

3.4 Weight Distance
The parameter distance between two models with the same archi-
tecture can be measured using the L2 norm. Formally, for an �-layer
model � , its parameters are represented as W = {w1, w2, · · · , w� }.
The weight distance between two models �� and �� sharing the
same architecture is defned as: √√√

1 ∑︁𝐿

2𝑗

𝑑 (𝑀 = 𝑖
𝑖 , 𝑀𝑗)

w −w

 , (1)

𝑁param 𝑙 𝑙 𝐹
𝑙=1

where �param is the total number of model parameters and ∥ · ∥�
denotes the Frobenius norm.

In model training, the model parameters will eventually con-
verge to a local optimum from the initial position, and the distance
between the intermediate model and converged model will grad-
ually change. Given the gradient descent algorithm’s nature of
convergence, the parameters of the model under training shall
gradually approach to an optimum that is close to the initial model.
Thus the weight distance between the intermediate model and con-
verged model is monotonically non-increasing. We illustrate this
observation in Figure 3 where we plot, for multiple model train-
ing processes, the parameter distances between the intermediate
checkpoints and the fnal converged models over the epochs. The

1982

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yunpeng Liu et. al.

AModel
Owner

An
Adversary

1. Model
Initialization

2. Model Chain
TrainingTraining

dataset

Uninitialized
Model

Converged
Model

…

Epoch1

Epoch N
Model Chain

...

1 N
Forged Model Chain

Model based
forgery attacks

Model Chain Generation

…

P2P1

Incoherent Coherent
Verifier

Property-based Model Chain Verification

P6P3 …

Figure 5: The overview of PoT.

distances are continuously decreasing, which demonstrates our
observation.

Besides, existing studies show that the loss surface of a suf-
ciently complex DNN has a large number of equivalent local min-
ima that have similar performances [9, 29]. At the beginning of
training, the direction of the gradient will point to a region of in-
terest that is close to the starting point. Therefore, the model will
converge to an optimum that is close to the initial model compared
with other local minima. Moreover, � (�rand, �fnal) is the sum of
the distances between all corresponding parameters in the two
models, and all parameters in the same layer are equivalent and
thus follow the same distribution. Thus, according to the central
limit theorem, � (�rand, �fnal) will follow a normal distribution
whose standard deviation is inversely proportional to the square
root of the number of parameters. In DNNs with a large number
of neurons, the standard deviation of � (�rand, �fnal) will be small.
Combining the analysis, the probability is low for any random
model �rand to have � (�rand, �fnal) close to � (�init, �fnal), and
it is extremely hard to fnd one randomly initialized model suf-
ciently close to �fnal by repetitive re-initialization. We conduct an
empirical study to demonstrate this observation. The experiment
results in Table 1 clearly show that � (�init, �fnal) is much smaller
than � (�rand, �fnal) for all models, and the standard deviation of
� (�rand, �fnal) is small.

4 PoT Design
In this section, we elaborate on the design of PoT. Based on the
observations in §3, we provide property defnitions for model chain
evaluation and the model ownership verifcation procedure.

The key design goal of PoT is to build the provenance of model
training by carefully analyzing the end-to-end training process of
the DNN model, which is tightly linked to the training efort of
the model owner. Towards this end, we propose to use the chain of
model checkpoints generated during the training process to serve
as the ownership certifcate of a DNN model. In DNN training, it is
a common practice to save intermediate model weights as check-
points after each epoch to deal with overftting. It is also widely
supported by deep learning frameworks including PyTorch [30] and
TensorFlow [1]. We call the checkpoint sequence generated during
model training a model chain. In the following sections, we use �
to denote the model protected by PoT, �� to denote the checkpoint,

and C = {�0,�1, · · · ,�� −1,�� } to denote the model chain. Note
that the last checkpoint �� is exactly the protected model � .

Generally, our framework works as shown in Figure 5. The re-
quirement for model owners to use PoT is light: they only need
to initialize the model according to a specifc Gaussian Mixture
Model (GMM) distribution and conduct the normal training proce-
dure with L2 regularization (weight decay) (see details in § 4.2). In
a model ownership dispute, the verifer regulates the process by
favoring the party providing a coherent model chain that satisfes
key properties simultaneously. These properties are naturally held
by real model chains, but are not in the forged ones. We present the
property defnitions used by PoT in §4.1, and describe the details of
training and verifcation with PoT in §4.2 and 4.3.

4.1 Model Chain Properties
Our observations and measurements in §3 lead to six key properties
that a coherent model chain should hold.
(1) Validation Accuracy. In §3.1, we analyze the property of check-
points’ validation accuracies, which is formally defned as follows:

Property 1 (Monotonicity of Validation Accuracy). Given
a validation dataset Dval with a data distribution simi-
lar to Dtrain, the validation accuracies of the checkpoints
{�0,�1, · · · ,�� } over Dval are likely to be monotonically non-
decreasing. Formally, for most of the timestamp � ,

acc(�� , Dval) ≥ acc(� � , Dval) ∀� ≤ � .

We defne a metric to quantitatively measure this property by cal-
culating the Spearman’s rank correlation coefcient [10] between
the accuracy and the number of training epochs: � � �2

6 ×
Í�

�
rank acc(�� , Dval) − � �

���� ≜ 1 − , (2)
� (� 2 − 1)� �

where rank acc(�� , Dval) denotes the ranking index of the accu-
racy of �� in the model chain. A model chain with higher ����
indicates a higher confdence in its authenticity. Note that there are
corner cases where the validation accuracy is not sufciently mono-
tonic, e.g., the model overfts to the dataset or the task is overly hard.
We use early stop during verifcation to alleviate the overftting
issue and constrain the metric to deal with the non-monotonicity.
(2) Parameter Distribution Distance. In §3.2, we empirically
show that model parameter distribution keeps evolving without
sharp changes during training due to incremental parameter up-
dates. Hereafter, We denote the weight distribution of w as � (w),
which can be approximated with the histogram in practice. We
use EMD(·, ·) to denote the Earth Mover’s Distance between two
distributions. Formally, we can obtain the following property:

Property 2 (Parameter Distribution Continuity). Given
that the model is trained with a sufciently small learning rate,
for any two consecutive checkpoints �� and ��+1 and a small
threshold � , the weights in all the � layers should satisfy: � �

� �+1∀� ∈ [1, �], EMD � (w), � (w) < �.
� �

We quantify the property as follows: � n � �o�
� �+1�����ℎ� ≜ max max EMD � (w
�), � (w

�) , (3)
� ∈[1,� −1] � ∈[1,�]

1983

Provenance of Training without Training Data:
Towards Privacy-Preserving DNN Model Ownership Verification

�����ℎ� calculates the maximum of layer-wise parameter distribu-
tion distances between consecutive checkpoints. This property also
prevents the adversary from directly concatenating model chains.
(3) Initial Model Parameters. In §3.3, we empirically show that
the mutual independence among the initial model parameters can
reveal whether the model is randomly initialized. In PoT, the pa-
rameters of a protected DNN model are randomly initialized with a
specifc GMM distribution, where the required GMM distribution
for a weight w is represented as �GMM (w). This constraint is im-
portant because an adversary may forge a model chain by directly
manipulating the stolen model to generate a fake “initial model”
that is not randomly initialized. Therefore, in a model ownership
dispute, the parameters of the initial model should be checked to
verify whether the parameters are initialized according to the re-
quirement. Based on the analysis above, we can obtain the following
two properties of the initial model parameters.

Property 3 (Distribution of the Initial Parameters). The
parameters of the initial model should conform to the required
GMM distribution. Given an initial model �0, its weights in all
layers should satisfy: � �

0 0∀� ∈ [1, �], EMD � (w), �GMM (w) ≈ 0.
� �

Property 3 can be quantifed by calculating the distance between
the distribution of initial parameters and the required GMM distri-
bution. The property is quantifed as: n � � � � ��o

����� ≜ max EMD � w0 , �GMM w0 . (4)
� �

� ∈[1,�]

In a nutshell, Eq. (4) calculates the maximum distance between the
required distribution and the actual distribution across all layers.

Property 4 (Independence among Initialized Parameters).
The parameters of the initial model should be independent.
Given the weight w in an initialized layer, any two diferent
parameters w[�] and w[�] in w should satisfy the following
equation if we view them as random variables:

cov(w[�], w[�]) = 0,

where cov(·, ·) is the covariance of two random variables.

To verify Property 4, we need to evaluate whether the parameters
of the initial model are independently and randomly initialized. In
§3.3, we show that the verifcation of parameter independence can
be achieved with the PCA algorithm. Here we further elaborate the
detailed procedures. First, group the parameters in the same layer
according to their relationship (e.g., the parameters belonging to
the same neuron in a linear layer or belonging to the same channel
in a kernel flter of a convolutional layer are viewed as a group).
Second, run the PCA algorithm on the grouped parameters, and
get the explained variance ratio of the frst principle components:n � � ��o

� ���� ≜ max MaxExplainedRatio Group w , (5)0
� ∈[1,�]

where MaxExplainedRatio(·) returns the largest explained variance
ratio in the PCA result, and Group(·) is the parameter grouping
function. In verifcation, a large ���� suggests that the initial model
of the model chain is not likely to be randomly initialized.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(4) Weight Distance. In §3.4, we empirically study the natural
properties of the weight distance during model training. Our obser-
vations can be further formalized as the following two properties
that a legitimate model chain shall hold.

Property 5 (Monotonicity of Weight Distance). Given
that the training of the model converges normally, the distance
between the intermediate checkpoint and the converged model
decreases monotonically to zero, i.e., the following inequality
on the model distance is expected to hold:

� (�1,�� � �− �

Property 5 can also be measured using the Spearman’s rank
correlation coefficient of the distance sequence:�� ∑ ���� 2�� 6 𝑁× (rank (, − 𝑖) �𝑑 (𝐶𝑖 𝐶)) ���

𝜌𝑑𝑖𝑠 ≜ ��1 𝑖 𝑁− �� , (6)�� 𝑁 (2𝑁 − 1) ��

) ≥ � (�2,�) ≥ · · · ≥ � (� 1,�) ≳ 0.

Property 6 (Small Distance between the Initial Model
and Converged Model). Given that the DNN model is suf-
ciently complex, it is highly possible that the distance of the
converged model to the initial model in the same model chain
is much smaller than that to other randomly initialized models.
Formally, given the initial model �0 and converged model ��

in a model chain C and any other random model ����� ini-
tialized with the same method as �0, the following inequality
holds with a high probability:

� (�0,��) ≪ � (����� ,��) .

Property 6 can be quantifed as follows:

��ℎ��� ≜ � (�0,��) . (7)

This property prevents the adversary from constructing a fake
model chain by concatenating several short model chains, because
the distance pattern is discontinuous and non-monotonic.

4.2 DNN Model Training with PoT
In order to achieve efective ownership verifcation, PoT has the
following requirements on the model training.
(1) Initialize the model parameters with a special two-component

GMM distribution. The mean values of the two components√
in the GMM distribution are ±2 2/5��� and the standard de-√
viations are both equal to 2/5��� , where ��� is the fan-in
of the layer [4]. Under this setting, the standard deviation of√
the GMM distribution equals 2/��� , which helps stabilize the
magnitudes of the model activation values [13].

(2) Use L2 regularization term during training. It is a common
practice to avoid overftting by applying a Gaussian prior to the
parameters [27].
PoT only has minimal requirements on the parameter initial-

ization and regularization, and it does not confict with advanced
training techniques like knowledge distillation [15]. Following the
requirements of PoT, the model owner needs to save the initial
model and the model checkpoints after each training epoch. After
the model converges to its optimum, the model owner can secretly
store the model chain in the form of a list of training checkpoints,
and use it as the ownership certifcate.

1984

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yunpeng Liu et. al.

Table 2: The defciencies of possible adaptive attacks. P1-P6
are the verifcation properties of PoT.

Attack P1 P2 P3 P4 P5 P6

Param. Interpolation
Regulated Distillation
Backward Construction

N/A
✓

N/A�

✓
✓
N/A

H#
H#
✗

H#
H#
✗

✓
✓
N/A

#� G
G#
N/A

� G# and H# mean that the two types of properties cannot be faked simultaneously.
� Technically difcult to be faked by the adversary (see details in §5.2).

4.3 Model Ownership Verifcation using PoT
Ownership verifcation in PoT is conceptually simple: only the
entity possessing a coherent model chain that satisfes all the afore-
mentioned properties can claim ownership successfully. Adopting
PoT is lightweight, since the construction of a coherent model chain
is straightforward for the party that performs actual training.

However, designing the verifcation protocol is non-trivial. In
particular, values of certain properties (e.g., Properties 4 and 6) can
be largely infuenced by the complexity of models and datasets.
Therefore, we leverage two strategies to perform the property ver-
ifcation. For properties whose values are less afected (such as
Properties 1, 2, 3, and 5), we consider a model chain to satisfy
these properties as long as their values are within the predefned
thresholds. Meanwhile, for Property 4, since the verifer knows the
architecture and the initialization method of the model, we need
the verifer to randomly re-initialize the model several times and
compute the property value to estimate its valid range. Property 4
of a coherent model chain should be within this range because its
initial model is randomly initialized, and the incurred overhead for
range estimation is low. Property 6 is verifed in a similar way by
randomly sampling the initial model to estimate a range of rejection.
The basic idea is that ��ℎ��� of a coherent model chain is much
smaller than that of a model chain with a forged initial checkpoint,
so the valid ��ℎ��� should be smaller than the lower bound of the
estimated range.

The verifcation proceeds as follows. It frstly uses a threshold-
based approach to verify ���� , ���� , �����ℎ� , and ����� . Then it es-
timates the valid range of ���� and ��ℎ��� by randomly sampling
initial models and verifes the model chains with the estimated
ranges. A model chain is coherent only if it passes the verifcation
of all the properties. We further provide the verifcation algorithm
in Appendix A and discuss the threshold selection in Appendix B.
We also discuss potential issues in the application of PoT in Appen-
dix F.

5 Security Analysis
In this section, we analyze the security of PoT against possible
attacks to demonstrate its efectiveness. We discuss both existing
attacks against IP protection and possible adaptive attacks.

5.1 Security Against Existing Attacks
We follow the taxonomy of existing attacks on model ownership
verifcation methods in [24], which divides them into three cate-
gories:
Input Preprocessing Attack. Input preprocessing attacks modify
the input data samples of DNN models before classifcation. For
instance, adding noises or smoothing the input to break the possible
backdoor triggers in the input. Since the attacks do not forge model
chains, they are not applicable to PoT.

Model Modifcation Attack. Model modifcation attacks manipu-
late illegally acquired models with techniques such as fne-tuning
and parameter pruning to erase the embedded watermarks or de-
couple the original fngerprints from the modifed model. Since such
attacks are irrelevant to model training from scratch, they cannot
forge a valid model chain and thus cannot pass PoT’s verifcation.
Model Extraction Attack. Model extraction attacks derive a sur-
rogate model by distilling � with an auxiliary dataset [15]. An ad-
versary may distill the stolen model following the training require-
ments of PoT to generate a surrogate model and the corresponding
model chain. We call this attack direct distillation attack. However,
as a prerequisite, the adversary is required to own a relatively large
Daux with similar distribution to Dtrain of � , which essentially im-
poses an attack barrier. We empirically study this attack barrier in
Appendix C. The experimental results show that, in order to achieve
comparable performance with the original model, the size of Daux
is required to be (at least) 30% of the size of Dtrain. As a result, the
efectiveness of the direct distillation attack greatly depends on
a non-trivial Daux that is comparable with the original Dtrain in
both size and distribution. Such a barrier of launching this attack
nullifes its efectiveness under our threat model defned in §2.2.

In summary, existing ownership forgery attacks fail to invalidate
PoT because they cannot forge ownership certifcates under our
threat model. Therefore, we primarily focus on adaptive attacks.
5.2 Security Against Adaptive Attacks
Adaptive attacks are performed by adversaries with capabilities
defned in our threat model (§2.2). We consider three such attacks:
parameter interpolation, regulated distillation and backward con-
struction. Our following discussion shows that none of them can
defeat PoT under our threat model. The fndings are in Table 2.
Parameter Interpolation Attack. In this attack, the adversary
forges the intermediate checkpoints for the illegally acquired model
by linearly interpolating the parameters of a randomly initialized
model and the stolen model with diferent ratios:

=wcheckpoint (1 − �)wrand + �wfnal,

where wrand is the parameters of a randomly initialized model,
wfnal is the parameters of the stolen model, and � ∈ [0, 1] is the
interpolation ratio. By varying � , the adversary can forge a series
of models with diferent validation performances and distances to
the fnal model and fake a model chain without a dataset.

However, the model chain forged by this attack cannot simultane-
ously satisfy all the properties PoT requires, especially Property 6.
This is because the adversary has to choose a randomly initial-
ized model ����� and interpolate it with the stolen model �� to
meet the requirements of Property 3 and 4. However, according to
the measurement study in §3.4, � (�rand ,��) is much larger than
� (�0,��). Meanwhile, if the adversary chooses to directly forge
an initial model that is close to �� by manipulating the parameters
of �� , the initial model will be not randomly initialized, which vio-
lates Properties 3 and 4. Thus, the parameter interpolation attack
cannot satisfy all the properties simultaneously.
Regulated Distillation Attack. To overcome the limitation of
dataset availability in the direct distillation attack, the adversary
can add an additional regularization term to the distillation loss
to penalize the distance between the student and stolen models.
Formally, let L denote the original loss function of the direct distil-
lation attack, the loss function of the regulated distillation attack

1985

Provenance of Training without Training Data:
Towards Privacy-Preserving DNN Model Ownership Verification

is:
L′ = L + � · � (�student , �teacher), (8)

By minimizing L′, the distance between �student and �teacher re-
duces, and thus �student gradually converges to �teacher .

Despite the ease of resource constraints, it is still hard for the ad-
versary to forge the properties. Particularly, to satisfy Properties 3
and 4, the adversary should randomly initialize a model �����
with the required GMM distribution. However, as our observa-
tion in §3.4 implies, � (�rand , �teacher) is highly probable to be
larger than ��ℎ��� of the real model chain. Since � (�rand , �distill) ≈
� (�rand , �teacher) > ��ℎ��� , the forged model chain fails to satisfy
Property 6 and thus cannot pass verifcation. To forge Property 6,
the adversary has to fnd an initial model with the GMM distribu-
tion that is close to �teacher . It is difcult to formulate this into an
optimization problem since Property 3 is not diferentiable. Instead,
the adversary could transform the parameters of �teacher back into
the GMM distribution via histogram matching [12]. In this way,
the adversary may forge an initial model that satisfes Properties 3
and 6 and meanwhile has a small distance to �teacher . However,
since the parameters are transformed from a trained model, ����
of the forged model chain will be large and thus it cannot pass the
verifcation of Property 4. In summary, neither initial model forgery
strategy can fake all properties simultaneously. Therefore, PoT is
secure against the regulated distillation attack.
Backward Construction Attack. In this attack, the adversary
fne-tunes the stolen model with a wrongly-labeled dataset. The
adversary adjusts the proportion of wrong labels to degrade the
model performance gradually, building a model chain from the tail.
To satisfy Properties 3 and 4, the parameters should revert to the
original GMM distribution, which can be achieved by choosing a
random model ����� and minimizing its distance to the model:

L′ = L + � · � (�, �����). (9)

It is difcult for this attack to forge all the properties simulta-
neously. First, it is technically hard to precisely control the hy-
perparameters (e.g., the learning rate and ratio of wrong labels)
to forge properties in coherence. For example, because of over-
parameterization, the model may “remember” the wrong labels
and thus model accuracy may not decrease monotonically. Besides,
since the dataset is noisy, the fne-tuning process may be unstable
and violate Properties 2, 5, and 6. Meanwhile, the distribution dis-
tance between parameters of the converged model and the required
GMM distribution is large, making it hard to restore the distribution
through fne-tuning, which violates Property 3. Moreover, the inher-
ent parameter correlation in a trained model cannot be removed via
simple fne-tuning. Therefore, the parameters of the forged initial
model still exhibit such inherent correlation, violating Property 4.

6 Experiment Evaluation
In this section, we implement the attacks discussed in §5 to demon-
strate the robustness of PoT.

6.1 Experiment Setup
Datasets and Models. To demonstrate that PoT is scalable, we
evaluate PoT on various common CV and NLP models and datasets.
The data allocations among the model owner, the adversary and
the verifer are as follows: the model owner owns (1 − �)% of
the original training samples, the adversary owns the remaining
� % training samples, and the verifer owns the original testing
samples. Per our threat model in §2.2, we set � = 10 to stress test

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

1 2 3 4 5 6
Number of used properties

0%

20%

40%

60%

80%

100%

Ve
ri

fic
at

io
n

Pr
ec

is
io

n

Figure 6: Verifcation precision of PoT when using the frst
� ∈ [1, 6] properties in the verifcation algorithm.

PoT. We evaluate PoT on fve commonly used datasets, including
three CV datasets (MNIST, CIFAR10 and CIFAR100) and two NLP
datasets (DBpedia and SOGOU). For the CV task, we implement
an 8-layer CNN model and a ResNet18 model [14]. For the NLP
task, we implement a TextCNN model with three 1-D convolutional
layers and a TextRNN model with two LSTM layers. All the models
are trained following the requirements of PoT.
Implementation of Attacks. For the parameter interpolation
attack, we interpolate a randomly initialized model with the con-
verged model and change the interpolation ratio � from 0 to 1
with a uniform step of 0.01. For the regulated interpolation attack,
we distill the target model for 100 epochs with a distillation tem-
perature of 2 and a regularization coefcient � of 0.005. For the
backward construction attack, we fne-tune the converged model
with � = 0.005. We set the initial poisoned label rate in Daux to 40%
and increase it by 10% every 10 epochs until reaching 80%.

6.2 Overall Performance
We use precision as the evaluation metric, which is the proportion
of real model chains in the model chains predicted to be coherent
by PoT. We evaluate the efectiveness of PoT by repeating the at-
tacks on each trained model 10 times. To understand the overall
performance under diferent scenarios, we mix all the four attack-
ing strategies and eight model architectures. We report the overall
precision of PoT on verifying forged model chains and correspond-
ing real model chains, i.e., 320 forged model chains and 32 real
model chains in total. Besides, to study the impact of the six prop-
erties, we evaluate PoT using diferent numbers of properties in
verifcation. Specifcally, since PoT verifes the six required prop-
erties sequentially, we report the precision achieved at each step
(e.g., the precision at the fourth step is achieved using the frst four
properties). The evaluation results of PoT on diferentiating the
real and forged model chains generated by diferent attacks are
shown in Figure 6 (we present the detailed verifcation precision
on diferent attacks in Appendix E). The results show that PoT is
able to achieve a precision of 100% on all the evaluated attacks
when using all six properties. Besides, the precisions using diferent
numbers of properties also imply that all the properties contribute
to the verifcation. Thus, combining them together can increase the
difculty for the attack and ensure the robustness of PoT.

6.3 Empirical Studies on Attacks
Now, we analyze in-depth why the evaluated attacks fail to evade
PoT, in order to validate our security analysis in §5.
Against Regulated Distillation Attacks. In §5.2, we analyze that
both of the two strategies of the regulated distillation attack fail
to satisfy all the properties simultaneously. For the attack with
the random initialization, we conclude that it faces the problem
of a large ��ℎ��� (Property 6). To demonstrate this, we report the
validation accuracy and ��ℎ��� of the models forged by this attack

1986

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yunpeng Liu et. al.

0.0001 0.001 0.005 0.01
0.976

0.978

0.980

0.982

Va
lid

at
io

n
Ac

cu
ra

cy CNN MNIST

Train
Attack

0.0001 0.001 0.005 0.01

0.80

0.85

0.90
CNN CIFAR10

Train
Attack

0.0001 0.001 0.005 0.01

0.50

0.55

0.60

0.65
CNN CIFAR100

Train
Attack

0.0001 0.001 0.005 0.01
0.80

0.85

0.90

ResNet18 CIFAR10

Train
Attack

0.0001 0.001 0.005 0.01

0.5

0.6

ResNet18 CIFAR100

Train
Attack

0.0001 0.001 0.005 0.01

2

4

d c
ha

in

×10 3

Train
Attack

0.0001 0.001 0.005 0.01

1

2

3

×10 3

Train
Attack

0.0001 0.001 0.005 0.01

2

4

6
×10 3

Train
Attack

0.0001 0.001 0.005 0.01

0.5

1.0

×10 3

Train
Attack

0.0001 0.001 0.005 0.01

0.5

1.0

×10 3

Train
Attack

Figure 7: Impact of regularization coefcient � on the performance of the regulated distillation Attack.

Table 3: ��ℎ��� and ���� of model chains generated by the
original training and the regulated distillation attack with
histogram matching initialization.

Original Attack Original Attack

MNIST 1.58e-3 6.76e-4 ± 3.0e-8 0.148 0.221 ± 0.000
CNN CIFAR10 1.48e-3 2.56e-4 ± 9.9e-7 0.158 0.308 ± 0.000

CIFAR100 3.76e-3 6.17e-4 ± 5.0e-7 0.148 0.392 ± 0.000

CIFAR10 2.32e-4 1.28e-4 ± 9.8e-8 0.148 0.297 ± 0.000ResNet18 CIFAR100 2.92e-4 1.23e-4 ± 4.6e-8 0.151 0.349 ± 0.000

DBpedia 5.51e-4 1.14e-4 ± 2.2e-8 0.110 0.154 ± 0.000TextCNN SOGOU 3.84e-3 2.29e-4 ± 3.1e-8 0.110 0.286 ± 0.000

TextRNN DBpedia 2.85e-3 6.28e-4 ± 5.1e-7 0.098 0.126 ± 0.000

with diferent values of � in Figure 7. It shows that values of ��ℎ���
of forged model chains are larger than that of the real model chains
as long as � > 0.001, leading to the failure of the attack. Although
��ℎ��� can be reduced by decreasing � (e.g., ��ℎ��� of forged model
chains can be smaller than real model chains when � = 0.0001),
this will lead to poor performance of the surrogate models and the
adversary is less motivated to perform the attack.

For the attack with histogram matching initialization, we ana-
lyzed that although it can satisfy Property 6, it has the problem of
breaking Property 4 because of a large ���� . To demonstrate this,
we report ��ℎ��� and ���� of the forged model chains and the real
coherent model chains in Table 3. Results show that although the
��ℎ��� of the attack can be smaller or similar to real model chains
generated by training from scratch, ���� of the attack is larger than
that of real model chains, which confrms our analysis.
Against Backward Construction Attacks. In §5.2, we analyze
that it is difcult for model chains forged by the backward con-
struction attack to satisfy the required properties. We demonstrate
this by utilizing Properties 3 and 4. Results (see Table 4) show that
����� and ���� of the forged model chains are always larger than
those of the real one. This means that the parameter distributions
of the forged model chain are not restored to the GMM distribution,
and the parameters of the forged initial model are still correlated.
Hence, the forged model chain cannot pass the verifcation of PoT.

7 Related Work
Watermark-based methods. Watermarking DNNs to protect
model ownership has been extensively studied. It can be classi-
fed into two categories, i.e., feature-based and trigger set-based.
Feature-based methods [7, 31, 35] embed information into model
parameters. For example, DeepMarks [7] implants binary code into
target layers of the pre-trained model. Trigger set-based methods
embed triggers into the models. Adi et al. [2] implant backdoors as
watermarks into DNNs by over-parameterizing the model. Jia et

Model Dataset ��ℎ��� ����

Table 4: ����� and ���� of model chains generated by the orig-
inal training and the backward construction attack.

Model Dataset �
 ���� ����

Original Attack Original Attack

MNIST 0.133 1.541 ± 0.000 0.148 0.233 ± 0.000
CNN CIFAR10 0.110 1.210 ± 0.000 0.158 0.319 ± 0.000

CIFAR100 0.091 1.939 ± 0.000 0.148 0.404 ± 0.000

CIFAR10 0.133 3.523 ± 0.000 0.148 0.325 ±ResNet18 0.000
 CIFAR100 0.133 2.582 ± 0.000 0.151 0.384 ± 0.000

DBpedia 0.086 0.507T ± 0.000 0.110 0.166 ± 0.000extCNN SOGOU 0.086 1.780 ± 0.000 0.110 0.294 ± 0.000

TextRNN DBpedia 0.109 0.909 ± 0.000 0.098 0.133 ± 0.000

al. [16] try to improve watermark robustness by entangling normal
and watermark data distributions. Unfortunately, watermarking
schemes are not robust and exclusive [3, 8, 19, 23, 28, 37]. Adver-
saries can conduct watermark removal or model piracy attacks.
Fingerprint-based methods. Fingerprint-based methods extract
ownership proofs from models instead of embedding, which pre-
serves the model utility [5, 25, 36, 42]. For example, Cao et al. [5]
and Wang et al. [36] show that data near the unique classifcation
boundaries of DNN classifers can be used as fngerprints. Although
these methods do not impact performance, they still cannot ensure
robustness or exclusiveness. Particularly, since fngerprints are not
timestamped, adversaries can extract their own fngerprints and
use as their proof of ownership [11].
Computation-based method. Proof-of-Learning (PoL) [17] veri-
fes model ownership by checking the reproducibility of the training
process. It retrains checkpoints from the previous ones according to
training logs, which only uses the local property of the model chain.
Due to the weak security guarantee, the adversary can develop
adaptive attacks given PoL’s design details [40]. In contrast, our
method exploits both the local nature (Properties 2, 3 and 4) and
the global nature (Properties 1, 5 and 6) of the model chain. More
critically, PoL has privacy leakage issues because it requires the
verifer to have full access to the proprietary training data.

8 Conclusion
In this paper, we present PoT, the frst exclusive, robust, and privacy-
preserving design for DNN model ownership verifcation. PoT ad-
dresses the limitations of the state of the arts that are either vulner-
able to various attacks or require full access to the private training
dataset. In contrast, PoT proposes to verify the provenance of the
training efort using the naturally coherent model chain saved dur-
ing training. We perform a comprehensive security analysis and
conduct extensive empirical experiments to validate the robustness
of PoT against various attacks.

1987

Provenance of Training without Training Data:
Towards Privacy-Preserving DNN Model Ownership Verification

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jefrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geofrey Irving, Michael Isard, et al.
2016. Tensorfow: A system for large-scale machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16). 265–283.

[2] Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet.
2018. Turning Your Weakness Into a Strength: Watermarking Deep Neural
Networks by Backdooring. In 27th USENIX Security Symposium, USENIX Security
2018. 1615–1631.

[3] William Aiken, Hyoungshick Kim, Simon S. Woo, and Jungwoo Ryoo. 2021.
Neural network laundering: Removing black-box backdoor watermarks from
deep neural networks. Comput. Secur. 106 (2021), 102277.

[4] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of
deep architectures. arXiv:1206.5533 [cs.LG]

[5] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. IPGuard: Protecting
Intellectual Property of Deep Neural Networks via Fingerprinting the Classi-
fcation Boundary. In ASIA CCS ’21: ACM Asia Conference on Computer and
Communications Security. ACM, 14–25.

[6] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. 2016. Listen,
Attend and Spell: A Neural Network for Large Vocabulary Conversational Speech
Recognition. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016 (2016). IEEE, 4960–4964.

[7] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushan-
far. 2019. DeepMarks: A Secure Fingerprinting Framework for Digital Rights
Management of Deep Learning Models. In Proceedings of the 2019 on International
Conference on Multimedia Retrieval, ICMR 2019. ACM, 105–113.

[8] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, and
Dawn Song. 2021. REFIT: A Unifed Watermark Removal Framework For Deep
Learning Systems With Limited Data. In ASIA CCS ’21: ACM Asia Conference on
Computer and Communications Security. ACM, 321–335.

[9] Anna Choromanska, Mikael Henaf, Michaël Mathieu, Gérard Ben Arous, and
Yann LeCun. 2015. The Loss Surfaces of Multilayer Networks. In Proceedings
of the Eighteenth International Conference on Artifcial Intelligence and Statistics,
AISTATS 2015 (2015), Vol. 38.

[10] Yadolah Dodge. 2010. The Concise Encyclopedia of Statistics. New York : Springer.
502–503 pages.

[11] Lixin Fan, KamWoh Ng, and Chee Seng Chan. 2019. Rethinking Deep Neural
Network Ownership Verifcation: Embedding Passports to Defeat Ambiguity
Attacks. In NeurIPS 2019. 4716–4725.

[12] Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd
Edition). Prentice-Hall, Inc., USA. 150–160 pages.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifers: Surpassing Human-Level Performance on ImageNet Classifcation.
In 2015 IEEE International Conference on Computer Vision (ICCV) (2015-12). 1026–
1034.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016 (2016). 770–778.

[15] Geofrey E. Hinton, Oriol Vinyals, and Jefrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015).

[16] Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nicolas
Papernot. 2021. Entangled Watermarks as a Defense against Model Extraction.
In 30th USENIX Security Symposium (USENIX Security 21). 1937–1954.

[17] Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie
Dullerud, Anvith Thudi, Varun Chandrasekaran, and Nicolas Papernot. 2021.
Proof-of-Learning: Defnitions and Practice. In Proceedings of the 42nd IEEE Sym-
posium on Security and Privacy (2021).

[18] Erwan Le Merrer, Patrick Pérez, and Gilles Trédan. 2020. Adversarial Frontier
Stitching for Remote Neural Network Watermarking. Neural Computing and
Applications 32 (2020), 9233–9244.

[19] Suyoung Lee, Wonho Song, Suman Jana, Meeyoung Cha, and Sooel Son. 2021.
Evaluating the Robustness of Trigger Set-Based Watermarks Embedded in Deep
Neural Networks. CoRR abs/2106.10147 (2021). arXiv:2106.10147

[20] Meng Li, Qi Zhong, Leo Yu Zhang, Yajuan Du, Jun Zhang, and Yong Xiangt. 2020.
Protecting the Intellectual Property of Deep Neural Networks with Watermarking:
The Frequency Domain Approach. In TrustCom. IEEE, 402–409.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[21] Tommy Li and Cory E. Merkel. 2021. Model Extraction and Adversarial Attacks
on Neural Networks using Switching Power Information. CoRR abs/2106.08299
(2021). arXiv:2106.08299

[22] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. 2019. How to prove your
model belongs to you: a blind-watermark based framework to protect intellectual
property of DNN. In ACSAC. ACM, 126–137.

[23] Xuankai Liu, Fengting Li, Bihan Wen, and Qi Li. 2021. Removing Backdoor-Based
Watermarks in Neural Networks with Limited Data. In 2020 25th International
Conference on Pattern Recognition (ICPR). 10149–10156.

[24] N. Lukas, E. Jiang, X. Li, and F. Kerschbaum. 2022. SoK: How Robust is Image
Classifcation Deep Neural Network Watermarking?. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society, 52–69.

[25] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. 2021. Deep Neural Network
Fingerprinting by Conferrable Adversarial Examples. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event. OpenReview.net.

[26] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui
Xiong, and Leman Akoglu. 2021. A Comprehensive Survey on Graph Anom-
aly Detection with Deep Learning. IEEE Transactions on Knowledge and Data
Engineering (2021), 1–1. https://doi.org/10.1109/TKDE.2021.3118815

[27] Kevin P. Murphy. 2012. Machine learning - a probabilistic perspective. MIT Press.
[28] Ryota Namba and Jun Sakuma. 2019. Robust Watermarking of Neural Network

with Exponential Weighting. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, AsiaCCS 2019. ACM, 228–240.

[29] Quynh Nguyen and Matthias Hein. 2017. The Loss Surface of Deep and Wide
Neural Networks. In Proceedings of the 34th International Conference on Machine
Learning (2017-08-06/2017-08-11), Vol. 70. PMLR, 2603–2612.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[31] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. 2019. DeepSigns: An
End-to-End Watermarking Framework for Ownership Protection of Deep Neural
Networks. In ASPLOS 2019. 485–497.

[32] Sameer Shirdhonkar and David W. Jacobs. 2008. Approximate earth mover’s
distance in linear time. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition. 1–8.

[33] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2020. Energy and Policy
Considerations for Modern Deep Learning Research. In AAAI 2020. AAAI Press,
13693–13696.

[34] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In 25th USENIX
Security Symposium, USENIX Security 16. USENIX Association, 601–618.

[35] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.
Embedding Watermarks into Deep Neural Networks. In ICMR 2017. 269–277.

[36] Si Wang and Chip-Hong Chang. 2021. Fingerprinting Deep Neural Networks - a
DeepFool Approach. In IEEE International Symposium on Circuits and Systems,
ISCAS 2021. IEEE, 1–5.

[37] Tianhao Wang and Florian Kerschbaum. 2019. Attacks on Digital Watermarks
for Deep Neural Networks. In ICASSP. IEEE, 2622–2626.

[38] Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou,
Hao Cui, and Nenghai Yu. 2020. Model Watermarking for Image Processing
Networks. In AAAI. AAAI Press, 12805–12812.

[39] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing
Huang, and Ian Molloy. 2018. Protecting Intellectual Property of Deep Neural
Networks with Watermarking. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security - ASIACCS ’18. ACM Press, 159–172.

[40] Rui Zhang, Jian Liu, Yuan Ding, Qingbiao Wu, and Kui Ren. 2021. "Adversarial
Examples" for Proof-of-Learning. CoRR abs/2108.09454 (2021).

[41] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-
ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 1–38.

[42] Jingjing Zhao, Qingyue Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Moham-
mad Mehedi Hassan. 2020. AFA: Adversarial Fingerprinting Authentication for
Deep Neural Networks. Computer Communications 150 (2020), 488–497.

[43] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. 2021. Hermes
Attack: Steal DNN Models with Lossless Inference Accuracy. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 1973–1988.

1988

https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/2106.10147
https://arxiv.org/abs/2106.08299
https://doi.org/10.1109/TKDE.2021.3118815
https://OpenReview.net

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Yunpeng Liu et. al.

A Verifcation Algorithm
Algorithm 1 shows the pseudocode of the verifcation algorithm of
PoT.

Algorithm 1: PoT Verifcation
Input: The model chain C to be verifed by PoT
Output: A Boolean value indicating whether the model chain C is

coherent

1 Calculate ���� , ���� , ��ℎ��� , �����ℎ� , ����� , ���� for the model
chain C based on the defnitions in §4.1;

2 if C → ���� < �1 then
3 return False; // Report C to be incoherent.

4 else if C → ���� < �2 then
5 return False;

6 else if C → �����ℎ� > �3 then
7 return False;

8 else if C → ����� > �4 then
9 return False;

10 estPCAmean, estPCAstd = estimatePCAratio(C) ; // Estimate the
range of valid ���� by randomly reinitializing the protected model for several

times and calculate ���� .

11 if C → ���� > estPCAmean + 10 × estPCAstd then
12 return False;

13 estDisMean, estDisSTD = estimateChainDistance(C) ; // Estimate
the range of ��ℎ��� of forged model chains based on randomly re-initializing.

14 if ��ℎ��� < estDisMean − 30 × estDisSTD then
15 return True;

16 else
17 return False;

B Threshold Selection for Verifcation
The four properties that require predetermined thresholds (Prop-
erties 1, 2, 3, and 5) can naturally hold as long as the model is
randomly initialized and stably trained (which is the case in the
training of high-performance models). Therefore, these properties
are less sensitive to the model architecture and dataset and their
thresholds can be chosen a priori. Empirically, we set the thresholds
�1, �2 , �3, and �4 in Algorithm 1 to be 0.5, 0.8, 0.8, and 0.3 respec-
tively. In Table 5, we provide the four properties of model chains
generated under normal training settings, where early stopping is
used. The table shows that all the model chains satisfy the thresh-
olds. Therefore, the algorithm does not produce false negatives, i.e.,
wrongly labeling a model chain generated by real training as an
incoherent one. Moreover, most property values are not sensitive
to thresholds under most training settings. Note that the value of
Property 1 is small under the setting of the CNN model trained
with the MNIST dataset due to the simple task. Therefore, PoT is
not sensitive to threshold selection.

C Experiments on the Direct Distillation Attack
In §5.2, we analyze that the direct distillation attack requires a
relatively large auxiliary dataset to derive a surrogate model with
comparable performance to the original model. To demonstrate
this, we train teacher models with 50% of each dataset, and then

perform the direct distillation attack on the trained models with
diferent proportions of the remaining 50% of the dataset. We set
the number of training epochs to 200, weight decay to 0.0001 and
batch size to 128. We repeat the attack 10 times and report the
accuracy of the distilled model on Daux with respect to the relative
size of the distillation dataset in Figure 8. Note that the accuracies
of the teacher models are lower than usual (e.g., the accuracies in
Figure 7) because the models are trained with small subsets of the
original training datasets.

The results show that the adversary needs a sufciently large
auxiliary dataset (at least 30% of the original dataset size) to obtain
a surrogate model with comparable performance with the original
model. In some cases, the surrogate model’s performance is never
comparable with the original model, regardless of the size of the
auxiliary dataset. Thus, due to the requirement of a non-trivial
auxiliary dataset that is comparable with the original dataset in
both size and distribution, we consider this attack to be out of the
scope of our threat model defned in §2.2.

D Experiments on Regulated Distillation Attack
with Small-scale Auxiliary Dataset

We empirically evaluate the impact of the size of auxiliary dataset
Daux on the regulated distillation attack with random initialization.
We perform the attack on the models with a small Daux whose size
is only 1% of Dtrain, and all the other settings are the same as §6. The
validation accuracy and ��ℎ��� of the models derived by the attack
are reported in Table 6. Experiment results show that although the
attack is able to derive a model with similar performance to the
stolen model with limited data under most of the settings, ��ℎ��� of
the forged model chain is signifcantly larger than that of the real
model chain, which violates Property 6. Therefore, the attack can be

Table 5: Property values of real model chains. The models are
training for 200 epochs with early stopping and the patience
of early stopping is 20 epochs.

StoppingModel Dataset Epoch ���� � ��� �����ℎ� �����

MNIST 68 0.672 1 0.431 0.133
CNN CIFAR10 120 0.941 1 0.273 0.11

CIFAR100 77 0.978 1 0.344 0.091

CIFAR10 98 0.963 1 0.14 0.133ResNet18 CIFAR100 154 0.982 1 0.116 0.133

DBpedia 187 0.998 1 0.095 0.086TextCNN SOGOU 29 0.919 1 0.66 0.086

TextRNN DBpedia 91 0.98 1 0.118 0.109

Table 6: Validation accuracy of the fnal model and ��ℎ��� of
training from scratch and the regulated distillation attack
with a small dataset whose size is 1% of Dtrain.

Validation Accuracy Model Dataset �
 �ℎ���

Training Training Attack Attackfrom Scratch from Scratch

MNIST 0.981 0.982 ± 0.001 1.54e-3 5.08e-03 ± 4.02e-06
CNN CIFAR10 0.902 0.894 ± 0.001 1.48e-3 3.75e-03 ± 1.73e-06

CIFAR100 0.654 0.659 ± 0.001 3.76e-3 6.10e-03 ± 3.71e-06

CIFAR10 0.912 0.904 ± 0.001 2.32e-4 1.21e-03 ± 2.94e-07ResNet18 CIFAR100 0.686 0.662 ± 0.002 2.92e-4 1.29e-03 ± 3.24e-07

DBpedia 0.985 0.893 ± 0.001 5.51e-4 4.37e-03 ± 3.93e-06TextCNN SOGOU 0.947 0.899 ± 0.000 3.84e-3 5.04e-03 ± 3.98e-06

TextRNN DBpedia 0.978 0.963 ± 0.001 3.40e-3 1.37e-02 ± 5.01e-05

1989

Provenance of Training without Training Data:
Towards Privacy-Preserving DNN Model Ownership Verification WWW ’23, April 30–May 04, 2023, Austin, TX, USA

10% 30% 50% 70% 90%
96.5%

97.0%

97.5%

98.0%

98.5%
CNN MNIST

Train
T=2

T=5
T=10

10% 30% 50% 70% 90%

75.0%

80.0%

85.0%

CNN CIFAR10

Train
T=2

T=5
T=10

10% 30% 50% 70% 90%

40.0%

50.0%

60.0%

CNN CIFAR100

Train
T=2

T=5
T=10

10% 30% 50% 70% 90%
70.0%

75.0%

80.0%

85.0%

90.0%
ResNet18 CIFAR10

Train
T=2

T=5
T=10

10% 30% 50% 70% 90%

30.0%

40.0%

50.0%

60.0%

ResNet18 CIFAR100

Train
T=2

T=5
T=10

10% 30% 50% 70% 90%97.8%

98.0%

98.2%

98.4%

98.6%
TextCNN DBpedia

Train
T=2

T=5
T=10

10% 30% 50% 70% 90%

91.0%

92.0%

93.0%

94.0%

TextCNN SOGOU

Train
T=2

T=5
T=10

10% 30% 50% 70% 90%
97.2%

97.5%

97.7%

98.0%

98.2%

98.5%
TextRNN DBpedia

Train
T=2

T=5
T=10

Size of Distillation Dataset

Va
lid

at
io

n
Ac

cu
ra

cy

Figure 8: Validation accuracy of direct distillation attack w.r.t the relative size of distillation dataset. T is the temperature of
distillation.

1 2 3 4 5 6
Number of used properties

0%

20%

40%

60%

80%

100%

Ve
ri

fic
at

io
n

Pr
ec

is
io

n

1 2 3 4 5 6
Number of used properties

0%

20%

40%

60%

80%

100%

Ve
ri

fic
at

io
n

Pr
ec

is
io

n

(a) Parameter Interpolation (b) Regulated Distillation with Random Initialization

1 2 3 4 5 6
Number of used properties

0%

20%

40%

60%

80%

100%

Ve
ri

fic
at

io
n

Pr
ec

is
io

n

1 2 3 4 5 6
Number of used properties

0%

20%

40%

60%

80%

100%

Ve
ri

fic
at

io
n

Pr
ec

is
io

n

(c) Regulated Distillation with Histogram Matching Initialization (d) Backward Construction

Figure 9: Verifcation precision of PoT on diferent attacks with diferent numbers of properties used in the verifcation
algorithm.

detected by PoT. We further provide the detection precisions of PoT
on diferentiating the real and forged model chains in Appendix D,
and the results show that PoT is able to perform the detection with
100% precision.

E Verifcation Precision on Diferent Attacks
Figure 9 shows the detailed verifcation precision of PoT on diferent
attacks when the size of Daux is 10% of Dtrain. The results show
that PoT is able to successfully defend against all these attacks.

F Discussion
Validity of validation dataset. Dval plays an important role in re-
solving an ownership dispute, since PoT asks for verifying whether
the model chain has the property of the validation accuracy mono-
tonicity. To enforce a valid and disinterested verifcation, the con-
struction of Dval should be fair and unbiased for all parties involved
in the dispute. To achieve this, the validation dataset can be built by
crowdsourcing with the help from the community. Such datasets
can be collected in advance by building an open platform, so that
PoT can be applied to models on diferent tasks and felds.

Transfer learning in model training. To prove model ownership,
PoT requires model trainers to initialize their model parameters
with a specifc GMM distribution. If model trainers want to conduct
transfer learning on a pre-trained model, this prerequisite cannot
be satisfed, and thus PoT cannot be directly applied to the transfer
learning scenario. However, pre-trained models are not available in
some scenarios, such as learning-based trafc analysis and anomaly
detection. Besides, applying pre-trained models may need to deal
with licensing issues. Therefore, PoT focuses on protecting models
trained from scratch, and we consider ownership verifcation in the
transfer learning scenario as future work.
Dishonest verifer. One security concern of PoT is that a dishonest
verifer may illegally copy the model chain under verifcation and
later falsely claim the ownership of the model. This concern can be
addressed as follows: the model owner calculates the hash values
of the model chain upon fnishing training, and commits them on a
public blockchain. This enables the model owner to claim exclusive
ownership of the model chain, even if later handing the model chain
over to the verifer.

1990

	Abstract
	1 Introduction
	2 Background and Problem Statement
	2.1 DNN Model IP Protection
	2.2 Threat Model

	3 Observations
	3.1 Validation Accuracy
	3.2 Parameter Distribution Distance
	3.3 Independence among Initial Parameters
	3.4 Weight Distance

	4 PoT Design
	4.1 Model Chain Properties
	4.2 DNN Model Training with PoT
	4.3 Model Ownership Verification using PoT

	5 Security Analysis
	5.1 Security Against Existing Attacks
	5.2 Security Against Adaptive Attacks

	6 Experiment Evaluation
	6.1 Experiment Setup
	6.2 Overall Performance
	6.3 Empirical Studies on Attacks

	7 Related Work
	8 Conclusion
	References
	A Verification Algorithm
	B Threshold Selection for Verification
	C Experiments on the Direct Distillation Attack
	D Experiments on Regulated Distillation Attack with Small-scale Auxiliary Dataset
	E Verification Precision on Different Attacks
	F Discussion

