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Abstract—Cloud computing has recently attracted a substan-
tial amount of attention from both industry and academia.
Its growing demand gives normal users an opportunity to sell
their local resources to the cloud market, which introduces new
challenges for the existing coarse-grained pricing models.

In this paper, we examine the potential of applying continuous
double auction framework to handle these heterogeneous cloud
resources. First, we establish an e-auction platform, on which
cloud service providers and users can trade computing and
storage resources online. Then we formulate a continuous double
auction model for cloud market and further develop a novel
belief-based hybrid bidding strategy (BH-strategy) for cloud
players to ensure their profit maximization. At last, we conduct
three simulation scenarios to compare the performance between
BH-strategy and other dominating bidding strategies, and plenty
of simulation results show that our BH-strategy outperforms
others in all the scenarios on user surpluses by 20% or above.
Besides, the BH-strategy can obtain a 16% higher efficiency in
1/3 the amount of time of other strategies.

Index Terms—Cloud Computing, Continuous Double Auction,
Bidding Strategies, Resource Allocation

I. INTRODUCTION

Powered by reduced costs and unmatched scalability, cloud

computing has been drastically improving the existing opera-

tions and business models of the IT industry. Such enterprise

cloud providers as Amazon, Google, and Rackspace have

enjoyed a significant increase in the population of customers,

which enforces themselves to constantly upgrade and expand

infrastructures of their datacenter [1]. Nowadays, the rising

demand of cloud computing also gives users an opportunity

to provide their local resources as a cloud service [2], which

brings about a great boom to the global cloud market.

To solve this problem, fixed pricing and single-sided auction

models [3] are suggested, which allows users to bid on unused

resources. But it is known that this single-sided auction cannot

support popular cloud applications very well due to its incon-

venience to providers [4]. Then many researchers shift their
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focus on double auctions, which can provide more freedom

to both providers and users. Such models are commonly used

when the commodity to be priced has an approximately well-

known value to both sellers and buyers. These designs however

can hardly consider the case when customers are selling their

highly heterogeneous local resources to other users in the

cloud market, not to mention the possible bargaining behavior

among users.

In this paper, we carefully investigate the benefit of applying

a Continuous Double Auction (CDA) to cloud markets. In

particular, we mainly focus on two jobs. One is to establish

an e-auction platform, on which the cloud service providers

and users can trade computing and storage resources online.

The other is that we develop a novel belief-based hybrid

bidding strategy (BH-strategy) for cloud users. Further, lots

of experiments indicate that this work can largely improve

market efficiency in an asymmetric scenario which is very

close to actual cloud markets.

The following of this paper is structured as follows. Section

II surveys related works on Internet pricing and auction

models. In Section III we design a CDA framework and an e-

CDA platform scheme. Section. IV describes the BH-strategy

for cloud CDA. The simulation results and the feasibility of

CDA in real cloud markets are given in Section V. Finally,

Section VI concludes the paper.

II. RELATED WORK

The resource allocation problem has been researched in

many fields, such as grid computing and some economic

resource allocation frameworks [5]. Although some works on

Internet pricing can be applied to nowadays cloud computing,

there are some unique natures and characteristics in cloud

auctions, and existing methods do not apply in new situations.

So in this section, we will first review the concept of Internet

resource pricing, and then give some related works on cloud

auctions.

A. Internet Resource Pricing

Recently, with a tremendous growth in demand for broad-

band data, pricing has become a congestion management tool

when services are provided. For example, [6] proposes a
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flat rate pricing mechanism with congestion control, called

FRPCC, to achieve social welfare. Since time-based pricing

strategy is not truly dynamic and the electricity resource

cannot be optimally utilized in real time, [7] proposes a usage-

based dynamic pricing scheme for smart grid in a community

environment, which enables the electricity price to correspond

with the electricity usage in real time. Further, Soumya Sen et

al. carried out the first time-dependent pricing (TDP [8]) trial

for mobile data in 10 families in the US, and this trial can not

only help ISPs empower users to better control their usage, but

also alleviate network congestion. There are also a wide variety

of scenarios that adopt auction and market design solutions.

[9] shows that single-sided auction designs for divisible goods

have been explored fairly well, while suitable double-sided

auctions for markets have proved to be rather challenging.

Although the Internet pricing is widely used in many areas,

these schemes cannot be used in cloud pricing directly because

there are also many differences between [10] and [11]. Many

particular methods such as continuous double auctions are then

under study, which are brief introduced in the next subsection.

B. Auction Models in Cloud

Traditional auctions can be classified into the following

types: English auction (first-price open-cry), first-price sealed-

bid auction, second-price sealed-bid auction (Vickery auction),

Dutch auction and double auction. Further, Gode and Sunder

[12] divided double auction into three categories: synchronized

double auction, CDA and semi-continuous double auction (or

Hybrid double auction).

There are already some researches that adopt the above

auctions into cloud computing. In Radu Prodan’s opinion,

scheduling of scientific applications in cloud environments

can be regarded as a market-based negotiation which aims

at optimizing user-centric objectives, so he proposed a new

instantiation of the negotiation protocol using a market-based

Continuous Double Auction (CDA) model in [13] and con-

cluded that one can benefit by applying an aggressive schedul-

ing strategy. Besides, many literatures such as [14], [15] use

combinatorial double auctions to allocate cloud resources and

obtain nice results.

However, all these works do not consider the dynamic nature

of cloud markets, and ignore that consumers can come into an

auction at any time and even leave the auction whenever they

want to. Thus, a scheme or a platform that can provide more

freedom to both providers and users is in urgent need.

III. CDA FRAMEWORK

The cloud computing market structure considered in this pa-

per consists of CSPs, cloud users and a uniform platform. This

section presents a solution to the resource allocation problem

in such a market, including a model of CDA mechanism and its

market rules. Then an e-auction platform scheme is proposed

to implement the mechanism in a real cloud environment.

TABLE I: Main notations used in CDA.

Notation Explanation

obid The outstanding bid
oask The outstanding ask
TR The trading round
so The bid-ask spread
B The set of bids submitted by bidders
LP The limit price

A. Auction Platform

For a huge cloud computing market populated by millions

of users and CSPs, a uniform trading platform is vital. Cur-

rently many kinds of commodities (such as electric energy,

petroleum, and stocks) are traded on the e-business platform

because e-auction platform is a feasible solution, which can

be easily accessed via the Internet and make use of e-business

technologies.

On such an e-business platform, it is an efficient trading way

in which CSPs and users can submit their orders simultaneous-

ly, so the CDA model can be applied. In a specific auction,

the platform plays the role of an auctioneer, and users who

submit buying orders (bids) act as buyers, while CSPs that

submit selling orders (asks) act as providers.

Therefore, we propose an e-auction platform, which applies

the customized CDA mechanism to implement pricing and

resource allocation in cloud markets.

B. CDA Model

To formulate CDA, we firstly explore some of the basic

notions as shown in Table I:

To be specific, obid is the current maximum demand order

submitted by a cloud user in the market, and oask is the current

minimum offer submitted by a CSP at any given time t in

the market. TR is the period during which asks and bids are

submitted until there is a match or transaction occurs. There

are typically several trading rounds in a trading day. At the

beginning of a trading round, obid = 0 and oask = Max. so
is the difference between oask and obid, so = oask − obid.

The limit price, LP , is both the maximum bid a cloud user

is currently willing to pay, and the minimum ask a CSP is

willing to supply.

With these notations, CDA can be considered as a discrete

system: transforming a series of discrete input value (bids

and asks) to a series of discrete output (transaction results,

i.e., matching of bids and asks). Therefore, the model can be

described as the following:

M = FLTD,∆,Max,Min(B, V,A,C) (1)

where TD is a trading day, denoting the period during which

users and CSPs are allowed to submit asks and bids. LTD is

the length of trading day. ∆ is the minimum increment of a

bid or ask in the market. Max is the maximum ask allowed

in the market, and Min is the minimum bid allowed in the

market, usually set as 0.

Input:



B = {B1, ..., Bi, ..., Bm} : bid set of m cloud users. Bi is

a subset containing all bids of cloud user i, and each bid is

noted as bti.
V = {V1, ..., Vi, ..., Vm} : limit price set of m cloud users.

Vi is the limit price of cloud user i, which is the highest bid

it is willing to pay. Normally, Vj is useris unit valuation for

commodity, i.e., redemption value.

A = {A1, ..., Ai, ..., Am} : ask set of n CSPs. Aj is subset

containing all asks of CSP j, and each ask is noted as atj .

C = {C1, ..., Ci, ..., Cm} : limit price set of n CSPs. Cj is

the limit price of CSP j, which is the lowest bid it is willing

to submit. Normally Cj is CSPjs unit cost for commodity

production.

In this paper, cloud users and CSPs are supposed to be

rational. Therefore, the bid of user i is no more than the price

it is willing to pay, and the ask of CSP j is no less than the

unit cost of commodity production, i.e.,

Min ≤ bi ≤ Vi (2)

Cj ≤ aj ≤ Max (3)

Output: M : the successful transaction matching result.

To apply CDA in competitive cloud computing markets, we

define the following market rules:

Rules 1. At each step, only one bid or ask can be submitted.

At any step t, if a bid or ask is submitted, then t = t+ 1.

Rules 2. Any new bid or ask must improve on the current out-

standing bid or ask in the market, i.e., bt > ot−1

bid , at < ot−1

ask .

Rules 3. At any step t, if otbid ≥ otask, then a transaction

occurs at the price pt = (otbid + otask)/2. The winning cloud

user’s revenue is (Vi − Pt), and the winning CSP’s revenue

is (Pt −Cj). Then the winning buyer and seller are removed

from the market. The current round is over, and the next round

begins.

Rules 4. At any step t, if CSP’s limit price is lower (higher)

than the current otbid (otask), it cannot submit any bid (ask),

and has to wait for the beginning of the next round. However,

if it can submit a bid or ask in the cloud market, it considers

its set of bidding strategies to form a price.

Rules 5. If t = LTD, the trade is over.

Obviously, when a CSP (cloud user) decides his/her ask

(bid) price, he/she must take other players’ action into account,

including the action of other CSPs and actions of all cloud

users. In Section. IV, we’ll analyze the bidding strategies of

both CPS and users.

IV. BELIEF-BASED HYBRID STRATEGY

Our e-auction platform provides a feasible solution to the

problems of cloud resource allocation and pricing. On such a

platform, the selection of bidding strategies for auctions plays

an important role for each player to maximize his/her own

profit.Therefore, we propose a novel bidding strategy, Belief-

based Hybrid Strategy (BH-strategy), for the CDA mechanism.

BH-strategy introduces an improved belief function and uses

evolutionary programming to decide strategy dynamically.

A. Belief Function

All cloud users and CSPs attempt to maximize their sur-

pluses in cloud computing market. However, only when bids

or asks are accepted and a transaction occurs, cloud users and

CSPs can obtain surpluses. Therefore, players must evaluate

the probability of which these bids or asks get accepted by

other sellers or buyers, i.e., beliefs. It is a feasible method to

form beliefs based on trade history.

To reduce the computation time and costs, we introduce

an improved belief function. It calculates the estimate of

the competitive equilibrium price p∗ by using recent trans-

action prices, and then forms the seller’s and buyer’s beliefs

according to the estimate of p∗. Furthermore, the bidding

game consists of two stages: the aggressive stage and the

unaggressive stage. In the aggressive stage, oask > p̂∗, sellers

can be more aggressive, and choose the best ask based on the

belief. In the unaggressive stage oask ≤ p̂∗, sellers can be

less aggressive, i.e., sellers choose the best ask without taking

history records into account. The same situations also work

in buyers. Therefore, the belief function should be defined by

two sub-functions.

We use the moving average method to calculate the estimate

of p∗ based on the prices in transaction history. Different from

[16], this paper uses the weighted moving average method to

calculate the estimate of the competitive equilibrium price, as

shown in Equation 4.

p̂∗ =

∑T

i=T−HN+1
(wi × pi)

1 + 2 + ...+HN
(4)

where (wT−HN+1, ..., wT ) is the weight given to the latest

HN transaction prices (pT−HN+1, ..., pT ), and wT−HN+1 =
1, wi = i− (T −HN), and wT = HN , which means we give

higher weight to more recent transactions.

To reduce computation complexity, the seller’s beliefs at

interval (p̃∗,Max] can be described as a polynomial based on

the data in transaction history. Here we design seller beliefs

as a cubic polynomial:

p̂(a) =

{
1 if a ≤ p̂∗

p1a
3 + p2a

2 + p3a+ p4 if Max ≥ a ≥ p̂∗
(5)

where p1, p2, p3, p4 will be fixed by analyzing the data in

transaction history in a given market populated by N sellers

and M buyers.

Similarly, the buyer’s beliefs at interval [Min, p̂∗) can also

be described as a cubic polynomial as follows:

p̂(b) =

{
1 if b ≥ p̂∗

q1b
3 + q2b

2 + q3b+ q4 if Min ≤ b ≤ p̂∗
(6)

B. BH-Strategy

Based on our improved belief functions, the buyers or sellers

take different actions at different game stages.



Algorithm 1 Bidding Strategy for Seller j

1: if Cj ≥ oask then

2: submit no ask

3: else

4: if first trading round, p̂∗ = 0 then

5: submit an ask given by Equation. 13

6: else

7: if oask > p̂∗ then

8: /*aggressive stage*/

9: submit an ask computed by Equation. 8

10: else

11: /*unaggressive stage*/

12: submit an ask given by Equation. 11

13: end if

14: end if

15: end if

1) Aggressive Stage: If oask > p̂∗, sellers should be in the

aggressive stage. A seller should compute the best ask based

on the improved belief function. Seller’s expected surplus is

defined as follows:

Ss,j = max{maxa[(a− Cj)p̂(a)], 0} (7)

For seller j, its best ask is aj , maximizing Ss,j . Substituting

Equations 5 for 7, we have:

aj = argmax{(a− Cj)(p1a
3 + p2a

2 + p3a+ p4)} (8)

If obid < p̂∗, buyers should be in the aggressive stage.

Buyers’ expected surplus is defined as follows:

Sb,j = max{maxb[(Vi − bq̂(b))], 0} (9)

For buyer i, its best bid is bi maximizing Sb,i, i.e.,

bi = argmax{(Vi − b)(q1b
3 + q2b

2 + q3b+ q4)} (10)

2) Unaggressive Stage: If oask ≤ p̂∗, sellers should be at

the unaggressive stage. Similarly, if obid ≥ p̂∗, buyers should

be at the unaggressive stage. When at this stage, a seller or

buyer submits a new ask or bid, which means it will accept a

worse price than history.

In CDA, asks or bids submitted by traders must be subject

to Equations 2 and 3. When oask ≤ p̂∗, the interval [Cj , oask)
has already been too small to provide the seller j with more

choices. Similarly, when obid ≥ p̂∗, the interval (obid, Vi] has

also been too small.

Therefore at the unaggressive stage, a seller just submits a

random ask as follows:

aj ∼ U(Cj , oask) (11)

U(Cj , oask) is the uniform distribution.

A buyer submits a random bid as follows:

Algorithm 2 Bidding Strategy for Buyer i

1: if Vi ≤ obid then

2: submit no ask

3: else

4: if first trading round, p̂∗ = 0 then

5: submit a bid given by Equation. 14

6: else

7: if obid < p̂∗ then

8: /*aggressive stage*/

9: submit a bid computed by Equation. 10

10: else

11: /*unaggressive stage*/

12: submit a bid given by Equation. 12

13: end if

14: end if

15: end if

bi ∼ U(obid, Vi) (12)

Similarly, U(obid, Vi) is the uniform distribution.

When in the first trade round, no transaction occurs. So

we define bid rules in the first trading round by adopting the

method of [16]. Seller j should submit aj in the first trading

round as Equation 13:

aj = oask −
oask −max{Cj , obid}

η
(13)

And buyer i should submit bi in the first trading round as

Equation 14:

bi = obid +
min{Vi, oask − obid}

η
(14)

Therefore, the Belief-based Hybrid Strategy can be de-

scribed as Algorithm 1 and Algorithm 2:

As shown above, in the first trading round, BH buyers and

sellers have no information of trade history, so they submit

orders based on the current outstanding orders and their limited

prices. From the second trading round, p̂∗ can be computed,

and BH buyers and sellers take different bidding strategies

accordingly.

V. EVALUATION

In this section, we first detail the simulation design to

analyze the strategic interaction of the BH-strategy in CDA

markets. Then, we compare our strategy with the ZI strategy,

GD strategy and AA strategy, separately. At last, we give the

actual empirical study of performance.

A. Simulation Design

We simulate scenarios with three different kinds of scales

to evaluate our strategy.

In the small simulation scenario, the market is populated

with a set of 10 buyers and 10 sellers on the same scale as

[16]. In the large simulation scenario, there are 100 buyers



(a) Small Simulation Scenario. (b) Large Simulation Scenario. (c) Asymmetric Simulation Scenario.

Fig. 1: Total Surplus Evaluation.

(a) Small Simulation Scenario. (b) Large Simulation Scenario. (c) Asymmetric Simulation Scenario.

Fig. 2: Daily Price Volatility.

and 100 sellers in the market. In the asymmetric scenario,

1000 buyers and 10 sellers. For each scenario, we simulate 30

trading days.

To evaluate BH-strategy, we will compare it with ZI strategy

[17], GD strategy [18] and AA strategy [16], separately.

B. Evaluation

Successful transactions, surpluses and daily price volatility

are evaluated to assess the performance of CDA market and

BH-strategy.

1) Successful Transactions: The number of successful

transactions in one trading day is a basic measurement of

auction efficiency. Because the CDA market is a model with

constraints, if a transaction occurs, both the winning seller

and buyer obtain surpluses. It means that more successful

transactions cause more total surpluses.

TABLE II: The Average of Daily Transactions.

Strategy Small Large Asymmetric

ZI 452 8326 6606
GD 228 677 3535
AA 305 4570 6560
BH 367 6679 7685

TABLE II gives the average of daily successful transactions

in these three scenarios.

We observe that BH has overwhelmingly more successful

transactions than GD, and is slightly better than AA in all

the three scenarios. ZI is a non-intelligent bidding strategy, so

it usually has more successful transactions. However, in the

asymmetric scenario, BH has more transactions than ZI.

2) Surpluses of Sellers and Buyers: Every market mech-

anism aims at maximizing surpluses or profits attained by

sellers and buyers in the market. We select three kinds of

surplus criteria: seller/buyer’s daily surplus and total surpluses

(the sum of seller/buyer’s surplus). Daily surpluses depend on

the number of transactions and prices. Therefore, it takes a

global view of the four bidding strategies by the empirical

study on these surplus criteria.

Fig. 1 offers total surpluses (seller’s surplus plus buyer’s

surplus) of ZI, GD, AA and BH in three scenarios.

According to the experiment results, AA strategy obtains

the most seller’s surplus and BH strategy obtains the most

buyer’s surplus. But generally BH obtains the most in all the

three scenarios.

3) Daily Price Volatility: Daily price volatility α shows

how the transaction prices converge to the equilibrium price.

Figure 2 gives respectively the daily price volatility of ZI, GD,

AA and BH in the three scenarios.



(a) Small Simulation Scenario. (b) Large Simulation Scenario. (c) Asymmetric Simulation Scenario.

Fig. 3: Transaction Prices in One Trading Day.

As shown in Fig. 2, the average volatility of BH is the

smallest in the small scenario, and the average α of AA is the

smallest in the other two scenarios. Although AA has the best

performance based on the average of daily price volatility, our

BH performs much better than GD and ZI.

To demonstrate how transaction prices distribute, Fig. 3

gives transaction prices in one trading day. In this figure, MP
denotes equilibrium price found by the Marshallian Path (MP).

Therefore, all dots of MP form a line, called MP-line. The

faster transaction prices converge to MP-line, the smaller the

daily price volatility is.

Figure 3 shows how BH converges to the equilibrium price.

Although the daily price volatility of BH is not obviously

smaller than AA, the difference among transaction prices in

one trading day is smaller than the others.

VI. CONCLUSION

In this paper, a Continuous Double Auction (CDA) mech-

anism is proposed for cloud resources allocation. We define

the market rules to match orders and facilitate trading, and

design an e-auction platform and a novel bidding strategy, BH-

strategy for CDA, which is a two-stage game bidding strategy

based on improved belief functions.

In the evaluation section, we compare BH-strategy with

other typical strategies in successful transactions, surpluses,

daily price volatility in three simulation scenarios (small,

large and asymmetric). These experiment results show that

BH-strategy has better performance and is feasible for cloud

computing resource allocation.
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