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Abstract— Many important cloud services require replicating
massive data from one datacenter (DC) to multiple DCs. While
the performance of pair-wise inter-DC data transfers has been
much improved, prior solutions are insufficient to optimize bulk-
data multicast, as they fail to explore the rich inter-DC overlay
paths that exist in geo-distributed DCs, as well as the remaining
bandwidth reserved for online traffic under fixed bandwidth
separation scheme. To take advantage of these opportunities,
we present BDS+, a near-optimal network system for large-
scale inter-DC data replication. BDS+ is an application-level
multicast overlay network with a fully centralized architecture,
allowing a central controller to maintain an up-to-date global
view of data delivery status of intermediate servers, in order to
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fully utilize the available overlay paths. Furthermore, in each
overlay path, it leverages dynamic bandwidth separation to
make use of the remaining available bandwidth reserved for
online traffic. By constantly estimating online traffic demand and
rescheduling bulk-data transfers accordingly, BDS+ can further
speed up the massive data multicast. Through a pilot deployment
in one of the largest online service providers and large-scale
real-trace simulations, we show that BDS+ can achieve 3-5 ×
speedup over the provider’s existing system and several well-
known overlay routing baselines of static bandwidth separation.
Moreover, dynamic bandwidth separation can further reduce the
completion time of bulk data transfers by 1.2 to 1.3 times.

Index Terms— Overlay Network, Data Replication, Centralized
Control, Dynamic Bandwidth Separation.

I. INTRODUCTION

FOR large-scale online service providers, such as Google,
Facebook, and Baidu, an important data communication

pattern is inter-DC multicast of bulk data–replicating massive
amounts of data (e.g., user logs, web search indexes, photo
sharing, blog posts) from one DC to multiple DCs in geo-
distributed locations. Our study on the workload of Baidu
shows that inter-DC multicast already amounts to 91% of inter-
DC traffic (§II), which corroborates the traffic pattern of other
large-scale online service providers [2], [3]. As more DCs are
deployed globally and bulk data are exploding, inter-DC traffic
then needs to be replicated in a frequent and efficient manner.

While there have been tremendous efforts towards better
inter-DC network performance (e.g., [2], [4]–[8]), the focus
has been improving the performance of the wide area network
(WAN) path between each pair of DCs. These WAN-centric
approaches, however, are incomplete, as they fail to leverage
the rich application-level overlay paths across geo-distributed
DCs, as well as the capability of servers to store-and-forward
data. As illustrated in Figure 1, the performance of inter-DC
multicast could be substantially improved by sending data in
parallel via multiple overlay servers acting as intermediate
points to circumvent slow WAN paths and performance bot-
tlenecks in DC networks. It is important to notice that these
overlay paths should be bottleneck-disjoint; that is, they do not
share common bottleneck links (e.g., A → B → C and A →
C → B in Figure 1). and that such bottleneck-disjoint overlay
paths are available in abundance in geo-distributed DCs.

This article first introduces BDS+, an application-level
centralized near-optimal network system, which splits data
into fine-grained units, and sends them in parallel via
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Fig. 1. A simple network topology illustrating how overlay paths reduce
inter-DC multicast completion time. Assume that the WAN link between any
two DCs is 1GB/s, and that A wants to send 3GB data to B and C. Sending
data from A to B and C separately takes 3 seconds (a), but using overlay
paths A → B → C and A → C → B simultaneously takes only 2 seconds
(b). The circled numbers show the order for each data piece is sent.

Fig. 2. Inter-DC multicasts (a) are destined to a significant fraction of DCs,
and (b) have large data sizes.

bottleneck-disjoint overlay paths with dynamic bandwidth
sharing. These paths are selected dynamically in response
to changes in network conditions and the data delivery sta-
tus of each server. Note that BDS+ selects application-level
overlay paths, and is therefore complementary to network-
layer optimization of WAN performance. While application-
level multicast overlays have been applied in other contexts
(e.g., [9]–[12]), building one for inter-DC multicast traffic
poses two challenges. First, as each DC has tens of thousands
of servers, the resulting large number of possible overlay paths
makes it unwieldy to update overlay routing decisions at scale
in real time. Prior work either relies on local reactive decisions
by individual servers [13]–[15], which leads to suboptimal
decisions for lack of global information, or restricts itself to
strictly structured (e.g., layered) topologies [16], which fails
to leverage all possible overlay paths. Second, even a small
increase in the delay of latency-sensitive traffic can cause
significant revenue loss [17], so the bandwidth usage of inter-
DC bulk-data multicasts must be tightly controlled to avoid
negative impact on other latency-sensitive traffic.

To address these challenges, BDS+ fully centralizes the
scheduling and routing of inter-DC multicast. Contrary to the
intuition that servers must retain certain local decision-making
to achieve desirable scalability and responsiveness to network
dynamics, BDS+’s centralized design is built on two empirical
observations (§III): (1) While it is hard to make centralized
decisions in real time, most multicast data transfers last for
at least tens of seconds, and thus can tolerate slightly delayed
decisions in exchange for near-optimal routing and scheduling
based on a global view; (2) Centrally coordinated sending rate
allocation is amenable to minimizing the interference between
inter-DC multicast traffic and latency-sensitive traffic.

The key to making BDS+ practical is how to update the
overlay network in near real-time (within a few seconds)
in response to performance churns and dynamic arrivals of

requests. BDS+ achieves this by decoupling its centralized
control into two optimization problems, scheduling of data
transfers, and overlay routing of individual data transfers.
Such decoupling attains provable optimality, and at the same
time, allows BDS+ to update overlay network routing and
scheduling in a fraction of second; this is four orders of
magnitude faster than solving routing and scheduling jointly
when considering the workload of a large online service
provider (e.g., sending 105 data blocks simultaneously along
104 disjoint overlay paths).

In practice, there is always a fixed upper bound of available
bandwidth for bulk-data multicast, because multicast overlay
network shares the same inter-DC WAN with online latency-
sensitive traffic. Existing solutions always reserve a fixed
amount of bandwidth for the latency-sensitive traffic, accord-
ing to its peak value. This guarantees the strict bandwidth sep-
aration, but the side affect is the waste of bandwidth, especially
when the online traffic is in its valley. To further improve link
utilization, BDS+ implements dynamic bandwidth separation
that can predict online traffic and reschedule bulk-data transfer.
In other words, BDS+ achieves dynamic bandwidth separation
between bulk-data multicast and online traffic to further speed
up data transfer.

We have implemented a prototype and integrated it in Baidu.
We first deployed BDS+ in 10 DCs and ran a pilot study on
500 TB of data transfer for 7 days (about 71 TB per day).
Our real-world experiments show that BDS+ achieves 3-5 ×
speedup over Baidu’s existing solution named Gingko, and
it can eliminate the incidents of excessive bandwidth con-
sumption by bulk-data transfers. Using micro-benchmarking,
we show that: BDS+ outperforms techniques widely used in
CDNs, that BDS+ can handle the workload of Baidu’s inter-
DC multicast traffic with one general-purpose server, and
that BDS+ can handle various failure scenarios 1. We then
use trace-driven simulations to evaluate BDS+ with dynamic
bandwidth separation, the results show that: BDS+ further
speeds up the bulk data transfer by 1.2 to 1.3 times in the
network where online and offline services are mixed deployed.
Our contributions are summarized as followed:
• Present the characteristics of Baidu’s workload of inter-
DC bulk-data multicast, which motivates the need of
application-level multicast overlay networks (§II).
• Presenting BDS+, an application-level multicast overlay
network that achieves near-optimal flow completion time by
a centralized control architecture (§III,IV).
• Making dynamic bandwidth separation to further improve
link utilization in the network where online and offline
services are mixed deployed. (§III,V).
• Demonstrating the practical benefits of BDS+ by a real-
world pilot deployment and large-scale simulations in Baidu
(§VI,VII).

II. MOTIVATION OF BDS+ DESIGN

We start by providing a case for an application-level mul-
ticast overlay network. We first characterize the inter-DC
multicast workload in Baidu, a global-scale online service

1As the existing solutions are with fixed bandwidth separation, so in these
series of experiments, we use BDS+ without dynamic bandwidth separation
(named BDS) as comparation, while BDS+ with dynamic bandwidth separa-
tion is evaluated separately.
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TABLE I

INTER-DC MULTICAST (REPLICATING DATA FROM ONE DC TO MANY
DCS) DOMINANTES BAIDU’S INTER-DC TRAFFIC

provider (§II-A). We then show the opportunities of improving
multicast performance by leveraging disjoint application-level
overlay paths available in geo-distributed DCs, and by leverag-
ing dynamic bandwidth separation (§II-B). Finally, we exam-
ine Baidu’s current solution of inter-DC multicast (Gingko),
and draw lessons from real-world incidents to inform the
design of BDS+ (§II-C). We conclude all these observations,
which are based on a dataset of Baidu’s inter-DC traffic
collected in a duration of seven days. The dataset comprises
of about 1265 multicast transfers among 30+ geo-distributed
DCs (§II-D).

A. Baidu’s Inter-DC Multicast Workload

1) Share of Inter-DC Multicast Traffic: Table I shows inter-
DC multicast (replicating data from one DC to multiple DCs)
as a fraction of all inter-DC traffic 2. We see that inter-DC
multicast dominates Baidu’s overall inter-DC traffic (91.13%),
as well as the traffic of individual application types (89.2 to
99.1%). The fact that inter-DC multicast traffic amounts to a
dominating share of inter-DC traffic highlights the importance
of optimizing the performance of inter-DC multicast.
Where are inter-DC multicasts destined? Next, we want to
know if these transfers are destined to a large fraction (or just a
handful) of DCs, and whether they share common destinations.
Figure 2a sketches the distribution of the percentage of Baidu’s
DCs to which multicast transfers are destined. We see that 90%
of multicast transfers are destined to at least 60% of the DCs,
and 70% are destined to over 80% of the DCs. Moreover,
we found a great diversity in the source DCs and the sets of
destination DCs (not shown here). These observations suggest
that it is untenable to pre-configure all possible multicast
requests; instead, we need a system to automatically route and
schedule any given inter-DC multicast transfers.

2) Sizes of Inter-DC Multicast Transfers: Finally, Figure 2b
outlines the distribution of data size of inter-DC multicast.
We see that for over 60% multicast transfers, the file sizes are
over 1TB (and 90% are over 50GB). Given that the total WAN
bandwidth assigned to each multicast is on the order of several
Gb/s, these transfers are not transient but persistent, typically
lasting for at least tens of seconds. Therefore, any scheme
that optimizes multicast traffic must dynamically adapt to any
performance variation during a data transfer. On the flip side,
such temporal persistence also implies that multicast traffic

2The overall multicast traffic share is estimated using the traffic that goes
through one randomly sampled DC, because we do not have access to
information of all inter-DC traffic, but this number is consistent with what
we observe from other DCs.

can tolerate a small amount of delay caused by a centralized
control mechanism, such as BDS+ (§III).

These observations together motivate the need for a system-
atic approach to optimizing inter-DC multicast performance.

B. Potentials of Inter-DC Application-Level Overlay

It is known that, generally, multicast can be delivered using
application-level overlays [18]. Here, we show that inter-DC
multicast completion time (defined by the time until each
destination DC has a full copy of the data) can be greatly
reduced by an application-level overlay network. Note that
an application-level overlay does not require any network-
level support, so it is complementary to prior work on WAN
optimization.

The basic idea of an application-level overlay network is to
distribute traffic along bottleneck-disjoint overlay paths [19],
i.e., the two paths do not share a common bottleneck
link or intermediate server. In the context of inter-DC transfers,
two overlay paths either traverse different sequences of DCs
(Type I), or traverse different sequences of servers of the same
sequence of DCs (Type II), or some combination of the two.
Next, we use examples to show bottleneck-disjoint overlay
paths can arise in both types of overlay paths and how they
improve inter-DC multicast performance.

1) Examples of Bottleneck-Disjoint Overlay Paths: In Fig-
ure 1, we have already seen how two Type I overlay paths
(A → B → C and A → C → B) are bottleneck-disjoint,
and how it improves the performance of inter-DC multicast.
Figure 3 shows an example of Type II bottleneck-disjoint
overlay paths (traversing the same sequence of DCs but
different sequence of servers). Suppose we need to replicate
36GB data from DC A to B and C via two bottleneck-disjoint
paths: (1) A → C: from A through B to C using IP-layer
WAN routing with 2GB/s capacity, or (2) A → b → C: from
A to a server b in B with 6GB/s capacity and b to C with
3GB/s capacity. The data is split into six 6GB-blocks. We
consider three strategies. (1) Direct replication: if A sends
data directly to B and C via WAN paths (Figure 3(b)), the
completion time is 18 seconds. (2) Simple chain replication: a
naive use of application-level overlay paths is to send blocks
through server b acting as a store-and-relay point (Figure 3(c)),
and the completion time is 13 seconds (27% less than without
overlay). (3) Intelligent multicast overlay: Figure 3(d) further
improves the performance by selectively sending blocks along
the two paths simultaneously, which completes in 9 seconds
(30% less than chain replication, and 50% less than direct
replication).

2) Bottleneck-Disjoint Overlay Paths in the Wild: It is hard
to identify all bottleneck-disjoint overlay paths in our network
performance dataset, since it does not have per-hop bandwidth
information of each multicast transfer. Instead, we observe that
if two overlay paths have different end-to-end throughput at
the same time, they should be bottleneck-disjoint. We show
one example of bottleneck-disjoint overlay paths in the wild,
which consists of two overlay paths A → b → C and A → C,
where the WAN routing from DC A to DC C goes through
DC B, and b is a server in B (these two paths are topologically
identical to Figure 3). If BWA→C

BWA→b→C
�= 1, they are bottleneck-

disjoint (BWp denotes the throughput of path p). Figure 4
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Fig. 3. An illustrative example comparing the performance of an intelligent
application-level overlay (d) with that of baselines: naive application-level
overlay (c) and no overlay (b).

Fig. 4. There is a significant performance variance among the inter-DC
overlay paths in our network, indicating that most pairs of overlay paths are
bottleneck disjoint.

shows the distribution of BWA→C

BWA→b→C
among all possible values

of A, b, and C in the dataset. We can see that more than 95%
pairs of A → b → C and A → C have different end-to-end
throughput, i.e., they are bottleneck disjoint.

3) Interaction With Latency-Sensitive Traffic: The existing
multicast overlay network shares the same inter-DC WAN
with latency-sensitive traffic. Despite using standard QoS tech-
niques, and giving the lowest priority to bulk data transfers,
we still see negative impacts on latency-sensitive traffic by
bursty arrivals of bulk-data multicast requests, and inefficiency
on bulk-data transfer when latency-sensitive traffic is in its
valley. Figure 5 shows the bandwidth utilization of an inter-
DC link in two days during which a 6-hour long bulk data
transfer started at 11:00pm on the second day. The blue line
denotes the outgoing bandwidth, and the green line denotes
the incoming bandwidth. We can see that the bulk data
transfer caused excessive link utilization (i.e., exceeding the
safety threshold of 80%), and as a result, the latency-sensitive
online traffic experienced over 30 × delay inflation. Also,
at 4:00-5:00am in the first day, near 50% of the bandwidth
was being wasted. These cases show that, an algorithm with
dynamical interactions with latency-sensitive traffic would be
more reasonable and efficient.

C. Limitations of Existing Solutions

Realizing and demonstrating the potential improvement of
an application-level overlay network has some complications.
As a first order approximation, we can simply borrow existing
techniques from multicast overlay networks in other contexts.

Fig. 5. The utilization of the inter-DC link in two days: The traffic valley
on the 1st day results in nearly 50% bandwidth waste. Inter-DC bulk data
transfer on the 2nd day caused severe interference on latency-sensitive traffic.

But the operational experience of Baidu shows two limitations
of this approach that will be described below.

1) Existing Solutions of Baidu : To meet the need of
rapid growth of inter-DC data replication, Baidu has deployed
Gingko, an application-level overlay network a few years
ago. Despite years of refinement, Gingko is based on a
receiver-driven decentralized overlay multicast protocol, which
resembles what was used in other overlay networks (such as
CDNs and overlay-based live video streaming [11], [20], [21]).
The basic idea is that when multiple DCs request a data file
from a source DC, the requested data would flow back through
multiple stages of intermediate servers, where the selection of
senders in each stage is driven by the receivers of the next
stage in a decentralized fashion.

2) Limitation 1: Inefficient Local Adaptation: The existing
decentralized protocol lacks the global view and thus suffers
from suboptimal scheduling and routing decisions. To show
this, we sent a 30GB file from one DC to two destination
DCs in Baidu’s network. Each DC had 640 servers, each
with 20Mbps upload and download bandwidth (in the same
magnitude of bandwidth assigned to each bulk-data transfer
in production traffic). This 30GB file was evenly stored
across all these 640 servers. Ideally, if the servers select
the best source for all blocks, the completion time will be

30×1024
640×20Mbps×60s/min = 41 minutes. But as shown in Figure 6,
servers in the destination DCs on average took 195 minutes
(4.75 × the optimal completion time) to receive data, and 5%
of servers even waited for over 250 minutes. The key reason
for this problem is that individual servers only see a subset of
available data sources (i.e., servers who have already down-
loaded part of a file), and thus cannot leverage all available
overlay paths to maximize the throughput. Such suboptimal
performance could occur even if the overlay network is only
partially decentralized (e.g., [15]), where even if each server
does have a global view, local adaptations by individual servers
would still create potential hotspots and congestion on overlay
paths.

3) Limitation 2: High Computation Overhead: To obtain a
global view and achieve optimal scheduling protocols, existing
centralized protocols suffer from high computation overhead.
Most formulations are super-linear, so the computational
overhead of centralized protocols always grows exponentially,
making them intractable in practice.

4) Limitation 3: Fixed Bandwidth Separation: As shown
in Figure 5, a fixed separation of link bandwidth would result
in both excessive utilization and underutilization. Ideally, if we
can make full use of the available bandwidth left by online
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Fig. 6. The CDF of the actual flow completion time at different servers in
the destination DCs, compared with that of the ideal solution.

traffic in real time, then the link utilization would be more
stable. In this particular example, about 18.75% bandwidth
was wasted in those two days (while still caused excessive
utilization case).

D. Key Observations

The key observations from this section are following:
• Inter-DC multicasts amount to a substantial fraction
of inter-DC traffic, have a great variability in source-
destination, and typically last for at least tens of seconds.
• Bottleneck-disjoint overlay paths are widely available
between geo-distributed DCs.
• Existing solutions that rely on local adaptation can have
suboptimal performance and negative impact on online
traffic.
• Dynamic bandwidth separation can be helpful to improve
link utilization by making full use of the remaining band-
width of online services.

III. SYSTEM OVERVIEW

To optimize inter-DC multicasts on overlay network with
dynamical separation with latency-sensitive traffic, we present
BDS+, a fully centralized near-optimal network system with
dynamic bandwidth separation for data inter-DC multicast.
Before presenting the details, we first highlight the intuitions
behind the design choices, and the challenges behind its
realisation.

A. Centralized Control

Conventional wisdom on wide-area overlay networks has
relied, to some extent, on local adaptation of individual
nodes (or relay servers) to achieve desirable scalability and
responsiveness to network dynamics (e.g., [11], [14], [15],
[22]), despite the resulting suboptimal performance due to lack
of global view or orchestration. In contrast, BDS+ takes an
explicit stance that it is practical to fully centralize the control
of wide-area overlay networks and still achieve near-optimal
performance in the setting of inter-DC multicasts. The design
of BDS+ coincides with other recent works that centralize the
management of large-scale distributed systems, e.g., [23]. At a
high level, BDS+ uses a centralized controller that periodically
pulls information (e.g., data delivery status) from all servers,
updates the decisions regarding overlay routing, and pushes
them to agents running locally on servers (Figure 7). Note
that when the controller fails or is unreachable, the system will
fall back to a decentralized control scheme to ensure graceful
performance degradation to local adaptation (§VI-C).

Our centralized design is driven by several empirical
observations:

1. Large Decision Space: The sheer number of inter-
DC overlay paths (which grow exponentially with the

Fig. 7. The centralized design of BDS+.

increasing number servers acting as overlay nodes) makes
it difficult for individual servers to explore all available
overlay paths based only on local measurements. In con-
trast, we could significantly improve overlay multicast
performance by maintaining a global view of data deliv-
ery status of all servers, and dynamically balancing the
availability of various data blocks, which turns out to be
critical to achieving near-optimal performance (§IV-C).

2. Large Data Size: Unlike latency-sensitive traffic which
lasts on timescales of several to 10s of milliseconds, inter-
DC multicasts last on much coarser timescales. Therefore,
BDS+ can tolerate a short delay (of a few seconds) in
order to get better routing decisions from a centralized
controller which maintains a global view of data delivery
and is capable of orchestrating all overlay servers.

3. Flexible Traffic Control: BDS+ can enforce bandwidth
allocation by setting limit rates in each data transfer,
while each server can use Linux Traffic Control (tc) to
enforce the limit on the teal bandwidth usage. This allows
BDS+ to leverage flexible dynamic bandwidth separation.
Once any network changes are detected, BDS+ could eas-
ily adjust bandwidth for each data transfer by controlling
the sending rate at all servers in a centralized fashion
(no matter to reserve more bandwidth when online traffic
burst, or to reduce transfer rate when online traffic is in
valley). (§VI-D).

4. Lower Engineering Complexity: Conceptually, the cen-
tralized architecture moves the control complexity to the
centralized controller, making BDS+ amenable to a sim-
pler implementation, in which the control logic running
locally in each server can be stateless and triggered only
on arrivals of new data units or control messages.

B. The Key to Realizing Centralized Control

In essence, the design of BDS+ performs a trade-off
between incurring a small update delay in return for the
near-optimal decisions brought by a centralized system. Thus,
the key to striking such a favorable balance is a near-
optimal yet efficient overlay routing algorithm that can update
decisions in near realtime. At a first glance, this is indeed
intractable. For the workload at a scale of Baidu, the central-
ized overlay routing algorithm must pick the next hops for 105

of data blocks from 104 servers. This operates at a scale that
could grow exponentially when we consider the growth in the
number of possible overlay paths that go through these servers
and with finer grained block partitioning. With the standard
routing formulation and linear programming solvers, it could
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be completely unrealistic to make near-optimal solutions by
exploring such a large decision space (§VII-B.4).

C. The Key to Realizing Dynamic Bandwidth Separation

Dynamic bandwidth separation raises two requirements, one
is to reserve enough bandwidth for latency-sensitive online
traffic so as to avoid negative impacts on these services, and
the other is to make full use of the residual bandwidth so as
to reduce the completion time of bulk data transfer. With the
traditional strict safety threshold and decentralized protocols,
it could be impossible to make efficient bandwidth usage in
the dynamic and mixed deployed network (§VII-C).

D. The Potential Under Different Topologies

The potential of BDS+ comes from two aspects, one is the
dynamic bandwidth separation, and the other is the bottleneck
disjoint overlay path. While dynamic bandwidth separation
could improve link utilization no matter in any network
topology, the overlay path brings performance improvement
under most network topologies, but not all. The premise for
this algorithm to work is that there are bottleneck disjoint
overlay paths under such network topology. For example,
on the topologies such as ring, star, tiered, full mesh, partial
mesh, BDS+ could work well because there are potential
bottleneck disjoint overlay paths under such topologies. How-
ever, under the simple point-to-point network topology, BDS+
could not bring performance improvement because there are
no alternative paths. Generally speaking, the topology of large-
scale inter-DC network is more complex than the point-to-
point network topology, so BDS+ could bring performance
improvement in most cases.

The following two sections will present how BDS+ works.

IV. NEAR-OPTIMAL APPLICATION-LEVEL OVERLAY

NETWORK

The core of BDS+ is a centralized decision-making algo-
rithm that periodically updates overlay routing decisions at
scale and in near real-time. BDS+ strikes a favorable tradeoff
between solution optimality and near real-time updates by
decoupling the control logic into two steps (§IV-B): overlay
scheduling, i.e., which data blocks to be sent (§IV-C), and
routing, i.e., which paths to use to send each data block (§IV-
D), each of which can be solved efficiently and near-optimally.

A. Basic Formulation

We begin by formulating the problem of overlay traffic
engineering. Table II summarizes the key notations.

The overlay traffic engineering in BDS+ operates at a fine
granularity, both spatially and temporally. To exploit the many
overlay paths between the source and destination DCs, BDS+
splits each data file into multiple data blocks (e.g., 2MB).
To cope with changes of network conditions and arrivals
of requests, BDS+ updates the decisions of overlay traffic
engineering every ΔT (by default, 3 seconds.3).

3We use a fixed interval of 3 seconds, because it is long enough for BDS+
to update decisions at a scale of Baidu’s workload, and short enough to adapt
to typical performance churns without noticeable impact on the completion
time of bulk data transfers. More details in §VII

TABLE II

NOTATIONS USED IN BDS+’S DECISION-MAKING LOGIC

Now, the problem of multicast overlay routing can be
formulated as following:

Input: BDS+ takes as input the following parameters: the
set of all data blocks B, each block b with size ρ(b), the set of
paths from server s� to s, Ps�,s, the update cycle interval ΔT ,
and for each server s the upload (resp. download) capacity
Rup(s) (resp. Rdown(s)). Note that each path p consists of
several links l, each defined by a pair of servers or routers.
We use c(l) to denote the capacity of a link l.

Output: For each cycle Tk, block b, server s, and path
p ∈ Ps�,s destined to s, BDS+ returns as output a 2-tuple
�w(Tk)

b,s , f
(Tk)
b,p �, in which w

(Tk)
b,s denotes whether server s is

selected as the destination server of block b in Tk, f
(Tk)
b,p

denotes how much bandwidth is allocated to send block b on
path p in Tk, and f

(Tk)
b,p = 0 denotes path p is not selected to

send block b in Tk.
Constraints:
• The allocated bandwidth on path p must not exceed the
capacity of any link l in p, as well as the upload capacity
of the source server Rup(s), and the download capacity of
the destination server Rdown(s�).

f
(Tk)
b,p ≤ min

(
minl∈pc(l), q

(Tk)
b,s� · Rup(s�),

× w
(Tk)
b,s · Rdown(s)

)
for∀b, p ∈ Ps�,s (1)

where q
(Tk)
b,s = 1−∏

i<k(1−w
(Ti)
b,s ) denotes whether server

s has ever been selected to be the destination of block b
before cycle Tk.
• For all the paths, the summed allocated bandwidth of a
link should be no more than its capacity c(l).

c(l) ≥
∑
b∈B

f
(Tk)
b,p , for ∀l ∈ p (2)

• All blocks selected to be sent in each cycle must complete
their transfers within ΔT , that is,∑

b∈B

w
(Tk)
b,s · ρ(b) ≤

∑
p∈P

∑
b∈B

f
(Tk)
b,p · ΔT, for ∀Tk (3)

• Finally, all the blocks must be transmitted at the end of
all cycles.

∑
b∈B

ρ(b) ≤
N∑

k=1

∑
p∈P

∑
b∈B

f
(Tk)
b,p (4)
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Objective: We want to minimize the number of cycles
needed to transfer all data blocks. That is, we return as output
the minimum integer N for which the above constraints have
a feasible solution.

Unfortunately, this formulation is intractable in practice for
two reasons. First, it is super-linear and mixed-integer, so the
computational overhead grows exponentially with the increase
in potential source servers, and data blocks. Second, to find
the minimum integer N , we need to check the feasibility of
the problem for different values of N .

B. Decoupling Scheduling and Routing

At a high level, the key insight behind BDS+ is to decouple
the aforementioned formulation into two steps: a scheduling
step which selects the subset of blocks to be transferred each
cycle (i.e., w

(Tk)
b,s ), followed by a subsequent routing step

which picks the path and allocates bandwidth to transfer the
selected blocks (i.e., f

(Tk)
b,p ).

Such decoupling significantly reduces the computational
overhead of the centralized controller. As the scheduling step
selects a subset of blocks, and only these selected blocks are
considered in the subsequent routing step, the searching space
is thus significantly reduced. Mathematically, by separating the
scheduling step from the problem formulation, the routing step
is reduced to a mixed-integer LP problem, which though is not
immediately tractable, can be solved with standard techniques.
Next, we present each step in more details.

C. Scheduling

The scheduling step selects the subset of blocks to be
transferred in each cycle, i.e., w

(Tk)
b,s .

The key solving the scheduling (picking the subset of
blocks) is to make sure that the subsequent data transmission
can be done in the most efficient manner. Inspired by the
“rarest-first” strategy in BitTorrent [24] that tries to balance
block availability, BDS+ adopts a simple-yet-efficient way
of selecting the data blocks: for each cycle, BDS+ simply
picks the subset of blocks with the least amount of duplicates.
In other words, BDS+ generalizes the rarest-first approach by
selecting a set of blocks in each cycle, instead of a copy of
a single block. The proof of optimality of this algorithm is
shown in the Appendix.

In addition, BDS+ also supports setting different priori-
ties for different blocks (i.e., applications) if necessary. For
example, we can set higher priority for those blocks from
more important (or shorter) applications, making those blocks
selected for transmission as early as possible, even if they are
not the rarest ones. But in the current version of BDS+, it treats
them equally.

D. Routing

After the scheduling step selects the block set to transfer in
each time slot (w(Tk)

b,s ), the routing step decides the paths and

allocates bandwidth to transfer the selected blocks (i.e., f
(Tk)
b,p ).

To minimize the transfer completion time, BDS+ maximizes
the throughput (total data volume transferred) in each cycle Tk.

max
∑
p∈P

∑
b∈B

f
(Tk)
b,p (5)

This is of course an approximation, since greedily max-
imixing the throughput in one cycle may lead to suboptimal
data availability and lower the maximum achivable throughput
in the next cycle. But in practice, we find that this approxi-
mation can lead to significant performance improvement over
baselines, partly because the scheduling step, described in the
last section, automatically balances the availability of blocks,
so suboptimal data availability (e.g., starvation of blocks)
caused by greedy routing decisions in past cycles happens
rarely.

This formulation, together with the constraints from §IV-
A is essentially an integer multi-commodity flow (MCF)
algorithm, which is known to be NP-complete [25]. To make
this problem tractable in practice, the standard approxima-
tion assumes each data file can be infinitesimally split and
transferred simultaneously on a set of possible paths between
the source and the destination. BDS+’s actual routing step
closely resembles this approximation as BDS+ also splits data
into tens of thousands of fine-grained data blocks (though not
infinitesimally), and it can be solved efficiently by standard
linear programming (LP) relaxation commonly used in the
MCF problem [26], [27].

However, when splitting tasks infinitesimally, the number of
blocks will grow considerably large, and the computing time
will be intolerable. BDS+ adopts two coping strategies: (1) it
groups the blocks with the same source and destination pair
to reduce the problem size (detailed in §VI-A); and (2) it uses
the improved fully polynomial-time approximation schemes
(FPTAS) [28] to optimize the dual problem of the original
problem and works out an �-optimal solution. These two strate-
gies further reduces the running time of centralized algorithm.

V. DYNAMIC BANDWIDTH SEPARATION

The primary version without dynamic bandwidth separation
(BDS) performs well under fixed network separation, but
in the mixed deployment situations where online traffic and
offline traffic shares the same server I/O, it results in low
link utilizations when online traffic reduces. This is because
bulk data transfer will never occupy any bandwidth exceeding
the fixed threshold even though online traffic is far below the
reserved bandwidth (see §II-C).

So we further present BDS+ with dynamic bandwidth
separation, which adjusts the available bandwidth for bulk
data transfer in a real-time manner, by continuously predicting
online traffic and automatically adjusting the scheduling deci-
sions, so as to fully utilize network bandwidth accordingly.
To be specific, BDS+ automatically adjust the scheduling
results under different network conditions: if online traffic
encounters its peak, BDS+ shirks its occupied bandwidth to
avoid congestions, while online traffic encounters its valley,
BDS+ aggressively uses more bandwidth to make full use of
the residual bandwidth.

To achieve this, BDS+ leverages a customized online traffic
prediction algorithm, which identifies the changes of server
bandwidth usage, and triggers re-scheduling to adjust band-
width allocation to the bulk-data transfer. Figure 8 shows the
logical diagram of BDS+’s dynamic bandwidth separation. The
Network Change Monitor reads the agent observations (bwin

and bwout) and executes a customized combination of k-Sigma
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Fig. 8. Logical diagram of BDS+’s dynamic bandwidth separation.

[29] and a change point detection algorithm [30]. k-Sigma is
responsible to calculate the mean and standard deviation of
agent observation, and the change point detection is responsi-
ble for detecting abrupt changes by observing historical data,
in order to make the Agent Monitor both stable and sensitive.

To integrate to BDS, we make the above online traffic
prediction at the beginning of each cycle, and based on the
predicted traffic, BDS updates the available link status and
then calculates bottleneck disjoint paths. As the online traffic is
time-varying, the available bandwidth of all paths are therefore
varies along with the online traffic, making the bottleneck
disjoint path different in each scheduling cycle. This requires
BDS+ to be able to work under different scenarios (varying
number of bottleneck disjoint paths), which also proves the
generalizability of BDS+.

A. Design Logic

To detect online traffic changes and dynamically adjust
configurations, there are some basic methods, such as expo-
nentially weighted moving average (EWMA) control scheme,
k-sigma [31], [32]. Such approaches sometimes result in con-
tinual reconfigurations even when the network is (statistically)
stationary (since samples may vary in time series). So it
encounters a tradeoff when predicting the available bandwidth:
When we put more importance to the recent values as a refer-
ence (i.e., k is small), there will be an obvious oscillation in the
predicted value, which introduces continual but unnecessary
reschedules. When we put more importance to the historical
values as references (i.e., k is large), the predicted value
will not be affected timely when a change point is suddenly
detected, making the system insensitive to network changes.

To address the above problem, BDS+ combines k-sigma
with a change point detection algorithm [30], which can
identify abrupt changes of sequential data. Such algorithms
offers both online and offline processing methods, while offline
methods [33]–[36] require the complete data in full time series
to generate samples from the posterior distribution over change
point locations, online methods [37]–[39] can generate an
accurate distribution of the next unseen data with only already
observed data. In BDS+, we implemented our customized
sliding− k algorithm based on [30] (with code can be found
in [40]) into the Network Change Monitor. Specifically, we set
an upper bound K for the EWMA algorithm, k gradually
increases to K when there is no change point, and will be
reset to 0 once a change point is detected, and then gradually
increases to K again. This improvement makes the sliding−k
more stable.

B. Integrated to BDS

1) Online Traffic Prediction Algorithm: During a scheduling
cycle ΔTk in BDS+, Network Change Monitor is continually
fed with a series of agent observations of server throughput
(bandwidth usage), which is used to predict the available
bandwidth in the next scheduling cycle. To get the bandwidth

TABLE III

DYNAMIC ADJUSTMENT IN BDS+ ACCORDING TO THE ONLINE TRAFFIC
PREDICTION

usage, the Network Change Monitor periodically reads the
record in process activity monitor on servers. For particular
servers, they continuously log processing activities (including
server throughput) and send the sampled summed throughput
to the Network Change Monitor. In this way, any network
changes occurred during the bulk data downloading can be
timely detected.

In addition, it should also be noted that BDS+ faces different
mixes of delay sensitive traffic and bulk data traffic at every
moment. Specifically, online traffic consists of all the real-
time traffic from all the online applications (such as online
search, shopping transactions, real-time conversations and so
on), which is a different mix at every moment, and it is
unknown what applications the online traffic come from in the
next cycle. At the same time, bulk data consists of the traffic
from multiple offline applications (such as blog articles, search
index, forum posts, file sharing and so on). Therefore, when
BDS+ is running, the scenario it faces in each scheduling cycle
is a different mix of online traffic and bulk data transfer traffic.

2) Dynamic Bandwidth Separation: When a change is
detected, the Network Change Monitor signals the change and
the updated available bandwidth to the Controller, triggering
rescheduling in BDS+ to make bandwidth adjustments in the
next scheduling cycle. Shown in Table III, such adjustment
can be two-fold (assume the affected path by the online traffic
change is P̂ ):

• When the total link utilization exceeds the pre-configured
safety threshold (80% in the example in §II-C), BDS+
shirks the occupied bandwidth for bulk-data transfer in
both scheduling and routing steps to avoid congestions:
1. cancel some blocks that were scheduled in the current
scheduling cycle ΔT but not yet transferred; 2. reduce
the allocated bandwidth f

(Tk)
b,p for block b on path p ∈ P̂

in Tk.
• When online traffic usage encounters its valley, making

link utilization fall below the safety threshold, BDS+
aggressively occupies more bandwidth in scheduling and
routing steps: 1. transfer some additional blocks that were
not scheduled in the current scheduling cycle ΔT ; 2.
increase the allocated bandwidth f

(Tk)
b,p for block b on path

p ∈ P̂ in Tk, to make full use of the residual bandwidth
detected by the online traffic prediction algorithm.

VI. SYSTEM DESIGN

This section presents the system design and implemetation
of BDS+.

A. Centralized Control of BDS+

BDS+ periodically (by default, every three seconds) updates
the routing and scheduling decisions in a centralized fash-
ion. Figure 9 outlines the workflow in each three-second
cycle.
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Fig. 9. Interfaces of BDS+’s centralized control.

1) It starts with the Agent, running locally on each server,
checking the local states, including data block delivery
status (which blocks have arrived, and which blocks are
outstanding), server availability, and disk failures, etc.

2) These statistics are then wrapped in a control message,
and sent to the centralized BDS+ Controller via an
efficient messaging layer called an Agent Monitor.

3) The BDS+ Controller also receives network-level sta-
tistics (the bandwidth consumption by latency-sensitive
traffic and the utilization on each inter-DC link) from a
Network Monitor.

4) On receiving the updates from all Agents and the
Network Monitors, the BDS+ Controller runs the cen-
tralized decision-making algorithm (§IV) to work out
the new scheduling and routing decisions, and sends the
difference between the new decision and the previous
one to the per-server local Agent via the Agent Monitor
messaging layer.

5) Finally, the Agent allocates bandwidth for each data
transfer, and carries out the actual data transfers accord-
ing the Controller’s routing and scheduling decisions.

BDS+ uses two additional optimizations to make the work-
flow more efficient.

• Block Merging: To reduce the computational scale and
achieve more efficient transmissions, BDS+ merges the
blocks with the same source and destination into one sub-
task. Its benefits are two-fold: (1) it significantly reduces
the number of pending blocks in each scheduling cycle,
thus reducing the computational cost of the centralized
decision-making logic; and (2) it reduces the number of
parallel TCP connections between servers, which could
otherwise reduce link utilization and degraded perfor-
mance.

• Non-Blocking Update: To avoid being blocked by the
controller’s decision-making logic, each local Agent
keeps the ongoing data transmissions alive while the Con-
troller runs the centralized decision-making logic. Simi-
larly, the Controller takes this into account by speculating
the changes in data delivery status while the decisions
are being re-calculated, and using these speculated data
delievery status as the input of the centralized logic.

B. Dynamic Bandwidth Separation of BDS+

To guarantee dynamic bandwidth separation between inter-
DC bulk-data multicasts and delay-sensitive traffic, the BDS+

Network Change Monitor detects any changes of the aggre-
gated bandwidth usage of all latency-sensitive flows on each
inter-/intra-DC link, and dynamically allocates the bandwidth
for bulk-data multicast transfer accordingly. To protect delay-
sensitive flows from being negatively affected by bursty bulk-
data transfers, BDS+ is designed to be sensitive to network
changes by using a sliding k in the traffic prediction algo-
rithm. In other words, it puts more importance to sudden
increases or decreases when online traffic oscillates (to be sen-
sitive), while simultaneously referring to history information
when online traffic doesn’t change much (to be stable).

BDS+’s dynamic bandwidth separation also takes
advantages of the centralized logic of BDS. The traditional
techniques (e.g., [2]) that gives higher priority to online
latency-sensitive traffic can still have bandwidth wastage or
performance interference in the presence of dynamic network
environments [41]. BDS+, in contrast, dynamically predicts
the bandwidth usage of latency-sensitive applications, and
calculates the residual bandwidth that can be allocated to
inter-DC multicast. Finally, note that BDS+ optimizes the
application-level overlay, thus is complementary to network-
layer techniques that improve the WAN performance and
fairness [42]–[45].

C. Fault Tolerance

Next we describe how BDS+ handles the following failures.
1. Controller Failure: The controller is replicated [46]: if

the master controller fails, another replica will be elected
as the new controller. If all controller replicas are not
available (e.g., a network partition between DCs and the
controllers), the agents running in servers will fallback
to the current decentralized overlay protocol as default to
ensure graceful performance degradation.

2. Server Failure: If the agent in a server is still able to
work, it will report the failure state (e.g., server crash,
disk failure, etc.) to the agent monitor in the next cycle.
Otherwise, the servers that selected this server as a
data source would report the unavailability to the agent
monitor. In either case, the controller will remove that
server from the potential data sources in the next cycle.

3. Network Partition Between DCs: If network partitioning
happens between DCs, the DCs located in the same
partition with the controller will work the same as before,
while the DCs in the other partition(s) will fallback to the
aforementioned, decentralized overlay network.

D. Implementation and Deployment

We have implemented BDS+, and deployed it on 67 servers
in 10 of Baidu’s geo-distributed DCs, with 3621 lines of code
in the Go language [47]. Evaluation in the next section is based
on this deployment.

The controller was duplicated (for reliability) on three dif-
ferent geo-located zookeeper servers. The Agent Monitor uses
HTTP POST to send control messages between the controller
and servers. BDS+ uses wget to make each data transfer, and
enforce bandwidth allocation by setting –limit-rate field
in each data transfer. The agent running in each server uses
Linux Traffic Control (tc) to enforce the limit on the total
bandwidth usage of inter-DC multicast traffic.

BDS+ can be seamlessly integrated with any inter-DC
communication patterns. All the applications need to do is to
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Fig. 10. [BDS+ vs. Gingko (Baidu’s existing solution)] Results from pilot deployments.

call the APIs that consist of three steps: (1) provide the source
DC, destination DCs, intermediate servers, and the pointer to
the bulk data; (2) install agents on all intermediate servers;
(3) and finally, set the start time of the data transfers. Then
BDS+ will start the data distribution at the specified time.
We speculate that our implementation should be applicable to
other companies’ DCs too.

BDS+ has several parameters that are set either by admini-
trators of Baidu, or empirically by evaluation results. These
parameters include: the bandwidth reserved for latency-
sensitive traffic (20%), the data block size (2MB), and update
cycle length (3 seconds).

VII. EVALUATION

Using a combination of pilot deployment in Baidu’s DCs,
microbenchmarking, and trace-driven simulations, we show
that:

1. BDS+ completes inter-DC multicast 3-5 × faster than
Baidu’s existing solutions, as well as other baselines used
in industry (§VII-A).

2. BDS+ can scale to the traffic demand of a large online
service provider, tolerate various failure scenarios, and
achieves close to optimal flow completion time (§VII-B).

3. BDS+ can: (1). further complete inter-DC multicast 1.2 to
1.3 times faster with dynamic bandwidth separation, (2).
predict the bandwidth utilization of online traffic with
about 95% accuracy, (3). increase bandwidth utilization
when the online traffic is low, while reducing the bulk
data transfer when online traffic bursts, (4). achieve near
real-time scheduling with relatively low computational
overhead (§VII-C).

A. BDS+ Over Existing Solutions

1) Methodology:
a) Baselines: We compare BDS+ with three existing

solutions: Gingko (Baidu’s existing decentralized inter-DC
multi-cast strategy), Bullet [13], and Akamai’s overlay net-
work [11] (a centralized strategy for multicasting live videos).

b) Pilot Deployment: We choose several services with
different data sizes, and run A/B testing in which we run BDS+
instead of Baidu’s default solution Gingko for the same hours
in several randomly chosen days.

c) Trace-Driven Simulation: Complementary to the pilot
deployment on real traffic, we also use trace-driven simulation
to evaluate BDS+ on a larger scale. The simulation is not to
reproduce the results of the above pilot deployment, but to
provide evaluation results in large-scale scenarios, which is
complementary to the pilot deployment. Specifically, we sim-
ulate the other two overlay multicast techniques using the

same topology, number of servers, and link capacities as
BDS+, and replay inter-DC multicast data requests in the same
chronological order as in the pilot deployment.

As the existing solutions are all designed under the situation
where the available bandwidth is fixed, so in this subsection,
we evaluate the basic version of BDS+ with fixed bandwidth
separation, to ensure fairness. The additional improvements by
BDS+’s dynamic bandwidth separation are shown in §VII-C.
The whole logic of BDS+ can be summarized as follows:
BDS+ first obtains all the paths from the topology of Baidu
network, and then conducts the dynamic bandwidth separation
by predicting the online traffic on each link. Thus, BDS+
obtains the residual bandwidth of all the paths, and therefore
confirms the available links for the subsequent bulk data
transfer. On this base, BDS+ runs the scheduling and routing
algorithm periodically to find overlay paths for those selected
blocks. With the power of the bottleneck disjoint overlay paths,
blocks can be transmitted on multiple paths simultaneously,
and avoid going through bottleneck links. That’s the key to
accelerate inter-DC bulk data transfer.

2) BDS+ Vs. Gingko : We begin by evaluating BDS+ and
Gingko on one service that needs to distribute 70 TB data
from one source DC to ten destination DCs. Figure 10a shows
the cumulative distribution function (CDF) of the completion
time on each destination server. We can see that the median
completion time of BDS+ is 35 minutes, 5× faster than
Gingko, where most DCs takes 190 minutes to get the data.

To generalize the finding, we pick three applications whose
data volumes are large (70 TB), medium (50 TB) and small
(20 TB), and compare BDS+’s and Gingko’s mean (and
standard deviation) of completion time for each application
in Figure 10b. We see that BDS+ consistently outperforms
Gingko, and has less performance variance. We also see that
BDS+ has greater improvement in applications with larger
data sizes. This is because BDS+ adopts “rarest-first” strategy
in the scheduling stage, which treats all blocks as the same
no matter it belongs to a larger bulk data transmission or a
smaller transmission, so there is a strong possibility that
blocks from large bulk data transmissions will be scheduled
earlier, resulting in greater improvement for those larger bulk
data. Finally, Figure 10c shows the timeseries of the mean
completion time of BDS+ and Gingko in one randomly chosen
application, and we see that BDS+ consistently outperforms
Gingko by 4×.

3) BDS+ Vs. Other Overlay Multicast Techniques: Table IV
compares BDS+ with two other baselines, Bullet and Aka-
mai’s overlay network, using trace-driven simulation. In the
simulation, we set the inter-DC bandwidth to the range from
5TB to 25TB, which is scaled down proportionally according
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Fig. 11. [System scalability] Measurements on (a) controller running time, (b) network delay, (c) Feedback loop delay.

Fig. 12. BDS+’s (a) fault tolerance, (b) sensitivity to different block sizes, and (c) different cycle lengths.

TABLE IV

[BDS+ VS. BULLET [13], AKAMAI [11]] COMPLETION TIME OF THE

THREE SOLUTIONS IN TRACE-DRIVEN SIMULATION

to the real network. We show the results in three setups.
In the baseline evaluations, we send 1TB data from one
DC to 11 DCs, each has 100 servers, and the upload and
download link capacities are set to be 20MBs. In the large-
scale evaluations, we send 10TB data between the same
DCs, each with 1000 servers. In the rate-limited evaluations,
the setup is the same as that in the baseline experiments except
the server upload and download rate limit set to be 5MBs.
We see that BDS+ achieves 3× shorter completion time than
Bullet and Akamai in the baseline setup, and over 4× shorter
completion time in the large-scale and small bandwidth setups,
which corroborates the findings in §VII-A.2 that BDS+ has
greater improvement when data sizes are large.

B. Micro-Benchmarks

Next, we use micro-benchmarking to evaluate BDS+ along
three metrics: (1) scalability of the centralized control; (2) fault
tolerance; and (3) optimality of BDS+ parameters.

1) Scalability:
a) Controller Running Time: As the controller needs

to decide the scheduling and routing of each data block,
the running time of the control logic naturally scales with
the number of blocks. Figure 11a shows the running time as
a function of the total number of blocks. We can see that
the centralized BDS+ controller can update the scheduling
and routing decision within 800ms with 106 blocks. To put
this number into perspective, in Baidu’s DCs, the maximum
number of simultaneous outstanding data blocks is around
3 × 105, for which BDS+ can finish updating the decisions
within 300ms.

b) Network Delay: BDS+ works in inter-DC networks,
so the network delay among DCs is a key factor in the
algorithm updating process. We recorded the network delay
of 5000 requests and present the CDF in Figure 11b. We can
see that 90% of the network delays are below 50ms and the
average value is about 25ms, which is less than 1% of the
decision updating cycle (3 seconds).

c) Feedback Loop Delay: For centralized algorithms,
a small feedback loop delay is essential for algorithmic
scalability. In BDS+, this feedback loop consists of several
procedures: status updating from agents to the controller,
running of the centralized algorithm, and decision updating
from the controller back to agents. We measure the delay of
the whole process, as shown in the CDF of Figure 11c, and
find that in most cases (over 80%), the feedback loop delay
is lower than 200ms. So we claim that BDS+ demonstrates
a short enough latency and is able to scale to even larger
systems.

2) Fault Tolerance: Here we examine the impact of the
following failure scenario on the number of downloaded
blocks per cycle. During cycles 0 to 9, BDS+ works as usual,
and one agent fails in the 10th cycle. The controller fails in the
20th cycle and recovers in the 30th cycle. Figure 12a shows the
average number of downloaded blocks per cycle. We find that
the slight impact of agent failure only lasts for one cycle, and
the system recovers in the 11th cycle. When the controller is
unavailable, BDS+ falls back to a default decentralized overlay
protocol, resulting in graceful performance degradation. With
the recovery of the controller, the performance recovers in the
30th cycle.

3) Choosing the Values of Key Parameters:
a) Block Size: In BDS+, the bulk data file is split into

blocks and can be transferred on bottleneck-disjoint paths.
But this introduces a tradeoff between scheduling efficiency
and calculation overhead. We therefore conduct two series
of experiments using different block sizes (2MB and 64MB).
Figure 12b shows that the completion time in the 2MB/block
scenario is 1.5 to 2 times shorter than that in the 64MB/block
scenario. However, this optimization introduces a longer con-
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Fig. 13. [In-depth analysis] on (a) reduction on algorithm running time, (b) near-optimality, and (c) effects of overlay transmission.

Fig. 14. [BDS+ vs. BDS ] Further improvements from BDS.

troller running time, as shown in Figure 11a. We pick block
size by balancing two considerations: (1) constraints on the
completion time, and (2) the controller’s operational overhead.

b) Update Cycle Lengths: Since any change in network
environment may potentially alter the optimal overlay routing
decisions, BDS+ reacts to the changing network conditions by
adjusting the routing scheme periodically. To test the adjust-
ment frequency, we set different cycle lengths from 0.5s to 95s
for the same bulk data transfer, and Figure 12c shows the com-
pletion time. Smaller cycle lengths result in shorter completion
time, but the benefit diminishes when the cycle length is less
than 3s. This is because updating too frequently introduces
greater overhead on: (1) the information collection from agents
to the controller, (2) the execution of the centralized algorithm,
and (3) the re-establishment of new TCP connections. Thus,
considering adjustment granularity and the corresponding
overhead, we finally choose 3s as the default cycle length.

4) In-Depth Analysis:
a) Optimization Over Algorithm Running Time: BDS+

decouples scheduling and routing, which can significantly
reduce the computational complexity. To clearly show the
optimization, we measure the algorithm running time under
BDS+ and the standard LP solution. For the standard LP
experiments, we use the linprog library on MATLAB [48], set
the upper bound of the iteration number (106) if the algorithm
does not converge, and record the CPU time as a function of
the block number. Figure 13a shows that the running time of
BDS+ keeps below 25ms while that of standard LP grows
quickly to 4s with only 4000 blocks. BDS+ is much faster
than an off-the-shelf LP solver.

b) Near-Optimality of BDS+ : To measure the near-
optimality, we evaluate the data transfer completion time under
the standard LP and BDS+: 2 DCs, 4 servers, 20MBs for server
upload/download rate. We vary the number of blocks from 1 to
4000, over which the LP solver cannot finish in a reasonable
time. Figure 13b shows the near-optimality of BDS+.

c) Benefit of Disjoint Overlay Paths: §II-B reveals the
benefits of disjoint paths on application-level overlay net-
works. To explore the potential benefit, we record the ratio
of the number of blocks downloaded from the original source

to the total number of blocks, and the CDF is shown in Fig-
ure 13c. For about 90% of servers, the proportion is less than
20%, which means that more than 80% blocks are downloaded
from other DCs on the disjoint paths, demonstrating the great
potential of a multicast overlay network.

C. BDS+’s Dynamic Bandwidth Separation

As existing solutions reserve fixed amount of bandwidth
for online traffic according to the peak value (e.g., 20%),
while real traces show that online traffic rarely reaches that
peak and is far below that in most cases. Thus, BDS+
leverages dynamic bandwidth separation between online traffic
and offline traffic, allowing offline traffic (bulk data trans-
fer) to use more bandwidth when online traffic is below
the threshold. BDS+ achieves this by designing an online
traffic prediction algorithm, and this section shows the results
of improved performance by dynamic bandwidth separation.
For easy description, we name the basic version with fixed
bandwidth separation BDS, while the version with dynamic
bandwidth separation BDS+.

In the following experiments, we send 1TB data from one
DC to 11 DCs, each has 100 servers, and the upload and
download link capacities are set to be 20MBs, same as the
previous experiments. The online traffic is set according to
the cluster trace (machine_usage) from Ali [49].

1) Further Improvements Over BDS :
a) Completion Time: We start the bulk data transfer at

23:00 on 27, Jan, 2019. Figure 14a shows the CDF of the
completion time on each destination server. We can see that
the average completion time of BDS+ is 150ms, while that
under BDS is more than 200ms.

b) Improvements Over BDS : To make the results more
general, we further conduct a series of experiments during
different time periods, in other words, once per 30 minutes.
We compare the completion time of BDS and BDS+, and show
the results in Figure 14b. We can see that the improvements
of BDS+ changes with time, specifically, the improvements
during midnight is much higher than that during the day, espe-
cially at 05:30, when online traffic is at its valley. These results
show that BDS+ can make full use of the idle bandwidth that is
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Fig. 15. [BDS+’s prediction algorithm] Evaluations on: (a) predicted value, (b) algorithm accuracy, (c) running time.

not used by online traffic. Overall, the CDF of improvements
is shown in Figure 14c, which means that BDS+ can bring at
least 17.8% improvement in about 86% cases.

2) BDS+’s Prediction Algorithm: The improvement of
BDS+ mainly comes from the prediction of online traffic, so in
this subsection, we evaluate the accuracy of the prediction
algorithm, and then analyze the overhead incurred in achieving
such improvements.

a) Algorithm Accuracy: The online traffic is set accord-
ing to the cluster trace (machine_usage) from Ali [49], the real
residual bandwidth (the difference between server I/O and
online traffic) is shown in black in Figure 15a, where the
predicted value is shown in red (after normalization to 100).
As we can see that the red line is smooth and quite close to
the real bandwidth, indicating that BDS+ can predict online
traffic precisely. The exact statistics are shown in Figure 15b,
which indicates that the accuracy of about 99% predictions is
greater than 92%. Only in 1.6% cases, BDS+ shows a little
bit aggressiveness by giving a little bit higher predicted value
(where the x-axis is below zero). Taken together, BDS+ can
not only increases bandwidth utilization when online traffic is
in valley, but also reduces the incidents of interferences caused
by bulk-data transfer.

b) Algorithm Overhead: Although BDS+ bring perfor-
mance improvements by making full use of the residual
bandwidth, it introduces some overhead by introducing an
additional algorithm. So here we evaluate the additional time
spent on making predictions on online traffic. Figure 15c
shows the running time during a complete bulk data transfer.
We can see that BDS+ takes less than 20ms to make pre-
dictions in more than 97% cases. What’s more, this overhead
does not increase with system scale, because the prediction
on each server is independent of each other and thus can be
executed simultaneously.

In summary of all the above experiments, both the pro-
totype pilot deployment and the trace-driven simulations
of BDS+ with fixed bandwidth separation show 3-5 ×
speedup over existing solutions, with good scalability, relia-
bility, and near-optimal scheduling results. While BDS+ with
dynamic bandwidth separation further brings 1.2 to 1.3 times
improvement, thus working harmoniously with time-varying
online traffic.

VIII. RELATED WORK

Here we discuss some representative work related to BDS+
in five categories.

A. Overlay Network Control

Overlay networks realize great potential for various applica-
tions, especially for data transfer applications. The representa-
tive networks include Peer-to-Peer (P2P) networks and Content

Delivery Networks (CDNs). The P2P architecture has already
been verified by many applications, such as live streaming sys-
tems (CoolStreaming [21], Joost [50], PPStream [51], UUSee
[52]), video-on-demand (VoD) applications (OceanStore [53]),
distributed hash tables [54] and more recently Bitcoin [55]
and routing [56]. CDN distributes services spatially relative
to end-users to provide high availability and performance,
serving many applications such as multimedia [57] and live
streaming [20].

We briefly introduce the two baselines in the evaluation
section: (1) Bullet [13], which enables geo-distributed nodes
to self-organize into an overlay mesh. The main differ-
ence between BDS+ and Bullet lies in the control scheme,
i.e., BDS+ is a centralized method that has a global view of
data delivery states, while Bullet is a decentralized scheme
and each node makes its decision locally. (2) Akamai designs
a 3-layer overlay network for delivering live streams [11],
where a source forwards its streams to reflectors, and reflectors
send outgoing streams to stage sinks. There are two main
differences between Akamai and BDS+. First, Akamai adopts
a 3-layer topology where edge servers receive data from their
parent reflectors, while BDS+ successfully explores a larger
search space through a finer grained allocation without the
limitation of three coarse grained layers. Second, the receiving
sequence of data must be sequential in Akamai because it is
designed for a live streaming application. But there is no such
requirements in BDS+, and the side effect is that BDS+ has
to decide the optimal transmission order as additional work.

B. Data Transfer and Rate Control

Rate control of transport protocols at the DC-level plays an
important role in data transmission. DCTCP [59], PDQ [60],
CONGA [61], DCQCN [62] and TIMELY [63] are all classical
protocols showing clear improvements in transmission effi-
ciency. Some congestion control protocols like the credit-based
ExpressPass [64] and load balancing protocols like Hermes
[65] could further reduce flow completion time by improving
rate control. On this basis, the recent proposed Numfabric [66]
and Domino [67] further explore the potential of centralized
TCP on speeding up data transfer and improving DC through-
put. To some extend, co-flow scheduling [68], [69] has some
similarities to the multicast overlay scheduling, in terms of
data parallelism. But that work focuses on flow-level problems
while BDS+ is designed at the application-level.

C. Centralized Traffic Engineering

Traffic engineering (TE) has long been a hot research
topic, and many existing studies [42]–[45], [70]–[72] have
illustrated the challenges of scalability, heterogeneity etc.,
especially on inter-DC level. The representative TE systems
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include Google’s B4 [5] and Microsoft’s SWAN [6]. B4 adopts
SDN [73] and OpenFlow [74] to manage individual switches
and deploy customized strategies on the paths. SWAN is
another online traffic engineering platform, which achieves
high network utilization with its software-driven WAN. In
recent years, there are also some new research work on inter-
DC multicast, for example, [75], [76] propose a tree selection
technique called QuickCast, which reduces the centralized
computation overhead by cutting the large forwarding tree into
multiple smaller ones. As comparison, BDS+ decouples the
whole algorithm into scheduling and routing stages. Further,
some deadline-aware algorithms like [77], [78] are also emerg-
ing, but in our scenario, we treat small block the same priority,
except some special cases (as explained in Section IV-C).

D. Bandwidth Preemption
Resource over-subscription or under-subscription is a

common problem in DCs or WANs, and it often leads to unrea-
sonable utilization in clusters, cloud, and data center envi-
ronments. There have been many efforts that try to schedule
more ad-hoc jobs on the premise that the QoS of critical jobs
can be guaranteed. One of the most representative schemes
is preemption. To eliminate sharing-induced unpredictability,
[79] leverages the notion of recurring reservation, which iso-
lates periodic tasks from the sharing noisiness. Reference [80]
also proposes a reservation-based scheduling scheme, which
delivers resource allocations to both production jobs and best-
effort jobs to improve cluster utilization. This work shares the
similar problem with BDS+, but it builds upon Hadoop/YARN,
which means preemption will happen when critical workloads
increase, while BDS+ eliminates the possibility of preemption
by dynamically predicting online traffic and make reservation.
So all these existing solutions can not be applied into Baidu
directly.

E. Network Change Detection
Detecting network changes is quite important not only in

traffic prediction problems, but also in many other appli-
cations, such as abnormality detection, network monitoring,
and security. There are two basic but mature methods that
are widely used, the exponentially weighted moving average
(EWMA) control scheme [31], [32] and the change point
detection algorithm [30]. EWMA usually gives higher weights
to recent observations while gives decreased weights in geo-
metric progression to the previous observations, when predict-
ing the next value. Although EWMA describes a graphical
procedure for generating geometric moving averages smoothly,
it faces an essential sensitivity problem, in other words,
it can not identify abrupt changes. In contrast, change point
detection algorithms could exactly solve this problem, in both
online [37]–[39] and offline [33]–[36] manner. BDS+ com-
bines these two methods by designing a sliding observation
window, which makes BDS+’s prediction algorithm stable and
sensitive.

Overall, an application-level multicast overlay network with
dynamic bandwidth separation is essential for data transfer in
inter-DC WANs. Applications like user logs, search engine
indexes and databases would greatly benefit from bulk-data
multicast. Furthermore, such benefits are orthogonal to prior
WAN optimizations, further improving inter-DC application
performance.

IX. CONCLUSION

Inter-DC multicast is critical to the performance of global-
scale online service providers, but prior efforts that focus
on optimizing WAN performance are insufficient. This article
presents BDS+, an application-level multicast overlay network
with dynamic bandwidth separation that substantially improves
the performance of inter-DC bulk-data multicast. BDS+ not
only demonstrates the feasibility and practical benefits of
a fully centralized multicast overlay network that selects
overlay paths and schedules data transfers in a near-optimal
yet efficient manner, but also shows further improvements by
dynamically separating online and offline traffic instead of a
fixed boundary. We believe that the insight of multicast overlay
network in BDS+, to speed up the execution of a centralized
algorithm, together with the inspiration of dynamic bandwidth
prediction, can be generalized to other control platforms where
the decision-making logic strikes a favorable balance between
insurance and efficiency.

APPENDIX

Suppose we want to send N data blocks to m destination
DCs. Without loss of generality, we consider two cases:
• A (Balanced): Each of the N blocks has k duplicas;
• B (Imbalanced): Half blocks have k1 duplicas each, and
the other half have k2 duplicas each, and k1 < k2, (k1 +
k2)/2 = k.

Note that m > k, since otherwise, the multicast is already
complete. Next, we prove that in a simplified setting, BDS+’s
completion time in A is strictly less than B.

To simplify the calculation of BDS+’s completion time,
we now make a few assumptions (which are not critical
to our conclusion): (1) all servers have the same upload
(resp. download) bandwidth Rup (resp. Rdown), (2) no two
duplicas share the same source (resp. destination) server, so
the upload (resp. download) bandwidth of each block is Rup

(resp. Rdown). Now we can write the completion time in the
two cases as following:

tA =
V

min{c(l), kRup

m−k , kRdown

m−k }
tB =

V

min{c(l), k1Rup

m−k1
,

k2Rup

m−k2
, k1Rdown

m−k1
, k2Rdown

m−k2
}

(6)

where V denotes the total size of the untransmitted blocks,
V = N(m − k)ρ(b) = N

2 (m − k1)ρ(b) + N
2 (m − k2)ρ(b). In

the production system of Baidu, the inter-DC link capacity c(l)
is several orders of magnitudes higher than upload/download
capacity of a single server, so we can safely exclude c(l)
from the denominator in the equations. Finally, if we denote
min{Rup, Rdown} = R, then tA = (m−k)V

kR and tB =
(m−k1)V

k1 R .

We can show that (m−k)V
kR is a monotonically decreasing

function of k:

d

dk

(m − k)V
kR

=
d

dk

(m − k)2Nρ(b)
kR

=
Nρ(b)

R
(1 − m2

k2
) < 0 (7)

Now, since k > k1, we have tA < tB .
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