
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2024 737

FLAIR: A Fast and Low-Redundancy Failure
Recovery Framework for Inter Data Center Network
Yuchao Zhang , Member, IEEE, Haoqiang Huang , Member, IEEE, Ahmed M. Abdelmoniem , Member, IEEE,

Gaoxiong Zeng , Member, IEEE, Chenyue Zheng , Student Member, IEEE, Xirong Que , Member, IEEE,
Wendong Wang , Member, IEEE, and Ke Xu , Fellow, IEEE

Abstract—Due to the fast developments of 5G and IoT
technologies, Inter-Datacenter (Inter-DC) networks are facing
unprecedented pressure to duplicate large volumes of geograph-
ically distributed user data in a real-time manner. Meanwhile,
with the expansion of Inter-DC networks scale, link/node failures
also become increasingly frequent, negatively affecting the data
transmission efficiency. Therefore, link failure recovery methods
become of utmost importance. Many works investigated fast failure
recovery, yet none of them consider the deployment overhead of
such recovery schemes. While in this article, we found that the side-
effect of deploying recovery strategies and the future availability of
the recovered transmissions are also crucial for fast recovery. So we
propose a fast and low-redundancy failure recovery framework,
FLAIR, which consists of a fast recovery strategy FRAVaR and
a redundancy removal algorithm ROSE. FRAVaR takes full
consideration of deployment overhead by minimizing shuffle
traffic. On its base, ROSE regularly eliminates the cumulative
rerouting redundancy by removing unnecessary routing updates.
The experiment results on 4 realistic network topologies show that
FLAIR successfully reduces up to 48.2% deployment overhead
compared with the state-of-the-art solutions, and thus reduces up to
70.2% recovery speed and improves up to 36% network utilization.

Index Terms—Inter data center network, failure recovery,
routing optimization.

I. INTRODUCTION

IN RECENT years, user data from edge network is continu-
ously growing, which requires near real-time transmissions

between geographically distributed data centers (DCs). In order
to keep pace with such large number of data transmissions,

Manuscript received 8 May 2023; revised 16 April 2024; accepted 20 April
2024. Date of publication 2 May 2024; date of current version 7 June 2024.
This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant 62172054 and Grant 62072047, and in part by
Beijing Nova Program under Grant 2023140. Recommended for acceptance
by X. Chu. (Gaoxiong Zeng contributed in this work independently while not
affiliated with Huawei.) (Corresponding author: Yuchao Zhang.)

Yuchao Zhang, Haoqiang Huang, Chenyue Zheng, Xirong Que, and Wen-
dong Wang are with the Beijing University of Posts and Telecommunications,
Beijing 100876, China (e-mail: yczhang@bupt.edu.cn; hhq_erii@bupt.edu.cn;
zcy2001@bupt.edu.cn; rongqx@bupt.edu.cn; wdwang@bupt.edu.cn).

Ahmed M. Abdelmoniem is with the Queen Mary University of London, E1
4NS London, U.K (e-mail: ahmed.sayed@qmul.ac.uk).

Gaoxiong Zeng is with Huawei Technologies, Shenzhen 518129, China (e-
mail: gaoxiong.zeng@huawei.com).

Ke Xu is with the Tsinghua University, Beijing 100190, China (e-mail:
xuke@tsinghua.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCC.2024.3393735, provided by the authors.

Digital Object Identifier 10.1109/TCC.2024.3393735

Internet Service Providers (ISPs) are extending their Inter-DC
networks at an incredible speed. For example, Google tripled
its Inter-DC network B4 [1] scale to carry its data traffic which
has increased by 100 times in five years [2]. At the same time,
the requirement for network availability has also increased even
to over 99.99% [3], because even second network failure will
cause 100GBs network traffic loss and even affect ISP’s global
services [4]. In the real network environment, link failure are
becoming more and more frequent with the expanding inter-DC
network scale. According to the report in [5], in a practical
Inter-DC wide area network with about 200 routers and 6000
links, the probability of link failures in every 5 minutes is close
to 25%, and that in every 10 minutes is approximately 40%.

The Inter-DC network needs a fast failure recovery framework
to handle such frequency failures and improve its availability.
Many previous efforts have focused on designing near optimal
recovery schemes. These works can be classified into two cate-
gories. 1) Pre-failure resource reservation. Redundant resources
like bandwidth or paths will be reserved before data transmis-
sions. When failure occurs, the reserved resources will be used to
maintain network availability. This kind of solution is adopted by
previous works such as FFC [5] and SMORE [6]. FFC [5] limits
the transmission bandwidth for network congestion caused by
failure recovery. In SMORE [6], many routes are combined into
one flexible group and backed up with each other via R ä cke’s
oblivious routing algorithm [7]. 2) After-failure recovery. For
example, TEAVAR [8] allocates as many routers as possible,
with a low probability of failure, and achieves link availability by
redistributing flows to other links. The above work has very good
results in calculating the optimal recovery plan, but in order to
achieve fast failure recovery in real networks, it is also necessary
to take the deployment overhead into consideration. Otherwise,
with high deployment overhead, it will still result in slow overall
recovery speed even if with an optimal recovery plan. The
existing solutions, to our best knowledge, fail to address the
following three key concerns in real inter-DC scenarios.

Deployment overhead: The measurements in [9] show that up-
dating routing rules takes noticeable time. For example, chang-
ing only one routing rule requires up to 466 rule movements in
routing tables. Updating 20 K rules results in millisecond-level
delays. While the completion time of most transmissions is less
than a few milliseconds (90% of the traffic between DCs is less
than 200KB [10], and the bandwidth is GB-level) Therefore,
those “optimal strategies” that require a large number of routing

2168-7161 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0135-8915
https://orcid.org/0000-0001-5482-7757
https://orcid.org/0000-0002-1374-1882
https://orcid.org/0000-0002-1876-0329
https://orcid.org/0009-0002-9414-981X
https://orcid.org/0000-0002-9759-767X
https://orcid.org/0000-0002-6418-8087
https://orcid.org/0000-0003-2587-8517
mailto:yczhang@bupt.edu.cn
mailto:hhq_erii@bupt.edu.cn
mailto:zcy2001@bupt.edu.cn
mailto:rongqx@bupt.edu.cn
mailto:wdwang@bupt.edu.cn
mailto:ahmed.sayed@qmul.ac.uk
mailto:gaoxiong.zeng@huawei.com
mailto:xuke@tsinghua.edu.cn
https://doi.org/10.1109/TCC.2024.3393735

738 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2024

updates is likely to cause a large number of small flows to
retransmit, leading to low recovery efficiency.

Heavy traffic shuffle: Recovery plans always results in a large
number of flow path adjustments with innumerable transmis-
sions, especially in large Inter-DC networks. These flows, whose
transmission paths are adjusted, are called “shuffled” flows.
During the rerouting process, these shuffled flows require a lot
of time to deal with out-of-order packet arrivals, congestion, and
packet loss. These processes contribute take significant time to
the overall failure recovery process. Therefore, we need a new
method that can limit the amount of shuffled traffic to accelerate
overall failure recovery.

Routing redundancy: Frequent failure recovery brings redun-
dancy to the global routing which will finally degrade net-
work performance. Even with the best optimizations, 4 ms
control plane failure recovery still produces 2.4% routing re-
dundancy [11], which would possibly result in longer path and
longer transmission delay. Therefore, we point out that after fre-
quent failure recovery, global routing needs to be re-optimized
to mitigate redundancies.

To address the above problems, we propose FLAIR, a fast
failure recovery framework. In expanding our conference paper
FRAVaR [12], we have developed and incorporated a new system
component called ”ROSE”, effectively combining both into an
integrated system for enhanced functionality. FLAIR constitutes
two major parts: a fast failure recovery algorithm (FRAVaR)
and a routing optimization algorithm (ROSE). FRAVaR is a
two-phase algorithm with rerouting and traffic shuffling. To
minimize the deployment overhead and reduce traffic shuffle,
we propose Incremental Rerouting (IR). IR isolates link failures
within a limited range of networks by carefully selecting a
few available links to replace the failed ones. The reduction of
routing update speeds up recovery strategy deployment. Then,
we adopt Value at Risk theory (VaR) [13] to devise a flow
shuffle scheme, which further increases the availability of our
reroute results. When FRAVaR is executed multiple times and
the accumulated redundancy exceeds a certain threshold, ROSE
will be triggered to eliminate the routing redundancy. Based on
the State Estimation (SE) model, ROSE searches and imple-
ments the global optimal routing plan. First, based on routing
state modeling, it estimates whether there are redundancies in
existing routing based on SE theory to estimate routing state
under linear time complexity. Then, for those redundant routing,
ROSE searches for best state routing with a heuristic algorithm.
We evaluate the performance of FLAIR on four real large-scale
Inter-DC network topologies (AGIS, ATT, Global Center, and
IBM). Experiment results show that FLAIR reduces up to 48.2%
deployment overhead compared with the state-of-the-art solu-
tions, thence improves network utilization by at most 36.0% and
reduces overall recovery time by up to 70.2%.

The main contributions of this paper are as follows:
� We for the first time disclose the deployment overhead to

achieve fast failure recovery in real large-scale inter-DC
networks.

� We propose a fast failure recovery framework FLAIR,
which constitutes two novel algorithms (i.e., FRAVaR and
ROSE). FRAVaR introduces an incremental reroute algo-
rithm IR and a traffic shuffle algorithm based on VaR.

Fig. 1. Flow size distribution of Inter-DC network data sets.

ROSE estimates the routing state with State Estimation
(SE) theory and eliminates unnecessary routing updates.

� We evaluate the performance of FLAIR on four real Inter-
DC topologies and demonstrate the effectiveness of FLAIR
on reducing the deployment overhead and accelerating
overall failure recovery speed.

The remainder of this paper is organized as follows. We
discuss the challenges of Inter-DC network failure recovery and
motivate the design of FLAIR in Section II. In Section III we
briefly introduce the recovery principle and process of FLAIR.
Then, we introduce the specific framework model in Sections IV
and V. We then show evaluations of FLAIR and other recovery
solutions, including the implementation settings and results in
Section VI. We review related work about failure recovery in
Section VII. Finally, we conclude the paper in Section VIII.

II. MOTIVATION

We find that, intuitively, the deployment overhead is one of
the obstacles to fast link recovery. In the traditional routing
mechanism, SDN controller sends out new routing rules to
routers that new routing paths traverse, and these routers update
the new rules into their routing table. But at the same moment,
there are thousands of flows on the paths and they have to wait
for the update to complete. When failures occur, the network
stops transmitting these flows, deploys a new routing strategy,
rebuilds connections, and restarts transmission. Over this pro-
cess, the problem is that the updating speed is not faster than
the transmission of most packets and re-transmission introduces
significant delays. To locate the next hop in routing tables within
a fraction of a millisecond, Ternary Content Addressable Mem-
ory (TCAM), for its concurrent and efficient searching structure,
is broadly installed in routers as the proprietary memory to store
routing tables.

Unfortunately, unlike the efficiency in searching, updating
rules in TCAM is not swift enough. We show the flow size
distribution in Inter-DC networks from two large data sets,
FBHadoop [10] in Fig. 1(a) and WebSearch [14] in Fig. 1(b).
More than 90% of flows’ sizes are less than 120 KB in FBHadoop
and approximately 99% of flows’ sizes in WebSearch are within
4 MB. That is to say, in 400 G Inter-DC networks, almost
every flow finishes transmission within 0.1 milliseconds, while
the time cost of updating 20 K routing rules is a hundredfold.
And that is what hinders a fast link failure recovery. Although
optimizations for TCAM [15], [16] require fewer entry moves
and less time cost, the latency caused by routing rule updates

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FLAIR: A FAST AND LOW-REDUNDANCY FAILURE RECOVERY FRAMEWORK FOR INTER DATA CENTER NETWORK 739

Fig. 2. Network example of recovery rerouting.

is hard to be ignored compared to the flow completion time in
high-speed networks [17].

Besides, restarting transmission is never a slight task and it
is likely to influence applications. For instance, flow connection
establishment needs TCP connection establishment first, which
consumes at least 1.5 Round-Trip-Time (RTT) and also CPU
resources. In this case, CPU resources assigned to handle the
transmission sharply rise , leaving fewer CPU resources for
other works. As a result, the performance of both the network
and those applications dependent on the hosts (e.g., distributed
machine learning), drops down. And this is the reason why the
scale of flows’ re-transmission matters significantly in network
performance.

FLAIR is first motivated by the observation that although
global rerouting achieves better scheduling performance, it
causes a larger scale of flow shuffle, which further intro-
duces many negative effects: 1) The controller has to solve
a global optimization problem, which is highly complex and
time-consuming. 2) The network has to update more routing
rules in the routers on the reroute paths. 3) Shuffling from one
path to others leads to the release and reconstruction of session
connections, bringing additional delays to flows’ completion
times (FCT).

We illustrate our motivation in the example shown in Fig. 2.
By default, all flows are routed following the ECMP rules.
Fig. 2(a) shows an initial traffic distribution with four flows,
f1: s1 → s3 → s5, f2: s2 → s5, f3: s4 → s3 → s5, and f4 :
s4 → s5. The dashed curves represent flows and the numbers
represent the traffic volume they carry. When link s1 → s3
fails, the controller re-computes all the transmissions and adjusts
flow assignment like Fig. 2(b), i.e., f1 to s1 → s2 → s5. This
strategy requires updating all the flows in this network, to deploy
its rescheduling result. Recall the complex deployment process
shown at the beginning of this section, so many rescheduled
transmissions certainly bring high deployment overhead.

However, if we adjust f1 to s1 → s2 → s3 → s5, as shown
in Fig. 2(c), other flows would not be affected anymore and
thus avoids re-transmission. Although it’s not the optimal trans-
mission path for f1 compared to Fig. 2(b), only two routers
need to be reconfigured and all the other routers can remain the
same as before so that f1 can be rescheduled quickly and the
whole network can fast react to link failures. This also isolates
these link failures within only one path s1 − s3 − s5, making
it unable to affect other flows outside this range. Such isolation
also contributes to reducing computation complexity.

While Fig. 2(c) seems to be a better choice when all the links
are equally stable, it is not good enough when different links
have different failure probabilities. As shown in Fig. 2(d), if
the failure probability of link s1 → s2 is 0.1, while that of link
s1 → s4 and s4 → s3 are both 0.001, there would be a great risk
that the scheduling results in Fig. 2(c) which is unstable because
f1 is more likely to fail again leading to more rescheduling in the
future. In contrast, the assignment in Fig. 2(d), which enjoys a
more stable path, can shuffle f1 to s1 → s4 → s3 → s5 to result
in a recovery schedule that enjoys higher availability.

It is not difficult to find that in the process of global recovery,
80% of nodes need to deploy new routing rules. In the incremen-
tal recovery process, routing updates only need to be deployed
on 60% of nodes. Obviously, in the global recovery, the four
flows only need a 6-hop routing to complete the transmission
and traverse through fewer redundant links. However, it needs
to deploy routing updates on more nodes and it also causes a large
number of flows that might not need rescheduling. Incremental
recovery achieves a similar recovery effect with less deployment.
Flows need a 7-hop routing, while routing updates and flow
shuffle are fewer.

Nevertheless, Fig. 2(c) and (d) introduce routing redundancy.
Considering that Inter-DC network is much more complicated
with an increasing number of links, the global recovery requires
a large number of shuffled flows and long latency due to updating
routing rules. What makes matters worse is that it also increases
the FCT which is affected by re-transmissions. With the illustra-
tive example above, we can see that incremental scheduling can
speed up the recovery by only adjusting the affected flows rather
than computing a global optimal re-transmission scheme. And,
we further note that incremental scheduling should take link fail-
ure probability into account to reduce the risk of rescheduling.
Meanwhile, the incremental rerouting achieves little updating
overhead at the cost of routing redundancy. In Fig. 2(c) and (d),
the path from s1 to s5 is not the optimal one. Additionally the
redundancy would accumulate and finally degrades transmission
performance due to a longer propagation delay. Subsequently,
the routing needs to be re-optimized after the frequent recovery.
This motivates the design of FLAIR, which reveals the potential
of reacting to link failures in near real-time at the scale of tens
of thousands of links with different failure probabilities.

In brief, incremental rerouting distinguishes itself from tradi-
tional link protection approaches [6], [18], [19] by significantly
reducing the overall deployment overhead and simplifying the
computational complexity involved in network reconfiguration
following a link failure. From the previous artificial example, we
have shown that it is more efficient for only part of the network

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2024

Fig. 3. The workflow diagram of FLAIR’s structure.

to participate in failure recovery while trading off a negligible
performance impact. FLAIR brings in the following benefits:
1) fewer changes of routing rules, 2)smaller scales of shuffle
traffic and 3) low-redundant routing, which greatly speeds up the
process of the network recovering from failures and returning to
a normal operation state.

III. SYSTEM OVERVIEW

Motivated by the above discussion, FLAIR comes up with
a very simple idea, less is better. The fewer routes we adjust,
the fast reaction we achieve. The fewer flows we shuffle, the
fast recovery we achieve. FLAIR consists of two main com-
ponents, FRAVaR and ROSE. When network failures occur,
FLAIR first starts FRAVaR to complete fast rerouting and flow
re-transmission. After repeatedly recovering from failure, ROSE
starts for routing optimization during the network idle period.

Fig. 3 shows the internal operation process of FLAIR. First,
FRAVaR tries to adjust the minimum number of transmissions
that are already built up.Following this principle, we narrow
the range of reroutes within a local part of the network while
still maintaining the performance. Along the way, we propose
IR, an incremental reroute algorithm. IR adjusts routing rules
only on a short route bypass the failed link and carefully selects
rerouting paths by the breadth-first-searching (BFS) algorithm
which promises completeness of routes recovery. We use the
visited tags generated by BFS to guarantee all the routes are
disjoint. In this way, IR isolates link failures into a small domain
of the network. Based on IR, we then strengthen FRAVaR by
introducing a minimum loss flow shuffle algorithm based on the
Value at Risk theory. Specifically, we calculate the mathematical
expectation of the flow shuffle scale, or so-called “risk”, and
minimize it by solving a linear programming problem. We
combine VaR with IR and introduce FRAVaR in more detail
in the next section.

Second, ROSE aims to achieve the same routing purpose
with as few routing rules as possible. To this end, ROSE in-
troduces a routing state model that takes failure probability,
path capacity and routing hops into consideration. Drawing on
this model, ROSE leverages heuristics to find highly available,
low-redundancy routes. The process incurs notable overheads–
as re-computation and updates for routing between data cen-
ter pairs are frequently necessary. To solve this problem, we

introduce SE theory to fast estimate routing state under linear
computational complexity. The main idea of SE is to convert
routing optimization to a graph optimization problem. Then, we
derive the condition for which a routing under the best state
should meet, through abstract mathematical proof. As long as
the routing between any two DCs satisfies the condition, ROSE
determines that the routing needs no update and therefore, it
reduces the complexity by eliminating unnecessary parts of the
routing optimization.

IV. FRAVAR DESIGN

In this section, we first introduce a network model and next
FRAVaR’s detail design by modelling it as a two-phase solution,
IR as the incremental rerouting algorithm and Var as the minimal
flow shuffle algorithm.

A. Network Model

In the beginning, we consider an Inter-DC network G =
(V,E) with nodes V and directed linksE. The link from node i
to node j is simply denoted as ij and cij is the capacity of link
ij. A route r is the set of head-to-tail links and, for example, a
route from node a to f is expressed as r = ab, bc, cd, df . R is
the general set of routes. A flow is defined as f and the demand
scale of it is defined as df . Then, the scale of f allocated to
route r is defined as xfr . yij denotes whether link ij is available,
which yij = 0 indicates that ij is broken and yij = 1 means ij
is available. Similarly, yr defines the availability of route r. The
failure probability of link ij, when considering link failure as a
mutually independent event, is simply a decimal pij between 0
and 1.

B. Incremental Rerouting

Although a global schedule brings an optimal performance
in throughput, utilization, availability, MLU, etc, it also slows
down the processing speed of recovery, and the time delay is
elongated. A little sacrifice of performance would extremely
improve recovery speed. Here comes two design principles
behind IR.

A trick to boost efficiency: In traditional traffic engineering
(TE), recovery algorithms are running on the whole network.
Global failure recovery solutions can achieve good performance
in many ways, but not all. The scale of links chosen to recover
the network needs to be pruned to improve recovery efficiency.
When a link failure occurs, global recovery algorithms take the
whole network into consideration, making the scale of route
space too large to explore and resulting in extremely high compu-
tation overhead. So the critical point of our fast recovery solution
is to reduce the exploration space while maintaining network
performance. An intuitive idea is to focus on a subset of the
network which recovering on the sub-network achieves a close
resilience performance to recovering on the whole network.
Following this idea, we design a local search algorithm for
rerouting to isolate failures.

Avoiding Shared Risk Link Group (SRLG): SRLG is one of
the problems that reroute algorithms try to avoid. A SRLG is a

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FLAIR: A FAST AND LOW-REDUNDANCY FAILURE RECOVERY FRAMEWORK FOR INTER DATA CENTER NETWORK 741

Algorithm 1: Incremental Reroute (IR) Method.

group of links that share the common resources. In link failure
recovery problems, it indicates multiple paths share the common
links. They “share” the failure risk when they share the same link
and whenever this shared link fails, each route that traverses
this SRLG goes down. This makes it one of the most critical
situations because the network has to recover multiple routes
simultaneously. Moreover, the shared link in SRLGs restricts
the available capacity to the flows traversing the routes. As
a solution, we enhance IR by examining the visited tags and
achieve an SRLG-disjoint reroute algorithm.

Here we introduce an incremental reroute algorithm of our fast
recovery framework, IR, and show it in Algorithm 1. IR scans
the Inter-DC network G, collects failure links(e.g., ij), counts
the number of expected rerouting routes(e.g., n), and designates
a subset of the network, denoted as P . IR then applies BFS on P
and implements it with a minimum heapQ. Moreover, IR marks
a visited tag on the nodes when they are traversed so that later
searches refuse to select these nodes with the visited tag. The
visited tag provides two guarantees: 1) With the help of BFS,
it ensures that when a node is reached, hops of the route are
minimal; and 2) the Intersection of routes is avoided. Through
the visited tag and BFS, IR offers a set of rerouting paths P with
mutually disjoint and shortest paths.

IR introduces minimum heap Q to accelerate the search
process. BFS uses extensive time and space to store the adjacent
nodes and choose the best one from them. Referring to other
graph searching algorithms like Dijkstra, GBFS, and A-Star, a
common characteristic of them is the introduction of a priority
queue to reduce selection time and used space. At the same
time, we define a cost function fk to sort the heap, while the
top of the heap is the link with minimal fk. For example,
in A-Star, the cost function is fk = Distance(source, k) +
Distance(k, destination). Here we introduce a cost function
for IR, which considers both capacity and resilience.

fk = phk · chk
cmax

. (1)

Fig. 4. Example of IR searching process.

Where h is the current node being travelled and k is one of
the adjacent nodes. cmax is the maximum capacity of all the
available links. With the help of minimum heap, IR chooses the
link with the minimal cost within time cost O(logK), where K
is the number of links in the sub-network.

Fig. 4 shows an example of how IR searches n = 3 rerouting
routes for a link failure (i.e., link 11 (DC4, DC6) is broken).
First we begin with node DC4 and get four links adjacent to
it. That is, link 2 to DC1, link 4 to DC2, link 5 to DC3, and
link 6 to DC5. We mark visited tags on DC1, DC2, DC3, and
DC5. And the next round, we get ten routes derived from the
previous four routes and they are {Link 2, Link 1}, {Link 2,
Link 3}, {Link 4, Link 3}, {Link4, Link7}, {Link 4, Link 8},
{Link 5, Link 1}, {Link 5, Link 10}, {Link 5, Link 9}, {Link
6, Link 7} and {Link 6, Link 14}, while six of them meet the
nodes with visited tag and are abandoned. For example, the first
route, {link 2, link 1}, reaches DC3 which has been marked a
visited tag by route {link 5} and it denotes that the hop of {link
2, link 1} is more than {link 5}. Among the rest four routes,
we obtain a reroute route, {link 5, link 10}, and three routes
for the next round. Then, in the third round, we get four routes
{Link 4, Link 8, Link 12}, {Link 6, Link 14, Link 15}, {Link
4, Link 8, Link 13} and {Link 5, Link 9, Link 16}, while the
first half of them are valid (the optimal path). Thus, IR obtains
three SRLG-disjoint rerouting routes with minimum hops and
finishes searching.

C. Flow Shuffle and Formulation

We design a risk evaluation function to describe the expec-
tation of the loss for the flow shuffle scheme and formulate a
flow shuffle problem within this function. A natural solution to
evaluate the expectation of flow loss is to simulate every possible
scenario in which every subset of surviving links fails. The time
complexity isO(2N) whereN is the number of links in network
G. Obviously, such time complexity growing with the size of the
network is unacceptable. Now, with IR narrowing the scale of
the network, the time complexity is reduced to O(2K) where K
is the number of links in the sub-network, and in most cases, we
have K � N and thus making reactive computation of these
scenarios more practical.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2024

Here we introduce the probability of these scenarios. First
we denote a scenario as q and the availability of link ij in q is
denoted as yijq . That is, in scenario q, link ij is available (yijq = 1)
or down (yijq = 0). And route availability yrq is derived from the
following expression:

yrq =
∏

hk∈r
yhkq . (2)

We obtain the probability of link failures from historical records,
and the probability pq of scenario q to occur is naturally the
probability of paths combinations as follows:

pq =
∏

ij∈E

[
(pij ∗ yijq) + (1− pij) ∗ (1− yijq)

]
. (3)

For the reason that the scenarios unlikely to occur are of little
value and little risk, we prune the scenarios with pq ≤ 10−6.
Then, we introduce the percentage of flows NOT meeting the
demands. Despite different link capacities on Inter-DC network,
the loss is capable of measuring by proportion. Thus, the loss of
scenario q is formulated as follows:

θq =
∑

f

[1−
∑

r∈R x
f
ry

q
r

df
]+. (4)

Where θq is the loss and df is the demand of flow f . The notation
[α]+ means 0 when α ≤ 0 and it guarantees that in extreme
situations, like network overload, the loss is not less than 0.
Especially, in the scenario that all links are available, the loss is
0. So the “risk” Θ of the re-allocation scheme is given as

Θ =
∑

q

pqθq. (5)

So far, we have finished the construction of our framework and
the objective is clearly defined. The formulation of the “risk”
problem is shown as follows:

min Θ

s.t. (2)−(5)
∑

f

xrf ≤ cij , ∀ij ∈ r (6)

∑

r

xrf ≥ df . (7)

Notably, constraint (6) specifies that the allocated share of all
flows is not greater than the minimal link capacity of the path
and it provides guarantees for minimum congestion control in
the network. Constraint (7) indicates that all the shuffled data of
a flow is not less than its demand. Note that, linear programming
gets no solution in some corner cases. Especially in the cases
where most of the network breaks down while the data request
is still large, it is impossible to meet constraints (6) and (7)
simultaneously and hence a balanced distribution should be
implied. Even though these are extreme situations, in most cases
the LP is solvable.

In Appendix A, available online we provide a performance
bound of FRAVaR and explain the reason why IR is based on
the BFS algorithm.

V. ROSE DESIGN

In this section, we introduce FLAIR’s routing optimization
method namely ROSE. To this end, we present a state model to
evaluate the path status. Based on this model, we explain how
to search paths that are under the “best” state and how to reduce
computation and deployment overhead with SE theory.

A. The Path State Model

In the failure recovery framework, the state of the path is de-
cided by the transmission distance, the capacity of links and the
failure probability. Based on the network model in Section IV-A,
we propose a micro model to describe path status. First, the
capacity of the path is determined by the minimum capacity of
links that it traverses [20]

cr = min
ij∈r

cij . (8)

Similarly, the failure probability of a path is determined by
the mathematical expectation of failure probability of links that
it traverses

pr = (1−
∏

ij∈r
(1− pij)). (9)

For the reason that it is hard to measure the accurate trans-
mission distance, we use routing hops ηr to indicate the actual
distance of path r. Therefore, the state of path r could be defined
by the weight Φr as below

Φr =
cr · pr
ηr

. (10)

We define a path under the optimal state as the path with the
highest weight among all paths.

Φr ≥ Φr̄, ∀r̄ ∈ R′. (11)

Where R′ is the set of paths that connects the same source and
destination nodes as path r.

B. Path Search Over the State Model

Based on the micro model of the path state, we use a heuristic
method to search for the optimal path. As shown in Algorithm 2,
it searches the highest weighted path between two nodes i and j.
Node set UN and V N separately contain the nodes selected in
path rij and the nodes not selected. In the beginning, it pushes
node i into the selected node set UN . In each epoch, it selects a
node k from V N , based on the largest sum of Φrik and Φrkj

. At
the end of each epoch, it pushes the selected node of this cycle
into UN and erases it from V N . Then, it updates the weight of
nodes in V N with the nodes in UN . Here, the weight of Φrkj

is roughly predicted by the existing routing.

C. Leveraging State Estimation (SE) Theory

The heuristic method promises that the optimal path is search-
able, while the computation and deployment overhead is still
too high. Suppose that the Inter-DC network has N nodes,
then the controller has to compute N2 paths for each node
pair, which introduces O(N3) ∼ O(N4) overhead. Hence, we

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FLAIR: A FAST AND LOW-REDUNDANCY FAILURE RECOVERY FRAMEWORK FOR INTER DATA CENTER NETWORK 743

Algorithm 2: Heuristic Path Search Method.

leverage State Estimation (SE) theory to reduce the overhead.
The main idea of SE is that it estimates the state of paths and
eliminates the computation and deployment of existing paths if
the paths are already in the optimal state. In reality, SE realizes
this with graphical and mathematical tools.

First, we assume that paths before failure are in an optimal
state. It indicates that the paths, which are out of the range of
failure effect, are optimal. SE denotes the set of these paths with
V , while set U denotes the paths affected by failures. The status
of the path in U is unknown for the reason that it contains the
recovery routing and new links are introduced, which leads to
changes in path capacity and failure probability, and the increase
of routing hops.

SE converts the estimation problem to a graph-proof problem.
It views the network topologyG as a graph and each path r in set
U is a subgraph G1 = (V1, E1) of G. Any other path r̄ in R′ is
also a subgraphG2 = (V2, E2) ofG. We use n andm to denote
the number of nodes in G1 and G2, and use p1 and p2 to denote
the highest link failure probability of G1 and the average link
failure probability ofG2. We propose Theorem V.1 to provide a
basic estimation.

Theorem V.1: For ∀G2, if G1 satisfies mp1 −mnp2 ≤ m−
n, and cr ≥ cr̄, path r is under optimal state.

Proof of Theorem V.1 is shown in Appendix B, available
online. Theorem V.1 reduces the computation overhead, while it
still needs to search the whole network for all the paths inR′. The
computation overhead of acquiring these paths is unacceptable
as well. Hence, we propose Theorem V.2, which completes the
task by relaxing certain conditions of Theorem V.1. The symbol
definition of Theorem V.2 is a bit different. We use r̄′ to denote
the path with the minimum number of links in R′ and use G′

2

to denote the subgraph of r̄′. m̄ indicates the number of nodes
in r̄′. Then, we define subgraph Ḡ1 = G−G1 and denote p̄2
as the average of link failure probability of Ḡ1. c′

Ḡ1
denotes

the maximum link capacity of subgraph Ḡ1. Finally, we have
Theorem V.2 as below:

Theorem V.2: If m̄p1 − m̄np̄2 ≤ m− n and cr ≥ c′
Ḡ1

, path
r is under optimal state.

TABLE I
DETAILS OF THE INTER-DC NETWORK TOPOLOGIES

Proof of Theorem V.2 is shown in Appendix C, available
online. Through Theorem V.2, SE just needs to search the
path with the minimum number of links and the state of the
existing path r is clearly known. Once SE detects that existing
path r is under optimal state, it erases all the paths that share
the same recovery routing with r from set U , which sharply
cuts down computation and deployment overhead of the routing
optimization process.

VI. EVALUATION

In this section, we evaluate the performance of FLAIR and
the experiment results show that:

1) FLAIR reduces the failure recovery time by 70.2% on av-
erage compared with the state-of-the-art failure recovery
solutions.

2) While reducing the failure recovery time and availability
risk, FLAIR also maintains comparable performance on
network throughput and achieves up to 36.0% utilization
improvement.

3) FLAIR minimizes the influence of recovery on traffic and
reduces the scale of shuffle flows by 29.8% on average
compared with other evaluated solutions. In extreme sce-
narios, the outperformance is up to 90.7%.

4) ROSE optimizes the routing with up to 46.4% utilization
improvement and SE can achieve a 48.2% deployment
overhead reduction at most.

A. Experiment Setting

We conduct a series of simulation experiments to evaluate the
performance of FLAIR. For simulations, we use Gurobi [21]
as the optimization framework. We then develop a data-driven
simulation software, which runs on a Windows 10 platform with
an AMD Ryzen5 2600 processor. It consists of three major
components:

Simulation data source: The following describes the data used
in our simulations which includes:
� Topology: Our simulations use four real Inter-DC network

topologies: ATT, IBM, GlobalCenter, and AGIS, which
are real Inter-DC network topologies extracted from the
internet topology zoo [22]. These networks cover situations
from looseness to compactness. Table I shows the size of
the networks and Fig. 5 shows the abstract structure of
each topology. Among these topologies, ATT is the largest
network with 112 Inter-DC links while IBM is the smallest

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

744 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2024

Fig. 5. Geographic distribution of the typical inter-DC networks.

with 48 Inter-DC links. Global Center and ATT are denser
than the other two topologies.

� Traffic profile: The online traffic volume on each link for
every interval was monitored and recorded from a big
ISP’s Inter-DC network in real time. Simulated offline
traffic requirements were derived from the capacities and
utilization of the links, with each request delineated as a
set of six elements: demand identification, time of arrival,
time due, volume of traffic, originating DC, and target DC.
In order to align with practical scenarios, the generated
offline traffic demands slightly exceeding the available
capacity of the remaining link. Additionally, the arrival
times, deadlines, originating and destination DC for offline
traffic were determined in a random manner. Due to the
need for confidentiality and privacy, the traffic dataset will
not be made public.

� Failure Information: We generate failure information for
each network topology in chronological order. For each
link e, we build a failure probability array Ψe following
Weibull distribution and in each epoch, we generate one
random decimalψe ∈ [0,maxΨ] for e, and track ewhether
its failure probability becomes greater thanψe. Then, if this
happens, the link e would fail (i.e., when Ψe > ψe). Note,
in this mode, the larger network will be given more failures,
which is in line with reality.

Algorithm library: We divide the failure recovery process into
two phases: 1) reroute; 2) flow shuffle. In the first step, we
develop the rerouting algorithms and start them whenever the
network detects link failures. Right after that, we shuffle flows to
recovery routes by solving the problem via linear programming.

Tracers: We designed a monitoring program written in C++
language, including a thread pool for evaluation. Each time
failures occur, several tracer threads are triggered to log the
performance of the algorithms, which includes time consump-
tion, utilization, availability, and scale of traffic impacted by
rerouting. Since tracer threads are parallel to the main process,

Fig. 6. Availability performance over four algorithms on four Inter-DC net-
works.

it is promised to pose little overhead on the performance of the
recovery algorithms.

B. Methodology

We compare FLAIR with three other solutions: TEAVaR,
FFC2, and SMORE. The recovery process of FLAIR (namely
FRAVaR) introduces Value-at-Risk (VaR) in its TE mechanism,
and strikes balance between throughput and availability. FFC2

recovers the network from failures by assuming there are at most
k failures occurring at once and reserving part of link capacity
to be ready for rescheduling. In the experiments, FFC2 refers to
FFC with the assumption of at most 2 failures happening at the
same time. SMORE prepares resilient route sets with Räcke’s
oblivious routing algorithm for traffic schedule and potential
failures, which to some extent is similar to the idea of IR.

C. The Performance of FLAIR Framework

First, we evaluate the FLAIR framework as a whole, inte-
grating both design components (i.e., FRAVaR and ROSE). We
compare FLAIR with the aforementioned three other algorithms
on four topologies. We evaluate each algorithm twenty times and
record availability and utilization, during which we introduce
maximum link utilization (MLU) to measure utilization. Under
the same traffic demand, MLU reflects the network utilization
level, which network is in a state of a higher overall utilization
while MLU is less. Here the availability level refers to the
proportion of satisfied traffic demand under the same failure
frequency. In MLU evaluation, we reduce the traffic demand in
case of 100% MLU, in which case the congestion occurs and
affects evaluation results. The traffic demand on MLU evaluation
absolutely stays the same.

Availability: As shown in Fig. 6, FLAIR achieves the best
availability over four recovery algorithms, while the improve-
ment is small. We observe that, in the four Inter-DC networks,
FLAIR outperforms the other three algorithms by 1.14% on

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FLAIR: A FAST AND LOW-REDUNDANCY FAILURE RECOVERY FRAMEWORK FOR INTER DATA CENTER NETWORK 745

Fig. 7. Utilization performance over four algorithms on four Inter-DC net-
works.

average in terms of availability. This indicates that all four algo-
rithms have achieved high performance on availability evenly.
Nevertheless, the volatility of FLAIR is minuscule and there
is no outlier in FLAIR, which means FLAIR is more stable in
availability performance. In smaller Inter-DC networks (AGIS
and IBM), the stability of FLAIR is inconspicuous. In larger
networks (ATT and Global Center), the availability of FLAIR
is significantly higher and more stable. This shows that FLAIR
achieves good scalability in terms of availability.

Utilization: Fig. 7 shows the MLU evaluation results. As
discussed below, MLU reflects the average utilization level of
the network and a lower MLU indicates a better utilization
performance. FLAIR reduces the MLU by 36.0% at most com-
pared to the other algorithms on the four Inter-DC network
simulations. Simultaneously, FLAIR has 0 outlier points show-
ing high stability on performance, whereas other algorithms all
have outliers (TEAVaR and FFC in AGIS, SMORE in Global
Center). In AGIS and IBM simulations, the MLU performance
of four algorithms is close, while in ATT and Global Center,
the upsides of FLAIR are still significant, which also shows
excellent scalability. Moreover, in larger Inter-DC networks,
FLAIR distributes traffic more evenly to each link.

D. The Performance of FRAVaR

Recovery time: As mentioned above, we start the traffic flow
in the Inter-DC network and then generate the link failure events
following a Weibull distribution for each network topology. Each
time failures occur, we record the consumed time between failure
occurrences until all rescheduled tasks are complete. We also
start a tracer to follow these rescheduled traffic flows. Then,
we accumulate the consumed time by the order of failures and
show the average time consumption in Fig. 8(a). The changing
amplitude of the gradient of accumulation is not large in the
four algorithms so it is obvious that the time consumption of
each epoch is broadly consistent. TEAVaR is the most time-
consuming algorithm overall and after TEAVaR, FFC2 and

Fig. 8. Network throughput after failure occurrence.

SMORE are separately the second and third time-consuming
algorithms, while FRAVaR consumes the least time, which is
attributed to the effectiveness of FRAVaR’s incremental routing
algorithm.

Throughput and availability: We calculate the network avail-
ability with a post-processing simulation [8] from which we
generate scenarios of the current network state. For each sce-
nario, we try to send the entire demands through the network and
record whether the network can satisfy the demands. The ratio of
the unsatisfied demand with respect to the total demand reflects
the availability level of the network. We present the average
throughput and availability level into one plot and show them in
Fig. 8(b). With the increase in availability level requirements,
the throughput of all four methods evaluated dropped. TEAVaR
achieves the best balance between throughput and availability
while the network throughput in the case of SMORE drops
significantly. In contrast, the performance of both FRAVaR
and FFC2 are relatively stable and comparable to TEAVaR.
Generally, we note that with minor trade off of the throughput
and availability, FRAVaR achieves significantly faster recovery
process.

Traffic shuffle scale: Next, we use a micro-benchmark to
evaluate the scale of shuffle traffic among the algorithms. Upon
failure, we track and note the variation in traffic for each link
pre and post-rescheduling. Consider link e, where traffic spikes
from 5 Gbps at failure to 10 Gbps post-recovery, reflecting a
5GB increment. We accumulate the change on each link by
order of epoch and refer to it as the rerouted traffic. See Fig. 9
for the experimental results, where the x-axis is the failure times
order by epoch and the y-axis is the cumulative scale of rerouted
traffic. Over the four network topologies, FRAVaR affects the
least amount of traffic during the rescheduling while the impact
of TEAVaR and FFC2 is noticeably more than the other two
algorithms. The results support our view that the recovery time
positively correlates with the rerouted traffic scale.

In networks of large topologies like ATT and AGIS, the
superiority of FRAVaR is highlighted. In these topologies, the
three algorithms other than FRAVaR shuffle more traffic while
FRAVaR can maintain low levels of rescheduling scale. In
contrast, in small topologies, like GlobalCenter, the advantage
of FRAVaR is not significantly obvious. These observations
demonstrate that a recovery algorithm is more likely to impact
more traffic during rescheduling when it covers large Inter-DC

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

746 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2024

Fig. 9. Comparison of the scale of traffic rerouted by four failure recovery
algorithms over four network topologies. The x-axis is the failure times order
by epoch and they-axis is the cumulative scale of traffic rerouted (metric:10 GB).

networks and so in larger networks, the impact will be more
pronounced. In such cases, FRAVaR maintains stable degrees of
impact thanks to IR, which prunes reroute space into a stable
scale regardless of network size. The network size impact on
rerouted traffic scale is universal. Therefore, the difference in
shuffle traffic scale over the four algorithms, in small topologies,
is smaller than that of the large topologies.

E. The Performance of ROSE

We use another micro-benchmark to evaluate the long-term
impact of failure recovery and the benefits of ROSE in reducing
the failure impact. We set FRAVaR as the baseline to evaluate the
performance of ROSE and analyze the role of routing optimiza-
tion after failure recovery. Throughout the micro-benchmark, we
set a failure frequency to trigger ROSE and optimize the routing
of the whole network. We use a counter to record the number of
failure occurrences and whenever it reaches the predetermined
frequency (or threshold), the counter clears the record and starts
ROSE. We adjust the preset failure frequency trigger over the
four network topologies to evaluate the performance of ROSE in
different environments. Finally, we take the average value as the
performance result under the corresponding failure frequency
and network topology.

Availability: Similar to Section VI-D, we generate all possible
scenarios from the current network state when it completes
either the failure recovery or the operations of ROSE. The
availability level is the proportion of satisfied traffic demands.
Fig. 10(a) shows the improvements in availability from ROSE,
where x-axis is the preset failure frequency trigger and y-axis is
the evaluated network topology. The availability performance of
ROSE is represented as the improvement compared to the base-
line. We observe that the routing optimization of ROSE provides
at most 13.3% availability improvement and at least 2.1%, while
the improvement is 3.7% on average. In general, FRAVaR as a
baseline already provides a high-level of availability which is
close to the availability level of the global optima. Nevertheless,
there are still interesting results behind these evaluations. We

note that, with the increase of trigger failure frequency, the
improvement of ROSE increase as well. It reflects the fact
that routing redundancy resulting from failure recovery keeps
accumulating and ROSE’s benefits become prominent. With the
increase of link/node ratio (as shown in Table I), ROSE provides
a better performance, which means that ROSE achieves good
scalability because it brings higher gains in larger Inter-DC
networks.

Utilization: We introduce maximum link utilization (MLU)
as the network utilization indicator and evaluate the MLU dif-
ference before ROSE is invoked and after ROSE finishes its
task. Fig. 10(b) shows the MLU reduction from ROSE. ROSE
provides up to 46.4% utilization improvements and 37.3% on
average. With the increase in failure frequency, the improve-
ments in the utilization performance from ROSE increases. This
indicates that routing redundancy caused by failure recovery
results in an additive effect and ROSE is able to eliminate this
impact. Similarly, with the increase in the link-to-node ratio,
ROSE provides a higher improvement in terms of the MLU.
We note two vital results: 1) in larger and denser networks,
failure recovery would cause more severe routing redundancy,
and 2) with the decrease of available links, the performance of
ROSE becomes closer to that of the baseline failure recovery
(i.e., FRAVaR).

Overhead: There is still an important part of ROSE. SE
theoretically reduces routing deployment overhead by reducing
unnecessary routing updates. We set a tracker to evaluate the
proportion of routing rules that SE rejects to update during
the ROSE process and show it in Fig. 10(c). We find that SE
reduces routing deployment overhead by up to 48.2% and by
25.4% on average. Meanwhile, with the ascending link-to-node
ratio, SE provides a higher reduction in deployment overhead,
which means improved scalability. This indicates that in a large
network topology, the difference between the routing of failure
recovery and the globally optimized routing is minor. With
the ascending of preset failure frequency, the improvement in
deployment overhead from SE declines. This shows that even
though, routing redundancy accumulates with the increase in
failure recovery, there is a decline in the best-state routing.

VII. RELATED WORK

In this section, we introduce and discuss the related work.

A. Failure Recovery

Existing failure recovery work can be roughly divided into
proactive and reactive solutions. Proactive work implements
recovery mechanisms before failure by reserving network re-
sources. SMORE [6], which comprehensively considers two
aspects of traffic engineering. Specifically, it uses R ä cke’s
oblivious routing algorithm [23], [24] to select a low extension,
diversified, and load-balanced path set and dynamically adjusts
the transmission rate [25], [26], [27], [28]. Considering only
the availability of the network, TI-LFA [18] proposes an ideal
backup and recovery scheme by preparing backup routes and
switching to the backup link directly in case of failures, which
undoubtedly makes the failures recovery very fast. However, the

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: FLAIR: A FAST AND LOW-REDUNDANCY FAILURE RECOVERY FRAMEWORK FOR INTER DATA CENTER NETWORK 747

Fig. 10. Improvement of ROSE compared with FRAVaR.

main bottleneck is the time cost of backup computation which
could cost several hours. R3 [19] adds a virtual demand on each
available link and reserves bandwidth resources for recovery
which may be used in case of link failures. FFC [5] ensures
the stability of failure recovery through redundant links to in-
crease efficiency. CFR-RL [29] considers the negative effects of
rerouting and from the perspective of minimizing the rerouting
probability, it leverages Reinforcement Learning (RL) method
to identify key flows. Sentinel [30] introduces an optimized LP
process [31], [32] into recovery but it introduces undesirable
redundancy. Suchara et al. [33] flexibly split traffic flows over
multiple backup routes.

Reactive work makes recovery decisions right after failure
and it guarantees a higher transmission performance when the
network is normal. TEAVaR [8] focuses on the balance of
network utilization and availability. It reduces the rerouting
probability by leveraging VaR [13] to formulate a loss function
for evaluating the failure risk. TEAVaR also uses the decision tree
pruning method to simplify the rerouting. Its traffic scheduling
method inspired our algorithm in this paper. BlastSheild [4]
slices a large network into tidy domains and recovers within
a small range, which is somehwat similar to IR but the size of
domains in BlastSheild is fixed. LFA-FRR [34], [35] avoids the
formation of loops during routing recovery. MPLS TE FRR [36]
introduces MPLS in failure recovery in order to accelerate the
recovery process.

B. Routing Optimization

Routing optimization, a long-standing topic with various
custom solutions, falls into non-heuristic, heuristic, or machine
learning categories. Traditional non-heuristic methods, such as
BFS, DFS, and Dijkstra [36], though straightforward, do not ad-
equately address redundancy minimization or failure recovery.

Similarly, some of the existing heuristic methods are based
on path planning algorithms, like A-Star and D-Star [37]
which inherit the same spirit of non-heuristic methods (e.g.,
Dijkstra). Follow-up efforts were dedicated to overcoming
their drawbacks. For instance, to achieve load balancing and
high availability with limited TCAM space, Xu et al. [38]
considered TCAM capacity as an LP constraint and proposed
approximate methods for path-finding. Another work leveraged

genetic algorithms to collect network information and proposed
GA-TBR [39] to select routes which guarantee the Quality
of Service (QoS) of wireless sensor networks. Moreover, the
minimum energy-cost problem was used as a proxy and Lu
et al. [40] proposed a two-stage linear programming solution
based on a min-cost multi-commodity flow model.

Finally, most machine Learning methods aim to support
routing algorithms by reducing the deployment overhead. For
example, Deep Extreme Learning Machine (DELM), com-
monly used in classification, is leveraged to propose ISDN [41]
which reduces the discreteness in Cognitive Routing Optimiza-
tion (CRO). Another work leveraged the multi-agent meta-
reinforcement learning method and proposed MAPPO [42] to
achieve an adaptive routing optimization problem optimization
for traffic engineering under fixed and variable demands.

These works focus mainly on distributing the traffic efficiently
across the network, reducing the likelihood of congestion and
overcoming potential bottlenecks and overheads. While these
works may not directly address route redundancy nor failure
recovery, they partly contribute to solving these issues and
provide a building block and inspiration for algorithms such
as FLAIR which can help efficiently address these issues.

VIII. CONCLUSION

In this paper, we discuss the importance and challenges of fast
recovery with low deployment overhead in Inter-DC network. To
this end, we introduce a two-phase solution FLAIR comprised
of two key components, namely FRAVaR and ROSE. FRAVaR
cleverly selects fewer links to reroute with an incremental
rerouting algorithm IR, and then it formulates a flow shuffle
schedule by converting it into a traffic scale reduction problem
with Value-at-Risk theory. ROSE aims to reduce the redundancy
introduced by FRAVaR. To achieve this, State Estimation (SE)
theory is used to perform routing optimization and reduce rout-
ing updates. The evaluation results show that FLAIR not only
reduces the deployment overhead by 25.4% but also outperforms
the state-of-the-art algorithms by reducing recovery time by 70%
on average while saving 29.8% shuffle flow scale. FLAIR is
also shown to achieve comparable performance on both network
throughput and availability.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

748 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 2, APRIL-JUNE 2024

REFERENCES

[1] C.-Y. Hong et al., “B4 and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in Google’s software-defined WAN,”
in Proc. Conf. ACM Special Int. Group Data Commun., 2018, pp. 74–87.

[2] S. Hu et al., “Aeolus: A building block for proactive transport in datacen-
ters,” in Proc. Annu. Conf. ACM Special Int. Group Data Commun. Appl.
Technol. Architectures Protoc. Comput. Commun., 2020, pp. 422–434.

[3] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14,
2013.

[4] U. Krishnaswamy, R. Singh, N. Bjørner, and H. Raj, “Decentralized cloud
wide-area network traffic engineering with BLASTSHIELD,” in Proc.
19th USENIX Symp. Netw. Syst. Des. Implementation, 2022, pp. 325–338.

[5] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proc. ACM Conf. SIG-
COMM, 2014, pp. 527–538.

[6] P. Kumar et al., “Semi-oblivious traffic engineering: The road not taken,”
in Proc. 15th USENIX Symp. Netw. Syst. Des. Implementation, Renton,
WA: USENIX Association, 2018, pp. 157–170. [Online]. Available: https:
//www.usenix.org/conference/nsdi18/presentation/kumar

[7] M. Englert and H. Räcke, “Oblivious routing for the lp-norm,” in Proc.
50th Annu. IEEE Symp. Found. Comput. Sci., 2009, pp. 32–40.

[8] J. Bogle et al., “TEAVAR: Striking the right utilization-availability balance
in WAN traffic engineering,” in Proc. ACM Special Int. Group Data
Commun., 2019, pp. 29–43.

[9] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast TCAM updates,” IEEE/ACM Trans. Netw., vol. 26, no. 1,
pp. 217–230, Feb. 2018.

[10] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social
network’s (datacenter) network,” in Proc. ACM Conf. Special Int. Group
Data Commun., 2015, pp. 123–137.

[11] G. Zhou et al., “Primus: Fast and robust centralized routing for large-
scale data center networks,” in Proc. IEEE Conf. Comput. Commun., 2021,
pp. 1–10.

[12] H. Huang et al., “FRAVaR: A fast failure recovery framework for inter-DC
network,” in Proc. IEEE Wireless Commun. Netw. Conf., 2023, pp. 1–6.

[13] Rockafellar, Journal of risk. Uryasev S, ch. Optimization of conditional
value-at-risk, 2000, pp. 21–42.

[14] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
2015.

[15] K. He et al., “Measuring control plane latency in SDN-enabled switches,”
in Proc. 1st ACM SIGCOMM Symp. Softw. Defined Netw. Res., 2015,
pp. 1–6.

[16] X. Wen et al., “RuleTris: Minimizing rule update latency for TCAM-based
SDN switches,” in Proc. IEEE 36th Int. Conf. Distrib. Comput. Syst., 2016,
pp. 179–188.

[17] Y. Wan et al., “T-cache: Dependency-free ternary rule cache for policy-
based forwarding,” in Proc. IEEE Conf. Comput. Commun., 2020,
pp. 536–545.

[18] C. Filsfils, K. Michielsen, and K. Talaulikar, Segment Routing Part I. Scotts
Valley, CA, USA: CreateSpace Independent Publishing Platform, 2017.

[19] Y. Wang et al., “R3: Resilient routing reconfiguration,” in Proc.
ACM SIGCOMM Conf., New York, NY, USA, 2010, pp. 291–302,
doi: 10.1145/1851182.1851218.

[20] J. Zhou et al., “WCMP: Weighted cost multipathing for improved fairness
in data centers,” in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 1–14.

[21] I. G. Optimization et al., “Gurobi optimizer reference manual, 2018,” 2018.
[Online]. Available: http://www.gurobi.com

[22] T. U. of Adelaide, “The internet topology zoo,” 2011. [Online]. Available:
http://www.topology-zoo.org/

[23] H. Racke, “Minimizing congestion in general networks,” in Proc. IEEE
43rd Annu. Symp. Found. Comput. Sci., 2002, pp. 43–52.

[24] H. Räcke, “Optimal hierarchical decompositions for congestion minimiza-
tion in networks,” in Proc. 40th Annu. ACM Symp. Theory Comput., 2008,
pp. 255–264.

[25] A. Kumar et al., “BWE: Flexible, hierarchical bandwidth allocation for
WAN distributed computing,” in Proc. ACM Conf. Special Int. Group Data
Commun., 2015, pp. 1–14.

[26] C.-Y. Hong et al., “Achieving high utilization with software-driven WAN,”
in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013, pp. 15–26.

[27] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive traffic
engineering,” in Proc. IEEE Conf. Comput. Commun.. 20th Annu. Joint
Conf. IEEE Comput. Commun. Soc., 2001, pp. 1300–1309.

[28] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,” ACM SIGCOMM Comput.
Commun. Rev., vol. 35, no. 4, pp. 253–264, 2005.

[29] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “CFR-RL: Traffic
engineering with reinforcement learning in SDN,” IEEE J. Sel. Areas
Commun., vol. 38, no. 10, pp. 2249–2259, Oct. 2020.

[30] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “We’ve got you covered:
Failure recovery with backup tunnels in traffic engineering,” in Proc. IEEE
24th Int. Conf. Netw. Protoc., 2016, pp. 1–10.

[31] L. K. Fleischer, “Approximating fractional multicommodity flow indepen-
dent of the number of commodities,” SIAM J. Discrete Math., vol. 13, no. 4,
pp. 505–520, 2000.

[32] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas,
“Fast approximation algorithms for multicommodity flow problems,” J.
Comput. Syst. Sci., vol. 50, no. 2, pp. 228–243, 1995.

[33] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford, “Net-
work architecture for joint failure recovery and traffic engineering,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 39, no. 1, pp. 97–108, 2011.

[34] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, “Remote loop-
free alternate (LFA) fast reroute (FRR),” IETF RFC 7490, Apr. 2015.
[Online]. Available: www.rfc-editor.org/rfc/rfc7490

[35] C. Filsfils et al., “Loop-free alternate (LFA) applicability in service
provider (SP) networks,” IETF RFC 6571, Jun. 2012. [Online]. Avail-
able: https://www.rfc-editor.org/rfc/rfc6571.txt

[36] O. Lemeshko and O. Yeremenko, “Linear optimization model of MPLS
traffic engineering fast reroute for link, node, and bandwidth protection,” in
Proc. 14th Int. Conf. Adv. Trends Radioelecrtronics Telecommun. Comput.
Eng., 2018, pp. 1009–1013.

[37] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Commun. Surveys
Tuts., vol. 10, no. 1, pp. 36–56, First Quart., 2008.

[38] S. Xu, X. Wang, G. Yang, J. Ren, and S. Wang, “Routing optimization
for cloud services in SDN-based Internet of Things with TCAM capacity
constraint,” J. Commun. Netw., vol. 22, no. 2, pp. 145–158, 2020.

[39] U. Baroudi, M. Bin-Yahya, M. Alshammari, and U. Yaqoub, “Ticket-based
QoS routing optimization using genetic algorithm for WSN applications
in smart grid,” J. Ambient Intell. Humanized Comput., vol. 10, no. 4,
pp. 1325–1338, 2019.

[40] X. Lu, F. Kong, X. Liu, J. Yin, Q. Xiang, and H. Yu, “Bulk savings for bulk
transfers: Minimizing the energy-cost for geo-distributed data centers,”
IEEE Trans. Cloud Comput., vol. 8, no. 1, pp. 73–85, First Quarter, 2020.

[41] F. Alhaidari et al., “Intelligent software-defined network for cognitive
routing optimization using deep extreme learning machine approach,”
Comput. Materials Continua, vol. 67, no. 1, pp. 1269–1285, 2021.

[42] L. Chen, B. Hu, Z.-H. Guan, L. Zhao, and X. Shen, “Multiagent meta-
reinforcement learning for adaptive multipath routing optimization,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 10, pp. 5374–5386, Oct. 2022.

Yuchao Zhang (Member, IEEE) received the BS
degree in computer science and technology from Jilin
University, in 2012, and the PhD degree from the
Department of Computer Science, Tsinghua Univer-
sity, in 2017. She is currently an associate professor
with the Beijing University of Posts and Telecom-
munications, Beijing, China. Her research interests
include large scale datacenter networks, blockchain,
federated learning, data privacy, and edge computing.
She is a member of ACM.

Haoqiang Huang (Member, IEEE) received the BE
and MSc degrees from the Beijing University of Posts
and Telecommunications, China. He is currently en-
gaged in research and development in the financial
industry, focusing on networks and data. His current
research interests include private cloud data centers,
ERP systems, and trusted computing technologies.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

https://www.usenix.org/conference/nsdi18/presentation/kumar
https://www.usenix.org/conference/nsdi18/presentation/kumar
https://dx.doi.org/10.1145/1851182.1851218
http://www.gurobi.com
http://www.topology-zoo.org/
www.rfc-editor.org/rfc/rfc7490
https://www.rfc-editor.org/rfc/rfc6571.txt

ZHANG et al.: FLAIR: A FAST AND LOW-REDUNDANCY FAILURE RECOVERY FRAMEWORK FOR INTER DATA CENTER NETWORK 749

Ahmed M. Abdelmoniem (Member, IEEE) received
the PhD degree in computer science and engineer-
ing from the Hong Kong University of Science and
Technology, Hong Kong, in 2017. He is an assistant
professor with the Queen Mary University of London,
U.K. and Assuit University, Egypt. Formerly, he was
a research scientist with KAUST, Saudi Arabia and
a senior researcher with Huawei’s Future Networks
Lab, Hong Kong. He is an investigator on projects
totalling USD 1.5mil in funding. His research in-
terests lie in the intersection of distributed systems,

networks and machine learning. His work appears in top-tier conferences and
journals including NeurIPS, AAAI, MLSys, ACM EuroSys, IEEE INFOCOM
and ICDCS, IEEE/ACM Transactions on Networking, IEEE Internet of Things
Journal, IEEE Transactions on Information Forensics and Security and Elsevier
Computer Networks, Future Generation Computer Systems, and Computer
Communications. He is a member of ACM and USENIX.

Gaoxiong Zeng (Member, IEEE) received the PhD
degree in computer science and engineering from the
Hong Kong University of Science and Technology,
under the supervision of Prof. Kai Chen. He is a
scientific researcher with Network Technology Lab of
Huawei. His research focuses on computer networks
and systems. His work has been published on various
top venues such as SIGCOMM, NSDI, INFOCOM,
ICNP, and IEEE/ACM Transactions on Networking,
etc.

Chenyue Zheng (Student Member, IEEE) received
the BE degree from the Beijing University of
Posts and Telecommunications, China. He is a cur-
rently working toward the master’s degree with the
State Key Laboratory of Networking and Switching
Technology. His current research interests include
next generation network architecture and network
systems.

Xirong Que (Member, IEEE) received the BE and
ME degrees from the Beijing University of Posts
and Telecommunications, China, in 1993 and 1998,
respectively. She is currently an associate professor
with the State Key Laboratory of Networking and
Switching Technology. She has published more than
60 papers in various journals and conference proceed-
ings. She is current research interests include next
generation network architecture, network resources
management and QoS.

Wendong Wang (Member, IEEE) received the BE
and ME degrees from the Beijing University of Posts
and Telecommunications, China, in 1985 and 1991,
respectively. He is currently a full professor with the
State Key Laboratory of Networking and Switching
Technology. He has published more than 200 pa-
pers in various journals and conference proceedings.
His current research interests include next generation
network architecture, network resources management
and QoS, and mobile internet.

Ke Xu (Fellow, IEEE) received the PhD degree
from the Department of Computer Science and Tech-
nology, Tsinghua University. He is currently a full
professor with Tsinghua University. His research in-
terests include next generation internet, P2P systems,
the Internet of Things, network virtualization, and
network economics. He is a member of ACM. He
serves as an associate editor for IEEE Internet of
Things Journal. He has guest edited several special
issues in IEEE and Springer journals.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:14:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

