
AIR: An AI-based TCAM Entry Replacement
Scheme for Routers

Yuchao Zhang∗, Peizhuang Cong∗, Bin Liu‡, Wendong Wang∗, Ke Xu‡†¶
∗School of Computer Science (National Pilot Software Engineering School),

Beijing University of Posts and Telecommunications, Beijing, China
‡ Department of Computer Science and Technology, Tsinghua University, Beijing, China

† BNRist, Tsinghua University, Beijing, China
¶ Peng Cheng Laboratory, Shenzhen, China

{yczhang, congpeizhuang, wdwang}@bupt.edu.cn, {liub, xuke}@tsinghua.edu.cn

Abstract—Ternary Content Addressable Memory (TCAM) is
an important hardware used to store route entries in routers,
which is used to assist routers to make fast decision on forwarding
packets. In order to cope with the explosion of route entries due
to massive IP terminals brought by 5G and the Internet of Things
(IoT), today’s commercial TCAM has to keep the corresponding
growth in capacity. But large TCAM capacity is causing many
problems such as circuit design difficulties, production costs, and
high energy consumption, so it is urgent to design a lightweight
TCAM with small capacity while still maintains the original
query performance.

Designing such a TCAM faces two fundamental challenges.
Firstly, it is essential to accurately predict the incoming flows
in order to cache correct entries in limited TCAM capacity, but
prediction on aggregated time-sequential data is challenging in
the massive IoT scenarios. Secondly, the prediction algorithm
needs to be real-time as the lookup process is in line-rate. In order
to address the above two challenges, in this paper, we proposed a
lightweight AI-based solution, called AIR, where we successfully
decoupled the route entries and designed a parallel-LSTM
prediction method. The experiment results under real backbone
traffic showed that we successfully achieved comparable query
performance by using just 1/8 TCAM size.

Index Terms—TCAM, router, AI, prediction

I. INTRODUCTION

Ternary Content Addressable Memory (TCAM) in router

is a hardware used to store routing entries in Access Control

Lists (ACLs), which is essential for routers to make fast packet

forwarding decisions according to the source and destination

IPs. But the capacity of TCAM is now under great pressure,

which comes from the massive physical terminals accessed to

the Internet with the help of 5G and Internet of Things (IoT).

The explosive entry growth is raising high requirements

for TCAM both on capacity and efficiency. Firstly, cur-
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rent TCAM-based commercial core routers have to expand

TCAM’s capacity to keep up with entry growth, while the

expansion from 512,000 to 900,000 [1] 1 will naturally result

in high production costs and electricity consumption [2].

Secondly, to ensure the line speed performance of packet

forwarding, large capacity TCAM faces challenges in circuit

design and query efficiency [3]. Therefore, simple expansion

of TCAM capacity is not a sustainable solution to meet

future network requirements [4], [5], and it is urgent to

design a small-sized TCAM while keeping the original packet

forwarding performance.

To design such a lightweight small-sized TCAM is not an

easy thing which is faced with two fundamental challenges. (1)

Accurate prediction on each flow in aggregated time-sequential

flows. Making the TCAM with limited capacity can cover

all the packet queries, the key is to make accurate prediction

on future traffic and leverage cache and replace in time. But

the traditional “replace is miss” strategy leads to frequent

replacements in small-sized TCAM, which would seriously

affect query efficiency and thus is impractical in core routers

[6].

(2) Line-rate efficiency of the prediction algorithm. While

the network link rate is growing rapidly from 1/10Gbps to

100Gbps [7], routers must be able to achieve the same line-

speed in packet query and forwarding. While the existing

prediction algorithms on each individual entry can not satisfy

such timeliness efficiency [8], [9].

To address the above two challenges, in this paper, we

present AIR, a lightweight AI-based TCAM entry replace-

ment scheme, which turns flow prediction problem into ACL

entry prediction and decouples the entry aggregation in the

customized LSTM algorithm, thus improve the prediction

accuracy. The key to make AIR practical is to make the

AI-based prediction in line-rate, and AIR achieves this by

parallelizing the proposed decoupled-LSTM. Such decoupling

and parallelizing attains both accuracy and efficiency.

1The Cisco Catalyst 6500 series, such as WS-SUP720-3BXL, VS-S720-
10G-3CXL and RSP720-3CXL-GEthe, the default IPv4 TCAM size is
512,000 and the maximum value is 1,000,000.978-0-7381-3207-5 / 21 /$31.00 © 2021 IEEE



We have implemented a prototype of AIR and evaluated it

by playing back real traffic from a backbone network. The

experiment results show that AIR achieves similar forwarding

performance with only 1/8 capacity or even less. We also show

that AIR can easily handle different WANs with various traffic

characteristics.

Our contributions are summarized as follows:

• Characterizing backbone network’s workload from the

perspective of router traffic to motivate the need of a

lightweight TCAM entry replacement scheme. (§III)

• Presenting AIR, an AI-based TCAM entry replacement

scheme that achieves the identical forwarding perfor-

mance by decoupling entry aggregations and parallel

execution. (§IV)

• Demonstrating the practical benefits of AIR by a real-

world backbone network playback. (§V)

The rest of this paper is organized as follows. We reviews

related work and motivation in Section II. In Section III, we

describe the overall structure of AIR. In Section IV, we in-

troduce the specific prediction model (an AI algorithm and its

optimization mechanisms) in detail. We then conduct extensive

evaluations and show the results in Section V. Finally, we

conclude the paper in Section VI.

II. RELATED WORK AND MOTIVATION

In this section, we review some related work of TCAM

and the correlative AI-based improvement methods, and thus

motivate our AIR designing.

A. Related Work

1) Routing Table Lookup: Traditional routing table lookup

methods can be classified into two categories: software-based

searching algorithms and hardware-base match-action mecha-

nism.

Earlier, routers mainly used software-based routing algo-

rithms that based on the tree structure. The characteristic

of this type of method is that the prefix is represented by

a binary trie, which is a tree-based storage structure. S.

Nilsson et al. introduced the level-compressed method, using a

single node to replace all previous complete subtrees, thereby

further reducing the forwarding table space [10], [11]. Another

method is based on the hash table. M. Waldvogel et al.

organized the hash table according to the prefix length and

stored the routing prefixes in different linear hash tables with

different lengths [12]. Time-varying forwarding table needs

to frequently reselect hash functions, which will reduce hash

performance and increase update difficulty.

As the link rate of backbone has reached Gbps or even Tbps,

the traditional software-based search algorithms have been un-

able to meet the search demand of high-speed communication

system. Given the GPU’s excellent parallel capabilities, Y.

Go et al. used GPUs to accelerate routing lookups [13]. For

FPGA-based routing lookup algorithm needs to solve how

to all routing table entry information to store on the chip

and how to construct pipeline stages [14]. H. Fadishei et al.

proposed to only store a part of the data using hashing and

Fig. 1: TCAM lookup structure

D. Pao et al. proposed to adjust the trie structure by rotating

some branches to balance stage size [15]. However, the GPU-

based method only adds parallel computing based on software

search algorithm without making essential improvements. And

complex search algorithm will increase the logic complexity

of FPGA, which will reduce its clock frequency.

2) Ternary Content Addressable Memory: TCAM is

widely used for rule-based table lookup and packet classifi-

cation [16], [17]. TCAM is a three-state content addressing

memory that can complete the matching all routing table

entries according to the entered index key in one clock cycle,

then return the index’s address in TCAM. When there are

multiple matching entries in TCAM, it will return the entry

with the lowest address. The structure of TCAM lookup as

shown in Figure 1.

There is a principle of longest matching in TCAM, which

means that if some entries have the same prefix, one entry

should be stored at lower addresses than those with shorter

netmask. As shown is Figure 2, 102.1.23.24/32 is stored lower

than 102.1.23.0/24 to ensure the packet with destination IP

address 102.1.23.2 be forwarded to right port eth0, otherwise,

the packet would be forwarded to the wrong port eth4. It

should be noted that the address of the entry represents its

priority. So when an entry is being added/deleted/updated,

some entries must be moved to ensure the right priority. As an

analysis, inserting a single entry for a 1K entry set requires a

maximum of 466 entry-move [6], [18] designed a sophisticated

algorithm to reduce to 10 entry-moves on average of per

entry insertion. But the algorithm is time consuming which

will cause unacceptable delay to compute a moving scheme.

Moreover, a more complex problem can be observed. If only

102.1.23.0/24 stored in TCAM according to the cache rules,

then those packets which should matched to 102.1.23.24/32
will also be forwarded incorrectly. Since the dependency of

entries, if the entry e should be inserted to TCAM, some

dependent entries of e in the routing table must be also loaded

to TCAM simultaneously for the correctness of lookups, even

if the caching strategy does not determine those dependent-

entries. Especially, the move operations and query operations

can only be performed serially, so updating the TCAM will

increase the system’s delay greatly.

3) Entry Replacement Schemes: TCAM capacity is hard

to meet the needs of explosive growth of routing table entries.

To tackle this issue, some researchers tried to compact the



Fig. 2: Dependency of entries

rule tables which did not fundamentally eliminate the broad-

ening gap. Introducing caching mechanism can alleviate this

problem, then [19] therefore tried to merge some top flows

into ternary rules to improve the TCAM utilization. But it

has to traverse all entries in TCAM to decide whether a new

entry should be inserted, which fails to tackle the numerous

entries scene. After using the caching mechanism, there are

considerations for hit rate and content update. [20] designed

a complicated algorithm to select entries for better TCAM

hit-rate which requires group updates of entries, so there are

unsatisfactory deficiencies in the update operation part. Addi-

tionally, the dependence between entries makes the insertion

and deletion of TCAM more complicated. [21] took the update

cost of an entry into consideration when choosing cached

entries. And [22] devoted to reducing the average movement

times when inserting entries through complex algorithms.

However, the above works all have the defect that the reduction

time effect is not good enough or the complexity is too high.

Moreover, all of them only support item-by-item calculation

or insertion, which cannot cope with explosive updates. The

T-cache [23] crafted dependency-free rules in cache update,

and used statistical-based strategy to select cached rules, while

AI-based method in this paper will work smarter under burst

traffic.

4) AI-based Methods: In recent years, more and more re-

searchers focusing on AI have proposed good network models,

which are widely used in various fields, such as analysing

images, summarizing documents, speech recognition, etc. He

et al. [24] proposed an meta-learning scheme which can adapt

to unseen traffic without the need for retraining the individual

predictors. And some studies use AI to deal with caching

strategy issues. Zhang et al. [25] used the temporal and spatial

characteristics of items to predict the popularity through a

graph convolutional neural network model. The DeepCache

architecture proposed in [8] can accounts for predicted in-

formation of objects to make smart caching decisions. The

FreeCache proposed in [9] achieved good results by separating

the rules and their rules. These above related works have made

progress in their scenarios, but can not work in TCAM due

to the flow aggregation of different IPs and the requirement

of line-rate processing speed. But in prediction part, it obtains

probabilities of indefinite quantity entries by the input entry

sequence, which will increase model cells. And the coupled

entries lead it cannot be pipelined to reduce the calculation

delay. These above related works have made progress in their

respective scenarios, but we can improve further with this

paper.

B. Motivations

We characterize the real world workload of one core router

in New York backbone network [26], and disclose the op-

portunities of designing a decoupled and paralleled AI-based

solution.

• Traffic skew distribution. The traffic presents a Zipf-

like skewed distribution, i.e, a small number of flows are

contributing to the majority of traffic, even 5% flows can

contribute more than 90% traffic [26], [27]. This natural

distribution property provides an opportunity to use a

small capacity TCAM while still maintains high query

performance by predicting hot entries.

• Stable and independent route entry. Numerous flows

and their dependence present difficulty to prediction

algorithm. But the number of entries of a forwarding

table is relatively stable, and more importantly, the access

frequency of entry is independent of each other. It is

artful to switch the flow prediction problem into the

entry prediction problem, and decouple the relationship

between entries, which provides feasibility for prediction

in routing lookup scenarios.

These observations together motivate the need for a cus-

tomized AI-based approach to realize a lightweight TCAM.

III. AIR OVERVIEW

Before presenting AIR in detail in Section IV, we first

present the overview framework and the principles behind its

design.

A. Overall Framework

The overall structure of AIR is shown in Figure 3, and it

also outlines the TCAM’s workflow.

1) Entry Decoupling: The original data a router receives is

the aggregated packets from all different flows, so in this

module marked with a purple dashed circle in Figure 3),

we try to eliminate the dependence between entries by

calculating the access frequency for the entry with the

same first-24 bits. The historical frequency sequence of

each entry, which retains time-dimension characteristics,

will be used as the input of the subsequent modules.

2) Parallel Prediction: The future access frequency of

each entry can be obtained through the calculation of

the prediction model, which is the basis for judging

whether the entry is active, i.e., whether it should be

cached into the TCAM. With the decoupled data from

the first phase, the prediction process can be executed

in parallel to ensure timeliness of the whole algorithm.

This phase is marked with an orange dashed circle in

Figure 3.

3) Entry Classification: After predicting the future access

frequency of entries, these entries can be classified into

two categories by setting a threshold, i.e., the entry

with an access frequency greater than the threshold is



Fig. 3: AIR architecture

classified as hotspot entry, otherwise as non-hot one .

Then, all hotspot entries would be updated into TCAM.

This phase is marked with a red dashed circle in Figure

3.

The skewed distribution of traffic makes it valuable to

optimize TCAM using prediction. AIR first converts the flow

prediction problem into the entry prediction problem, which

improves the accuracy of prediction. Due to the requirements

of linear speed processing in network scenarios, AIR cleverly

decouples entries, which not only parallelizes the prediction

process so that the prediction results can meet the need of

network scenarios but also makes prediction granularity and

interval more flexible. The threshold can be changed with

network status, which can better adapt to network dynamics.

B. Design Principles

Such design of AIR is driven by several principles:

• Proper prediction granularity. When the prediction is

done at the flow level, such massive number of flows

would lead to an extremely large computing space. From

a new perspective, AIR focuses on corresponding entries

after flow aggregation. The number of entries is relatively

stable and much smaller than that of flows, significantly

reducing the computing overhead. Besides, prediction on

entries would also be more accurate.

• Data decoupling. The traffic dynamism makes it very

difficult to select the model input. If the sequence is

selected at a fixed frequency, the number of selected flows

would be ever-changing, making the prediction algorithm

invalid. If the sequence is selected at a fixed length, it

has to make real-time adjustments according to traffic

state to retain characteristics. Moreover, it needs tens of

thousands or even longer sequences length to reflect data

characteristics. The dynamic and ultra-long sequence data

is quite challenging for prediction models. In AIR, we

calculate access frequency of each entry independently,

thus decouples the sequence dependence. Along this way,

the subsequent prediction module becomes able to predict

entry’s future access based on this historical data.

• Dynamic prediction interval. When the network is rel-

atively stable, some prediction calculations may not be

necessary because hot entries are already cached in

TCAM. However, when the network fluctuates, it is

necessary to increase the prediction frequency to refresh

TCAM timely. This problem is solved in AIR by using a

dynamic prediction interval that can be set flexibly and

adjusted according to traffic situations.

IV. AI ROUTER

In this section, we introduce in detail the AI algorithm

integrated in AIR.

A. Entry Decoupling

As described in above sections, we should make accurate

prediction on each flow in the aggregated time-sequential

traffic, which can be formulated as follows.

(P (SIP ,DIP )
ei,n , P

(SIP ,DIP )
ej ,n+1 , P

(SIP ,DIP )
ek,n+2 , ...) (1)

where P
(SIP ,DIP )
ei,n denotes that the coming flow at time t is

packet ei with source IP SIP and destination IP DIP . Such

traffic is the aggregated sequential data from all the flows

with different sources and destinations, making the prediction

extremely difficult.

In AIR, we try to solve this problem from a totally different

perspective by decoupling each entry from the aggregated

traffic. We set a periodic interval Δt, and turn the origin flow

sequence data into entry frequency, and for each entry ei, the

frequency prediction problem can be denoted as follows.

xei
t+(n+1)∗Δt

= f(xei
t , xei

t+Δt
, ..., xei

t+n∗Δt
) (2)

where xei
t+Δt

means that at time interval t to t+Δt, entry ei

appears x times.

What should be noted is that the interval Δt is strategi-

cally set to be dynamically adjusted. It would be lower for

active flows than non-active ones. Also, when predicting the

frequency value in the next interval, the needed number of

required historical intervals is also different, which would be

less for stable flows than unstable ones.

B. Parallelization

Although the sequential data has been decoupled into fre-

quency data, the large amount of particular entries also makes

the prediction algorithm impractical in efficiency. Therefore

we design a parallel prediction scheme.

AIR divides all entries of the router into disjoint groups

DG and set different starting time for each group. When the



(a) Parallelization sketch (b) AIR parallelization process structure

Fig. 4: AIR Parallelization

number of arrived packets from this group reaches a threshold

TS, it will trigger the prediction module to predict the entry

frequency in the next interval Δt, and then update the TCAM

caching according to the prediction results. As DGs differ

among each other, so the time when the arrived packets reach

TS is also different, thus making parallel processing possible.

The sketch map is shown in Figure 4(a).

The detail architecture of parallelization is shown in the

Figure 4(b). The access frequency data of the entries ob-

tained from the forwarding module is counted. Due to the

independent of each entry, the counting stage does not need

to consider the limitation of grouping and directly performs

a ‘+1’ operation on the value of the corresponding access

frequency. A series of operations will be triggered at the end

of each statistical period of each group. The latest statistical

results of this group from the statistical array combined with

corresponding historical access frequency data from historical

data array will be input to the prediction module, which will

process predict calculation according to this data. And the

latest data will also be stored in the historical data array, then

the corresponding value of this group in the statistical array

will be cleared to start the next period statistics. And cycle

back and forth.

C. Algorithm Design

Fig. 5: Prediction model structure

In AIR, we design a customized LSTM-based model to

process the prediction with time series characteristics. The

overall structure is shown in Figure 5 which consists of

the following parts: two LayerLSTM(units=128)s, with a

LayerBatchnormalization added in the middle to avoid the

gradient disappearance problem and to speed up the model

training, then a LayerDropout is added to reduce the occur-

rence of overfitting, finally the predicted value is generated

after a Layerfull connection whose activation function is the

relu function. Moreover, the Adam optimizer and the mean

square error loss function are also used in AIR.

The pseudo code of AIR is shown in Algorithm 1, and the

function is described in detail. The processes are as follows:

1) Flow statistics trigger predictions in groups. 2) Obtain

decoupled entries data according to the flow data. 3) Predict

entries’ frequency based on historical data. 4) Obtain hotspot

entries according to the predicted results and the threshold; 5)

Update hotspot entries into TCAM.

1) Input and output: In the prediction module, the input

data is a one-dimensional vector with a specific entry, a

timestamp and the access times of this entry was matched

in the last interval Δt, e.g., �N = (n1, n2, ..., nn)
T . This

input sequence is segmented by a sliding window with size

n and step 1. So the final input �Ninput of the prediction

module for each entry is the last N number of �N , and

the output of the prediction module Voutput is an integer

indicating the predicted access frequency of this entry in the

next interval. Such prediction results of all entry groups serve

as the reference data for update decision making of TCAM.

2) Model structure and parameter settings: In the pre-

diction module of AIR, LSTM-based model is used to pro-

cess the prediction about time series characteristics. The

overall model structure shown in Figure 5 which consists

of the following parts: two LayerLSTM(units=128)s, with

a LayerBatchnormalization added in the middle to avoid

the gradient disappearance problem and to speed up the

model training, then a LayerDropout added to reduce the

occurrence of overfitting, finally a value output through a

Layerfull connection whose activation function is the relu
function. Moreover, the Adam optimizer and the mean square

error loss function are used for the model.



Algorithm 1 AIR algorithm

entry statistic(): return of group i which should be predicted

or None
decouple entry(i): return decoupled entry data of group i
get hisdata(e): get entry e historical data array

LSTM predict(sequence data): predict frequency according

to the parameter

entry cla(threshold, group i data): return hotspot entries

of group i based on threshold

1: while True do
2: group i = entry statistic()

3: if group i != None then
4: New Thread: Pre Fuc(group i)
5: end if
6: end while
7:

8: Pre Fuc(group i):
9: entry data = decouple entry(group i)

10: for e in group i do
11: �N = get hisdata(e)

12: Voutput = LSTM predict( �N )

13: fre data.append(Voutput)

14: end for
15: hot entries = entry cla(threshold, fre data)

16: update TCAM(hot entries)

Fig. 6: Storage structure

D. Optimization

Current commercial switches or routers are equipped with

statistics and analysis functions, which are all linear processes.

However, a large number of predictions will consume com-

puting resources and cause delays. An inefficient strawman

method is to predict all entries of a group after each statistical

period. To alleviate this problem, we optimize the prediction

part from the spatial aspect on basis of parallelization. Accord-

ing to observations, it can be confirmed with a high probability

that the activity of some entries will be very low and will not

even be accessed in the future. The computing resources used

in these entries are completely wasted. Therefore, we attach

constraints to filter out entries that are not worthy of prediction

to reduce the computational burden. Besides, the prediction

part needs to save entries’ historical access data, which will

occupy a large amount of memory. We designed an efficient

data storage structure and strategy to optimize AIR in terms

of data storage. The specific design schemes will be presented

in detail below.

1) Entry filter: As mentioned above, it is unnecessary to

predict all entries of a DG during a processing cycle. To

reduce the complexity and time of the prediction part, we

propose a pre-filtering strategy for entries. Filter entries of the

DG which need be predicted before performing the prediction

operation. When frequencies of the last few statistical periods

of an entry are all 0, then the next period frequency of this

entry is set to 0 without performing prediction operation as

equation (3).

xei
t+(n+1)∗Δt

=

{
f(xei

t , xei
t+Δt

,...,xei
t+n∗Δt

),
∑K

j=0x
ei
t+j∗Δt

�=0

0,
∑K

j=0x
ei
t+j∗Δt

=0
(3)

K represents the number of historical periods that need to

be observed. Add a special identifier to record whether the

historical frequency is 0. Suppose K = 8, the identifier array

of DGi is f [Ni], and Ni is the total number entries of DGi,

then f [i] = 0x00 makes it clear that the entry i need not be

predicted. The specific pseudo-codes are shown as Algorithm

2 and Algorithm 3.

Algorithm 2 Predict with filter

Input: identifier array f
Output: next frequency array n f

1: for i in N do
2: if f [i] == 0x00 then
3: n f [i] = 0
4: else
5: n f [i] = predict(data[i])
6: end if
7: end for
8: return n f

Algorithm 3 Identifier update

Input: identifier array f and current frequency array c f
Output: f

1: for i in N do
2: if c f [i] == 0 then
3: continue

4: else
5: f [i] = (f [i] << 1)|| 0x01

6: end if
7: end for
8: return f

2) Storage: Given that the number of entries in a real router

far more than 600K, if storing the access frequency data of

several periods of each entry, assuming use the unsigned short

int to record 100 periods data, it will take 120MB (32bit ∗
600K ∗ 100) on-chip storage space which is inefficient and

unacceptable.



(a) AIR performance of TCAM size (b) Hit rate (c) Replacements

Fig. 7: AIR comparisons

We observed the historical frequency of each entry and

found that when the dead becomes active again, its historical

access frequency is almost all 0. To reduce the storage space

requirements of AIR, we optimized the storage rules by adding

a 1-bit identifier for each entry to indicate its status(dead or

active). For the deads, there is no need to store a large amount

of data and all historical access frequencies are 0 by default.

The overall storage structure is shown in the Figure 6. Due to

the filter, this part of the entries will not affect the prediction

at all, and the remaining entries are stored according to the

original strategy. When the statistical register data shows that

an entry’s status changes from dead to active, its identifier

will be changed and its subsequent access frequency will also

be stored. When the historical access frequencies of entry over

periods are 0, then its identifier will be changed and its storage

space will be freed. The huge number of dead entries makes

this strategy save a significant amount of storage space.

V. EVALUATION

In this section, we clarified the experimental setup and an-

alyzed the performance of AIR with some existing strategies.

A. Experimental Setup

The data we used in the evaluation was collected from a

core router on a backbone network in New York on January

17, 2019 [26], with each piece of data consists of a five tuple: 〈
time series, source IP, destination IP, source port, destination

port, protocol〉. The total number of packets in the data set

is 130, 000, 000, including 660, 000 different destination IP

addresses, and 8, 598 entries. For larger number of entries in

real backbone network, AIR is still applicable.

To facilitate entry decoupling, we set the mask length of

all destination IPs to 24, which means that the corresponding

entry equals the first 24 bits. It is assumed that the set of all

aggregated destination IP addresses is the whole entries set.

Such processing ensures the overall execution and feasibility.

The prediction model based on LSTM is implemented

by Keras with a batch size of 32 and an epoch of 50 is

implemented on the Ubuntu 16.04-LTS operating system. In

order to ensure the generality of the results, we also evaluated

on other data sets.

B. AIR Performance

We first evaluate the required TCAM size when there are

different number of entries (from 2000 to 20000 entries) in

the traffic. To make it fair, we conduct different groups of

experiments when the hit rates of the two algorithms are the

same. We then show the experiment results in Figure 7(a),

from which we can see that under traditional “replace if miss”

strategy, the required TCAM size increases linearly (from 2000

to over 16000) with entry number, while in AIR, the required

TCAM size is always around 2000, saving more than 8 times
of TCAM capacity. In the real network where the number of

entries is over 20000, AIR works even better.

From another perspective, different sizes of TCAM will

affect the hit rate and the number of table replacements.

The AIR and traditional schemes are simulated separately by

setting different TCAM sizes. The statistical period is set to

100K, and AIR selects the entries equal to TCAM size from

high to low according to the predicted frequency. Moreover,

the final result of the two strategies is to average the results

of 170 periods. With the increase of TCAM size, the accuracy

of AIR and traditional strategies are similar and showing

an upward trend. However, for any TCAM size, the entry

replacement times of AIR has a great advantage over the

traditional ones. The hit rate and replacement times of AIR

and traditional schemes are shown in Figure 7(b) and Figure

7(c).

C. AIR Analysis

1) Period Analysis: We set different lengths statistic peri-

ods for the same traffic data set, 10K, 20K, 50K, 100K,

150K, and 200K. Obviously, for different length periods,

the number of IP or corresponding entries appeared in each

period is different. We counted 200 periods of different lengths

respectively and the distribution of IP/entry numbers in each

case is shown in the box Figure 8(a) and Figure 8(b). As the

length grows, the number of IP/entry in each period increases

significantly, which makes us have to face the problem of a

large number of entries should be predicted in each prediction

especially we combine the filter mentioned earlier. In order to

control time and resource consumption of prediction process,

the period should not be set too long. From another point
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Fig. 8: Analysis of period
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Fig. 9: Prediction result of entries

of view, we analysed the regularity of entries and traffic in

the period and obtained the hot entries’ traffic coverage in

subsequent periods. For different period lengths, the traffic

coverage of the top 20% hot entries in the next 10 periods

is shown in Figure 8(c). The longer the period is, the more

stable the hot entries. And vice versa, the shorter the period

is, the more obvious the traffic coverage of the hot entries

decreases with time. Therefore, setting a short period not only

increases the frequency of prediction but also reduces the

reliability of prediction based on the frequency of historical

items. Therefore, setting a short period not only increases

the frequency of prediction, but also reduces the reliability

of historical frequency-based prediction. In combination with

the above analysis, the appropriate period length should be

determined according to traffic and equipment characteristics,

and we choose 100K in the experiments of this paper.

2) Prediction Accuracy Benefited from Decoupling: As

described in Section III, we solve the prediction challenge

under aggregated flows circumstance by decoupling entries

and making prediction on disjoint entry groups. So here we

evaluate the prediction performance of AIR. We randomly

select four groups with different access times during 176

periodic intervals. We show the prediction results together

with the truth in Figure 9(a) - 9(h), which indicate that the

prediction algorithm after data decoupling works well on

entries with various frequencies.

3) Threshold Analysis: As describe in Section IV, there

is a threshold TS on the number of arrived packets during

an interval, which would directly affect TCAM hit rate and

the corresponding overhead. So here we evaluate AIR’s per-

formance under various thresholds and compare the results

with another baseline solution – Least Recently Used (LRU),

besides the traditional one.

• Hit Rate: We set the threshold TS to 1∼10, and conduct

a series of experiments to measure hit rate. In traditional

method, when an entry query is missing in TCAM, it will

be added to TCAM by randomly replacing another one. In

LRU, the least recently used one would be ejected, while

in AIR, we choose the one with least future frequency

instead.

To ensure the validity of prediction results, we take the

average of 176 experiments as the final result and show
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the comparisons in Figure 10(a). From these results we

can see that the average hit rate of the above three

mechanisms are similar to each other, even with different

thresholds. For example, when TS is set to 1, the hit rates

are 93.6%, 93.5%, 94.0% for AIR, traditional method and

LRU, respectively.

• Overhead: Although lower threshold can lead to higher

hit rate, it also results in higher overhead on calculation

and entry replacement latency. Using the same hardware

of TCAM, algorithm’s overhead is proportional to entry

replacement times, so we count entry replacement times

under different threshold (from 1 to 10, the same as in

Figure 10(a)) and show the results in Figure 10(b), where

the results are in logarithm operation. From these results,

we can see that the replacement times of both traditional

method and LRU are around 104 times, while that of AIR

is around 102 times, which is 100 times less.

4) Parallelization: As described in Section III, we paral-

lelize the prediction process to further improve the prediction

efficiency and ensure the timeliness of the results. So here

we divide all entries into 10 to 50 disjoint groups DGs. In

our experimental data set, the number of predictions required

each time is shown in the Figure 10(c). As DGs increases, the

number of prediction entries at a time decreases. When DGs

is 50, only 171 entries need to be predicted, which is much

smaller than the 8,598 in nonparallel mode. The optimal group

configuration set based on traffic characteristic and computing

power can make statistics and predictions completely parallel.

5) Optimizations:

• The Filter: Before the prediction, excluding dead entries

from the prediction list can reduce the calculation of the

prediction part in every execution cycle. The criteria for

dead are different, that is, the length of the historical pe-

riod is reviewed, which will affect the specific judgement.

With the preprocess via filter, the number of the required

prediction entries is shown in the histogram of Figure

11(a). Note that the value of the number of predictions

without the filter does not present in the figure, because

it depends on the number of entries of routing table that

has far exceeded 600K in current commercial routers.

Though the filter may mistakenly set 0 to some entries

which will decreases hit rate, the longer the historical

period of observation, the lower the probability of such

errors. Under the condition of the threshold is 10, the

influence of the filter on the hit rate is shown in Figure

11(a). According to the experimental results, the hit rate

is consistent with that without the filter when the length of

historical period is longer than 6, whereas the calculation

of prediction under this condition is less than 6,907.

If treat the access time that below threshold as 0, the

optimization performance can be further improved.

• Filter&Parallelization: The filter and parallelization op-

timize the prediction part from the perspectives of space

and time, which can further reduce the number of predic-

tions in each time. In this experiment, we set the filter’s

threshold to minimum 1 which means all entries with the



0 frequency in the last one period are regarded as dead
and combined with the parallelization scheme. In the case

of different groupings, the number of predictions in each

time is shown in Figure 11(b).

• Storage: Since the entries of our dataset are not the

complete set of a router, we theoretically calculate the

space that can be saved. The traffic lasts about 5 minutes

for a total of 1300 periods (100K each period), during

which 8598 entries were accessed. The storage space can

be released when the access frequencies of an entry in

the last x periods are all 0, we call the x as the decay

period. With different decay period configurations, the

number of active entries in 1300 periods is shown as the

Figure 11(c). Even when the decay period is 100 which is

already the maximum, the number of active is less than

the total entries’. It can then be concluded that there is

an upper limit on the number of active entries for this

traffic, namely 8,387. In order to facilitate the calculation,

we expanded the active number to 10K, and still kept

the total number of entries at 600K. The on-chip storage

space required according to the above rule is 2.06MB
(600K ∗ 1bit + 10K ∗ 100 ∗ 32bit), which is much less

than the original scheme’s 120MB.

In summary, AIR achieves the similar hit rate to the current

commercial schemes, but with only 1/8 TCAM capacity and

less replacement times in two orders of magnitude.

VI. CONCLUSION

With the rapid development of access network, there are

more and more terminals accessing to the Internet, so routers

have to continue expanding TCAM’s capacity to cope with the

explosive growth in the number of entries. In order to solve

the problems caused by large capacity TCAM, we designed an

AI-based TCAM entry replacement scheme call AIR, where

we decoupled the aggregated flows to address the prediction

challenge. To make AIR practical, we then designed a parallel

LSTM algorithm which largely reduces the calculation over-

head. Through a series of experiments, AIR has been shown to

achieve similar performance to existing strategies while using

only 1/8 TCAM capacity. The performance improvements will

be more obvious in large-scale networks.
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