
Towards Shorter Task Completion Time in

Datacenter Networks

Yuchao ZHANG * , Ke XU*, Haiyang WANGt, Meng SHEN+

*Department of Computer Science & Technology, Tsinghua University
tDepartment of Computer Science, University of Minnesota at Duluth

+Department of Computer Science, Beijing Institute of Technology

Email:zhangycI4@mails.tsinghua.edu.cn.xuke@mail.tsinghua.edu.cn.

haiyang@d.umn.edu, shenmeng@bit.edu.cn

Abstract-Datacenters are now used as the underlying infras
tructure of many modern commercial operations, powering both
large Internet services and a growing number of data-intensive
scientific applications. The tasks in these applications always
consist of rich and complex flows which require different re
sources at different time slots. The existing data center scheduling
frameworks are however base on either task or flow level metrics.
This simplifies the design and deployment, but hardly unleashes
the potentials of obtaining low task completion time for delay
sensitive applications.

In this paper, we show that the performance (e.g., tail and
average task completion time) of existing flow-aware and task
aware network scheduling is far from being optimal. To address
such a problem, we carefully examine the possibility to consider
both task and flow level metrics together and present the design
of TAFA (Task-Aware and Flow-Aware) in data center networks.
This approach seamlessly combines the existing flow and task
metrics together while successfully avoids their problems as flow
isolation and flow indiscrimination. The evaluation result shows
that TAFA can obtain a near-optimal performance and reduce
over 35% task completion time for the existing data center
systems.

I. INTRODU CTION

Nowadays, data centers have become the cornerstones
of modern computing infrastructure and one dominating
paradigm in the externalization of IT resources. The data
center tasks always consist of rich and complex flows which
traverse different parts of the network at potentially different
times. To minimize the network contention among different
tasks, task serialization was widely suggested. This approach
applies task level metric and aims to serve one task at a
time with synchronized network access. While serialization
is a smart design to avoid task level interference, our study
shows that the flow level network contention within a task can
however largely affect the task completion time. This prolongs
the tail as well as the average task completion time and
unavoidably reduces the system applicability to serve delay
sensitive applications.

In this paper, we for the first time investigate the potential to
consider both flow level and task level interference together for
data center task scheduling. We provide the design of TAFA
(task-aware and flow-aware) to obtain better serialization and

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

mlnlmlZe possible flow and task contentions. TAPA adopts
dynamic priority adjustment for the task scheduling. Different
from FIFO-LM [1], this design can successfully emulate
Shortest-Task-First scheduling while requires no prior knowl
edge about the task. Further, TAPA gives a more reasonable
and efficient approach to reduce task completion time by
considering the relationship among different flows in one task,
rather than treating them all the same. With this intelligent
adjustment in flow level, TAPA provides the shorter flow
waiting time, and leading to earlier finish time.

In short, this paper mainly makes two contributions, which
are described as follows.

Firstly, we point out that the flow contentions in one task
will also make system performance degrade, and a task-aware
scheme which ignores flow relationship will achieve longer
completion time. We give a simple example in Section. III
and analyze the disadvantages of leaving out information on
flow contention.

Secondly, we design an scheduling algorithm called TAFA,
which can achieve both task-awareness and flow-awareness.
Task-awareness ensures short tasks are prioritized over long
ones, and enables TAPA to emulate STF scheduling with
out knowing task size beforehead. Flow-awareness optimizes
scheduling order, and achieves shorter task completion time.

The rest of this paper is organized as follows. Based on
the background and related work given in Section II, we
motivate this paper in Section III and introduce the main
system framework TAFA in Section IV. Section V shows the
simulation results. Finally, we concludes this paper and points
out the future work in Section VI.

II. B ACKGROUND AND REL ATED WORK

Although the ever-increasing used data center networks
have configured high bandwidth and calculative ability, the
task completion time still can be reduced to a large extent
[1]. Tasks' completion times in DCNs (i.e., DCN is often
multiplexed by many tasks) are depend on many factors, such
as the bandwidth allocation [2], traffic variability [3] and VM
performance management [4], [5]. In this section, we describe
the nature of today's datacenter transport protocols, either
flow-aware or task-aware, and how does the awareness of

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

TAFA
Task&Flow D Aware

FIFO-LM
Task

D Aware ocrcp 03
PDQ pFabric

Flow
02TCP pase

Aware D D D D
Time

2010 2011 2012 2013 2014 2015

Fig. 1: Brief development history of transport protocols.

different levels isolate with each other. As a result, although
flow completion time or task completion time seems to reduce
obviously, flow-aware protocols are blind to task level, and
vice versa. In particular, good flow-level awareness can help
make task completion time shorter, while good task-level
awareness can help flows cooperate harmonically.

Fig. 1 shows the development history of scheduling proto
cols, from DCTCP (2010) to FIFO-LM (2014), which can be
categorized into two broad classes, flow-aware and task-aware,
both of which do advance the state-of-art technique. We'll give
a brief description and explanation to this progress.

As the founder of many flow-aware TCP-like protocols,
DCTCP [6] leverages Explicit Congestion Notification (ECN)
in the network to provide feedback to end hosts. Experiments
show that DCTCP delivers better throughput than TCP while
using 90% less buffer because it elegantly reduce the queue
length. However, it is a deadline-agnostic protocol that equally
throttles all flows, irrespective of whether their deadline are
near or far, so it may be less effective for the Online Data
Intensive applications (OLD!) [7]. Motivated by this obser
vations, D3 [8] use explicit rate control for the datacenter
environment according to flow deadlines. D3 can determine
the rate needed to satisfy the flow deadline when having
the knowledge of flow's sizes and deadlines. Although it
outperforms TCP in terms of short flow latency and burst
tolerance, D3 has the practical drawbacks of requiring changes
to the switch hardware, which makes it not able to coexist with
legacy TCP [7]. Deadline-Aware Datacenter TCP (D2TCP)
[7] is a deployable transport protocol compared to D3. Via
a gamma-corretion function, D2TCP uses ECN feedback and
deadlines to modulate the congestion window. Besides, D2TCP
can coexist with TCP without hurting bandwidth or deadline.
Preemptive Distributed Quick (PDQ) flow scheduling [9] is
designed to complete flows quickly and meet flow deadlines,
and it builds on traditional real-time scheduling techniques:
Earliest Deadline First and Shortest Job First, which help PDQ
outperform TCP, RCP [10] and D3 significantly. pfabric [11]
decouples flow scheduling from rate control. Unlike the proto
cols above, in pfabric, each flow carries a single priority num
ber set independently, according to which switches execute
a scheduling/dropping mechanism. Although pfabric achieves
near-optimal flow completion time, it does not support work
conservation in a multi-hop setting because end-hosts always
send at maximum rate. To make these flows back-off and let
a lower priority flow at a subsequent hop, we need a explicit

feedback from switches, i.e., a higher layer control.
From a network perspective, tasks in DCNs typically com

prise multiple flows, which traverse different servers at differ
ent times. Treating flows of one task in isolation will make
flow-level optimizing while hurting task completion time. To
solve this boundedness in flow-aware schemes, task-aware
protocols have been proposed to explicitly take the higher layer
information into consideration.

A task-aware scheduling was proposed by Fahad R. Dogar
in [1]. Using First-In-First-Out to reduce both the average and
the tail task completion time, Dogar implement First-In-First
Out with Limited Multiplexing (FIFO-LM) to change the level
of multiplexing when heavy tasks are encountered, which can
help heavy tasks not being blocked, or even starved. But as
we all know, FIFO is not the most effective method to reduce
average completion time nomatter in flow-level or task-level,
and the simple distinguish just between elephant tasks and
mouse tasks is in coarse granularity as [12] said that the
DCNs should be more load, more differentiation. Further, [13]
and [14] give methods that can ensure user-level performance
guarantee.

Without cross layer cooperation, these protocols have great
blindness to each other, making scheduling inefficient. For
our object to achieve advantages in both task-aware and f1ow
aware, we praise TAFA with the idea of co-existence. What's
more, this work should perform well even in the real multiple
resource sharing environment.

III. MOTIVATION

Scheduling policies determine the order in which tasks and
flows are scheduled across the network. In this section, we'll
show how do flow-aware and task-aware waste resources when
being applied separately, and we motivate TAFA by combining
the two layer awareness together, making task completion time
2 times shorter than flow-aware scheme and 20% shorter than
task-aware FIFO-LM.

Before giving a specific example, we introduce the defini
tion of flow and task:

Definition 1. Flow

Flow is a fundamental unit of a basic action, and a series of

flows can make up one task to accomplish a specific request.

Definition 2. Task

Tasks consist of multiple flows, and can response to a user

request completely. Applications in DC petform rich and

complex tasks (such as executing a search query or loading a

user's required page).

In addition, flows traverse different parts of the network
at potentially different times, and there are tight relationship
among flows, such as sequencing and parallelization. The TCT
of a particular task is depended on the finish time of the last
flow belonged to this task. With the concept of task and flow,
we consider a small cluster with CPU and link resources,
and there 2 tasks each has two steps that are separated by
a barrier. This situation resembles map-reduce; map tasks are

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

Flow B with

bottleneck X

FlowA with

bottleneck X

I FlowB with

bottleneck X

FlowB with

bottleneck X

Flow A with

bottleneck X

Flow B with

bottleneck Y

FlowA with

bottleneck Y

Flow B with

bottleneckY

Flow A with

bottleneck Y

Task aware only

Flow B with

I
Flow B with

bottleneck X bottleneck Y

FlowA with

bottleneck X

Flow B with

bottleneckY

Task and flow aware

Time

Time

Fig. 2: Distilling the benefits of both task and flow aware
scheme (TAFA) over task-aware.

CPU intensive while reduce tasks are network-intensive, like
the example in [15]. There are two flows in each task, and
each flow has two stages. The CPU processing stage need 2
unit of CPU time and the network processing stage consumes
2 unit of link time. Further, network processing stage can not
begin until CPU processing stage finishes.

Flow-aware. Consider the flow-aware fair sharing (FS)
scheduling scheme. When assuming all flows are infinitely
divisible, scheduling all 4 map flows would fully use up the
cluster's CPU for the first 4t, and then 4 reduce flows become
runnable and the cluster will fairly allocate link to them. Each
flow gets only 1/4 of resources due to contention, keeping link
busy for another 4t. Thus, both of the two tasks will finish
scheduling at time St.

Task-aware. Obviously, flow-aware fair sharing is not a
good choice here. Now we consider the task-aware scheduling
FIFO-LM in [1]. According to FIFO, the two flows of A
should be scheduled first, and with the same task-id, these
CPU stages of the two flows share the CPU fairly, so the this
phase will occupy 2t of CPU, then at 2t, network stage of
task#l and CPU stages of task#2 can start. At 4t, network
stages of task#2 can start. The schedule is shown in the upper
part of Fig. 2 (where bottleneck x denotes CPU and bottleneck
y denotes network). The 2 tasks now finish at time 4t, 6t.
Average completion time reduce from St to 5t compared with
FS.

What we should pay attention to is that this result isfar from

optimal to a large extent, and we will show how to reduce TCT
over task-aware scheme.

The core idea is to make task-aware scheduling scheme
flow-aware. As described in Definition.l, flow completion time
is closely relative to task completion time. To reduce task
completion time, we should distinguish different flows of one
task, because reducing average flow completion time will also

shorten task completion time. So here we discard the fair
sharing method among flows [16], [17] within one step, and
make the cluster serve flows one by one (later in section IV,
we will introduce the FQH to decide the flow serving order).
As shown in the lower part of Fig. 2, the CPU stages of
the two flows are not served simultaneously, but making one
of them finish processing early, so the corresponding reduce
phase can start at 1 t (while in FIFO, this reduce phase start at
2t). Along this line, the flows of task#2 can also be scheduled
in advance. Thus, the finishing times of the two tasks are: 3t,
5t. The average TCT is a half of FS (4t +- St) and 20% less
than task-aware (4t +- 5t). From this simple scenario, we can
see that just in simple one-by-one order, we can reduce average
completion time by 20% over FIFO-LM.

The above examples highlight that isolate flow-awareness
and task-awareness are inefficient and do not optimize task
completion time, which indicates that disregarding cross layer
relevant awareness leads to the waste of resources. Then
we'll show how TAFA outperform the state-of-art protocols
in Section.IV.

IV. TAFA - TASK AWARE & FLOW AWARE

In this section, we describe TAPA's scheduling heuristic,
combining both task-aware and flow-aware together to make
more preferable and reasonable scheduling. As task comple
tion time depends on the last flow's finish time, to determine
the order to minimize TCT, two questions should be clarified.
One is the task schedule order, which is a well known NP
hard problem [1], the other is flow completion time, which can
reduce task completion time. We develop heuristics that enable
STF with no prior knowledge using commodity switches
(IV-A). To give the detailed flows scheduling method for
reducing completion time, we design FQH algorithm in IV-B.

A. Task-awareness

The task scheduling policy determines the order in which
tasks are scheduled across the network, while one task consists
of multiple flows, the original priorities of these flows are
depended on task order.

In this subsection, we focus on task priority. At a high level,
TAFA main mechanisms include priority queuing and ECN
marking, which can adjust the priority of tasks dynamically
according to the bytes they have sent.

1) End-host Operations: In TAFA, end-hosts are responsi
ble for two things: one is to generate task-id, the other is to
response to the rate control according to the marking punched
by switches.

For the former, end-host assigns a globally unique identifier
(task-id) for each task. When an end-host produces a new
task, each flow of this task will be tagged with the task

id. To generate this id, each host maintains a monotonically
increasing counter. Unlike PIAS in [IS], in which tags are
carried by packets, TAFA allow flows carry these tags, making
tasks quite clear to the loading in switch; Unlike Task-aware
in [1], which just separates heavy tasks from short ones, we

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

catalog tasks to multiple priorities, which will be explain in
IV-A2.

For the rate control, we should first explain the relationship
among multiple flows. As tasks are consist of number of
complex flows, which will traverse different servers at different
times to respond to a user request, not all of them are active
at the same time. Though there are huge diversity among dif
ferent applications, according to their communication patterns,
the relationship of flows can be grouped into three categories:

• For parallel flows, they may be a request to a cluster of
storage servers, the flows of these tasks are parallel;

• For a sequential access task, the flows order is sequential,
making the flows in one task should be scheduled one by
one;

• For a partition-aggregate task, which may involve tens
and hundreds of flows, the flow order are in particular
importance.

However, PIAS has a serious weakness that it ignores the
relationship of flows in the same task, and each flow has
a adjustable priority in isolation. For a sequential access
task, if the previous flow is heavy, then its priority will be
gradually demoted, while the subsequent short flows with
higher priorities will finish earlier. But the subsequent results
are useless because of the lack of the previous result.

To avoid this situation, TAPA adjusts the sending rate and
order according to the marking punched by switches whenever
necessary. The detailed scheme will be describe in IV-B.

2) Switch Operations: Two functions are built-in in TAFA
switches , priority queuing and ECN marking.

For priority queuing, as end-hosts tag task-id for each flow
of each task, which is used to depend the order of this flow,
so the only thing switches should do is to maintain the queue.
Flows are waiting in different priority queues (more than 2)
in switches. Whenever a link is idle or has enough resource to
schedule a new flow, the first flow in the highest non-empty
priority queue is served. With the bytes one task rising, the
priority of this task was gradually demoted, so the flows of
this task are also affected by the demotion, making these flows
tagged a lower priority, and should wait longer in the queue.

For ECN marking (a feature already available in modern
commodity switches [6]), flows will be marked with Con
gestion Experienced (CE) in the network to provide multi-bit
feedback to the end-hosts. So TAFA employs a very simple
marking scheme at switches, and there is only one parameter,
the marking threshold, Y. If the bytes of one task is greater
than Y, the flows of this task is marked with CE, and not
marked otherwise. This ECN marking can notify end-host to
demote its priority. The end-hosts whose flows are marked
with ECN should tag their flows a lower priority than the
current one. This feedback scheme can ensure that the tasks
with less and shorter flows can be scheduled earlier than that
with much more and longer flows. Using this Short Task First
scheme, we can not only reduce the TCT, but also ensure
heavy tasks not being starved.

3) Multiple priority queues: As the key problem in flow
level scheduling [18] is the determining of the thresh-

old, Y, here we give a vector of threshold Y (consist of
YI, Y2, ... , YT-I). Where T is the number of priority queues,
and Yi is the threshold of priority queue i, Le., in the ith
priority queue. When the accumulated bytes of one task is
greater than Yi, the flows of this task will be marked with
ECN, and this task should be demoted to the lower priority
queue.

The advantage of threshold vector than just one threshold is
in the demotion process, and when there is only one threshold,
it can not manage any bursts. Before explaining the reason,
we now consider two flow size distributions [11], the first
distribution is from a datacenter supporting web search [6],
and the other distribution is from a cluster running large data
mining jobs [19]. According to the analyse by Alizadeh, these
two workload are a diverse mix of small and large flows. Over
95% of all bytes come from 30% of the flows in web search,
while more than 95% of the bytes are from 4% flows and 80%
of the flows are less than lOKB in data mining workload.

These above analyse introduces an important extreme case.
Assume there are plenty of small tasks each produces plenty
of flows, at the beginning, the bytes have been sent of all
task are set to O. In traditional schemes, there are only two
queues,so all flows enter the higher priority queue, as they
are all short tasks, so they would stay in the higher priority
queue, leading all flows being concurrent due to the disability
to distinguish these flows. In that case, the stagewise threshold
vector can work here, as there are more than two queues each
with a threshold (Y I < Y 2 < ... < Y T-I), the speed tasks
are demoted into lower priority queues is different, and this
scheme can finally tell these flows apart even all of them are
short ones. So the threshold vector can avoid the concurrency
of priority demoting. As the value of threshold set is related
to actual flows, we will further show the robustness to traffic
variations in the simulation section.

B. Flow-awareness

To detailed introduce TAPA, in this subsection, we will
display how to make task-aware scheduling flow-aware. Like
DCTCP and D2TCP, we require that the switches support
ECN, which is true in nowaday's datacenter switches. As Short
Flow First (SFF) is known to be the most effective way to
shorten flow completion time, we modulate the congestion
window in a size-aware manner. When congestion occurs, long
flows back off aggressively, and short flows back off only a
little. With this size-aware congestion avoidance scheme, more
flows can be scheduled at early time.

To explain the flow-awareness in TAFA, we start with
D2TCP and build size-awareness on top of it. Like DCTCP
and D2TCP, the sender maintains ct, the estimated fraction of
packets that are marked when the buffer occupancy exceeds
the threshold K. ct is updated every one RTT as follows:

ct = (1 - g) x ct + g x f (1)

where f is the fraction of packets that were marked with CE
bits in the last window of data, and 0 < g < 1 is the weight
given to new samples. As D2TCP maintains d as the deadline

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

Switch Input Queue
End-host Task-id �

F
8�-�·�c���iJ; --;--�������:�

t�-��������y�- --;--�-t�-:-:;C=.:· Tag ,---;:--------------------------
F ECN

f-------------------------------·
'u..j Lowest Priority •

Fig. 3: TAFA Implementation.

imminence factor and larger d implies a closer deadline, so
they design the penalty function as:

(2)

The size of congestion window W is calculated by p. However,
as [12] proposed, the flow rate control scheme should respect
the differentiation principle, i.e., when traffic load becomes
heavier, the differences between rates of different level flows
should be increased. D2TCP violates the principle and works
badly in some scenarios [12]. So we design the penalty
function in TAFA as:

p = exls (3)

Where s is determined based on flow size information, and
shown as follows:

Smax s= --Se
(4)

Where Smax is an upper bound of flow size, and Se is the
remanent size for a flow to complete transmitting. Note that
being a fraction, ex ::; 1 and s ;::: 1, therefore, p = exl s =
���: ::; 1. So we resize the congestion window W as follows:

W= {WX(I-P)
W+l

with congestion
without congestion

(5)

With this simple algorithm, we compute p = ex x s Sc and
use it to adjust the congestion window size. If the�eaXis no
congestion in the last window, W is increased by 1 like TCP,
while any congestion occurs, W is decreased by a fraction
of p. When all the flow sizes are equal, s:':x = 1, severe
congestion cause a full backoff similar to TCP and DCTCP.

For different flow size,
8(1-p) = 8 (1-exls) = � >0 8(s) 8(s) S2

82(1-p)= ..!..>0 8(s)8(ex) S2

(6)

Which indicate that TAFA meets the PD principle in [12], i.e.,
the difference between two flows with different size would be
increased when traffic loads become heavier.

C. Algorithm implementation

We now introduce the framework of "TAFA" algorithm, and
Fig. 3 gives the abstract overview of TAFA.

There are several queues with different priorities for input
tasks. When flows from a new task arrives, they are marked

Algorithm 1 TAFA

I: Initialization
2: while Fl arrives do

3: TimeStamp(Ff)
4: if T; == newTask then

5: P(T;) +-1
6: end if

7: P(Fl) +- CheckPriority(T;)
8: EnQueue(P(Fl), Ff)
9: l(Fl) +- length(Fl)

10: AddLength(T;, I(Fl))
II: if length(T;) > Yk then

12: Degrade(T;)
13: end if

14: end while

15: FlowLevelScheduling

Algorithm 2 FlowLevelScheduling

I: Switch:
2: if Congestion occurs then

3: Tag(ECN)
4: end if

5: SendBackToEndhost
6: Endhost:
7: if ECN == true then

8: s +-- 8.m(tX
Sc

9: ex+-(l-g) x ex+g x j
10: p+-exls
II: cwnd +- cwnd x (1 -p)
12: else

13: cwnd +- cwnd + 1
14: end if

15: SendBytes(cwnd)

with highest priority, and enter the first queue. The length of
flows from one task is added up to compare with Y k. which is
the threshold of Queue k. When the total length exceeds Y k>
the corresponding task is degrade from priority k to k + 1,
and the following flows from this task will enter Queue k + 1
directly. As the scheduling begins from high priority queue to
low priority queues, with this accumulated task length, TAFA
can successfully emulate Shortest-Task-First scheduling while
requires no prior knowledge about tasks.

We design TAFA to realize this process as shown
in Algorithm. 1 , where F/ denotes the jth flow from
Task;, and P(T)IP(F) denoted the priority of a task/flow.
EnQueue(P, F) is a function making F enter Queue P.

This algorithm can adjust the priority of tasks dynamically
according to the task length, making short task be scheduled
earlier than long ones without prior knowledge of task length.
While many other researches do schedule under the assump
tion that task (or flow) size are already known, TAFA make
this process more practical.

For flow-level adjustment, we design Algorithm.2 to take

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

ti 8 t
Q) Cl 6
� Q)

.i(4

-2 Queues
8 ' .. • .. ' 3 Queues

....... 4 Queues
t-7 '--'8 Queues
()
t-6 Q)
g's
Q;

.i(4

3

Q)
E
i=

1S===------�_,

10

-TAFA
'�FIFO

40 60 8 0 100
&
0�� �-�4�0-�60��8�0-�'00

Load Number of tasks

Fig. 4: Comparison between different Fig. 5: TCT comparison of different Fig. 6: Finish time of DropTail perfor-
demotion threshold. number of queues. mance in TAFA and FIFO.

congestion extent and flow size into consideration. Switches
will tag ECN when congestion occurs, and send back this
signal within flows to end-hosts. When end-host receives flows
with ECNs, it should adjust its congestion window cwnd. In
TAFA, which aims at getting shorter completion time, the size
of cwnd is depended on the congestion extent a and flow size
Se, i.e., when traffic congestion a becomes serious, all flows
should backoff in direct proportion to a, but for smaller flows,
the penalty function p is smaller than that of longer ones,
making the backoff slighter and could sending more flows.
When end-host receives flows without ECNs, it acts as general
TCP, and just increase cwnd by 1. Then end-hosts will send
packets according to this updated size of congestion window.

V. EVALUATION

In this section, we evaluate the performance of TAFA
using extensive simulations. To understand the performance in
large scale, we do trace-driven simulations using trace from
production clusters. Our evaluation consists of three parts.
First, we evaluate TAFA's basic performance such as its TCT,
degradation threshold, and number of priority queues. Building
on these, we then show how TAFA achieves benefits compared
to task-aware schemes in realistic datacenter networks running
load, and finally we compare TAFA with flow-aware schedul
ing schemes on different scales.

A. Setup

Flows: We use the realistic workloads that have been
observed in production datacenters, the web search distribution
in [6] and the large data mining jobs in [19]. As [11] has given,
the arrival pattern of flows is in poisson process. According
to the empirical traffic distributions used for benchmarks,
both of the two clusters have a diverse mix of heave and
slight flows with heavy-tailed characteristics, we also analyze
TAFA's performance across these two different workflows.

Trace: Using the Google cluster traces in [20] and [21], we
illustrate the heterogeneity of server configurations in one of
the cluster [22], where the CPUs and memory of each server
are normalized. We use the information of over 900 users on
a cluster of 12K servers as the input of TAFA, and evaluate
its performance against other policies based on these traces.

TAFA: To generalize our work, we consider three sets of
experiments. Firstly, we test TAFA's parameter performance.

For tasks containing plenty of flows, we use task completion
time (TCT) defined as the finish time of the last flow in this
task, and consider the average TCT across all tasks from
end-hosts. Besides, we find the resource utilization rate of
TAFA is high, the demotion threshold and the number of
priority queues effect the finishing time of flows. Secondly,
we compare TAFA with task-aware policies. As we introduced
before, flow completion time seriously affects TCT. With flow
level knowledge, we can schedule flows in a more proper way
to advance the finish time of the last flow in one task, i.e.,
reducing TCT. Lastly, we compare TAFA with flow-aware
policies, and demonstrate that TAFA can shorten flow response
time (FRT) significantly.

B. Overall performance of TAFA

To evaluate how TAFA adapts to realistic activity, we set up
the environments mimics a typical DCN scenario. The front
end comprises of three clients; each client sent out tasks persis
tently, and tags flows of these tasks by a maintained separate
marker. Each task is initialized to the highest priority, and
is degraded gradually when the size achieving the threshold.
The small cluster is configured in proportion to [20]. CPU
and memory units are normalized to the maximum server.
The 6 kinds configuration rates are: (0.50,0.50), (0.50,0.25),
(0.50,0.75), (1.00,1.00), (0.25,0.25), (0.50,0.12).

Threshold. We first evaluate the impact of varying the value
of threshold in switches. As there are more than one priority
queue in switches, a task may demote form one higher priority
queue to a lower one depending on the bytes it has sent.
The demotion is depended on the queue threshold Y. As we
described in Section 4, not using a global threshold in all
queues, we give a vector of T (consist of T 1, T 2, ... , T 7-1) .
Where T is the number of priority queues, and Ti is the
threshold of priority queue i. To test the performance of
different values, we consider a scenario where there are three
different queues in switches, and T 1 is set to be the mean value
of the largest task size while T 2 is set to be three quarters of
the largest task size. As a contrast experiment, we set the two
threshold as one-third and two-thirds of task size. Fig. 4 shows
the results in three different experiments with 20, 50, and 100
requests in different simulations. From this figure, we can find
that our incremental threshold outperform the fixed threshold

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

--'fI-TAFA
-D2TCP

3.5

---"!---TAFA

5 ---e---D2TCP

f
()3 f-

0.8

u.. 0.6
o
()

0.4

0.2

___ TAFA
---e---D2TCP

20 40 60 8 0
Task Number

100 %���--- 4�0 --�60�--8� 0 --�100
Task Number

%L- ----�--�3 --� --� --�
Time

Fig. 7: 100 requests with task
size from lKB to 100KE.

Fig. 8: 100 requests with task
size from 10M to 00.

Fig. 9: Average CDF of task comple
tion time.

___ TAFA
10 --e--D2TCP

ti 6
f-

30 ___ TAFA
--e--D2TCP

25

20
f� 15

10

0.8

LL 0.6
o
()

0.4

0.2

____ TAFA
--e--D2TCP

100 200 300 400 5 00
Task Number

%"�1� 0-0 ---20� 0---3� 0-0 ---4�00--�5 00
Task Number

%L- --��10--�15---2�0---2�5 --�
Time

Fig. 10: 500 tasks with size from
IKE to 100KE.

Fig. 11: 500 tasks with size from
10M to 00.

Fig. 12: Average CDF of task comple
tion time.

obviously, and more tasks, more advantages.
Queues. Nomatter for the sequential or aggregational access

schemes, the order of flows does influence the final completion
result, because only when all the flows return, can the final
result forms. So when the previous flow is heavy, and blocks
the process of following ones, multiple queues can handle
this scenario. The number of priority queues will affect the
optimizing degree. We set the request from clients to 20,
40, 60, 80, and 100, respectively, using different number of
priority queues (2, 3, 4, 8). Fig. 5 gives the results, from
which we can conclude that multiple queue can optimize TCT
to some extent, but with the queue number increasing, the
superiority is not that obvious. So for a specific DCN, the
number of queues is not the more the better, but should be
set to a appropriate amount by considering the overhead of
adding an additional queue.

C. TAFA vs. Task-aware

We compare TAPA's performance against FIFO, which is
used in the task-aware scheduling in [1]. Fig. 6 shows results
of an experiment with 3 clients, 100 tasks, task size of IKE to
100KB. In this case, TAFA reduces task droptail completion
time of by about 34% compared to FIFO.

The reason why TAPA outperforms task-aware schemes lies
in the acknowledgment of flow information. As task comple
tion time is depended on the last flow of it, making flows
scheduled earlier will certainly reduce TCT. The flow-level
scheduling algorithm makes TAFA flow-aware, so that TAFA
can significantly improve task completion time compared to

all task-aware only policies.

D. TAFA vs. Flow-aware

In this subsection, we evaluate TAFA with flow-aware
schemes. For the experiment, we consider google's trace files
in [20] and [21]. Along with the experiments in [1], we
compare TAPA's performance against D2TCP. Fig. 7 shows the
results of an experiment with 100 requests, task size from IKE
to 100KB. Obviously, TAFA takes shorter time to finish these
tasks, reducing the tail completion time by 36% to D2TCP.

Also, we can observe more gains in long tasks simulation.
We plot the average TCT in Fig. 8 and each end-host with the
shortest task 10MB. The results show that TAPA reduces 45%
average TCT compared with D2TCP. In short, TAFA works
well for both workloads.

TAPA also achieves very good performance for the CDF of
task completion, shown in Fig. 9. TAFA can finish scheduling
all the tasks at about 4 while it takes D2TCP more than 6.

To test the scalability of TAPA, we increase the number
of requests, and simulate the situation with 500 tasks and
Fig.lO, 11, 12 shows the task completion time for short tasks,
long tasks, and average CDF, respectively. From these figures,
we can conclude that TAFA can be adaptive to large-scale
environments.

The reason why TAPA can achieve better results than
D2TCP is that TAFA takes flow size into consideration when
adjusting congestion window. When congestion occurs, the
back off extent of short flows is slighter than long ones,
making short flows be scheduled earlier, thus, TAPA reduces

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

average task completion time.
VI. CONCLUSION

In this paper, we studied the scheduling problem in datacen
ter networks (DCNs), where the existing protocols are either
task-aware or flow-aware.

To optimize task completion time (TCT), we present TAPA,
which is both task-aware and flow-aware. In the task level of
TAFA, we adopt a heuristic demotion algorithm, which can
demote the priority of heavy tasks without prior knowledge
of task size, so that TAPA obtains the advantages of short
job first, which is known to be the most effective method to
reduce average completion time in one link. In the flow level
of TAPA, we modulate the congestion window in a size-aware
manner, thus making long flows back off more aggressively
than short flows. As to the rate control problem, we take
flow size into consideration, and adjust congestion window
according to the estimation calculated by flow size and the
fraction of packets that were marked in the last RTI. This
scheme can help shorter flows back off more slighter than long
ones, and make short flows to be scheduled earlier, resulting in
shorter task completion time. Large-scale simulations driven
by real production datacenter trace show that, compared to
traditional task-aware or flow-aware only policies, TAPA can
significantly reduce the average task completion time.

REFERENCES

[I] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, "Decentralized
task-aware scheduling for data center networks," 2013.

[2] J. Guo, F. Liu, J. Lui, and H.-J. Jin, "Fair network bandwidth allocation
in iaas datacenters via a cooperative game approach. "

[3] J. Guo, F. Liu, X. Huang, J. Lui, M. Hu, Q. Gao, and H. Jin, "On
efficient bandwidth allocation for traffic variability in datacenters," in
INFO COM, 2014 Proceedings IEEE. IEEE, 2014, pp. 1572-1580.

[4] F. Xu, F. Liu, H. Jin, and A. Y. Vasilakos, "Managing performance
overhead of virtual machines in cloud computing: a survey, state of the
art, and future directions," Proceedings of the IEEE, vol. 102, no. I, pp.
11-31,2014.

[5] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li, "iaware: Making
live migration of virtual machines interference-aware in the cloud,"
Computers, IEEE Transactions on, vol. 63, no. 12, pp. 3012-3025, 2014.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab
hakar, S. Sengupta, and M. Sridharan, "Data center tcp (dctcp)," ACM
SICCOMM computer communication review, vol. 41, no. 4, pp. 63-74,
2011.

[7] B. Vamanan, J. Hasan, and T. Vijaykumar, "Deadline-aware datacen
ter tcp (d2tcp)," ACM SICCOMM Computer Communication Review,
vol. 42, no. 4, pp. 115-126, 2012.

[8] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, "Better never
than late: Meeting deadlines in datacenter networks," in ACM SIC·
COMM Computer Communication Review, vol. 41, no. 4. ACM,2011,
pp. 50-61.

[9] c.-Y. Hong, M. Caesar, and P. Godfrey, "Finishing flows quickly with
preemptive scheduling," ACM SICCOMM Computer Communication
Review, vol. 42, no. 4, pp. 127-138, 2012.

[l0] N. Dukkipati and N. McKeown, "Why flow-completion time is the right
metric for congestion control," ACM SICCOMM Computer Communi
cation Review, vol. 36, no. I, pp. 59-62, 2006.

[II] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, "pfabric: Minimal near-optimal datacenter transport," in
Proceedings of the ACM SICCOMM 2013 conference on SICCOMM.
ACM, 2013, pp. 435-446.

[12] H. ZHANG, "More load, more differentiation - a design principle for
deadline-aware flow control in dcns;' in INFO COM, 2014 Proceedings
IEEE. IEEE,2014.

[13] M. Shen, L. Gao, K. Xu, and L. Zhu, "Achieving bandwidth guarantees
in multi-tenant cloud networks using a dual-hose model. "

[14] K. Xu, Y. Zhang, X. Shi, H. Wang, Y. Wang, and M. Shen, "Online
combinatorial double auction for mobile cloud computing markets. "

[l5] R. Grandi, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akelia,
"Multi-resource packing for cluster schedulers," in Proceedings of the
2014 ACM conference on SlCCOMM. ACM, 2014, pp. 455-466.

[16] A. Demers, S. Keshav, and S. Shenker, "Analysis and simulation of a
fair queueing algorithm," in ACM SlCCOMM Computer Communication
Review, vol. 19, no. 4. ACM, 1989, pp. 1-12.

[l7] M. Shreedhar and G. Varghese, "Efficient fair queuing using deficit
round-robin," Networking, IEEElACM Transactions on, vol. 4, no. 3,
pp. 375-385, 1996.

[18] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun, "Pias:
Practical information-agnostic flow scheduling for data center networks;'
in Proceedings of the 13th ACM Workshop on Hot Topics in Networks.
ACM, 2014, p. 25.

[l9] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, "VI2: a scalable and flexible data
center network," in ACM SlCCOMM Computer Communication Review,
vol. 39, no. 4. ACM, 2009, pp. 51-62.

[20] c. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
"Heterogeneity and dynamicity of clouds at scale: Google trace analy
sis," in Proceedings of the Third ACM Symposium on Cloud Computing.
ACM, 2012, p. 7.

[21] c. Reiss, J. Wilkes, and J. L. Hellerstein, "Google cluster-usage traces;'
http://code.google.com/p/googleclusterdatal.

[22] w. Wang, B. Li, and B. Liang, "Dominant resource fairness in
cloud computing systems with heterogeneous servers," arXiv preprint
arXiv: 1308.0083, 2013.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 15:36:54 UTC from IEEE Xplore. Restrictions apply.

