
5222 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

Galaxy: A Scalable BFT and Privacy-Preserving
Pub/Sub IoT Data Sharing Framework

Based on Blockchain
Yuchao Zhang , Member, IEEE, Xiaotian Wang , Xiaofeng He, Ning Zhang , Senior Member, IEEE,

Zibin Zheng , Fellow, IEEE, and Ke Xu , Senior Member, IEEE

Abstract—The emergence of the Internet of Things (IoT) tech-
nology in recent years has led to a considerable amount of
data to be shared across different organizations. The publish
and subscribe (Pub/Sub) paradigm, with its asynchronous, one-
to-many, and decoupling characteristics, is considered to be a
promising communication model in IoT. However, designing a
Pub/Sub framework for IoT data sharing confronts two chal-
lenges: 1) Byzantine faults and 2) privacy concerns. Byzantine
nodes that are subjectively malicious or hacked by attackers
may discard or forge data in the broker network composed
of untrusted IoT organizations. Unauthorized brokers or clients
may try to obtain the content of publications or subscriptions,
thus violating the IoT data privacy. Existing works have limita-
tions in terms of relatively low scalability and high overhead
in tackling these two challenges. In this article, we propose
Galaxy, a blockchain-based Pub/Sub IoT data sharing frame-
work. To achieve Byzantine fault-tolerant (BFT) Pub/Sub, Galaxy
adopts sharding to improve scalability and achieve efficient BFT
Pub/Sub workflow within each shard with a novel leader rota-
tion scheme. In attaining privacy-preserving Pub/Sub, a secret
key sharing and encrypted Pub/Sub scheme is designed in Galaxy
to achieve low overhead without breaking the decoupling of the
system. We implemented a prototype of Galaxy and deployed it
on Alibaba Cloud for experimental evaluation. The experiment
results show the feasibility and efficiency of Galaxy.

Index Terms—Blockchain, Internet of Things (IoT), IoT data
sharing, secure communications, security and privacy.

I. INTRODUCTION

W ITH the rapid development of Internet of Things (IoT)
technology in recent years, the number of IoT devices

has grown dramatically and has been adopted in various fields,
such as industrial manufacturing [1], healthcare [2], smart

Manuscript received 12 June 2023; accepted 8 August 2023. Date of pub-
lication 21 August 2023; date of current version 24 January 2024. This
work was supported in part by the Key Project of Beijing Natural Science
Foundation under Grant M21030, and in part by the National Natural Science
Foundation of China (NSFC) under Grant 62172054 and Grant 62072047.
(Corresponding author: Yuchao Zhang.)

Yuchao Zhang, Xiaotian Wang, and Xiaofeng He are with the School
of Computer Science (National Pilot Software Engineering School), Beijing
University of Posts and Telecommunication, Beijing 100088, China (e-mail:
yczhang@bupt.edu.cn; wangxiaotian@bupt.edu.cn; xiaofenghe@bupt.edu.cn).

Ning Zhang is with the Department of Electrical and Computer
Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada (e-mail:
ning.zhang@uwindsor.ca).

Zibin Zheng is with the School of Computer Science and Engineering,
Sun Yat-sen University, Guangzhou 510000, China (e-mail: zhzibin@
mail.sysu.edu.cn).

Ke Xu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: xuke@tsinghua.edu.cn).

Digital Object Identifier 10.1109/JIOT.2023.3307073

grid [3], etc. These IoT devices and subsequent applications
generate a massive amount of data that need to be collected,
shared, and analyzed across different organizations. In order
to better meet the data sharing needs in the above scenario,
some network protocols and data sharing systems based on
the publish and subscribe (Pub/Sub) abstraction have been
designed and used in IoT [4], [5], [6]. The Pub/Sub paradigm
enables one-to-many, asynchronous, and decoupled communi-
cation between publishers and subscribers. Basically, there are
three entities in a Pub/Sub system: 1) brokers; 2) subscribers;
and 3) publishers. Brokers are dedicated servers that provide
pub/sub services. Subscribers subscribe to the topics they are
interested in by sending subscriptions to brokers. Publishers
advertise publications on specific topics to brokers, and these
publications are matched against subscriptions and forwarded
to interested subscribers by brokers. In the past years, services
under the Pub/Sub abstraction have been widely used in var-
ious systems within datacenters, such as Apache Kafka [7],
Pulsar [8], and Google Cloud Pub/Sub [9].

With the rise of IoT and edge computing, however, the
broker network may be composed of edge servers controlled
by untrusted tenants from different organizations. The lack
of trust between organizations brings new challenges to the
design of Pub/Sub system in this scenario: Byzantine faults
and privacy concerns.

Byzantine Faults: Pub/Sub systems often achieve fault
tolerance and high availability by replicating data among
brokers. Pub/Sub systems within data centers usually only
consider crash fault [7], [10] and realize crash fault tolerance
(CFT) based on consensus algorithms, such as Paxos [11]
and Raft [12]. However, in an IoT network composed of
untrusted servers from different organizations, some data shar-
ing involving business information may lead to conflicts of
economic interests, resulting in Byzantine behaviors, such as
message forgery and discarding. Additionally, brokers may be
hacked by external attackers and thus may crash or become
malicious, making the situation worse. Blockchain, a mod-
ern form of state machine replication (SMR) that achieves
Byzantine fault tolerance (BFT), has attracted massive atten-
tion in recent years. Some works try to combine blockchain
with Pub/Sub system to achieve a higher level of fault tol-
erance [6], [13], [14], while several issues still need to be
further addressed: The high communication and cryptographic
overhead of BFT consensus leads to its insufficient scalability
in large-scale networks; some works only achieve incomplete

2327-4662 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0135-8915
https://orcid.org/0000-0001-5597-015X
https://orcid.org/0000-0002-8781-4925
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0003-2587-8517

ZHANG et al.: GALAXY: A SCALABLE BFT AND PRIVACY-PRESERVING PUB/SUB IoT DATA SHARING FRAMEWORK 5223

BFT by adopting blockchain as an additional auditing system;
hardware failures, software errors, and potential malicious
attacks result in slow recovery of leader rotation in the
leader-based BFT consensus [15], [16], severely degrading
the performance of the system. Therefore, a scalable BFT
Pub/Sub system design is needed to ensure system safety and
availability.

Privacy Concerns: The information published in IoT con-
tains highly privacy-sensitive data, such as medical data and
geographic information. Therefore, some publishers only want
partial subscribers to see the content of specified publications.
For instance, in a medical data-sharing scenario, some patients
would like to share their medical records only with designated
hospitals. Similarly, subscribers may not want to disclose their
personal interests, resulting in a desire to limit the exposure of
their subscriptions in the network. Unfortunately, maintaining
the privacy of both publishers and subscribers in the afore-
mentioned trustless network is not possible without special
efforts. Some existing works adopt attribute-based encryption
(ABE) [17] to achieve privacy protection with access con-
trol [18], [19]. Due to the slow pairing-based computation
used in ABE, it is not suitable for the frequent publish and
subscribe operations in IoT. On the other side, symmetric
encryptions are more efficient compared to ABE and other
asymmetric encryption schemes. However, exchanging sym-
metric keys directly between publishers and subscribers would
break the decoupling of the system, while relying on a trusted
third party could result in a single point of failure. These issues
call for a privacy-preserving Pub/Sub system design with low
overhead and without breaking the decoupling nature.

In this article, we propose Galaxy, a scalable BFT and
privacy-preserving Pub/Sub IoT data sharing framework based
on blockchain. Galaxy adopts a two-layer architecture, com-
prising of a governance layer and a data layer. The governance
layer, which is a high-performance blockchain deployed in
cloud and maintained by representative IoT organizations, pro-
vides global management services, including cross-shard total
order and secret key sharing. The data layer is a multishard
blockchain system deployed on edge servers managed by dif-
ferent IoT organizations and provide clients with Pub/Sub
service. To achieve BFT Pub/Sub, Galaxy adopts sharding,
a widely used horizontal scaling technique, to improve scala-
bility of the underlying blockchain based on a partially random
shard assignment strategy. Within each shard, Galaxy achieves
complete BFT workflow by embedding a streamlined BFT
consensus module in each broker. To enhance the performance
of the BFT consensus, a crash and withholding avoidance
(CWA) leader rotation algorithm is proposed to avoid select-
ing failed nodes as leaders. To achieve privacy-preserving
Pub/Sub, Galaxy adopts symmetric searchable encryption
(SSE) [20] and advanced encryption standard (AES) [21]
to reduce the cryptographic computation overhead, and uses
threshold encryption [22] and access control list (ACL) to
share the symmetric keys through the governance layer with-
out destroying the decoupling nature of the system. We
implement a prototype of Galaxy and deploy it on Alibaba
Cloud for evaluation. The result shows that Galaxy achieves
3994 ops/sec and 3047 ops/sec with a total of 128 brokers

(4 shards each with 32 brokers) under LAN and WAN set-
tings, respectively. Moreover, the proposed CWA algorithm
outperforms the round-robin algorithm by a factor of 6× and
4× under the crash and withholding faults, respectively, when
the proportion of the simulated malicious nodes is close to
one third. Additionally, by comparing our privacy-preserving
Pub/Sub scheme with a representative existing work [23], the
results demonstrate our scheme is efficient and lightweight. In
summary, our contributions are as follows.

1) Trusted IoT Data Sharing Framework: We propose
Galaxy, a two-layer Pub/Sub IoT data sharing frame-
work based on blockchain that enables trusted IoT data
sharing across different organizations. Our framework is
decoupled and modular, making it easily extendable and
deployable on existing IoT systems.

2) Scalable BFT Pub/Sub Design: A partially random shard
assignment strategy is used to improve the scalabil-
ity of blockchain, a complete BFT Pub/Sub workflow
is designed and a novel leader rotation algorithm is
proposed to avoid electing a failed leader.

3) Lightweight Privacy-Preserving Pub/Sub Design: A
secret key sharing and an encrypted Pub/Sub scheme
is designed to achieve relatively low computational
overhead and avoid breaking the decoupling of the
system.

4) Prototype Implementation and Evaluation: We imple-
mented a prototype of Galaxy and deployed it on
Alibaba Cloud for evaluation. The results demonstrate
the effectiveness and feasibility of Galaxy.

The remainder of this article is organized as follows.
Section II reviews related works. Section III defines the system
model and gives an overview of Galaxy. We elaborate on the
Galaxy’s BFT Pub/Sub design in Section IV, followed by the
privacy-preserving Pub/Sub design in SectionV. In Section VI,
we evaluate a prototype of Galaxy and analyze the experiment
results. Finally, we conclude this article in SectionVII.

II. RELATED WORKS

In this section, we briefly review several related works on
blockchain-based IoT data sharing, fault-tolerant Pub/Sub, and
privacy-preserving Pub/Sub systems.

A. Blockchain-Based IoT Data Sharing

Due to the decentralization, traceability, and immutabil-
ity of blockchain, researchers have proposed many IoT data
sharing systems based on blockchain. Some works utilize
the blockchain to authenticate the validity of the data or
the clients. Shen et al. [24] proposed a blockchain-assisted
device authentication scheme for cross-domain communica-
tion in industrial IoT. They design an identity management
scheme to authenticate devices anonymously and a key agree-
ment mechanism to negotiate session keys between devices.
Fan et al. [25] presented a secure blockchain-based scheme
to ensure source data credibility in the fog environments
and use the attribute-based signature to achieve fine-grained
access control. He et al. [26] introduced a nested blockchain
framework with dynamic node selection for IoT data storage

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

5224 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

and identity authentication. Some works also design encryp-
tion schemes together with blockchain to achieve data privacy.
Zhang et al. [27] proposed a blockchain-assisted massive IoT
data collection and management framework. They use a col-
laborative identity verification protocol to ensure reliable data
source and a hierarchical data aggregation scheme to col-
lect IoT data efficiently and securely. Qi et al. [28] proposed
Cpds, a blockchain-based compressed and private data shar-
ing framework for industrial IoT. They adopt a tree-based
data compression method and an access control mechanism
based on attribute encryption. Li et al. [29] proposed a
privacy-preserving and rewarding data sharing scheme based
on blockchain. They also use deniable ring signatures to ensure
honest data users can refuse to be framed without revealing
their true identity.

Different from the above work, Galaxy achieves BFT
and privacy-preserving data sharing in a one-to-many, asyn-
chronous, and decoupled manner based on the Pub/Sub com-
munication paradigm and adopts a two-layer and modular
architecture which is scalable and incrementally deployable.

B. Fault-Tolerant Pub/Sub

Most existing Pub/Sub systems do not provide fault toler-
ance mechanism or only provide CFT [4], [7], [8], [9], [10].
For instance, Kafka [7], as a representative industrial Pub/Sub
system, uses ZooKeeper [30] or KRaft (Raft [12] implemen-
tation in the new version of Kafka) to reach consensus on
metadata among controllers. For the broker, Kafka allows pas-
sive replication within a replica group called partition. Systems
like Kafka are designed for applications in the data cen-
ters owned by the same organization, and cannot be directly
migrated to the scenario where brokers are deployed across
different organizations and lack mutual trust.

BFT consensus and SMR algorithms applied in blockchain
systems can be used to build decentralized trust in distributed
systems. Some works try to ameliorate Byzantine faults in the
Pub/Sub system by combining blockchain or traditional BFT-
SMR [6], [13], [14], [31]. Ramachandran et al. [6] proposed
Trinity, a system that combines MQTT broker [4] with existing
blockchain, including Ethereum [32], Hyperledger Fabric [33],
IOTA [34], and Tendermint [35]. Their solution completely
depends on the blockchain platform used, and only Tendermint
can realize deterministic BFT without relying on digital cur-
rency. Huang et al. [13] designed BPS, a blockchain-enhanced
Pub/Sub system based on Kafka [7]. BPS stores Pub/Sub
metadata and ACL into the blockchain to improve the secu-
rity level of Kafka. This scheme only uses the blockchain
as an auditing system and cannot guarantee the BFT of
the Pub/Sub service itself. Similarly, HyperPubSub [14] uses
Hyperledger Fabric [33] as an additional component for Kafka
to build a decentralized Pub/Sub service and does not achieve
BFT. Duan et al. [31] take BFT-SMaRt [36] as a module
of brokers to realize complete BFT Pub/Sub. However, the
scheme of running BFT consensus with high communica-
tion complexity among all brokers does not have sufficient
scalability.

Different from the aforementioned works, Galaxy adopts
a multishard architecture based on the high-performance
streamlined BFT consensus with a novel leader rotation
scheme to ensure both BFT and scalability of the system.

C. Privacy-Preserving Pub/Sub

Existing works employ different cryptographic primitives
to protect the privacy of pub-sub systems, but their schemes
have different limitations in our scenario. ABE [17] is an
encryption scheme that can realize attribute-based access con-
trol and some works use ABE to achieve fine-grained privacy.
Ion et al. [18] proposed a Pub/Sub system that achieves con-
fidentiality and access control by combining ABE and proxy
encryption [37]. Yang et al. [38] used dual-policy ABE [39]
to construct a privacy-preserving attribute-keyword search
scheme for Pub/Sub systems on cloud platforms. The rea-
son why ABE is not used in our work is that the relatively
slow pairing-based cryptography computations used in ABE
make it not suitable for frequent Pub/Sub operations in a
practical system. On the contrary, symmetric encryption can
provide higher efficiency under the risk of breaking decou-
pling. Crescenzo et al. [40] designed a three-party Pub/Sub
protocol based on symmetric encryption and the third party
should be honest in their scheme. Similarly, Rao et al. [41]
proposed a filter privacy-aware system based on the content-
based Pub/Sub model, and a trusted anonymous engine is
needed in the proposed system. Gaballah et al. [42] designed
an anonymous Pub/Sub protocol using distributed point func-
tions and private information retrieval. However, their scheme
requires relatively complex computations and relies on syn-
chronicity assumptions, which is not practical in our scenario.
Cui et al. [23] proposed a privacy-preserving Pub/Sub system
to resist collusion attacks between brokers and clients. Their
scheme adopts SSE and key-policy attribute-based encryption
(KP-ABE) scheme to achieve encrypted Pub/Sub matching and
access control, which is similar to our work. However, their
system is not totally BFT and relies on a centralized TA to
distribute the symmetric key.

Based on the above works, Galaxy adopts searchable sym-
metric encryption in the Pub/Sub process to ensure low
computational overhead and adopts a tag-based threshold
encryption together with BFT consensus to share symmet-
ric keys and avoid coupled key sharing or centralized key
management.

III. OVERVIEW OF GALAXY

In this section, we define the system model and give a high-
level overview of Galaxy.

A. System Model

Galaxy assumes a partial-synchronous network model [43],
where there exists an unknown global stabilization time (GST),
the network can behave asynchronously till GST. After GST,
any message can be delivered within a bounded duration �.
For both the governance layer and the data layer, Galaxy
adopts the authenticated setting used in the permissioned
blockchain, that is, there exists a public key infrastructure

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GALAXY: A SCALABLE BFT AND PRIVACY-PRESERVING PUB/SUB IoT DATA SHARING FRAMEWORK 5225

(PKI) system and the public key of each node is known by all
entities. Galaxy assumes that each client registers an identity
within an organization and sends messages to nodes within
his/her organization, so we do not consider DDoS attacks.
The permissioned blockchain model is chosen by Galaxy for
two reasons: compared with the public blockchain, the node
identities are easier to manage and more suitable for the
security needs of a block-based system for IoT. In addition,
more efficient and deterministic consensus algorithms can be
adopted. However, the design of Galaxy can also be gen-
eralized to permissionless scenarios by incorporating hybrid
consensus [44].

Galaxy assumes the nodes at the data layer are divided into
S blockchain shard and each shard contains ni (1 ≤ i ≤ S)

nodes. Galaxy assumes the single blockchain at the gover-
nance layer contains m nodes. Galaxy assumes a Byzantine
fault model, where at most f nodes within each shard or
within the governance ledger are Byzantine nodes (we assume
f < �ni/3� and f < �m/3�). Galaxy also assumes the com-
munication channels between the honest nodes and clients
are authenticated point-to-point channels and these channels
are encrypted with TLS/SSL or other cryptographic proto-
col. Byzantine nodes may behave arbitrarily and collude with
each other, but cannot compromise the communication chan-
nels between honest nodes and clients. Moreover, Galaxy
assumes an adversary with polynomial time computing power
can control faulty nodes and the adversary cannot break our
cryptographic primitives.

B. System Overview

Galaxy consists of a governance layer and a data layer in
a two-layer hierarchical structure, as shown in Fig. 1. The
data layer is a multishard blockchain network deployed on
edge servers managed by different IoT organizations. Shards
run in parallel and each shard has its own blockchain ledger.
The data layer nodes implement BFT Pub/Sub service in the
application layer and we refer to the data layer nodes as bro-
kers. The Pub/Sub service in Galaxy is designed based on the
topic-based and push-based Pub/Sub model, and only con-
siders online clients connected to brokers, which is similar
to MQTT [4]. Each subscription contains one or more spe-
cific topics of interest to a client. Each publication consists
of a header and a payload, and the header contains one or
more topics for matching with the subscriptions. When a bro-
ker receives a new publication, it matches the subscription
stored locally and pushes the matching publication to all sub-
scribers interested in the related topics. Unlike the multishard
blockchain in the data layer, the governance layer consists
of a high-performance permissioned blockchain with smaller
network size called governance ledger, which is deployed in
the data centers within cloud. The nodes in the governance
layer are maintained by a few representative IoT organiza-
tions and management services, including secret key sharing
and cross-shard message total order are implemented at the
application module.

Each Galaxy node achieves functional decoupling through a
modular design, as depicted on the right of Fig. 1: The network

module is responsible for the communication between node
and clients, as well as between nodes; the consensus module
implements BFT consensus and provide interfaces not tied to
specific consensus algorithms for the application module; the
application module implements specific application services
by calling the interface provided by the consensus module,
which is the main difference between the data layer and the
governance layer; the storage module implements the stor-
age of the latest data (we implement it as a key-value store)
and the append-only blockchain ledger; The crypto module
implements the encryption and signature primitives required
by other modules, including the threshold encryption and the
SSE schemes used in our privacy-preserving Pub/Sub design.
Galaxy’s modular architecture enables the modules to be easily
replaced, extended, and allows for incremental deployment on
existing IoT frameworks. More implementation details are dis-
cussed in Section IV-A. Next, we briefly introduce the BFT
Pub/Sub and privacy-preserving Pub/Sub design of Galaxy,
respectively.

BFT Pub/Sub Design: Galaxy adopts sharding, a horizon-
tal scaling technology widely used in distributed systems, to
improve the scalability of the data layer. Due to the limita-
tion of the number of malicious nodes in BFT consensus, our
sharding strategy not only adopts randomness but also con-
siders the relationship between organizations to better ensure
the safety of each shard. For each broker in the data layer, we
have implemented a complete BFT Pub/Sub workflow based
on the BFT consensus and provided a series of simple APIs for
clients. The implementation of our consensus module is based
on the streamlined BFT consensus Hotstuff [45] to ensure
O(n) message complexity and optimistic responsiveness. In
addition, we implemented the leader rotation algorithm as an
independent function in the consensus module and propose a
CWA leader rotation scheme instead of the traditional round-
robin scheme in order to avoid selecting the failed nodes as
leaders, and thus improve the performance of consensus. More
details of our BFT Pub/Sub design are explained in Section IV.

Privacy-Preserving Pub/Sub Design: To achieve data invisi-
bility to both brokers and unauthenticated subscribers with low
computational overhead and without violating the decoupling,
the privacy-preserving Pub/Sub design of Galaxy includes two
phases: 1) secret key sharing and 2) encrypted Pub/Sub. In the
secret key-sharing phase, different organizations use thresh-
old encryption together with an ACL to share the symmetric
keys used for SSE and AES through the governance ledger
without destroying the decoupling nature of the system. In
the encrypted Pub/Sub phase, Galaxy adopts SSE to encrypt
the publication headers and subscriptions for secret matching
and uses AES to encrypt the publication payload. We intro-
duce more details of our privacy-preserving Pub/Sub design
in Section V.

IV. BFT PUB/SUB DESIGN

In this section, we elaborate on how Galaxy achieves BFT
Pub/Sub. First, we present how Galaxy assigns brokers into
different shards in a partially random manner. Second, we list
the client APIs related to the BFT Pub/Sub service and their

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

5226 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

Fig. 1. Overview of Galaxy. The two-layer architecture of Galaxy (left), and the modular design of a Galaxy node (right).

Fig. 2. Example of comparison between completely random shard assignment
and our scheme.

workflows provided by brokers within each shard. Finally, a
novel leader rotation mechanism is proposed to improve the
performance of the leader-based BFT consensus.

A. Shard Assignment

Sharding is one of the most commonly used horizontal
scaling methods in distributed systems. Unlike traditional dis-
tributed systems, since malicious nodes need to be less than a
certain proportion, the use of sharding in blockchain systems
requires a tradeoff between safety and scalability. Being a
blockchain-based Pub/Sub system, Galaxy has to ponder over
how to assign nodes to shards in the data layer to limit the
proportion of malicious nodes within each shard. Most of
the existing blockchain systems employ a completely random
assignment method to achieve probabilistic security [46], [47].
However, we argue that a completely random method does
not conform to the real requirements of the permissioned
blockchains and the proportion of nodes between organizations

within each shard should be taken into account. This idea
comes from a key observation: In permissioned blockchains,
the units of trust are organizations rather than independent
nodes. While organizations usually have enough computing
resources to deploy a large number of nodes to meet the proba-
bilistic security within each shard, the number of organizations
is often limited. All the nodes within an organization may
intentionally collude and break the safety of BFT consensus,
so it is necessary to control the proportion of nodes belong-
ing to each organization within each shard. A simple example
of completely random shard assignment is shown on the left
of Fig. 2. In this case, the number of nodes belonging to an
organization within each shard is likely to exceed one-third,
so a malicious organization can easily destroy the safety of
a shard, such as the Organization B within Shard 4. More
formally, we can use the hypergeometric distribution to esti-
mate the probability of selecting a faulty shard. We assume
the overall network size K = M ∗ N, where M is the number
of organizations and N is the number of nodes within each
organization (here we assume the number of nodes in orga-
nizations is equal for simplicity). We also assume there are
F out of M organizations are Byzantine. Let X be the ran-
dom variable that represents the number of Byzantine nodes
assigned to a shard, the probability of selecting a faulty shard
of size n is

P(X ≥ f) =
n∑

x=f

(FN
x

)(K−FN
n−x

)
(K

n

) .

Let f = �n/3� and F = �M/4�, each shard should con-
tain at least 297, 492, 579, and 621 nodes to keep the faulty

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GALAXY: A SCALABLE BFT AND PRIVACY-PRESERVING PUB/SUB IoT DATA SHARING FRAMEWORK 5227

Algorithm 1 Partially Random Shard Assignment
Input:

The M organizations: O = {O1, O2, ..., OM}
The Ni nodes within Oi: Pi =

{
P1

i , P2
i , ..., PNi

i

}
, 1 ≤

i ≤ M
Output:

The S shards: D = {D1, D2, ..., Dk}

1: Initialize Dk ← ∅ for each 1 ≤ k ≤ S
2: for each organization Oi in O do
3: Ri ← VRF(SKi, Oi)

4: Assignedi ← ∅
5: end for
6: for each shard Dk in D do
7: C ← 	min Ni

S
, 1 ≤ i ≤ M
8: for each organization Oi in O do
9: while |Assignedi| < C do

10: Randomly select Pj
i based on Ri

11: if Pj
i /∈ Assignedi ∨ |Assignedi| = Ni then

12: Dk ← Dk ∪ Pj
i

13: Assignedi ← Assignedi ∪ Pj
i

14: end if
15: end while
16: end for
17: end for
18: return D

probability under 2−20 when the overall network contains 2,
4, 8, and 16 shards, respectively.

In this section, we propose a partially random shard assign-
ment method so that the proportion of nodes belonging to each
organization in each shard is equal, as depicted on the right
of Fig. 2. In our scheme, as long as the number of Byzantine
organizations participating in the system is less than one-third,
the shard assignment can achieve deterministic security regard-
less of the shard size. The shards assignment process is given
in Algorithm 1. We assume that the number of shards is S, and
Dk represents the kth shard. All organizations participating in
the system register their brokers in the governance ledger. We
assume there are M organizations (M ≥ 4) and each orga-
nization Oi registers Ni nodes. The id of each node is Pj

i,
where i represents the organization it belongs to and j rep-
resents its number within the organization. Each organization
also generates a random number Ri and a proof π(Ri) by using
a verifiable random function (VRF) [48] based on its public
key SKi

Ri ← VRF(SKi, Oi)

π(Ri) ← VRF_Proof(SKi, Oi).

Here, Ri is used as a random source for the node assignment
process within each organization and π(Ri) can be used to
verify the authenticity of Ri by other organizations with the
public key PKi of Oi. For each shard Dk, Galaxy randomly
selects C nodes within each organization Oi by computing a
permutation of the nodes identifiers based on Ri. The selec-
tion of C here needs to ensure that the nodes in each shard

can be evenly selected from all organizations, even for the
organization with the least number of nodes

C =
⌈

min Ni

S

⌉
, 1 ≤ i ≤ M.

In other words, Galaxy uniformly selects a total of
M	min Ni/S
 nodes from all the organizations for each shard.
We choose 	min Ni/S
 as the number of nodes selected in
each organization because we try to avoid the situation where
one node is assigned to different shards, while ensuring that
each organization has a sufficient number of nodes to be
assigned. In addition, Galaxy gives priority to selecting nodes
that have not been assigned to a shard. However, when the
number of nodes is insufficient, some nodes may need to
participate in more than one shard, which will bring greater
computation and storage overhead to such nodes, and thus
there is a tradeoff between performance and safety. Moreover,
for organizations with an insufficient number of nodes, they
can choose to register more nodes in the next shards assign-
ment phase; when the number of registered nodes in the
organization is too large, some nodes within the organization
will not be allowed to join any shards and the organization
can choose to run CFT consensus algorithms between nodes
within its organization to achieve higher availability.

After the shard assignment is completed, each shard runs
its BFT consensus instance independently, providing Pub/Sub
services for a range of topics. To determine the corresponding
shard for each topic, our current implementation maps each
topic to the target shard Dtopic based on hashing

Dtopic = Hash(topic) mod S+ 1.

For resource-constrained IoT clients, they can choose to rely
on trusted proxies to forward messages to the correspond-
ing shard. Notice that we choose this load balancing strategy
only for the implementation simplicity and other application-
specific load-balancing methods can also be used for Galaxy,
which is orthogonal to our work.

B. Pub/Sub Workflow

In each shard of the data layer, Galaxy provides a list
of APIs for clients to perform BFT Pub/Sub. We assume
that the message sent by the client can be expressed as
〈op, data〉, where op represents the operation type, and data
is the data conforming to a specific operation type. In this
section, we describe the client APIs provided by Galaxy and
their workflows in detail.

Authenticate: First, each client preregisters an identity and
obtains a verifiable token using the TA within its organiza-
tion. The client sends the token in the data field to a broker
within the same organization, and the broker decides whether
to establish a connection with the client after verifying the
token. We did not choose to achieve consensus on the client’s
authentication message among brokers for two reasons. First,
the malicious behaviors of the clients, such as spam attacks,
are not the main concern in the permissioned blockchain [49].
Second, the client’s signature is included in subsequent mes-
sages and recorded on the blockchain, enabling subsequent
auditing.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

5228 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

Subscribe: The client sends subscriptions, including a list
of topics in the data field to the broker, and the broker broad-
casts it to all brokers. Next, the BFT consensus algorithm runs
among the brokers to reach an agreement on the subscription.
Here, we choose to implement HotStuff [45] as the consensus
module of the broker to ensure performance and responsive-
ness. We briefly introduce a generic phase in HotStuff: The
leader of the current view batches messages into a block and
broadcast it to all brokers. Brokers verify the block and send a
vote to the leader of the next view, and the next leader will col-
lect a quorum of votes to form a quorum certificate (QC) and
include the QC in the next proposed block. When a block is
certified by three QCs, the block is considered committed. Our
implementation is based on the event-driven HotStuff and we
refer the readers to the raw paper for full details [45]. When
the subscription is committed, the consensus module hands
over the subscription to the Pub/Sub module, and the Pub/Sub
module stores the subscription in the local key-value database.
Finally, the broker to which the client is connected sends a
reply to the client indicating the successful commitment of
the subscription.

It is worth noting that Galaxy does not force the client to
wait for at least f + 1 replies to ensure safety like traditional
BFT SMR. In Galaxy, clients can choose which trusted brokers
to connect to and use the replies for verification based on their
own conditions. Here, the number of brokers, which is called
a custom quorum by us, is a tunable parameter in our system.
We made this design choice for three reasons.

1) In our system model, we assume clients only establish
connections with brokers belonging to their own organi-
zation, so there is a trust relationship between the clients
and the brokers. The way of obtaining information from
some trusted nodes is common even in permissionless
blockchains.

2) In order to receive at least f + 1 replies, the client
needs to maintain connections with all or at least
most of the brokers, which is impractical for some
resource-constrained clients in IoT.

3) Finally, the user can broadcast a Read operation, which
we will describe below, to collect at least f + 1 replies
to ensure the safety of particular messages. Galaxy also
uses a similar way to send replies to the clients who
initiate the Unsubscribe and Publish operations.

Unsubscribe: Similar to the Subscription operation, the
client sends a list of topics to the brokers to perform unsub-
scription. After the consensus between the brokers is com-
pleted, the Pub/Sub module of each broker is responsible for
deleting the corresponding subscriptions in the local storage.
The broker connected by the client sends a reply to the client
indicating the success of the Unsubscribe operation.

Publish: The client sends a publication in the data field to
the broker. Each publication contains a header and a payload.
The header contains a series of topics and other metadata.
Similar to the subscription operation, the publication is first
replicated among brokers through the consensus module. After
the consensus, the Pub/Sub module of each broker will check
whether there is a subscription from the clients currently con-
nected that matches the topics in the publication header. If yes,

the broker will forward the publication to the corresponding
client. Otherwise, the publication is discarded by the Pub/Sub
module. The broker connected by the client also sends a reply
to the client indicating the result of the Publish operation.

Read: Although Galaxy is a push-based Pub/Sub system,
we also provide a simple Read API for clients to obtain mes-
sages for verification proactively. The client broadcasts a Read
operation to all or a part of brokers to request a specific block
by specifying the block number in the data field. These bro-
kers return the corresponding block to the client. The user
needs to collect at least f +1 replies to ensure absolute safety.
However, since the brokers discard the blocks that have not
been subscribed to and do not record the locations the clients
have read, the Read operation in Galaxy is only an auxiliary
operation and does not provide the same guarantee as those
pull-based Pub/Sub systems [7], [10], [13].

Cross-Shards Total Order (CSTO) Publish: While intrashard
total order may be adequate in most situations, sometimes
clients want to realize the total order among publications
across different shards [10], [50]. In particular, Galaxy’s
governance ledger determines a global total order of the
cross-shards publications by implementing an optional CSTO
Publish API, which is used to verify and order publications
from different shards.

To determine the cross-shard total order of a publication, the
sender of the publication changes the op tag in the publication
from Publish to CSTO Publish. Here, we denote a CSTO pub-
lication as P. After the consensus on the block B containing P
is reached, the broker, to which the sender connected, sends a
transaction in the form of 〈op, Hp, Hroot, Proof , QC, desc〉
to the governance ledger, where op represents the transaction
type (CSTO Publish), HP is the hash of P, Hroot represents the
Merkel tree root hash of the block B, Proof is the Merkle proof
proving that P belongs to the Merkle tree with root Hroot, QC
is a list of QCs (in HotStuff, QC needs to form a three chain)
showing that the block with Hroot has been committed, and
desc is a description of the publication to help the governance
ledger perform ordering. The governance ledger runs another
BFT consensus to verify and order this CSTO transaction. The
ordering can be performed based on any deterministic meth-
ods, such as shard id, timestamp, or other specific application
semantics through desc. After a list of CSTO publications is
committed in the governance ledger, clients can determine the
cross-shard total order of these publications by querying the
governance ledger.

C. CWA Leader Rotation

In the leader-based BFT consensus like HotStuff, the leader
rotation usually adopts a round-robin scheme. Although this
scheme is simple and fair, it inevitably elects malicious nodes
into the leader periodically, which can significantly degrades
the performance of the consensus algorithms such as HotStuff
which rotates the leader frequently. Due to the complexity of
the Byzantine behaviors, we focus on mitigating the following
two problems.

Crash: Crash here means that the node appears to be sus-
pended, that is, the faulty node does not propose messages

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GALAXY: A SCALABLE BFT AND PRIVACY-PRESERVING PUB/SUB IoT DATA SHARING FRAMEWORK 5229

or participate in consensus voting. This problem can come
from the failure of honest nodes or the intentional behavior of
malicious nodes, which is indistinguishable in the Byzantine
model. Galaxy chooses to consider this problem because it is
an extremely common fault in a large-scale distributed system
where different servers may go down frequently.

Withholding: Here, we use Withholding to refer to the type
of malicious node that does not propose messages when act-
ing as a leader, but participates in voting normally. This is a
simple but powerful attack strategy in a partial-synchronous
consensus like HotStuff: the system needs to wait for �

time to trigger a timeout and elect the next leader, and usu-
ally the implementation will extend the parameter � after
each timeout to ensure the liveness. As a result, frequently
electing a Withholding node as the leader can lead to a
long-term loss of liveness of the system. To make matters
worse, Withholding nodes are hard to blame in this case,
since they can attribute their behavior to a temporary network
asynchrony.

A recent work [15] selects the next leader from the vot-
ers of the latest committed block to avoid the crash nodes.
However, their method lacks specifications on the deterministic
approach used to select the leader, which may hinder hon-
est nodes from reaching a consensus on the latest committed
block due to network asynchrony. Inspired by their work, we
designed a CWA leader rotation algorithm to elect the leader
in each view. In particular, our approach addresses the fol-
lowing two challenges: First, consensus needs a leader, and a
leader election also needs to reach a “consensus” among all
honest nodes. In order to avoid falling into a chicken-and-egg
problem, in the CWA algorithm, each node calculates a rep-
utation map based on its local blockchain. Honest nodes can
get the same reputation map, and use a deterministic method
to select the same node with a high reputation. We also added
an attenuation and an upper limit of the reputation of each
node to avoid monopoly. Second, due to network asynchrony,
the last block committed by honest nodes may be different,
that is, the blockchain of an honest node may be a prefix of
the other, which can cause the honest nodes to fail to agree
on the same reputation map for a long time. To address this
challenge, we introduce the concept of reference block instead
of relying on the last committed block to ensure that honest
nodes consider the same blockchain prefix and get the same
reputation map. Additionally, we also define a tunable delay
parameter to tradeoff between capturing the recent behavior of
nodes and possible temporary inconsistency. Moreover, we use
the round-robin algorithm as a fallback to ensure liveness in
the case of occasional temporary inconsistency when the refer-
ence block has not been committed. Fig. 3 illustrates a simple
example of the CWA leader rotation algorithm to demonstrate
its basic idea.

The complete process of the CWA leader rotation algorithm
is given in Algorithm 2. It is a function that runs independently
on each node, the input is a view number V , and the return
value is the node id of the view V’s leader. First, we get the
view number Vlc of the last committed block (note that Vlc

may be different for different honest nodes) and we calculate
the reference view Vref by subtracting a delay parameter D

Fig. 3. Simple example to show the basic idea of the CWA algorithm.
Dashed blocks represent blocks that have not yet been committed and the
number on each block represents its view number. Nodes A and B both want
to get the leader of view 10, but their underlying blockchains are different
(node A has committed the blocks to view 7 but node B has only committed
the blocks to view 6). By specifying a delay parameter, they locate the same
reference block (view 5) committed by both nodes and use the same prefix
of the blockchain to calculate the reputation.

from V

Vref ← V − D.

For different nodes within the same view, V and D are the same
and thus their calculated reference views are also the same.
Therefore, honest nodes all consider the same blockchain pre-
fix formed by the reference view and its previous view blocks.
If Vref is greater than Vlc, that is to say, the current node has
not committed the block of Vref, then the node falls back to
the round-robin. In this case, the nodes within the system may
enter a temporary inconsistency, but they can eventually reach
a consensus by using the round-robin fallback and making Vlc

exceed Vref. In addition, the likelihood of this inconsistency
can be reduced by increasing D, but a larger D also means
that only the behavior of earlier views of the nodes can be
captured, which is a tradeoff depending on the implementa-
tion and deployment environment. In addition, in HotStuff, D
needs to be greater than 3 to ensure that the reference block
can be committed. If Vref is less than Vlc, the node updates its
local reputation map M with blocks from view Vcal + 1 to V ,
where Vcal is a local variable storing the view number of the
last block that has been calculated in the reputation computa-
tion, the key of M is the id of each node and the value is its
reputation. The CWA algorithm adds Rp to the reputation of
the proposer of each block, and Rv to the reputation of each
voter

M[Bi.PROPOSER()]← M[Bi.PROPOSER()]+ Rp

M[Pvoter]← M[Pvoter]+ Rv.

In order to avoid monopoly, Galaxy also multiplies the repu-
tation value of each node by a decay parameter α (α < 1) for
each block, and sets a reputation upper limit Rmax. After updat-
ing the reputation map, the CWA algorithm chooses leader
candidates in a similar way to [15] to ensure chain quality,
that is, we exclude the proposers set Pexclude of the first f
blocks from the voter of the reference block

Candidates← Votersref \ Pexclude.

Finally, the CWA algorithm selects the node with the highest
reputation from the candidates set as the leader of view V .

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

5230 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

Algorithm 2 CWA Leader Rotation Algorithm
1: // Return the leader of view V
2: function GETLEADER(V)
3: // Get the last committed block and its view number
4: Blc ← GETLASTCOMMITTEDBLOCK(V)
5: Vlc ← Blc.VIEW()
6:

7: // Get the reference view
8: Vref ← V − D
9: if Vref > Vlc then

10: // Fallback to round-robin
11: return ROUNDROBIN(V)

12: end if
13:

14: // Get the reference block by its view number
15: Bref ← GETBLOCKBYVIEW(Vref)

16:

17: // Update the reputation map
18: for Vi ← Vcal, Vref do
19: Bi ← GETBLOCKBYVIEW(Vi)

20: M[Bi.PROPOSER()]← M[Bi.PROPOSER()]+ Rp

21: for Pvoter in Bi.VOTERS() do
22: M[Pvoter]← M[Pvoter]+ Rv

23: end for
24: for j← 1, N do
25: M[Pj]← α ·M[Pj]
26: if M[Pj] > Rmax then
27: M[Pj]← Rmax
28: end if
29: end for
30: end for
31: Vcal ← Vref

32:

33: // Get voters of the reference block
34: Votersref ← Bref .VOTERS()

35: // Find the first f proposers of the reference block
36: Pexclude ← ∅
37: while |Pexclude| < f ∧ Bref �= Bgenesis do
38: Pexclude ← Pexclude ∪ Bref .PROPOSER()

39: Bref ← Bref .PARENT()

40: end while
41:

42: // Choose the candidates of the leader
43: Candidates← Votersref \ Pexclude

44:

45: // Eelect the leader
46: Leader← arg max

P∈Candidates
M[P]

47:

48: return Leader
49: end function

V. PRIVACY-PRESERVING PUB/SUB DESIGN

In this section, we introduce the Pub/Sub privacy protection
scheme in Galaxy. We first analyze Pub/Sub privacy
requirements and challenges of a Pub/Sub system and give an

overview of our scheme by introducing the design philosophy
of Galaxy, and then we describe the two phases of our
proposed scheme in detail: 1) the secret key sharing phase
and 2) the encrypted Pub/Sub phase.

A. Design Philosophy

Although the BFT consensus allows nodes to ensure data
consistency even in the presence of malicious nodes, one
problem remains unsolved: there is a large amount of privacy-
sensitive data in the IoT, such as medical records, geographic
locations, etc. In the absence of effective privacy-preserving
methods, passive attackers can easily obtain the content of
clients’ subscriptions and publications, and the transparency
of the blockchain makes the situation even worse. In real-
ity, the senders may only want to share information among
the users they designate. Therefore, it is necessary to design a
scheme to achieve fine-grained privacy protection of messages
without destroying the advantages brought by the blockchain.
In particular, Galaxy aims to achieve the following two
requirements.

1) Invisibility to Unauthenticated Subscribers: If a correct
publisher submits a publication P on a topic T , then
P should not be accessed by subscribers who do not
subscribe to the topic T or do not have access right on P.

2) Invisibility to Brokers: Brokers need to be able to match
publications and subscriptions without knowing their
actual content.

However, it is not easy to meet the above requirements under
a Pub/Sub system. Specifically, Galaxy addresses the following
two prominent challenges.

1) Achieve Low Computational Overhead: ABE is a
promising encryption method that implements fine-
grained access control and is adopted in several existing
works. However, for high-frequency Pub/Sub oper-
ations, using asymmetric encryption like ABE will
bring huge computation overhead. In Galaxy, we
choose to use symmetric encryption to reduce compu-
tation overhead. In particular, we apply dynamic SSE
to subscriptions and the headers of publications to
implement secret matching between subscriptions and
publications.

2) Guarantee the Inherent Decoupling of Pub/Sub: A
direct key exchange between publishers and subscribers
would break the decoupling of the system while rely-
ing on a trusted third party could be a single point
of failure. In Galaxy, we choose to apply threshold
encryption to encrypt and share symmetric secret keys
in a decentralized manner with the help of the gover-
nance ledger. Our scheme ensures that the key requester
can decrypt the symmetric key used by the Pub/Sub
encryption only after obtaining the decryption shares
from at least f + 1 nodes (i.e., at least one honest
node).

In general, Galaxy’s privacy-preserving Pub/Sub scheme is
divided into two phases: 1) the key sharing phase and 2) the
encrypted Pub/Sub phase. Next, we will elaborate on these
two phases, respectively.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GALAXY: A SCALABLE BFT AND PRIVACY-PRESERVING PUB/SUB IoT DATA SHARING FRAMEWORK 5231

B. Secret Key Sharing

In this section, we describe how Galaxy uses a tag-based
threshold encryption scheme to share the symmetric secret
keys among blockchain nodes in the Pub/Sub process. Our
threshold encryption scheme extends Ghadafi’s distributed tag-
based encryption scheme [51] by deploying the Shamir secret
sharing [52] to compute the secret keys of nodes.

Setup: We assume that the number of nodes in the gov-
ernance ledger is n, and we set up an (f + 1, n) threshold
encryption scheme. A threshold encryption Setup algorithm
takes the total number of nodes n, the threshold parame-
ter t (t = f + 1) and a security parameter λ as inputs,
and output (TPK, TSK, TVK), where TPK is a public key,
TSK = (TSK1, TSK2, . . . , TSKn) is a list of private keys, and
TVK = (T = (TSK1, TVK2, . . . , TVKn) is a list of verification
keys. TPK is used as a systems parameter in Galaxy and each
node Pi of the governance ledger has its own private key TSKi

and TVKi, 1 ≤ i ≤ n. In addition, a client A generates its SSE
secret key pair (SKsse, SKaes) by using the TA in its organiza-
tion, where SKsse is the secret key used by SSE and SKaes is
the secret key used by AES.

Key Encryption: The client A runs a threshold encryption
algorithm Encrypt, takes the secret key pair (SKsse, SKaes), an
access control list ACL, and the threshold public keys TPK as
inputs, and outputs the encrypted key pair Ckey. Here, ACL is
used as the tag to prevent chosen ciphertext attack.

Key Publication: To make the secret key pair available to
other clients, the client A attaches the access control list ACL
to Ckey (here our implementation is based on organization id
access control, but it can also be extended to attribute-based
or other access control), and sends a key publication transac-
tion including (ACL, Ckey) to the governance ledger. During
the consensus, each node Pi runs a ciphertext validation algo-
rithm IsValid to verify the transaction. IsValid takes the public
key TPK, the access control list ACL, and the encrypted key
pair Ckey as inputs, and outputs 1 if Ckey is valid or 0 other
wise. After the consensus, (ACL, Ckey) is replicated at every
node in the governance ledger if the transaction is valid.

Decryption Share Generation: A client B tries to get the
latest key published by a client A from the governance ledger
by broadcasting a request to all the nodes in the governance
ledger. Each node in the governance ledger independently
verifies whether the organization to which client B belongs
satisfies the ACL issued by client A. If yes, the node i
runs a threshold decryption algorithm Decrypt that takes the
encrypted key pair Ckey and its threshold private key TSKi

as inputs, and outputs a decryption share σi. Each node Pi
sends its decryption share σi with its verification key TPKi

to client B, respectively. Since our system model assumes
that the attacker cannot compromise the communication chan-
nel between the honest nodes and clients, the attacker cannot
obtain more than f decryption shares and thus the original
message cannot be recovered.

Key Recovery: After receiving each decryption share, the
client B can run a share verification algorithm ShareVerify
which takes the public key TPK, the verification key TPKi,
the access control list ACL, the encrypted key pair Ckey,

and the decryption share σi as inputs, and outputs 1 if σi

is valid or 0 otherwise. After collecting at least f + 1 valid
decryption shares, the client B runs a message recovery algo-
rithm Combine. The algorithm takes the encrypted key pair
Ckey and the f + 1 decryption shares (σ1, σ2, . . . , σf+1) as
input, and outputs the raw secret keys (SKsse, SKaes) used
in the encrypted Pub/Sub phase, which we will introduce
next.

C. Encrypted Pub/Sub

In this section, we introduce how to encrypt publications and
subscriptions based on the keys published on the governance
ledger and how the brokers complete anonymous matching
of publications and subscriptions based on the dynamic SSE
scheme [20].

Subscribe: We define a subscription as S and the list of
topics included in S as T . A subscriber runs a Setup algorithm,
takes the SSE secret key SKsse and the topic list T as inputs,
and outputs an encrypted topic list ET . The subscriber replaces
T in the subscription S with ET and sends S to the brokers.
ET is stored by the brokers for later searching.

In order to add new topics to an existing subscription, the
subscriber runs an InsertToken algorithm that takes SKsse, the
list of new topics to be added Tnew as inputs, and outputs
an insert token itk. The subscriber replaces T in the sub-
scription S with itk and an add operator, and sends S to the
brokers using the Subscribe API. Each broker processes the
subscription S after consensus and runs an Insert algorithm
which takes ET and itk as input, and generates a new topic
list ET ′.

Unsubscribe: To delete existing topics from an existing sub-
scription, the subscriber runs an DeleteToken algorithm that
takes SKsse, the list of existing topics to be deleted Tdel as
inputs, and outputs a delete token dtk. The subscriber replaces
T in the unsubscription US with dtk and a delete operator and
sends US to the brokers using the Unsubscribe API. Each bro-
ker processes the unsubscription US after consensus and runs
an Delete algorithm which takes ET and dtk as input, and
generates a new topic list ET ′.

Publish: We define a publication as P. For the topic list
Tpub in the header of P, a publisher runs a SearchToken algo-
rithm to encrypt the topic list as an SSE search token. It uses
the SSE secret key SKsse and Tpub as inputs and outputs a
search token stk. For the payload, Ppub of P, the publisher
uses the AES secret key SKaes to encrypt Ppub as a cipher-
text Cpub. The publisher sends the encrypted publication P,
including stk and Cpub to the brokers. After the consensus,
each broker runs a Search algorithm. It takes the stk in the
header of P, the SSE secret key SKsse and the encrypted
database containing all subscriptions EDB as inputs and out-
puts all the subscription identifiers Umatch matching the topic
list Tpub. For the subscriber Subi of each subscription Si in
Umatch, if Subi is connected to the current broker, then the bro-
ker forwards P to Subi. After receiving P, Subi runs an AES
decryption algorithm. The decryption algorithm uses SKaes and
the encrypted payload Cpub as inputs and outputs the origin
publication Ppub.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

5232 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

VI. EVALUATION

In this section, we first introduce our implementation and
experimental setup, and then we present the evaluation results
as follows.

1) The overall performance of Galaxy under different
experimental settings.

2) The BFT scalability and resilience of Galaxy under
different experimental settings.

3) The time costs of cryptographic primitives used in
Galaxy and its comparison with Cui et al.’s scheme [23].

A. Implementation and Evaluation Setup

We implemented a prototype of Galaxy in Go. The network
module is implemented with a gRPC wrapper Gorums [53]
to invoke quorum calls. The consensus module is imple-
mented based on the event-driven HotStuff, and interacts
with other modules by providing interfaces, such as message
proposal, verification, and commitment. The storage module
maintains a blockchain and an in-memory key-value database.
The blockchain is an append-only log which records all the
committed messages. The key-value database records the cur-
rent user subscriptions to facilitate the query of the broker,
similar to the world state in the Hyperledger Fabric [33]. In
order to reduce the storage overhead, a broker can choose
to periodically prune the unwanted part or use the check-
point technology in the append-only ledger. The crypto module
implements cryptographic primitives used by the consensus
module and the Pub/Sub module. We implement the adopted
threshold encryption scheme in Go and implements the bilin-
ear group operations with the bn256 package [54]. For the SSE
scheme, we used a dual secure SSE scheme [20] by extending
and wrapping the Clusion Java library [55].

We deployed the prototype on 16 Alibaba Cloud
ecs.c7.xlarge servers (each with 4 vCPU and 8-GB memory).
We assume that different servers belong to different organi-
zations. In different experimental settings, a controller that
implements our shard assignment strategy evenly distributes
brokers across different shards.

B. Overall Performance

Performance of the Data Layer: First, to demonstrate the
performance of the data layer, we deployed a total of 128 bro-
kers (8 brokers on each server) and 1280 clients (10 clients
connecting to each broker). Brokers are divided into four
shards (32 brokers per shard) and different shards run in paral-
lel. We chose to take the throughput and latency of the publish
(with SSE) operations as the performance metric and we do
it for two reasons.

1) Publish operations are more frequent than subscribe
operations in most scenarios.

2) Publish operations (with SSE) are more expensive than
publish (without SSE) and subscribe operations since
brokers need to invoke the SSE search primitive.

As a result, using publish (with SSE) as the performance met-
ric can show the upper limit of the performance of the system.
We also emphasize that Galaxy can achieve better performance
when only part of the messages in the system requires privacy

Fig. 4. Throughput and latency of Pub in the LAN setting.

Fig. 5. Throughput and latency of Pub in the WAN setting.

Fig. 6. Throughput and latency of CSTO transactions.

protection. In the following parts, we abbreviate the publish
(with SSE) operation as Pub operation.

We set the size of each pub operation to 128 bytes (in the
follow-up experiments, unless otherwise specified, we keep
the size of a single operation at 128 bytes). We conduct
the evaluation under two different network settings: 1) LAN
(3-Gb/s bandwidth per server) and 2) WAN (50-Mb/s band-
width per server). We also adjusted different batch sizes
(16, 32, 64, 128) under each network setting, and the exper-
imental results are shown in Figs. 4 and 5. The results show
that when batch size = 128, the maximum throughput reaches
3994 and 3047 ops/sec in LAN and WAN settings, respec-
tively. The peak throughput is lower and the average latency
is higher in the WAN, which is reasonable due to the con-
strained bandwidth. In addition, the peak throughput generally
increases with the increase in batch size. However, when the
batch size reaches 128, the maximum throughput no longer
increases significantly and even decreases. This is because the
time spent waiting for a batch of messages gradually exceeds
the time cost of the consensus.

Performance of the Governance Layer: The performance
of the governance ledger is also tested. Since we assume the
governance ledger is a small-scale permissioned blockchain,
16 nodes (one node on each server) and 80 clients (five
clients for each node) are deployed and the LAN network
setting is adopted. We choose the throughput and latency of

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GALAXY: A SCALABLE BFT AND PRIVACY-PRESERVING PUB/SUB IoT DATA SHARING FRAMEWORK 5233

Fig. 7. Peak throughput and corresponding latency of Pub under different
shard sizes.

the CSTO transaction as the performance metrics. Fig. 6
shows the performance of the governance ledger under dif-
ferent batch sizes. The peak throughput of the governance
leader reaches 19 323 ops/secs when batch size = 128, which
is significantly increased compared with the brokers at the data
layer. In addition to having higher computing and bandwidth
resources, the implementation of governance leader removes
the Pub/Subrelated modules and only adds a lightweight smart
contract module, so the overhead is greatly reduced compared
with the broker shards at the data layer.

C. BFT Scalability and Resilience

Scalability: To get a view of the scalability of Galaxy, we
also evaluated the performance of a single shard with differ-
ent numbers of brokers. To ensure that the computing resource
of each node is equal, we still deploy eight brokers on each
server and gradually increase the number of servers from 2
to 16. We use the WAN network setting in this experiment.
Fig. 7 shows the peak throughput and corresponding latency of
a single shard under different shard sizes. The result shows that
peak throughput decreases with the increase of the shard size,
which is reasonable because of the higher communication and
cryptography overhead. We also notice that the performance
decreases significantly when the shard size increases from 32
to 64 and the reason is that the bandwidth and the limited
computation resources of the servers have reached the bottle-
neck at this time. We suggest selecting the largest partition
size when the bottleneck is reached in the actual deployment
to increase the security of a single partition. In addition, since
all the shards in Glaxay run in parallel (except for possible
CSTO transactions), large-scale horizontal expansion can be
carried out by increasing the number of partitions when the
computing resources are sufficient and the governance ledger
does not reach the performance bottleneck.

Resilience: In this part, we show the resilience of the system
by comparing the peak throughput of the Pub operation under
the round-robin and the proposed CWA leader rotation algo-
rithm, respectively. The experiment is carried out in a single
shard of 32 brokers (two brokers on each server) under the
WAN setting. For the CWA algorithm, we set the proposer
reputation Rp = 10, the voter reputation Rv = 1, the delay
parameter D = 5, the attenuation parameter α = 0.8, and the
reputation upper limit Rmax = 100. We simulated the two types
of malicious nodes, respectively: 1) crash node and 2) with-
holding node. Figs. 8 and 9 show the peak throughput of the
system when the number of these two kinds of malicious nodes

Fig. 8. Peak throughput of a single shard (with 32 brokers) under different
numbers of crash nodes.

Fig. 9. Peak throughput of a single shard (with 32 brokers) under different
numbers of withholding nodes.

(denoted as f) increases. When f = 0, the peak throughput
of the system under the CWA algorithm decreases compared
with the round-robin because the CWA algorithm introduces
more complex computation. However, when the number of
malicious nodes increases, the CWA algorithm significantly
outperforms the round-robin. When f = 5, the CWA algorithm
achieves about 4× and 2× peak throughput improvement
over the round-robin algorithm under the crash and withhold-
ing faults, respectively. When f = 10, the CWA algorithm
outperforms the round-robin by a factor of 6× and 4×.

D. Privacy-Preserving Computation Cost

In this section, we demonstrate the time cost of the cryp-
tographic primitives used by Galaxy. For each cryptographic
primitive, we pick the average time consumption of 100 exper-
iments. For the secret key-sharing phase, we demonstrate the
time cost of different operations under different combinations
of n and t. The secret keys to be shared are two 32 bytes ran-
dom string used for SSE and AES. For the encrypted Pub/Sub
phase, we compare our scheme (denoted by Operation-G)
with Cui et al.’s scheme [23] (denoted by Operation-C). The
privacy-preserving Pub/Sub scheme proposed by Hahn and
Kerschbaum [56] encrypts the subscription and publish header
based on an SSE scheme SUISE, and the publish payload
is encrypted based on a lightweight KP-ABE scheme [57].
For the sake of fairness, we implement the SUISE scheme in
Java and the KP-ABE scheme in Go. We adopt the crypto-
graphic primitives and data structures provided by the default
Java libraries to implement SUISE, which is consistent with
the original paper [56]. For the KP-ABE scheme, we imple-
ment the pairing-based cryptographic primitives with a PBC
Go Wrapper [58]. Both our scheme and Cui et al.’s scheme uti-
lize HMAC-SHA256 and AES-CTR as basic building blocks,
and each topic is a 5-byte random string.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

5234 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

Fig. 10. Time cost of cryptographic primitives. (a) Time cost of the Encrypt, Decrypt, and Combine in the secret key-sharing phase. (b) Time of the
InsertToken and SearchToken primitives used to encrypt subscriptions/publication headers. (c) Time of encrypting and decrypting the publication payload.
(d) Time of the Insert and Search primitives.

Secret Key Sharing: First, we show the time cost of
threshold encryption primitives in the secret key-sharing phase.
Fig. 10(a) shows the time cost of Encrypt, Decrypt, and
Combine operations under different combinations of the total
number of shares (denoted by n) and the threshold (denoted
by t). We have considered the costs of IsValid and ShareVerify
operations as part of the Decrypt and Combine operations,
respectively. The evaluation result shows that the time con-
sumption of Combine increases with the number of n and t
and is about 98.7 ms when n = 128 and t = 43. The time costs
of Encrypt and Decrypt are about 6 and 37 ms, which are unre-
lated to n and t. This overhead is acceptable since the network
size of the governance ledger is usually small and the key pub-
lication transactions are not frequent in practice. In addition,
although our scheme requires the secret key-sharing phase to
share the symmetric keys compared with Cui et al.’s scheme,
we avoid the need for the centralized TA in Cui et al.’s scheme,
and the cost of our key sharing phase can be amortized during
multiple Pub/Sub processes if the keys is not changed every
time.

InsertToken and SearchToken Generation: InsertToken and
SearchToken operations are used by clients to encrypt the
subscriptions and publication headers, respectively. Fig. 10(b)
demonstrates the time required for generating the insert token
and the search token. In this experiment, the number of top-
ics varies from 10 to 100 (the number of topics is less than
20 in most cases according to the industry-standard bench-
mark [18]). Since the SSE scheme adopted by Cui et al.
does not offer a special setup operation, we compared the
InsertToken operation instead of the Setup operation for sub-
scription encryption. For the generation of InsertToken, both
our and Cui et al.’s schemes show a linear growth with the
number of topics. Our scheme has lightly more expensive costs
on the InsertToken operation because the SSE scheme adopted
by Galaxy involves more complex data structures in generating
InsertToken. However, our scheme provides a higher level of
security against persistent advertisement and snapshot adver-
tisement. The cost of generating SearchToken in our scheme
is significantly less than that in Cui et al.’s scheme, and it
is independent of the number of topics. When the number of
topics is 100, the time cost of SearchToken in our scheme is
reduced by 97.6% compared to Cui et al.’s scheme.

Payload Encryption and Decryption: Payload Encryption
and Decryption operations are used by clients to encrypt and
decrypt the publication payload. Fig. 10(c) shows the encryp-
tion and decryption time of the publication payload. Both

schemes show an approximate linear growth trend. In this
experiment, we fix the number of attributes for the KP-ABE
scheme to 20, which is the same as the setting in Cui et al.’s
paper. In fact, the AES encryption and decryption operation is
part of the lightweight KP-ABE scheme adopted by Cui et al.’s
scheme, so our scheme has less overhead at any time, espe-
cially when encrypting a small-size payload (the payload size
is usually less than 1 MB according to the experimental set-
tings of some industrial deployed systems [7], [10]). When
the payload size is 1 MB, the Encryption and Decryption in
our scheme take up to 2.06 and 1.91 ms, which is reduced
by 89.4% and 45.7% compared to Cui et al.’s scheme,
respectively.

Insert and Search: Insert and Search operations are used
by brokers to update the encrypted subscriptions and perform
encrypted Pub/Sub matching, respectively. Fig. 10(d) shows
the time needed for the Insert and Search operations at the
brokers. For the Search operation, Cui et al.’s scheme shows a
significant increase with the number of topics, because the top-
ics in the experiment are randomly generated and the index
containing previously searched words in their scheme could
not be used. Other operations present almost negligible over-
head independent of the number of topics. When the number
of topics is 100, the Search operation takes up to 438.2 μs
in Cui et al.’s scheme while our scheme takes only 14.9 μs,
reducing the overhead by 96.6%.

VII. CONCLUSION

In this article, we present Galaxy, a blockchain-based
Pub/Sub IoT data sharing framework. While maintaining
the asynchrony, decoupling, and one-to-many advantages of
the Pub/Sub paradigm, Galaxy further addresses the two
major challenges of applying a Pub/Sub system to the IoT:
1) Byzantine faults and 2) privacy. In order to address the
Byzantine faults, Galaxy realizes the tradeoff between scal-
ability and safety through a partial-random shard assignment
strategy, achieves a BFT Pub/Sub workflow by introducing the
streamlined BFT consensus, and adopts a CWA leader rota-
tion algorithm to avoid frequent leader failures. In order to
protect IoT data privacy, Galaxy realizes the secret sharing
of symmetric keys through threshold encryption and provides
efficient secret matching of publications and subscriptions
based on SSE. We implement a prototype of Galaxy and
conduct extensive evaluation from various dimensions. The
results demonstrate that Galaxy exhibits good performance

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: GALAXY: A SCALABLE BFT AND PRIVACY-PRESERVING PUB/SUB IoT DATA SHARING FRAMEWORK 5235

and scalability in different experimental settings while also
boasting reduced cryptographic computational overhead in
comparison to a representative relative work.

REFERENCES

[1] J. Cheng, W. Chen, F. Tao, and C.-L. Lin, “Industrial IoT in 5G envi-
ronment towards smart manufacturing,” J. Ind. Inf. Integr., vol. 10,
pp. 10–19, Jun. 2018.

[2] M. N. Bhuiyan, M. M. Rahman, M. M. Billah, and D. Saha, “Internet
of things (IoT): A review of its enabling technologies in healthcare
applications, standards protocols, security, and market opportunities,”
IEEE Internet Things J., vol. 8, no. 13, pp. 10474–10498, Jul. 2021.

[3] F. Al-Turjman and M. Abujubbeh, “IoT-enabled smart grid via SM: An
overview,” Future Gener. Comput. Syst., vol. 96, pp. 579–590, Jul. 2019.

[4] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S—A pub-
lish/subscribe protocol for wireless sensor networks,” in Proc. 3rd Int.
Conf. Commun. Syst. Softw. Middlew. Workshops (COMSWARE), 2008,
pp. 791–798.

[5] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz,
“Meeting IoT platform requirements with open pub/sub solutions,” Ann.
Telecommun., vol. 72, no. 1, pp. 41–52, 2017.

[6] G. S. Ramachandran et al., “Trinity: A byzantine fault-tolerant dis-
tributed publish-subscribe system with immutable blockchain-based
persistence,” in Proc. IEEE Int. Conf. Blockchain Cryptocurr. (ICBC),
2019, pp. 227–235.

[7] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proc. NetDB, vol. 11, 2011, pp. 1–7.

[8] “Apache pulsar.” Accessed: Feb. 20, 2022. [Online]. Available: https://
pulsar.apache.org/

[9] “Google cloud pub/sub.” Accessed: May 10, 2022. [Online]. Available:
https://cloud.google.com/pubsub

[10] C. Ding, D. Chu, E. Zhao, X. Li, L. Alvisi, and R. Van Renesse, “Scalog:
Seamless reconfiguration and total order in a scalable shared log,” in
Proc. 17th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2020,
pp. 325–338.

[11] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 51–58, 2001.

[12] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX Annu. Tech. Conf. (Usenix ATC), 2014,
pp. 305–319.

[13] B. Huang et al., “BPS: A reliable and efficient pub/sub communication
model with blockchain-enhanced paradigm in multi-tenant edge cloud,”
J. Parallel Distrib. Comput., vol. 143, pp. 167–178, Sep. 2020.

[14] N. Zupan, K. Zhang, and H.-A. Jacobsen, “Hyperpubsub: A decen-
tralized, permissioned, publish/subscribe service using blockchains,” in
Proc. 18th ACM/IFIP/USENIX Middleware Conf. Post. Demos, 2017,
pp. 15–16.

[15] S. Cohen et al., “Be aware of your leaders,” in Proc. 26th Int. Conf.
Financ. Cryptography Data Security, 2022, pp. 279–295.

[16] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2016, pp. 31–42.

[17] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Security Privacy (SP), 2007,
pp. 321–334.

[18] M. Ion, G. Russello, and B. Crispo, “Design and implementation
of a confidentiality and access control solution for publish/subscribe
systems,” Comput. Netw., vol. 56, no. 7, pp. 2014–2037, 2012.

[19] M. R. Asghar, A. Gehani, B. Crispo, and G. Russello, “PIDGIN: Privacy-
preserving interest and content sharing in opportunistic networks,”
in Proc. 9th ACM Symp. Inf. Comput. Commun. Security, 2014,
pp. 135–146.

[20] G. Amjad, S. Kamara, and T. Moataz, “Breach-resistant structured
encryption,” Proc. Privacy Enhanc. Technol., vol. 1, no. 1, pp. 245–265,
2019.

[21] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” Nat. Inst. Stand.
Technol., Gaithersburg, MD, USA, 1999.

[22] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn., 1998, pp. 1–16.

[23] S. Cui, S. Belguith, P. De Alwis, M. R. Asghar, and G. Russello,
“Collusion defender: Preserving subscribers’ privacy in publish and sub-
scribe systems,” IEEE Trans. Depend. Secure Comput., vol. 18, no. 3,
pp. 1051–1064, May/Jun. 2019.

[24] M. Shen et al., “Blockchain-assisted secure device authentication for
cross-domain industrial IoT,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 942–954, May 2020.

[25] Y. Fan et al., “SBBS: A secure blockchain-based scheme for IoT data
credibility in fog environment,” IEEE Internet Things J., vol. 8, no. 11,
pp. 9268–9277, Jun. 2021.

[26] X. He, Y. Zhang, and X. Wang, “A scalable nested blockchain frame-
work with dynamic node selection approach for IoT,” in Proc. IEEE Int.
Perform. Comput. Commun. Conf. (IPCCC), 2022, pp. 108–113.

[27] L. Zhang, F. Li, P. Wang, R. Su, and Z. Chi, “A blockchain-assisted
massive IoT data collection intelligent framework,” IEEE Internet Things
J., vol. 9, no. 16, pp. 14708–14722, Aug. 2022.

[28] S. Qi, Y. Lu, Y. Zheng, Y. Li, and X. Chen, “CPDS: Enabling com-
pressed and private data sharing for industrial Internet of Things over
blockchain,” IEEE Trans. Ind. Informat., vol. 17, no. 4, pp. 2376–2387,
Apr. 2021.

[29] T. Li, H. Wang, D. He, and J. Yu, “Blockchain-based privacy-preserving
and rewarding private data sharing for IoT,” IEEE Internet Things J.,
vol. 9, no. 16, pp. 15138–15149, Aug. 2022.

[30] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “{ZooKeeper}: Wait-
free coordination for Internet-scale systems,” in Proc. USENIX Annu.
Tech. Conf. (USENIX ATC), 2010, pp. 1–14.

[31] S. Duan et al., “Intrusion-tolerant and confidentiality-preserving pub-
lish/subscribe messaging,” in Proc. Int. Symp. Reliable Distrib. Syst.
(SRDS), 2020, pp. 319–328.

[32] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[33] E. Androulaki et al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. 13th EuroSys Conf., 2018,
pp. 1–15.

[34] W. F. Silvano and R. Marcelino, “IOTA tangle: A cryptocurrency to
communicate Internet-of-Things data,” Future Gener. Comput. Syst.,
vol. 112, pp. 307–319, Jun. 2020.

[35] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, Eng. Syst. Comput., Univ. Guelph,
Guelph, ON, Canada, 2016.

[36] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication
for the masses with BFT-SMART,” in Proc. 44th Annu. IEEE/IFIP Int.
Conf. Depend. Syst. Netw., 2014, pp. 355–362.

[37] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” J. Comput. Security, vol. 19, no. 3,
pp. 367–397, 2011.

[38] K. Yang, K. Zhang, X. Jia, M. A. Hasan, and X. S. Shen, “Privacy-
preserving attribute-keyword based data publish-subscribe service on
cloud platforms,” Inf. Sci., vol. 387, pp. 116–131, May 2017.

[39] N. Attrapadung and H. Imai, “Dual-policy attribute based encryption,” in
Proc. Int. Conf. Appl. Cryptograph. Netw. Security, 2009, pp. 168–185.

[40] G. D. Crescenzo et al., “Efficient and private three-party pub-
lish/subscribe,” in Proc. Int. Conf. Netw. Syst. Security, 2013,
pp. 278–292.

[41] W. Rao, L. Chen, and S. Tarkoma, “Toward efficient filter privacy-aware
content-based pub/sub systems,” IEEE Trans. Knowl. Data Eng., vol. 25,
no. 11, pp. 2644–2657, Nov. 2013.

[42] S. A. Gaballah, C. Coijanovic, T. Strufe, and M. Mühlhäuser, “2PPS—
Publish/subscribe with provable privacy,” in Proc. 40th Int. Symp.
Reliable Distrib. Syst. (SRDS), 2021, pp. 198–209.

[43] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, 1988.

[44] R. Pass and E. Shi, “Hybrid consensus: Efficient consensus in the per-
missionless model,” in Proc. 31st Int. Symp. Distrib. Comput. (DISC),
2017, pp. 1–16.

[45] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus with linearity and responsiveness,” in Proc.
ACM Symp. Princ. Distrib. Comput., 2019, pp. 347–356.

[46] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta,
and B. Ford, “Omniledger: A secure, scale-out, decentralized ledger
via sharding,” in Proc. IEEE Symp. Security Privacy (SP), 2018,
pp. 583–598.

[47] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proc. Int. Conf.
Manage. Data, 2019, pp. 123–140.

[48] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Proc. 40th Annu. Symp. Found. Comput. Sci., 1999, pp. 120–130.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

5236 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 3, 1 FEBRUARY 2024

[49] L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse,
“{DispersedLedger}:{high-throughput} byzantine consensus on variable
bandwidth networks,” in Proc. 19th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2022, pp. 493–512.

[50] K. Zhang, V. Muthusamy, and H.-A. Jacobsen, “Total order in content-
based publish/subscribe systems,” in Proc. IEEE 32nd Int. Conf. Distrib.
Comput. Syst., 2012, pp. 335–344.

[51] E. Ghadafi, “Efficient distributed tag-based encryption and its application
to group signatures with efficient distributed traceability,” in Proc. Int.
Conf. Cryptol. Inf. Secur. Latin America, 2014, pp. 327–347.

[52] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[53] T. E. Lea, L. Jehl, and H. Meling, “Towards new abstractions for imple-
menting quorum-based systems,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), 2017, pp. 2380–2385.

[54] “The Go bn256 package.” Accessed: Jun. 10, 2022. [Online]. Available:
https://github.com/cloudflare/bn256

[55] “The clusion library.” Accessed: Jun. 10, 2022. [Online]. Available:
https://github.com/encryptedsystems/Clusion

[56] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and effi-
cient updates,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
2014, pp. 310–320.

[57] X. Yao, Z. Chen, and Y. Tian, “A lightweight attribute-based encryption
scheme for the Internet of Things,” Future Gener. Comput. Syst., vol. 49,
pp. 104–112, 2015.

[58] “The PBC Go wrapper.” Accessed: May 5, 2023. [Online]. Available:
https://github.com/Nik-U/pbc

Yuchao Zhang (Member, IEEE) received the B.S.
degree in computer science and technology from
Jilin University, Changchun, China, in 2012, and
the Ph.D. degree from the Department of Computer
Science, Tsinghua University, Beijing, China, in
2017.

She is currently an Associate Professor
with Beijing University of Posts and
Telecommunications, Beijing. Her research
interests include large-scale data center networks,
blockchain, federated learning, data privacy, and
edge computing.

Dr. Zhang is a member of ACM.

Xiaotian Wang received the bachelor’s
degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2021,
where he is currently pursuing the master’s degree
in software engineering.

His current research interests include blockchain
scalability and consensus protocols.

Xiaofeng He received the bachelor’s degree
from Beijing University of Posts and
Telecommunications, Beijing, China, in 2022,
where he is currently pursuing the master’s degree
with the School of Computer Science.

His research interests include fault tolerance tech-
nologies, blockchain applications, and blockchain
scalability.

Ning Zhang (Senior Member, IEEE) received the
Ph.D. degree in electrical and computer engineer-
ing from the University of Waterloo, Waterloo, ON,
Canada, in 2015.

He is an Associate Professor with the Department
of Electrical and Computer Engineering, University
of Windsor, Windsor, ON, Canada. After that, he was
a Postdoctoral Research Fellow with the University
of Waterloo and the University of Toronto, Toronto,
ON, Canada, respectively. His research interests
include connected vehicles, mobile edge computing,

wireless networking, and machine learning.
Dr. Zhang received eight Best Paper Awards from conferences and jour-

nals, such as IEEE Globecom and IEEE ICC. He is a Highly Cited
Researcher. He serves as an Associate Editor of IEEE INTERNET OF THINGS

JOURNAL, IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND

NETWORKING, and IEEE SYSTEMS JOURNAL; and a Guest Editor of several
international journals, such as IEEE WIRELESS COMMUNICATIONS, IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, and IEEE TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS. He also serves/served as a
TPC Chair for IEEE VTC 2021 and IEEE SAGC 2020, a General Chair for
IEEE SAGC 2021, and a track chair for several international conferences and
workshops.

Zibin Zheng (Fellow, IEEE) received the Ph.D.
degree from The Chinese University of Hong Kong,
Hong Kong, in 2011.

He is currently a Professor with the School of
Data and Computer Science, Sun Yat-sen University,
Guangzhou, China. He serves as the Chairman
of the Software Engineering Department. He pub-
lished over 120 international journal and conference
papers, including three ESI highly cited papers.
According to Google Scholar, his papers have more
than 7000 citations, with an H-index of 42. His

research interests include blockchain, services computing, software engineer-
ing, and financial big data.

Prof. Zheng was a recipient of several awards, including the Top 50
Influential Papers in Blockchain of 2018, the ACM SIGSOFT Distinguished
Paper Award at ICSE2010, and the Best Student Paper Award at ICWS2010.
He served as the BlockSys’19 and CollaborateCom’16 General Co-Chair,
SC2’19, ICIOT’18, and the IoV’14 PC Co-Chair.

Ke Xu (Senior Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Technology, Tsinghua University, Beijing,
China, in 2001.

He serves as a Full Professor with Tsinghua
University. He has published more than 200
technical papers and holds 11 U.S. patents in
the research areas of next-generation Internet,
blockchain systems, Internet of Things, and network
security.

Prof. Xu has guest-edited several special issues in
IEEE and Springer Journals. He is an Editor of IEEE INTERNET OF THINGS

JOURNAL. He is also the Steering Committee Chair of IEEE/ACM IWQoS.
He is a member of ACM.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 27,2024 at 15:51:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

