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Summary

With the burgeoning of cloud service companies, cloud computing is becoming
an efficient means of providing computing resources. Amazon EC2, Rackspace,
Google App, and Microsoft Azure are attracting more and more users over the
Internet these years. However, in mobile cloud computing (MCC), traditional
cloud pricing models can no longer support the above popular applications,
because user behaviors are dynamic and time sensitive. As an MCC applica-
tion is the combination of communication services (eg, wireless access services)
and computation services (eg, cloud services), it lacks new auctions for captur-
ing the feature of MCC markets based on the communication and computation
cooperation (3C).
In this paper, we design an efficient double-sided combinatorial auction model
in the context of 3C-based MCC to mitigate this problem. We first propose the
framework of online combinatorial double auctions to model mobile cloud com-
puting market. On this base, we give four principles of design requirements,
which can make the scheme more efficient and practical, and then we design
a new winner determination algorithm that shows how the auction mecha-
nism decides commodity allocation and transaction prices. At last, we conduct
a series of experiments to deep analyze the property of our mechanism. The
experiment results indicate that the proposed online auction mechanism obtains
comparable allocation efficiency to the social optimal solution.
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1 INTRODUCTION

Being able to leverage on-demand accesses to comput-
ing infrastructures, cloud computing is emerging as a

promising resource sharing platform. While Internet
cloud services are burgeoning, the existing cloud markets
develop extremely slowly with respect to the pricing mech-
anism. For example, Amazon EC21 charges $0.03 to $0.12
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per hour for each virtual machine (VM) instance, and
the prices are fixed. When the price of commodity has a
well-known value, which is common knowledge to both
sellers and buyers, such a posted-offer pricing model is
commonly used. So a buyer acts simply as a price taker who
has just 2 choices: accept the price or not. As a price taker,
a buyer cannot affect the price of the commodity. Although
such fixed pricing schemes are acceptable to small enter-
prises and markets, they cannot be adopted in dynamic
cloud computing markets because of the dynamism and
diversity.

To mitigate this problem, auction-based instances are
emerging in cloud markets. Such Spot Instances brings
more freedom to users, because this scheme allows cus-
tomers to bid for unused resources and to run instances
whenever their bids exceed the current price. Many dif-
ferent auction mechanisms are therefore proposed to
make resource allocation and pricing policies in cloud
markets.2-4 But in mobile cloud computing (MCC) mar-
ket, where services are provided through the cooperation
between communication resources (eg, network band-
width and wireless spectrum) and computation resources
(eg, CPU and GPU), these traditional single-sided auction
models are no longer efficient for such cloud applications.
In particular, Sharrukh et al5 have proved that auctions
enjoy distinct advantages over other schemes when items
are complementary. In other words, the auctioned items
will have a higher value as a set (eg, sell multiresources
as a set) than as separate parts. It is known that the
usage of mobile computing is increasing rapidly. Many
researchers6-8 point out that both the consumer and enter-
prise markets for mobile cloud computing applications
have become abundant in many industries, such as health,
medicine, business, social networking, travel, entertain-
ment, and news. With both communication and compu-
tation resource requirements of these cloud-based mobile
applications, it is in urgent need to develop a smarter
auction model to meet such increasing demands in MCC
markets based on the communication and computation
cooperation (3C).

In this paper, we introduce a double-sided combinato-
rial auction model for the MCC market. In particular, we
design a framework of online combinatorial double auc-
tions and a winner determination problem (WDP) model
to provide better services to both MCC applications and
users. To solve this problem, we develop a decomposition
algorithm, which can calculate item prices for winners
in each auction. Moreover, a bidding language for mobile
users to express valuations is also investigated. Extensive
experiment results show that the proposed online auction
mechanism successfully obtains high allocation efficiency,
and are even comparable to the optimal solution.

The rest of this paper is structured as follows. Section
2 reviews the related works, such as combinatorial and
double auctions. Section 3 proposes the framework of the
combinatorial double auction in MCC. Section 4 describes
our novel bidding language MU for mobile users. The
model and algorithm of WDP for our auction mechanism
are introduced in Section 5. Then the evaluation results are
given in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

As cloud computing is designed to be a market-oriented
computing paradigm, resource allocation and pricing are
always hot topics. Bidding and auctions* are deemed to
be effective solutions to grid and computing resource
markets.9,10 Meanwhile, MCC is a representative example
of cloud services, thus has natural advantages to adopt auc-
tions. In this section, we first present some related works
on combinatorial and double auctions11,12 and then review
the auctions about resource allocation and pricing.

2.1 Combinatorial and double auctions
Based on the supply and demand in cloud markets, auction
is one of the most effective and economic ways to set com-
modity price. The auction model supports different negoti-
ation models between sellers and buyers, like one-to-many
(for instance, single-sided auction) or many-to-many (eg,
double auction). Auctions have multiple flexible form;
players are allowed to bid for one item or sets of items once
a time. Therefore, the design of auction mechanism is a hot
spot in microeconomics.

Combinatorial auctions allow bids for bundles of items,
providing a great way to allocate multiple distinguishable
items among bidders.13 Combinatorial auctions can make
bidders flexibly reveal their preferences on the replace-
able or complementary relationships of items, which can
decline the bidding risk, increase the revenue, and thus
improve the economic efficiency of the auctions remark-
ably. The main topics concerned in combinatorial auctions
are bidding languages, winner determination, and mecha-
nism design.

In recent years, combinatorial auctions have attracted
significant interest as automated mechanisms to buy and
sell bundles of scarce resources, for example, the virtual
machine instances in Zaman and Grosu.14 The develop-
ment of the Internet and e-commerce has provided a

*An “auction” is a process of buying and selling goods or services. “Bid-
ding” is an offer to set a price by an individual for a product or service.
An auction consists of several stages, like offering goods (or services) up
for bid, taking bids, and buying the item to the highest bidder.
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wonderful platform for combinatorial auctions. Combi-
natorial auctions have been applied in wide economic
domains successfully, including truckload transportation,
industrial procurement, radio spectrum auction, and air-
port time slots.

Today's e-commerce combinatorial auction platforms
usually only support one-to-many negotiations. In such
single-sided auctions, an auction is initialized by one auc-
tioneer, and then buyers begin to bid in the auction.
For a market with limited number of buyers or sellers,
single-sided auctions are well suited. But when a market
consists of numerous of buyers and sellers, these mech-
anisms are usually noneffective. That is because there
are different items and auctions in these complex mar-
kets, buyers or sellers should bid repeatedly to maximize
their profits, and they also have to consider the multiple
possible outcomes of each participate auctions. This com-
putational burden in combinatorial auctions hinders the
trades for players. To relieve this computational burden,
many recent researches are developing double auctions to
promote transactions. 15

Double auctions are many-to-many negotiations. In
double auctions, multiple buyers and sellers can bid at
the same time. Gjerstad and Dickhaut16 give strategies
for sellers and buyers in a double auction (DA) market.
After that, Bredin and Parkes17 present a general method
to design truthful DAs, and the dynamic pricing rules
can ensure that no agent can benefit from misreport-
ing its arrival time, duration, or value. Along with this,
DAs were applied by researchers in many areas, such
as spectrum auctions,10,18 mobile crowdsourcing,19 mobile
data offloading,20 and many other research fields. Indeed,
today's exchanges apply variants of double auctions21 (for
example, New York Stock Exchange [NYSE], NASDAQ,
and the major foreign exchange).

2.2 Auctions in MCC markets
Auction-based mechanisms have been adopted in vari-
ous fields such as network bandwidth, wireless spectrum,
energy industries, and advertisements, which investigate
how participants behave in a competition for resources.
Auctions in computing can date back to 1968 when
Sutherland22 designed a processing time allocation method
using auctions. After that, many market-based resource
allocation strategies have been proposed, some of which
are applied to grid computing and scheduling. 9,23

Cloud computing appeared as a more effective
market-oriented computing paradigm than grid com-
puting, so currently, researchers start to investigate
the economic aspects of cloud computing policies. For
example, to solve the resource allocation problem across
multiple clouds, Buyya et al2 proposed an infrastructure

of federated clouds. To allocate computing resource and
virtual machines, Prasad et al24 and Zaman et al5 adopted
combinatorial auctions. Furthermore, for cloud applica-
tion allocation, Lee et al25 implemented a real-time group
auction system. Besides these, Zhang et al4 put forward
an online auction framework for cloud computing, Fuji-
wara et al26 proposed a market-based resource allocation
mechanism that enables participants to trade future and
current services in the forward market and the spot mar-
ket, respectively. In our former work,3 we have proposed
a continuous double auction mechanism and a bidding
strategy for cloud markets; in this scheme, both cloud
users and CSPs can maximize their profits.

There are few works introducing auction-based resource
allocation mechanisms in MCC markets. “An auction
mechanism for resource allocation in mobile cloud com-
puting systems” by Niyato et al27 is one of the works, which
developed an auction mechanism with discount factors
for resource allocation. But our mechanism considers a
combinatorial double auction mechanism, which enables
mobile users and resource providers to submit bids and
asks simultaneously. The advantage of this mechanism is
that we can supports users to bid sets of commodities at
one time, and this makes our mechanism more efficient.

3 THE FRAMEWORK OF THE MCC
COMBINATORIAL DOUBLE
AUCTION

We consider a platform for the MCC markets where mul-
tiple mobile users and resource providers can buy and sell
commodities in a combinatorial double auction manner.
Our solution is efficient for resource allocation in MCC
and appeals to mobile users and the MCC providers. On
one hand, mobile users can bid bundles of applications and
services on the platform with little mobile data usage. On
the other hand, providers can supply sets of commodities
in each auction.

3.1 Design principles
A feasible auction model for MCC should meet 4 principles
as detailed below.

Support resource combination. In wireless MCC ser-
vices, services are provided by remote clouds, and mobile
users access these services via wireless networks (like 2G,
3G, or WiFi), as shown in Figure 1. In this framework,
base stations or WiFi access points (AP) provide radio
(bandwidth) resources, and remote cloud provides com-
puting and storage resources. Obviously, if a mobile user
wants to use cloud services, he needs to buy both wireless
access services and cloud resources. Therefore, in a feasible
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FIGURE 1 Mobile cloud computing enabling mobile users to access cloud services through wireless networks

MCC market, an effective auction mechanism should
allow users to bid for sets of items (sometimes called bun-
dles), rather than to bid different items in many sequential
auctions.

Support various applications. Different from tradi-
tional content service providers, MCC providers usu-
ally offer various services besides computing and storage
resources, like natural language translating, image pro-
cessing, and multimedia search.7 As mentioned previ-
ously, mobile users are attracted to buy a package of
commodities together. For example, an increasing num-
ber of users prefer to take photos by using mobile devices.
However, due to the limited storage space, they prefer to
upload some photos to online storage servers when there
are inadequate space in their mobile devices. An MCC
provider P1 supplies such storage services. To get addi-
tional profits, P1 also provides an animator application
and other image-processing applications. Thus, a mobile
user Peter may buy 1 GB storage space and 10 animators
for 1 year. Thus, when Peter takes a new photo, he can
upload it to the storage servers of P1. If he wants to make
an animation, he can select photos on the servers and sub-
mit them to the animator application. The application will
run on the remote servers and return the result to Peter.
Because there are more and more such applications in the
MCC markets, the scale of one auction may be large. Con-
sequently, an effective combinatorial auction mechanism
is vital for the MCC markets, which should quickly deter-
mine the winners and prices of an auction consisting of
many users and providers.

Be energy-efficient. In wired clouds, energy efficiency
is not a big concern. But energy is of particular importance
for MCC market, because both transmission and compu-
tation consume the limited energy of mobile devices. To
attract mobile users to take part in auctions, a mecha-
nism allows users to submit bids when transmitting data
as few as possible with few computations to construct
their bids. Furthermore, mobile users access online auc-
tion platforms via different wireless networks, so the less
data transmission gets the lower cost. Therefore, a concise
bidding language is vital for mobile users.

Be simple. In the current cloud markets, users often
rent cloud resources to support their applications. 28,29 Due
to the complexity of online auctions, a feasible auction
model would be more acceptable to mobile users if it is very
simple to use.

In summary, in such competitive MCC markets popu-
lated by mobile users and MCC providers, combinatorial
auctions are feasible to solve resource allocation and pric-
ing problems. Every mobile user, who demands sets of var-
ious commodities, can bid bundles in one combinatorial
auction. Moreover, double auctions can also be adopted to
improve market efficiency, in which buyers and sellers can
submit bids simultaneously.

There are some significant differences between our solu-
tion and the existing mechanisms. First, we design a
combinatorial double auction mechanism for the MCC
resource allocation. This mechanism enables mobile users
and resource providers to submit bids and asks simulta-
neously; thus, users can bid sets of commodities in one
auction. Second, we also design a novel bidding language
for mobile users.

3.2 Framework overview
On an online auction platform, “bid” is the price a buyer's
willingness to pay and “ask” is a seller's (or provider's) ask-
ing price. The platform first collects bids from mobile users
and collects asks from MCC providers, then it computes
the winners and the prices according to the WDP solution.
Figure 2 shows the overview of the framework.

It is an electronic bidding platform, which can be eas-
ily accessed via the Internet and make use of e-commerce
technologies. The platform plays the role of an auction-
eer, on which mobile users can submit bids for bundles of
items, while the MCC providers can submit asks. In addi-
tion, auctions are all performed in an online manner, ie,
users and providers can take part in auctions whenever
they need, and the platform can determine winners and
price instantaneously as soon as auctions close.

The auction on the platform has 3 states: the registration
stage, the bidding stage, and the winner determination
stage. In the registration stage, the bulletin board presents
all the information about resources, the related parameters



ZHANG ET AL. 5 of 17

FIGURE 2 A framework of the mobile cloud computing combinatorial double auction platform

of mobile users, and the MCC providers, then every player
is certified. In the bidding stage, buyers (providers) begin
to submit bids (asks). At last, in the winner determination
stage, the determination module calculates the winners
and prices according to the combinatorial double auction
mechanism.

Specifically, there are 2 main modules in this platform,
one is the formative bidding language, and the other is the
winner determination algorithm. In the bidding language
module, the electronic bidding platform translates a user's
specific demands into requests described in the format-
ting bidding language, the user's heterogeneous demands
thus turn into regulated and consistent forms. The pro-
posed scheme can further ensure that the details of user
requirements can be revealed. So far, each request from
users and each ask from MCC providers are submitted to
the platform. In the winner determination module, the
platform should compute winners and prices based on the
auction mechanism while achieving high social welfare.
At last, the bidding results are announced to users and
providers, and once the charging and payment procedures
are complete, the connections are established.

The waiting time of users in this process is accept-
able, because the bidding platform is able to implement
many transactions simultaneously, and the calculation
takes not much time in each bidding period. The bid-
ding language can transmit bidding functions in a succinct
way to the platform, reducing computational complexity
significantly. Also, we will evaluate the computational effi-
ciency and the execution iterations of this scheme in the
evaluation section.

Before, we describe the 2 main modules, we first give
the bidding rules of the platform in the next subsection,

and then through a simple example, we will show how this
platform works. Later in Sections 4 and 5, we will detail
the bidding language MU and the winners determination
algorithm, respectively.

3.3 The market rules
In the proposed MCC mechanism, the auction platform
acts as a central auctioneer who receives the bids and
asks, and then it performs all the computation to find the
optimal allocation of items to bidders. To improve trading
efficiency, the following market rules are defined.

Bidding period rule. The bidding period tbp can be
1 day, 1 hour, etc. During one bidding period, players
including buyers and providers submit their bids and asks,
and at the end of this bidding period, the auction closes
and the market clears. At an auction, only one bid or ask
can be submitted by each mobile user or MCC provider. At
the end of the bidding period, all bids and asks are opened.
Furthermore, auction results, ie, winners and prices, are
also published.

Combination rule for users. Each mobile user usually
has heterogenous demands and valuations for commodi-
ties, so a bid of user i can work for bundles of items (a
subset of all the available commodities) and a valuation
(willingness to pay).

Combination rule for providers. Each provider has
different kinds of resources to sell, so an ask of provider
j can also work for multiple items. Also, the ask should
contain the offered price per unit for commodity and the
quantity of this commodity.

Minimum bid rule. To prevent unreasonably low bids
and guarantee the trading process, we define the minimum
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bid allowed in the market, Bmin. It can be set according to
history transaction prices or 0.

Maximum ask rule. Similarly, to prevent unreasonably
high asks and ensure the trading process, we also define
the maximum ask allowed in the market, Amax. It can also
be set according to history transaction records or +∞.

These above rules are published in the MCC auction
platform. Each user and provider who participates in auc-
tions must obey the rules. The rules not only ensure
auction efficiency but also enable users and providers
to understand the auction mechanism. In addition, the
records of transaction history published on the platform
help users to decide their valuations on various services
and applications.

3.4 Scenario of a combinatorial double
auction on the platform
With the online auction platform and bidding rules,
mobile users and the MCC providers can trade by auc-
tions. Users often have a variety of demands, and providers
also supply various services and applications. For a mobile
user who needs 2 applications, bidding 2 items in one
combinatorial auction is more efficient than bidding twice
in 2 sequential auctions. Moreover, double auctions allow
users and providers to bid simultaneously in the same auc-
tion, which also improves market efficiency. Advantages
of the combinatorial double auction for the MCC markets
can be revealed in the scenario shown in Figure 3.

During the bidding period, both users and providers may
submit bids and asks. Each user can bid one or bundles
of items, while each provider can supply multiple units of
commodities. In Figure 3, Tom seeks to buy 2 units of Item
1 before bidding $4. Peter bids $5 for one unit of Items 1 and
2. Linda bids $8 for one unit of Item 1 and 2 units of Item

FIGURE 3 A scenario of an auction: consisting of 2 providers
and 3 users bidding for 2 commodities

2. All the 3 users submit their bids to the online auction
platform. Two MCC providers, P1 and P2, take part in the
auction. P1 sells 2 units of Item 1 at price $2. P2 sells 3 units
of Item 2 at price $3. Both providers also submit their asks
to the platform.

At the end of the bidding period, the winner determina-
tion module computes winners and prices of the auction;
the algorithm of which will be described in Section 5. Then
the results are announced to users and buyers. In the auc-
tion, Peter wins one unit of Item 1 and one unit of Item
2, and Linda wins one unit of $1 and 2 units of Item 2.
However, Tom loses to Peter and Linda.

While in the traditional sequential auction, there are
2 disadvantages described as follows: Firstly, users and
providers cannot bid simultaneously in one auction, so if
Tom wins in the Item 1 subauction, both Peter and Linda
will lose the auction because they cannot get Item 1. Sec-
ondly, one can just bid for one item at one time, so the
auction will be repeated for 5 times in this scenario, which
reduces the market efficiency.

As shown in the above scenario, the combinatorial dou-
ble auction mechanism is effective and flexible for mobile
users and MCC providers. It not only ensures competitive
bidders and offers simultaneously, but also allows users to
bid for bundles of items at one time. However, for apply-
ing the auction mechanism to real markets, there are 2 key
problems to solve: a concise bidding language for users and
a feasible WDP algorithm. The solutions will be given in
the following sections.

4 THE BIDDING LANGUAGE

In our MCC auction platform, the bidding language trans-
form module is implemented in the client side. Players
use bidding language to concisely express their natural
valuation functions, and bidding languages can translate
users' specific demands into requests. In this section, we
first analyze the heterogenous mobile user valuations and
then introduce a novel bidding language MU , which can
represent various user demands. After that, we discuss
the advantages and contributions of the proposed MU in
combinatorial double auctions.

4.1 Heterogenous mobile user valuations
In a specific combinatorial auction, let R represent the set
of all goods for sale, and each buyer could have a different
valuation for each subset S of R. This differentiation results
in 2|R| − 1 possible bids because R has 2|R| − 1 different
subsets.

Furthermore, for a particular user, items' value may
depend on each other, ie, item value to a buyer depends
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on whether he/she possesses another related item. There
are 2 situations. (1) Items are substitutable, ie, resources
(like storage) from different places are the same to users, so
these resources have similar value to the user. (2) Items are
complementary, ie, users prefer to get all of them or none
of them. Take online photo posting as an example, wireless
connection and storage resource are complementary.

The above relationship can be defined as follows.

Definition 1. Given a mobile user i, a valuation v{r}
i

for a commodity r. Items a and b are substitutable if
v{a,b}

i < v{a}
i + v{b}

i , and these 2 items are complemen-
tary if v{a,b}

i ≥ v{a}
i + v{b}

i . Specifically, when v{a,b}
i =

v{a}
i +v{b}

i , these 2 independent items can also be viewed
as complementary.

Different items' valuations lie on users' utilities, which
denotes a user's satisfactory with the allocated resources.
The total utilities of a user does not always equal to the
sum of each commodity's utility due to the complemen-
tarity and substitutability. Therefore, auction mechanisms
(including our MCC mechanism) always aim at maxi-
mizing buyers' utilities and sellers' payoffs. We use the
following equation to formulate the user utility:

Ui(S) = vS
i −

∑
r∈S

Pr
i (1)

where S is the commodity set, Ui(S) is the utility of user
i, and vS

i is the valuation of S. Pr
i is the final price of item

r paid by user i. The utility function also reflects the com-
plementarity and substitutability among items from users'
valuations:

Ui({a, b}) =
⎧⎪⎨⎪⎩

Ui({a}) + Ui({b}) + hi
for a, b is complementary

Ui({a}) + Ui({b}) − li
for a, b is substitutable

(2)

In (2), hi ≥ 0 can be viewed as the premium, and li ≥

0 means discount in one auction. From buyer's point of
view, he/she would like to pay more if he/she can buy
2 complementary items in one auction. On the contrary,
he/she would not buy 2 substitutable items unless there is
a discount.

Such heterogenous user demands in combinatorial auc-
tions is difficult to express; many bidding languages try
to address this problem. Some encode the bid informa-
tion in a succinct and simple manner. But there is always
a trade-off between expressiveness and simplicity, like
any other languages. In the next subsection, we will first
review the existing bidding languages before introducing
our novel language.

4.2 Semantics of bidding languages
Bidding languages are used to model bidding patterns.
Single-minded bidding language (or atomic bidding lan-
guage) is one of the most common methods. It describes
user demands only in one form: for available items R, a
user i chooses a subset S in valuation vS

i . 30

Obviously, the above single-minded bidding language
cannot express complementarity and substitutability.
Therefore, some other bidding languages are proposed.
For example, in OR language, items are ORed together
and turn to be a bundle-value pair; any pair or num-
bers of these pairs can be accepted in auctions. For
example, ({x}, 2)OR({y, z}, 3) implies a value of 2 for
{x} and a value of 5 for {x, y, z}. Although OR is good
at expressing complementarity, it cannot express sub-
stitutability. XOR is another bidding language, which
can express any valuation function, but in XOR, only
one bundle-value pair can be accepted. Here is another
example, ({x}, 2)XOR({y, z}, 3) implies a value of 2 for {x}
and a value of 3 for {x, y, z}. While XOR is more expressive
than OR, OR has its own advantages (eg, specify valua-
tions more succinctly). Therefore, many researches try to
combine OR and XOR so as to take the fully advantage of
both. The representative new languages are XOR-of-ORs,
OR-of-XORs, and some logical languages. 31

As we can see, any bidding language is good at express-
ing just partial patterns, and it is not always possible to
compare 2 bidding languages accurately due to differ-
ent advantages. Generally speaking, complicated bidding
languages are usually more efficient than the simple lan-
guages (atomics, OR, and XOR), because they can express
various combinatorial bids. But at the same time, the com-
plicated languages cost much than simple languages when
computing WDP results.

In our online MCC auction platform, we adopt a com-
plicated bidding language to allows mobile users to submit
different kinds of combinatorial bids; meanwhile, the per-
formance of our platform is still good. The main reasons
are as follows: (1) In the MCC markets, most of the mobile
users are nonprofessional traders, who cannot design var-
ious bids for multiple combinations. (2) The auction plat-
form is efficient enough to conduct numerous transactions
simultaneously; each bidding period just cost an accept-
able overhead and will end up in acceptable time. Auctions
can thus be held frequently. Furthermore, our proposed
bidding language MU restricts the kinds of combinations,
and this constraint largely reduces computational com-
plexity.

In a MU bid, semantics can be expressed in the follow-
ing Backus-Naur Form (BNF):
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BID ∶∶= (Comb_Bid)|(Comb_Bid)≤n

Comb_Bid ∶∶= Atom_Bid|Atom_Bid → Atom_Bid
Atom_Bid ∶∶= ⟨S, vS⟩

To be specific, a MU bid can be one of the following 4
forms according to the 3 equations:

1. Atomic bid. (⟨S, vS⟩) is an atomic bid, which means to
bid a set of commodities S (S ⊆ R) with the valuation vS

(vS ∈  , and vS∕|S| ≥ bmin). Single-minded language
can also express the atomic bid. vS is the valuation for
commodity set S, which consists of |S| commodities.
While bmin is the minimum bid for a single commod-
ity, so the minimum bid for |S| commodities should be
at least |S| × bmin, ie, the value of vS. In other words,
vS ≥ |S| × Bmin. Thus, vS∕|S| ≥ bmin.

2. Combinatorial bid. (⟨S1, vS1⟩ → ⟨S2, vS2⟩) is a combi-
nation of 2 atomic bids by an operator→, where S1, S2 ⊂

R and S1 ∩ S2 = 𝜙. This form is convenient for users to
bid substitutable goods. The equivalent representation
in XOR language is

(⟨S1, vS1⟩ → ⟨S2, vS2⟩) ⇐⇒

(⟨S1, vS1⟩XOR⟨S2 ∪ S1, vS2⟩). (3)

The user may obtain S1 or S2 ∪S1, but not both of them.
3. Atomic bid with quantity range. (⟨S, vS⟩)≤n denotes

an atomic bid with quantity range, which means a user
wants to buy at most n units of the atomic bid (n ∈ N,
and n > 1).

4. Combinatorial bid with quantity range.
(⟨S1, vS1⟩ → ⟨S2, vS2⟩)≤n is a combinatorial bid with
quantity range, which means a user wants to buy at
most n units of the combinatorial bid (n ∈ N, and
n > 1).

For mobile users who want to buy one unit of each type
commodity, they can use the first 2 bidding forms, and
for users who want to buy n copies of the same commod-
ity, they can use the later 2 forms. Let Bid be one bid in
MU ; the equivalent representation in OR language for
multiunits of Bid can be represented as follow:

Bid≤n ⇐⇒ (Bid OR Bid OR OR Bid)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n

. (4)

Thus, user can get groups of commodities (up to n
groups).

In Figure 3, the users Tom, Peter, and Linda submit their
bids as follows: BT = (⟨I1, $2⟩)≤2, BP = (⟨{I1, I2}, $5⟩) and
BL = (⟨{I1, I2, I2}, $8⟩).

4.3 Advantages over previous languages
The design for bidding languages involves a trade-off
between expressiveness and simplicity, so our MU also
needs to express heterogenous demands of mobile users in
a concise way. Compared with OR, XOR, and other com-
plicated logical bidding languages, MU has the following
advantages.

Ease of use. The semantics of MU is easy to under-
stand, and bidders can express their demands in the correct
format of MU . The general mobile users cannot handle
too many logical operators, such as OR, XOR, and AND.
Therefore, they prefer to submit simple bids rather than
apply various logical operators to combine bids.

Considering the following scenario, there are 3 types
of services to auction, ie, storage services, GIF animator
services, and Flash maker services, denoted as a, b, and
c, respectively. A user Peter submits an atomic bid: B =
(⟨{a, b}, $5⟩), which means he wants to buy one unit of
storage service and GIF animator service, which is valued
complementary. If Peter expects he has many pictures to be
saved and processed to GIF, he can submit (⟨{a, b}, $5⟩)≤3,
which means he can get 3 copies of them at most. Further-
more, Peter deems GIF animator service and Flash-maker
service are substitutable, and he buys both services only
when there will be a discount. He can submit a combina-
torial bid (⟨{a, b}, $5⟩ → ⟨{c}, $6⟩).

Representing quantity ranges. The previous bid-
ding languages cannot express buyers' demands for mul-
tiunits of goods directly. If a buyer needs 3 units of
the good a at most, he can submit a bid denoted as⟨{a}, $2⟩OR⟨{a}, $2⟩OR⟨{a}, $2⟩ in OR. His demand even
cannot be expressed in XOR. However, our MU provides
a simple way to represent quantity ranges.

Conciseness.MU is concise in 2 respects. Firstly, the
quantity ranges of users' demands can be represented sim-
ply. Secondly, applying a binary operator → to express a
bid consisting of substitutable goods needs less characters
than that used in XOR. For example, Peter deems GIF ani-
mator service and Flash-maker service are substitutable,
so his bid expressed in MU is (⟨{a, b}, $5⟩ → ⟨{c}, $6⟩),
while in XOR is (⟨{a, b}, $5⟩XOR⟨{a, b, c}, $6⟩).

Low cost of wireless network transmission. The
bids of mobile users are submitted to the auction platform
via various wireless networks. The features of MU sim-
plify the bids, especially expressing quantity ranges and
demands for substitutable goods. Therefore, the costs of
wireless network transmission are reduced.

5 THE WINNER DETERMINATION
PROBLEM

WDP (or the combinatorial allocation problem, CAP) rep-
resents for the problem that which set of bids to accept;
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TABLE 1 Main notations used in WDP

Notation Explanation

R The set of commodities
I The set of bidders
J The set of providers
A The set of asks offered by providers
B The set of bids submitted by bidders
vS The valuation for a set of commodities S(S ⊆ R)
x(S, i) Whether S is allocated to bidder i

this is a computational problem concerning how to allo-
cate items to buyers efficiently after the auction plat-
form receives the bids and asks. So the WDP model and
its algorithm directly effects the efficiency of an auction
mechanism.

Given the notations in Table 1, a general WDP model of
a single-sided combinatorial auction can be stated as fol-
lows: in an auction, given the set of commodities R, the
set of bidders I and the set of bids B submitted by all the
bidders, we can find an item allocation to bidders, which
maximizes the auctioneer's revenue. More formally, the
model can be denoted as:

max
∑
i∈I

∑
S⊆R

Bi(S)x(S, i)

s.t.
∑
r∈S

∑
i∈I

x(S, i) ≤ 1 ∀r ∈ R∑
S⊆R

x(S, i) ≤ 1 ∀i ∈ I

x(S, i) ∈ 0, 1 ∀S ⊆ R, i ∈ I

(5)

S is a subset of R, ie, S ⊆ R. Bi(S) is a bid for S submitted
by bidder i. Without loss of generality, let Bi(S) ≥ 0. If S is
allocated to bidder i, x(S, i) = 1, otherwise x(S, i) = 0.

It is an integer programming problem, which has been
proved to be NP-hard.32 This problem is difficult for a large
set of commodities R, specifically if bids exist for all subsets
of commodities.

Our solution is a many-to-many auction mechanism,
ie, combinatorial double auction, which allows buyers
and sellers bid simultaneously in one auction. The gen-
eral combinatorial auctions are single sided; therefore, the
WDP model described in problem (1) is unsuitable for our
MCC combinatorial double auction. Obviously, the objec-
tive of such double auctions is to maximize total surpluses
(social welfare) of all participators, including both buy-
ers and sellers. To this end, in our auction mechanism,
the WDP is formulated as an optimization problem, ie,
to maximize the total social welfare of all the users and
providers.

In our combinatorial double auction, R represents for set
of commodities, I is the set of mobile users, and J stands for

the set of MCC providers. Given B = {B1, … ,Bi, … ,B|I|}
is the set of submitted bids, and A = {A1, … ,Aj, … ,A|J|}
is the set of charged asks, our model can find an alloca-
tion that maximizes total social welfare. To formulate a
feasible WDP model, the bids and asks need to be prepro-
cessed before being used in our MCC combinatorial double
auction.

5.1 Preprocessing of bids and asks
MU enables 4 bidding forms (atomic bid, combinatorial
bids, atomic bid with quantity range, and combinatorial
bid with quantity range). To simplify WDP, we can trans-
form various bids into the one-unit atomic bid by introduc-
ing the concepts of dummy goods and subusers. See the
following transformations:

Transformation 1. Any atomic bid with quantity range,
Bi = (⟨S, vS⟩)≤n. Suppose this bid is submitted by n sub-
users, this bidding form can then be transformed to n
atomic bids (⟨S, vS⟩).

Transformation 2. Any combinatorial bid, Bi =
(⟨S1, vS1⟩ → ⟨S2, vS2⟩). Suppose su1

i submits (⟨S1 ∪
dummyi, vS1⟩) and su2

i submits (⟨S1 ∪ S2 ∪ dummyi, vS2⟩).
We introduce a dummy good (dummyi) and 2 subusers
(su1

i , su2
i ); this bidding form can then be transformed to 2

atomic bids.
Transformation 3. Any combinatorial bid with quan-

tity range, Bi = (⟨S1, vS1⟩ → ⟨S2, vS2⟩)≤n, can be trans-
formed to 2 × n atomic bids.

Thus, the original WDP model can be converted to a new
one, which is expressed only by the atomic bidding format.
The solution to the new WDP model can be converted back
to the solution to the original WDP model. In other words,
once we get the solution to the new WDP model, we can
easily calculate the solution to the original WDP model.

In the same way, we also introduce subproviders to
simplify the asks submitted by providers. The following
transformation guides the detailed process:

Transformation 4. Any ask offering multiple goods,
(⟨r1, cr1

j , qr1
j ⟩, ⟨r2, cr2

j , qr2
j ⟩, … , ⟨rm, crm

j , qrm
j ⟩). Suppose they

are submitted by m subproviders, this bidding form can
then be transformed to m simple asks (⟨rm, crm

j , qrm
j ⟩). The
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solution to the new WDP is the solution to the origi-
nal WDP.

The preprocessing is shown in Algorithm 1.

After the original bids and asks are transformed accord-
ing to the above transformations, each user/subuser only
submits one atomic bid, and each provider/subprovider
only submits one atomic ask. The new commodity set is
denoted as R̂, which also includes the dummy goods. Sim-
ilarly, there are new sets Î of buyers, Ĵ of sellers, B̂ of
transformed bids, and Â of simplified asks. Each item in B̂
is denoted as B̂i = ⟨Si, vi⟩, and Si presents the bundle the
buyer i bids. Similarly, each item in Â is Âj = ⟨rj, cj, qj⟩, and
rj presents the good that the seller j sells.

5.2 The WDP model
In the preprocessing period, the original bids and asks are
transformed into atomic ones, so the origin WDP model
can be formulated as follow:

max
⎛⎜⎜⎝
∑
i∈Î

xiUi(Si) +
∑
j∈Ĵ

yjWj(rj)
⎞⎟⎟⎠

s.t.
∑

i∈Î,r∈B̂i(1)

xi =
∑

j∈Ĵ,r=Âj(1)

yj ∀r ∈ R̂

yj ∈ {0, 1, … , qj} ∀j ∈ Ĵ
xi ∈ {0, 1} ∀i ∈ Î

(6)

where xi denotes whether the buyer i participant in the
auction and yj denotes seller j's transaction quantity,
(xi, yj), i ∈ Î, j ∈ Ĵ specify the auction result. To obtain
origin allocation results, we should map subusers (sub-
providers) to original mobile users (MCC providers); thus,
the origin MCC resource allocation is acquired.

Equation 6 is to maximize the total social welfare of all
the participators (both users and providers), denoted as
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Z(x, y). Social welfare reflects the efficiency of an auction
mechanism. Ui(S) is buyer i's utility function, which has
been defined in Equation 1, Wj(r) is seller j's surplus func-
tion, which can be formulated as follow:

Wj(r) = Pr
j − cr

j , (7)

where Pr
j denotes that seller j sells item r at price Pr

j and cr
j

is seller j's origin offered price. Therefore, once selling out
one unit of commodity r, seller j can obtain Wj(r) surplus.

Therefore, the object of (6) can be rewritten as

Z(x, y) =
∑
i∈Î

xi

(
vi −

∑
r∈Si

Pr
i

)
+
∑
j∈Ĵ

yj(Pj − cj). (8)

Because ∑
i∈Î

xi
∑
r∈Si

Pr
i =

∑
j∈Ĵ

yjPj, (9)

we have

Z(x, y) =
∑
i∈Î

xivi −
∑
j∈Ĵ

yjcj. (10)

Up to now, the origin WDP problem can finally trans-
formed into the following integer program:

(IP) zIP = max
⎛⎜⎜⎝
∑
i∈Î

vixi −
∑
j∈Ĵ

cjyj

⎞⎟⎟⎠
s.t.

∑
i∈Î

brixi −
∑
j∈Ĵ

arjyj = 0 ∀r ∈ R̂

yj ∈ {0, 1, … , qj} ∀j ∈ Ĵ

xi ∈ {0, 1} ∀i ∈ Î.

(11)

To present the first constraint clearly, 2 matrixes b and
a are used. The b is a |R̂| × |Î| matrix, and each element
is 0 or 1, ie, bri ∈ {0, 1}. Because all the original bids are
transformed to the atomic bids, one commodity appears at
most once in each atomic bid. If buyer i bids the commod-
ity r, bri = 1. Otherwise, bri = 0. Similarly, a is a |R̂| × |Ĵ|
matrix, and each element is also 0 or 1. If seller j offers the
commodity r, arj = 1. Otherwise, arj = 0. Furthermore,
there is only one element being 1 in each column of a,
because all the original asks are transformed to the form
Âj = ⟨rj, cj, qj⟩, which only consists of one type of com-
modities. After the original bids and asks are preprocessed
according to the transformation methods, the matrixes b
and a are initialized.

To decide the specific transaction prices, we design
a decomposition algorithm to relax the above integer
problem  into a linear formulation, and the detailed pric-
ing mechanism will be introduced in the next subsection.

5.3 The decomposition algorithm
and pricing mechanism
The optimized problem IP is a special case of the origin
NP-hard WDP problem,32 so it is also NP-hard. Therefore,
how to find an optimal allocation solution and transaction
prices of each commodity is important.

To find the optimal solution to the general WDP problem
defined in (5), there are 2 approaches. The first one is
the exact method, which relaxes the problem into a larger
feasible region; this helps to solve the origin problem
more easily. The optimal solution value of this relaxed
problem is the upper bound of the origin problem.32 The
second approach is to use standard artificial intelligence
(AI) searches.33 Given the submitted bids, this method
searches all the possible allocations. Besides these, for
different problem sizes and structures, there are differ-
ent algorithms with satisfactory performance. However,
there are no general-purpose algorithms that can solve all
instances due to the applicability of combinatorial auc-
tions. Furthermore, there is few research works on the
double combinatorial auctions.

In our solution, we first decompose IP to find a computa-
tionally efficient way to solve the double auction problem.
Using a linear programming problem, we reformulate the
origin problem, and then we can solve the new linear pro-
gramming problem in polynomial time. Once we work
out the optimal value to the new linear dual problem, the
optimal solution to the original problem can be obtained.

To relax the original problem IP, we move the first con-
straint into the objective function with a penalty term (the
Lagrangean relaxation). Then we get the following new
problem LR:

(LR) zLR(𝝀) = maxL(x, y;𝝀)
s.t. 0 ≤ yj ≤ qj ∀j ∈ Ĵ

0 ≤ xi ≤ 1 ∀i ∈ Î
(12)

where the Lagrangean function L(x, y;𝝀) is defined as
follow:

L(x, y;𝝀) =
∑
i∈Î

vixi −
∑
j∈Ĵ

cjyj

+
∑
r∈R̂

𝜆r(
∑
j∈Ĵ

arjyj −
∑
i∈Î

brixi)
(13)

and 𝝀 is the Lagrangean multipliers vector, 𝝀 =
(𝜆1, … , 𝜆r, … , 𝜆|R̂|).

Thus, we get the Lagrange duality problem LD of the
origin problem:

(LD) zLD = minzLR(𝝀)
s.t. 𝜆r ≥ 0 ∀r ∈ R̂

(14)
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As there are many subgradient algorithms for the
Lagrangean relaxation, zLD can be easily solved. Here,
we adopt the subgradient algorithm in Fumero34 because
our problem can be converted into a traveling sales-
man problem (TSP). Therefore, the subgradient of the
Lagrangean function L(x, y;𝝀) in our problem can be
defined as follow:

g = 𝜕L(x, y;𝝀)∕𝜕𝝀, (15)

where 𝝀
(k) represents for iteration, which is generated

according to the following recursion:

𝝀
(k+1) = 𝝀

(k) + t(k)g(k). (16)

At the point 𝝀(k), t(k) represents for the step size and g(k)

is the subgradient of the function L(x, y;𝝀). Phase I in
Algorithm 2 shows the subgradient algorithm.

How to calculate transaction prices is the key point. Con-
sider the constraint

∑
i∈Îbrixi −

∑
j∈Ĵarjyj = 0(∀r ∈ R̂),

this means that the total demands of all users should be
equal to the total supplies of all providers. According to the
Lagrangean multipliers, 𝝀 acts as a price vector. Therefore,
once the Lagrangean dual problem LD is solved, we can
then obtain the optimal vector 𝝀 = (𝜆1, … , 𝜆r, … , 𝜆|R̂|).
So the transaction price of the commodity r is 𝜆r. As one
type of goods only has one price in the MCC auction
market, so the dummy goods' trade prices are all 0.

Following the above steps, we present our detailed MCC
combinatorial auction mechanism in Algorithm 2, which

introduces how the auction mechanism decides commod-
ity allocation and transaction prices.

The allocation decision (WB, WA) and transaction
prices (P) are obtained by executing Algorithm 2, and these
results are published on the auction platform. WB is a|R| × |I| matrix, where WBri denotes the amount of com-
modity r allocated to user i. Similarly, WA is a |R| × |J|
matrix, where WArj denotes the quantity of good r sold
by the provider j. P is a vector of |R| elements, where Pr

denotes the transaction price of commodity r. The platform
matches users and providers according to WB and WA in
sequence. Then it reports the user allocation to providers.
The match result and amount that each user needs to pay
are calculated and announced to users. Once the trans-
action is completed, the connection between users and
providers will be established and providers start to provide
services to users.

Obviously, Algorithm 2 is individually rational because
mobile users will never be charged more than their val-
uations. Besides, it is budget balanced because the total
profits of all providers are equal to the total payments of all
users.

6 EVALUATION

The main objective of our auction mechanism is to allocate
MCC resources effectively. Therefore, we focus on exam-
ining the allocation performance of our mechanism under
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mobile users' illustrative demands and providers' offer
distributions. Furthermore, the computational efficiency
is also an important criterion, for mechanisms should
be designed to require computations as few as possible.
Because the popular simulation softwares (eg, CloudSim)
support neither auction protocols nor price generation, we
simulate auctions with different kinds of scales to evaluate
our solution.

There are some research works applying various auction
mechanisms to allocate cloud or mobile cloud resources.
However, we do not compare our auction mechanism with
these solutions for the following reasons.

Firstly, none of the prior solutions has implemented
online combinatorial double auctions. The existing solu-
tions are single-sided auctions, which only support
one-to-many negotiations. In addition, most of them are
noncombinatorial auctions, ie, the bidders only bid one
type of goods in one auction. Our solution enables buyers
and sellers to submit bids simultaneously and allows users
to bid a bundle of goods at one auction.

Secondly, the existing solutions often compare them-
selves with some theoretic auction mechanisms, which
can get the social optimal allocation decisions but have not
been applied in real markets.4,24 For example, Zhang et al4

compared their solution with the Vickrey-Clarke-Groves
(VCG) mechanism. Although such theoretic mechanism
can get the allocation decision with the optimal social wel-
fare, it cannot be followed in real-world cloud markets
because it is either too costly or too difficult for users to
understand. If the social welfare of a feasible auction is
close to such a theoretic optimal, it also proves the auction
performance is acceptable. In this section, we compare
our solution with the sequential single-minded double
auctions on allocation performance.

We consider the following simulation scenario: The set
of commodities is R, the set of mobile users is I, and
the set of MCC providers is J. Because Algorithm 1 can

preprocess all the complicated original bids and asks with-
out loss of generality, suppose each user submits only one
atomic bid (⟨S, vS⟩), and each provider offers only one ask
(⟨r, c, q⟩). User i bids for the bundle Si, which is a subsets
of R (selected from the 2|R| − 1 cases).

To show the comparison results between our
MCC combinatorial double auction and the tradi-
tional single-minded auction, |R| sequential auctions
a1, … , ar, … , a|R| are constructed, where the r − th
auction sells the commodity r. If user i submits
Bi = (⟨Si, vS

i ⟩), Si = {rl, rm, rn}, the bid is divided into 3
single-minded auction bids sal, sam and san, and the value
for each bid is set to vS

i ∕3. We use the Marshallian path35

to match bids and asks to provide the optimal solutions.
Specifically, we evaluate the following six criteria:

1. Social welfare. Denoted by Es, social welfare is the
total payoffs/utilities of both sellers and buyers. The
social welfare of the proposed combinatorial auction
Es(CA) is the optimal value of objective function Z(x, y),
and that of the sequential auctions Es(SA) is the sum of|R| sequential auctions: Es(SA) =

∑
r∈REs(ar).

2. Transaction volume. Denoted by Ev, transaction vol-
ume is the quantity of the goods transacted success-
fully, ie, the amount of the transactions, which reflects
the market efficiency of the auction mechanisms. The
larger the transaction volume is, the better the market
efficiency is. The transaction volume of the proposed
combinatorial auction is Ev(CA) =

∑
j∈J yj, and that of

the sequential auctions is Ev(SA) =
∑

r∈REv(ar).
3. Average ratio of transaction prices. Denoted by 𝛼,

average ratio of transaction prices is the average ration
of transaction price in our combinatorial auction and
that in sequential auctions. 𝛼 = (

∑
r∈RPCA

r ∕pSA
r )∕|R|.

4. The Computational efficiency. Computational effi-
ciency is the number of iterations, which denotes the
overall efficiency and performance of the whole plat-
form.
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FIGURE 4 Allocation performance of the proposed mobile cloud computing combinatorial double auction mechanism (Scenario 1)
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5. Number of players.|R|, |I|, and |J| are the number of
commodities, users, and providers, respectively. These
parameters can influence the computational efficiency
significantly.

6. Running time. Denoted by |T|, running time repre-
sents for the waiting time of players in the auction. The
whole process will be considered low-latency if |T| falls
in an acceptable range.

The comparison results between combinatorial auction
and sequential auction are shown in Figures 4 and 5; social
welfare, transaction volume, and transaction price on dif-
ferent scales are measured. User amount and provider
amount are fixed, and the commodity amount is increas-
ing. In Figure 4, |J| = 100, |I| = 2000 and |R| = 2, 3, … 10.
In Figure 5, |J| = 200, |I| = 5000, and |R| = 2, 3, … 15.
From these simulation results, we can see that with the
increasing commodity number, the performance of the
proposed combinatorial auctions is always close to the
optimal solution. Further, the transaction prices of our
mechanism are stable.

To evaluate the computational efficiency, we analyze the
number of iterations when computing the optimal solu-
tion, and the results on different scales are shown in Figure
6. Figure 6A shows the influence on different user amount
while the provider amount |J| is set to 100. Figure 6B
shows the influence on different provider amounts while
the user amount |I| is set to 2000. To better illustrate the
influence, we conduct 2 scenarios on different scales. The
solid line denotes the curve when the number of commodi-
ties |R| is set to 5, while the dashed line denotes the curve
when |R| is set to 10. From the result we can see that the
iterations is about 40 even when there is 10 commodities,
2000 users and 100 providers. These results prove that the
bidding platform is efficient enough to calculate winners
and prices in a particular auction in large scales.

To better illustrate the influence on different amounts
of players (commodities |R|, users |I|, providers |J|), we
conduct a large number of experiments in the above 2 sce-
narios. The amount of users and providers are both on the
increase, and there are 5000 users and 100 providers at
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FIGURE 5 Allocation performance of the proposed mobile cloud computing combinatorial double auction mechanism (Scenario 2)
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FIGURE 7 Iterations of the proposed mobile cloud computing combinatorial double auction mechanism
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FIGURE 8 Running time of different amount of users while|R| = 10

most. In Figure 7A, the amount of commodities |R| is set
to 5, and in Figure 7B, the |R| is set to 10. The peak value
of iterations is 59, and the mean value is about 23.68. From
these results, we can conclude that the number of interac-
tions will increase along with the number of commodities
and players, which is still acceptable.

As to the running time, we make a timer for the plat-
form and analyze the time cycle of the whole process.
When there are 10 commodities and 100 providers, we test
the running time with different amounts of users (from
1000 to 5000). Figure 8 shows the running time, and each
bar stands for the average value of 100 experiments. From
these results, we can see that the latency of this plat-
form is about 500 milliseconds even there are thousands of
players.

For comparison, we investigate the response time of a
web service (PayPal) for a customer application and find
that despite the occasional service blip, the PayPal service

has about 450 milliseconds,36 which indicates that the user
experience and application performance of PayPal is truly
nice. Further, according to Akamai,37 47% of consumers
expect a website to load in 2 seconds or less, and 40% of
consumers will abandon a website that takes more than
3 seconds to load. Besides, in a 2012 analysis of Google
Analytics data, Google found that the web's median page
load speed is 2.7 seconds (4.8 seconds for mobile). So iWeb
Technologies38 suggests that 2 seconds is the benchmark
under which you should aim to keep your response speeds.
Therefore, we can conclude that our platform can meet
users' latency requirements.

Overall, from the above simulation results, we can get
the following conclusions: First, the social welfare and
transaction volume of the proposed MCC combinatorial
double auction are close to the optimal solution, which
proves that the allocation efficiency of our approach is
high. Second, the transaction prices of our approach are
stable. Third, the WDP algorithm can obtain the optimal
results and can converge with acceptable latency.

7 CONCLUSION

In this paper, we first design a combinatorial double auc-
tion mechanism in the 3C-based MCC market. To imple-
ment the mechanism, we then design an online auction
framework, which enables mobile users to bid bundles of
items in one auction. On base of these, we also design a
novel bidding language to facilitate mobile users to express
their valuations. To efficiently decide winners and prices
of each auction, a WDP model is formulated. At last, we
conduct a series of experiments, and the results show that
the proposed mechanism obtains nice allocation perfor-
mance that are close to the optimal solution and the system
performance is stable.
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