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A B S T R A C T

With the development of Internet of Things (IoT) and 5G technologies, more and more applications, such as
autonomous vehicles and tele-medicine, become more sensitive to network latency and accuracy, which require
routing schemes to be more flexible and efficient. In order to meet such urgent need, learning-based routing
strategies are emerging as strong candidate solutions, with the advantages of high flexibility and accuracy.
These strategies can be divided into two categories, centralized and distributed, enjoying the advantages of
high precision and high efficiency, respectively. However, routing becomes more complex in dynamic IoT
network, where the link connections and access states are time-varying, hence these learning-based routing
mechanisms are required to have the capability to adapt to network changes in real time. In this paper, we
designed and implemented both centralized and distributed Reinforcement Learning-based Routing schemes
combined with Multi-optimality routing criteria (RLR-M). By conducting a series of experiments, we performed
a comprehensive analysis of the results and arrived at the conclusion that the centralized is better suited to
cope with dynamic networks due to its faster reconvergence (2.2 × over distributed), while the distributed
is better positioned to handle with large-scale networks through its high scalability (1.6 × over centralized).
Moreover, the multi-optimality routing scheme is implemented through model fusion, which is more flexible
than traditional strategies and as such is better placed to meet the needs of IoT.
1. Introduction

Along with the burgeoning development of the Internet in recent
years, emerging network applications, such as industrial Internet, In-
ternet of Vehicles (IoV), 4K/8K video transmission and edge comput-
ing, are requiring routing schemes to be more efficient. Nevertheless,
today’s network is no longer as stable as the traditional wired net-
work due to the access of a large number of mobile devices, which
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make network connection status change frequently. The conflict be-
tween application requirement and network characteristic brings great
challenges to the network in providing efficient and flexible routing
decisions. Moreover, the increasing number of service types brings mul-
tiple optimization objectives which involve bandwidth, delay, packet
loss rate, link utilization and what not, e.g., industrial Internet and
IoV require low-delay or deterministic-delay and file transfer requires
inverse-bandwidth. Even some services are multi-optimal criteria, like
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video transmission requires minimum delay if bandwidth is sufficiently
high [1].

To ensure the Quality of Service (QoS) in current dynamic networks,
improving hardware infrastructures not only causes huge cost but also
has limitations of performance improvement. Meanwhile, a research
of CAIDA [2] shows that the existing network still has a lot of room
for optimization. Therefore, many mathematical model-based network
optimization schemes have been proposed [3,4]. Most of these works
are to simplify specific scenarios through idealized assumptions and
many constraints so that network optimization problems can be solved
efficiently by mathematical methods. However, there are many uncer-
tainties in the real scene, so the actual effect of this kind method cannot
be guaranteed. Besides, there is no single general model to solve mul-
tiple routing optimization tasks at the same time, and modeling each
task separately would affect the scalability of the network. Therefore,
the machine learning (ML) promises to bring a new perspective to solve
this problem.

The improvement of ML and hardware devices, like CPU and GPU,
have made the artificial intelligence model possess powerful learning
capabilities and generalization capabilities. And thanks to Software
Defined Network (SDN) and programmable routing devices, intelli-
gent routing based on ML has noble feasibility. Data-driven intelligent
routing has features of high accuracy and extreme versatility. Models
trained by different data set can solve various network optimization
problems without complicated network environment assumptions and
modeling. Some existing researches show that the ML-based routing
strategies have been successfully applied in many scenarios, such as op-
portunistic networks [5], wireless networks [6], IoT [7], and improved
in accuracy and performance than the traditional routing protocol [7].
The deployment of the ML-based routing scheme can be divided into
two categories, centralized and distributed. The centralized gets the
globe network state and makes globe routing decisions via a centralized
controller which is akin to the SDN controller, and the distributed
makes single routing hop by each router. Most of current networks are
time-varying, whose connections are can be established and canceled at
any time, or nodes be accessed and be eliminated. Both the centralized
and distributed require the model to achieve convergence or it will
make wrong decision. The aforementioned dynamics lead to the issue of
the fitted model non-convergence again. And combined with multiple
optimality routing criteria, we complete this paper.

In summary, our contributions are as follows.

• We designed a deep reinforcement learning-based routing scheme
and implement it in both centralized and distributed mode.

• We compared and analyzed performances of the two modes via
experiments, especially under dynamic conditions.

• Multi-optimal routing schemes are implemented via model fusion,
which is more flexible than traditional routing strategies and can
better meet the development needs of IoT.

The remainder of this paper is organized as follows. Related works
are reviewed in Section 2. Section 3 describes details and specific of
RLR-M model. Section 4 presents the evaluations and analyses. Finally,
the conclusions and future work are provided in Section 5.

2. Background and related work

The traditional transmission service is ‘best effort’ which only in-
volves reachability of source and destination and does not involve
other link attributes. This kind of service principle can no longer meet
the current network transmission requirements, then QoS routing has
become a critical and necessary guarantee. The guarantee provided
by QoS can be divided into two main types. The first is the kind of
cumulative constraints, which refers to the final performance is the
cumulation of all partial effects of passed links from the source to the
destination, such as link delay, loss rate or jitter. And the second is
2

the kind of bottleneck constraints, which means that the transmission s
performance is determined by the worst limitation of all segment links,
the most typical is the bandwidth. And many tasks requires multiple
optimization criteria, which makes the mathematical-based optimiza-
tion model more complicated and inadequate, the ML-based routing
strategies have emerged.

The development of network technology makes the IoT popular, be-
ing characterized by huge data volume, high proportion of uplink data,
stable traffic, et al. [8]. More and more mobile devices are accessed
to the network, such as smartphones, automobiles, resulting in quite
dynamic IoT networks [9,10]. The dynamic nature of IoT network, e.i.
time-varying connections of links and access status, requires routing
strategies to vary to adapt the network. It should be noted that the
ML-based decision system can fit the optimal result only when the
model converges. The dynamic feature will have a great influence
on it, making it necessary to retrain the model to refit the current
network status. In this paper, only the dynamic characteristics of the
IoT are considered, i.e., the time-varying nature of its topology state. Its
combination with dynamic network control is estimated as the future
work. In the rest of this section, representative works on AI-based
network optimization schemes, reinforcement learning, and multiple
optimality criteria routing are presented.

2.1. AI-based network

Given the successful application of machine learning in natural lan-
guage processing, computer vision and other fields, many scholars try
to apply AI technology to network context, including congestion con-
trol, resource allocation, security and so on [11]. Zhang et al. optimized
the video caching strategy of edge servers through model predic-
tion [12]. Liang et al. optimized the decision tree generation strategy
for flow classification by an reinforcement learning model [13]. Hua
et al. put forward a reward-clipping mechanism to stabilize GAN-DDQN
training against the effects of widely-spanning utility values to solve the
problem of several slices in a radio access network with base stations
which share the same physical resources [14]. Kasim proposed a robust
deep learning based network anomaly detection against distributed
denial of service attacks which speeds up training and testing times
and performs better classification performance metrics than traditional
approaches [15]. In the routing realm, Mao et al. proposed a Deep
Belief Network (DBN)-based routing scheme in the backbone of the
network, where the domain’s border routers calculate the best inter-
domain path for packets [16]. Xiao et al. combined a deep learning
model and the link reversal theory to generate a Decision Directed
Acyclic Graph (DDAG) and assign some weights to all links, then
choosing an optimal path via a greedy algorithm when making routing
decisions [17].

2.2. Reinforcement learning

Reinforcement Learning (RL) learns the optimal strategy by max-
imizing accumulated rewards which is suitable for decision-making
problems [18]. The overall process of RL is as follows: (1) The agent
chooses the action 𝐴𝑡 according to the strategy 𝜋 in the current state
𝑆𝑡. (2) The environment transfers to the next state 𝑆𝑡+1 according to
𝐴𝑡. (3) The agent receives the feed back reward 𝑅𝑡 by the environment
and chooses the next action 𝐴𝑡+1 according to strategy 𝜋. In the above
process, the strategy 𝜋 is constantly adjusted so that 𝜋 can fit the
ptimal decision for states 𝑆𝑖. Traditional RL usually solves the decision
trategy function by iterating the Bellman optimality equation, but
his method is too costly or even infeasible in the large state space.
hen, the Deep Reinforcement Learning (DRL) emerged [19], which
ombined the advantages of deep learning and RL, and solved the ex-
essive data dimensions problem. So far, DRL can be divided into three
ategories [20]: value function-based (e.g., DQN, DDQN, DRQN [21–
4]), policy gradient-based (DDPG, A3C [25,26]), and search and
upervision-based (AlphaGo [27]). A classic DQN model structure is
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shown as Fig. 1, which fits the decision function through a deep neural
network. The experience playback mechanism is used in model training
process, and data sample 𝐸 = (𝑆𝑡, 𝐴𝑡, 𝑅𝑡, 𝑆𝑡+1) obtained from online
rocessing, which will be stored in the Experience Pool (𝐸𝑃 ). During

training, a batch of 𝐸 is selected from 𝐸𝑃 , and the stochastic gradient
descent algorithm is devoted to updating the network parameters 𝜃. The
deep neural network requires training data to be independent of each
other. This random sampling method reduces the correlation between
𝐸 and thus improves the stability of the algorithm.

In the Internet, DRL is widely used in traffic engineering, traffic
prediction and routing configuration, etc. Xu et al. used DRL for intra-
domain traffic engineering optimization, and proposed the DRL-based
traffic engineering solution, DRL-TE, which uses traditional methods to
generate paths and uses a DRL unit to adjust the routing path split ratio
online [28]. Valadarsky et al. tried to predict the future network traffic
based on historical traffic data through the DRL unit and calculated the
appropriate routing configuration based on the predicted results [29].
Ramy et al. developed a hierarchical cluster-oriented adaptive per-flow
path calculation mechanism by leveraging the Deep Double Q-Network
(DDQN) algorithm, where the end-to-end paths are calculated by the
source nodes with the assistance of cluster leaders at different hierar-
chical levels [30,31]. Recent researches devoted to applying DRL to
IoT involved task scheduling, energy-saving, and routing. Wei et al.
proposed a Q-learning based task scheduling algorithm for wireless
sensor networks, ISVM-Q, to achieve better application performance
with less energy consumption [32]. In terms of routing application
of DRL in IoT, Gagandeep et al. proposed a DRL-based intelligent
routing scheme for IoT-enabled WSNs, which utilizes a novel unequal
clustering strategy to improve energy efficiency and number of alive
nodes [33]. Sergio et al. designed a simple RL algorithm based on
epsilon-greedy, Epsilon Multi-Hop (EMH), which enabled reliable and
low consumption low-power wide area networks multi-hop topologies
and achieved significant energy savings with respect to the default
single-hop approach [34]. To enhance the throughput of IoT, Ding et al.
re-modeled routing selection problem as a Markov decision process
and used DRL to make decisions. The simulation results show that
the proposed method can significantly reduce the congestion proba-
bility [35]. The DRL-based routing decision algorithms for IoT in the
aforementioned are all centralized and devoted to the optimization of
goals such as energy-saving or throughput. These researches do not
involve the influence of the dynamic characteristics of IoT on learning-
based routing decision strategies. Therefore, we emphasis modeling and
experimental analysis on this aspect.

RL can solve the problem of sequence decision optimization through
a reward feedback mechanism, and does not require labeled data. The
difficulty of data annotation in the network environment and the fact
that network transmission performance can be used as natural decision
feedback make DRL more suitable for routing decisions than AI/ML.

2.3. Routing on multiple optimality criteria

The multi-objective path problem is a classical issue of the Opsearch
that have been studied by the research community for a long time [36–
38]. In concrete algebraic terms, this problem can be described as that
attributes are tuples of the Cartesian product of elementary metrics,
each of which either extends with + and is ordered by ≤ or extends with
min/max and is ordered by ≥ or ≤. Tuples extend termwise and are
partially ordered by the product order of their termwise total orders.
The goal is to find sets of dominant tuples from source to destination
in a network and is attained with generalizations of Dijkstra’s and
Bellman-Ford algorithms [39].

Sobrinho’s series early works proposed the algebraic framework
based on total order of attributes for a unified treatment of routing
problems and protocols, which abstracting away the specificity of per-
formance metrics and protocol parameters [40–42]. And he proposed
the path constraints model with a set of attributes and the corre-
sponding protocol to provide a fully distributed solution for addressing
3

routing on multiple optimality criteria problems [39]. o
Fig. 1. DQN structure.

. Models design

In this section, we propose both two of centralized and distributed
eep reinforcement learning-based single-optimality routing algorithms
nd realize multi-optimality routing through model fusion, and all
etails are presented.

.1. Variable definition

A network topology is defined as a directed graph, ⟨𝑁,𝐸⟩. All
outers are defined as a node set 𝑁 , and router 𝑖 is 𝑁𝑖. And all links are
enoted as edge set 𝐸, 𝐸𝑖𝑗 ∈ 𝐸 means there is a direct link between 𝑁𝑖

and 𝑁𝑗 . All declarations are shown in Table 1.

3.2. MDP of routing decision

The routing decision can be transformed into a Markov Decision
Process (MDP), which is a Markov Process (MP) containing rewards
and decisions and can be represented by the tuple, ⟨𝑆,𝐴, 𝜋, 𝑅⟩. 𝑆, 𝐴 and

are state, action and reward respectively, which are described in the
able 1. And 𝜋 is the state transition probability parameter. The routing
ecision is only involved in current state, then the Markov property of
ecisions can be expressed by Eq. (1).

𝑟(𝑠𝑛+1|𝑠0, 𝑎0,… , 𝑠𝑛, 𝑎𝑛) = 𝑃𝑟(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛) (1)

In a task, an action is selected according to the current state. After
he action is executed, the routing network will feedback the next state
nd corresponding rewards. This process is repeated until the task is
omplete.

.3. Accumulative constrain type

In this subsection, we take the link delay as a typical cumulative
onstraint type and implement the generic routing decision model
ased on reinforcement learning in two modes: centralized and dis-
ributed.

.3.1. Centralized routing scheme

a) Overall Structure
This fashion needs a central controller that akin to the SDN con-

roller to make all routing decisions. It can train the DRL-based model
ffline and push forwarding rules to all routers via OpenFlow protocol.
t is different from the traditional routing protocol in this mode. All
outers no longer need to interact with neighbors, but the state of the
ntire network is maintained by the controller. The centralized mode
an be directly upgraded in the existing network running the OpenFlow
rotocol and does not require to do much work on the underlying
quipment.

As shown in Fig. 2, the environment generates a reward based

n change of state after performing the last action. The reward is
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Table 1
Declaration of notations.

Notation Declaration

𝑁 the set of all nodes

𝑁𝑖 means router i, and 𝑁𝑖 ∈ 𝑁

𝐸 the set of all links

𝐸𝑖𝑗 means the link of 𝑁𝑖 to 𝑁𝑗 , if it is exist then 𝐸𝑖𝑗 ∈ 𝐸, otherwise, 𝐸𝑖𝑗 ∉ 𝐸

𝑑𝑒𝑠 destination of a task

𝑆 state of the model environment

𝐴 action

𝑅 reward of state change, 𝑅𝑆𝑖→𝑆𝑗
means reward of change from 𝑆𝑖 to 𝑆𝑗 . 𝑅𝑚𝑎𝑥 means the biggest prize when the task is

done and 𝑅𝑚𝑖𝑛 means the harshest punishment which usually a small negative number

𝐶𝑖𝑗 the cost of transform from 𝑁𝑖 to 𝑁𝑗 , such as time consumption.

𝐵𝑖𝑗 the link constraint of 𝑁𝑖 to 𝑁𝑗 , such as link bandwidth.

𝑞_𝑡𝑎𝑟𝑔𝑒𝑡 a network trained by data of state change and related reward

𝑞_𝑣𝑎𝑙𝑢𝑒 a network evaluates the action and updated by 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡
1
1
1
1
1
1

r
f

Fig. 2. Centralized RL-based routing model.

sually related to the optimal criteria, if the transmission target is to
inimize delay, the smaller the delay of routing decision, the greater

he reward, and vice versa. In a period, it involves the state before
ction, action, state after the action, reward, and whether the task is
one. This five-tuple will be stored in the experience pool of model
o make the previous five-tuples used for training the 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡 network
ndependently. The state after action will be taken as the input of
_𝑣𝑎𝑙𝑢𝑒 which will output an action with biggest reward of this state.
he environment performs this action and feedbacks a reward, then a
ew period is completed. The pseudocode of the centralized process is
hown in the Algorithm 1. The 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡 obtains previous data from the
xperience pool and trains the model. The 𝑞_𝑣𝑎𝑙𝑢𝑒 has the same network
tructure as 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡, and its parameters are updated periodically by the
_𝑡𝑎𝑟𝑔𝑒𝑡.

b) Detailed design
If routing decisions on all transport tasks need to be made using a

odel, then there must be at least two essential properties for a packet
orwarding, the source address, and the destination address. Besides,
ecause forwarding satisfies the MP, the address of the router that
rocesses the packet is the source address of the current state, which is
ndependent of all previous states. Therefore, we define that the state
as two attributes, the current and the destination, as shown in the
q. (2). After performing the forwarding action, only the current will
4

Algorithm 1 Centralized Process.
Initial: 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = environment.state()
1: # Interaction Process:
2: while TRUE do
3: 𝐴 = q_value(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
4: 𝑆𝑛𝑒𝑥𝑡, 𝑅 = environment.execute(𝐴)
5: experience_pool.save([𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐴, 𝑅, 𝑆𝑛𝑒𝑥𝑡])
6: 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑆𝑛𝑒𝑥𝑡
7: end while
8: # Training Process:
9: while TRUE do
0: 𝑟𝑒𝑝𝑙𝑎𝑦_𝑑𝑎𝑡𝑎 = experience_pool.sample(batch_size)
1: q_target.train(𝑟𝑒𝑝𝑙𝑎𝑦_𝑑𝑎𝑡𝑎)
2: if isupdate == TRUE then
3: q_value.copy_parameters(q_target)
4: end if
5: end while

be modified, and the destination address remains to be consistent with
the entire transmission process.

𝑆 = [𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑁𝑑𝑒𝑠] (2)

The reward is a significant part of DRL, which needs to be designed
with different calculation rules according to diverse tasks and the
transition of environmental states. Before that, it was explained that
the action space is nodes set 𝑁 , and the action output by the model is
𝑁𝑖, ∈ 𝑁 , such as Eq. (3).

𝐴 = [𝑁𝑛𝑒𝑥𝑡] (3)

For a transmission task, the evaluation of the distance to the desti-
nation will change after each routing decision is executed: better or not.
And combining the reachability of routes, rewards can be divided into
the following three categories. First, if 𝑁𝑛𝑒𝑥𝑡 is not directly connected,
the reward is the harshest punishment, 𝑅𝑚𝑖𝑛, which is usually a small
negative number. Second, if 𝑁𝑛𝑒𝑥𝑡 is 𝑁𝑑𝑒𝑠, the reward is the maximum
reward, 𝑅𝑚𝑎𝑥, which is usually a large positive number. For the third
case, 𝑁𝑛𝑒𝑥𝑡 is not 𝑁𝑑𝑒𝑠 and it can be reached directly by 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the
eward is a positive coefficient the 𝛼 multiply the minimum cost of
rom 𝑁𝑛𝑒𝑥𝑡’s neighbors to 𝑁𝑑𝑒𝑠 minus the cost of from 𝑁𝑛𝑒𝑥𝑡 to 𝑁𝑑𝑒𝑠. As

shown in formula Eq. (4). Due to the iterative computation, the value
of 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑁𝑛𝑒𝑥𝑡 = 𝑁𝑑𝑒𝑠 is required, which is already included in the
above case because the cost of from one to itself is 0. It needs to be
explained that the absolute value of 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 is much larger than
the weight of the link. For example, in the experiment of Section 4,
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Fig. 3. New node accessed.

ach link weight is a random number less than 20, and 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥
are −100 and 100 respectively. 𝑅[𝑖,𝑑𝑒𝑠]→[𝑗,𝑑𝑒𝑠] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅𝑚𝑖𝑛, 𝐸𝑖𝑗 ∉ 𝐸

𝑅𝑚𝑎𝑥, 𝐸𝑖𝑗 ∈ 𝐸 & 𝑗 = 𝑑𝑒𝑠

𝛼(𝑎𝑟𝑔𝑚𝑖𝑛𝑘∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖)(𝐶(𝑘, 𝑑𝑒𝑠)) − 𝐶(𝑗, 𝑑𝑒𝑠),

𝐸𝑖𝑗 ∈ 𝐸 & 𝑗 ≠ 𝑑𝑒𝑠)

(4)

Since the controller has the global perspective of the network, it
can calculate the cumulative reward value for all nodes that made
forwarding decisions along the routing path based on historical optimal
routing decision and the final routing decision performance. Then, it
can put the reward value as the label to train the 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡, as shown in
the Eq. (5).

𝑞_𝑡𝑎𝑟𝑔𝑒𝑡[𝑖,𝑑𝑒𝑠]→[𝑗,𝑑𝑒𝑠] = 𝑅[𝑖,𝑑𝑒𝑠]→[𝑗,𝑑𝑒𝑠] (5)

The 𝑞_𝑣𝑎𝑙𝑢𝑒 network is periodically updated by 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡 using the
copy scheme.

(c) Optimizations
For centralized mode, as the controller can obtain global status

information of network, then it is not necessary to retrain the decision
model for any network topology changes, such as, when a new node
only accesses network via only one of existed nodes (we named this
new node as one-path node, and the connected node as accessed node).
The accessed node can be regarded as one-path node’s agency, because
it must go through accessed node when other nodes communicate with
one-path, as shown in Fig. 3. Therefore, the decision model can ensure
the accuracy by a mapping operation.

When a new node connects multiple old node when accesses net-
work (similarly, we named this new node as multi-path node), it
has multiple accessed nodes and may affect optimal paths of ini-
tial network. However, the controller can make quasi-optimal routing
decisions in agent strategy that mentioned above. Therefore, it is
unnecessary to retrain decision model when existing few multi-path
nodes if the network system is not extremely strict with the accuracy
of the routing decision. In Evaluation section, we made statistics on the
influence of the number of one-path nodes and multi-path nodes on the
accuracy of decision model in different scale networks, which can be
used as a guide for when to start retraining.

Based on the proposed agent strategy, we also make optimization
on the network, which is called pruning. Nodes with 1 degree in the
topology can be regarded as one-path nodes and can be proxied. These
nodes on a non-loop with 2 degrees in topology can also be proxied
because the router first to judge whether the destination of the received
packet is itself, and if not, the packet can be forwarded directly to its
another port, the operation is in an unconscious state for proxied node.
In the Evaluation section, we performed pruning operations on more
5

than 20 real network topologies.
Fig. 4. Distributed RL-based routing model.

3.3.2. Distributed routing scheme

(a) Overall structure
Different from the above-mentioned centralized mode, the dis-

tributed mode does not require a centralized controller. Each router
only needs to maintain its link states to its neighbors and interact
𝑞_𝑣𝑎𝑙𝑢𝑒 network with them. It is similar to the traditional routing
protocol, but the optimal path is calculated through the neural network
model. And information in the routing table is no longer distance
metrics but some parameters of 𝑞_𝑣𝑎𝑙𝑢𝑒 network.

Each router in the network needs to maintain its model. Take
one router as an example, as shown in Fig. 4. The router quantifies
environmental states and rewards and stores them in the experience
pool. When training the 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡 network, it is necessary to combine
the 𝑞_𝑣𝑎𝑙𝑢𝑒 network of the maintained neighbors and the reward to
calculate the target value. This process takes into account the cumu-
lative reward to prevent the decision model from only selecting the
optimal link based on the immediate reward. The parameters of 𝑞_𝑣𝑎𝑙𝑢𝑒
are maintained and updated by 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡. Taking the transmission task
label as the input of 𝑞_𝑣𝑎𝑙𝑢𝑒 and selecting the maximum value action
according to the calculation result. This action will be sent to the
router forwarding module or as an entry updated to the local routing
table. When the action result of 𝑞_𝑣𝑎𝑙𝑢𝑒 changes, the latest network
parameters need to be diffused to neighbors. The pseudocode of the
distributed process is shown in the Algorithm 2.

(b) Detail design
Since the distributed mode does not have a global perspective and

all routers only maintain their state and neighbor 𝑞_𝑣𝑎𝑙𝑢𝑒𝑠, considering
that the forwarding of data packets satisfies the Markov random pro-
cess, the state in this mode only needs to have a destination parameter,
such as the Eq. (6) shown. The action of the model is the same as the
centralized mode as Eq. (3).

𝑆 =
[

𝑁𝑑𝑒𝑠
]

(6)

The same as explanation of the Eq. (4) descriptions above, the re-
ward calculation of distributed mode can be divided into the following
two situations. The first, if 𝑁𝑛𝑒𝑥𝑡 is not 𝑁𝑑𝑒𝑠, whether it can be reached
directly by 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 or not, the reward is the harshest punishment, 𝑅𝑚𝑖𝑛.

The second is that the 𝑁𝑛𝑒𝑥𝑡 can be reached directly by 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and it
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Algorithm 2 Distributed Process.
Take 𝑁𝑖 as example:
Initial: 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = get_des(packet)
1: # Interaction Process:
2: while TRUE do
3: 𝐴 = q_value(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
4: 𝑅 = environment.execute(𝐴)
5: experience_pool.save([𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐴, 𝑅])
6: 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = get_des(packet)
7: end while
8: # Training Process:
9: while TRUE do

10: 𝑟𝑒𝑝𝑙𝑎𝑦_𝑑𝑎𝑡𝑎 = experience_pool.sample(batch_size)
11: 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑎𝑏𝑒𝑙 = 𝑟𝑒𝑝𝑙𝑎𝑦_𝑑𝑎𝑡𝑎 + cumulative_reward()
2: q_target.train(𝑟𝑒𝑝𝑙𝑎𝑦_𝑑𝑎𝑡𝑎)
3: if isupdate == TRUE then
4: q_value.copy_parameters(q_target)
5: end if
6: end while
7: # Diffusion and Reception of 𝑞_𝑣𝑎𝑙𝑢𝑒:
8: while TRUE do
9: if ischange(q_value) == TRUE then
0: send_neighbors(q_value)
1: end if
2: if isreceive(q_value) == TRUE then
3: 𝑁𝑖.update_neighbors(q_value)
4: end if
5: end while

is 𝑁𝑑𝑒𝑠, then the reward is the maximum reward, 𝑅𝑚𝑎𝑥, minus the cost
of from 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to 𝑁𝑛𝑒𝑥𝑡 multiply the positive coefficient, 𝛼. Again, it
includes the value of 𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑁𝑛𝑒𝑥𝑡 = 𝑁𝑑𝑒𝑠 due to the cost of from
one to itself. As shown in the Eq. (7). Similarly, the settings of 𝑅𝑚𝑖𝑛
and 𝑅𝑚𝑎𝑥 follow the above constraints.

𝑅𝑖,[𝑑𝑒𝑠]
→𝑗 =

{

𝑅𝑚𝑖𝑛, 𝐸𝑖𝑗 ∉ 𝐸 𝑜𝑟 𝑗 ≠ 𝑑𝑒𝑠

𝑅𝑚𝑎𝑥 − 𝛼𝐶𝑖𝑗 , 𝐸𝑖𝑗 ∈ 𝐸 & 𝑗 = 𝑑𝑒𝑠
(7)

To prevent the model from causing local optimum by choosing
actions based only on a one-step reward, the 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡 network update
takes into account two parts. One is the reward immediately obtained
by the action, and the other is the long-term cumulative reward, which
is calculated by neighbor’s 𝑞_𝑣𝑎𝑙𝑢𝑒 network according to the action. The
formula is as Eq. (8), which means that the target value from [𝑁𝑖] to
[𝑁𝑗 ] under destination node is 𝑁𝑑𝑒𝑠 should be the direct reward from
[𝑁𝑖] to [𝑁𝑗 ] plus the max value calculated by 𝑁𝑗 ’s 𝑞_𝑣𝑎𝑙𝑢𝑒 to [𝑁𝑑𝑒𝑠]. This
is an iterative process, and it will finally converge to a stable state.

𝑞_𝑡𝑎𝑟𝑔𝑒𝑡𝑖,[𝑑𝑒𝑠]→𝑗 = 𝑅𝑖,[𝑑𝑒𝑠]
→𝑗 + 𝛾𝑚𝑎𝑥(𝑞_𝑣𝑎𝑙𝑢𝑒𝑗,[𝑑𝑒𝑠]

→𝑘 |𝑁𝑘 ∈ 𝑁) (8)

In the same way, the 𝑞_𝑣𝑎𝑙𝑢𝑒 is updated by 𝑞_𝑡𝑎𝑟𝑔𝑒𝑡 periodically as
mentioned above.

(c) Discussions
It is important to note that in the distributed mode, each node needs

to complete local training before federated training. That is, it need to
be familiar with all of its neighbors. The experiment results show that
the federated model will converge slowly or even nonconvergent if the
model cannot fit routing decisions to their neighbors.

3.4. Bottleneck constraint type

Since the proposed routing decision model is generic, taking the link
bandwidth as an example of the bottleneck constraint type, we only
6

need to redefine the reward and retrain the model. It should be noted
Fig. 5. Model fusion for ⟨𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑑𝑒𝑙𝑎𝑦⟩ criterion.

that different from the cumulative constraint type, the bottleneck con-
straint type routing model needs to feedback a ‘‘long view’’ reward for
each decision, otherwise, it may miss the global optimum because of the
local optimum. The centralized mode has global state information that
can be converted into reward values according to the final transmission
performance, while the distributed mode needs to transfer the reward
values from the destination to the source in the reverse direction. The
details of the network model and the main process are basically same
as the cumulative type that will not be repeated.

3.5. Multi-optimality routing scheme

If the multi-optimality criteria are integrated into a model through
the reward value, it will not only reduce the flexibility of the model
but also need to retrain the model when there is an attribute that
needs to be refitted. If many attributes are maintained, the model
will be retrained frequently. Therefore, we complete multi-optimality
criteria routing decision requirements through model fusion. Taking the
principle of bandwidth (𝑏) over delay (𝑑) as an example, if 𝑏1 > 𝑏2, then
he link with ⟨𝑏1, 𝑑1⟩ takes precedence over the link with ⟨𝑏2, 𝑑2⟩ for
ny 𝑑1 and 𝑑2, and if 𝑏1 = 𝑏2 or 𝑏1, 𝑏2 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then ⟨𝑏1, 𝑑1⟩ takes
recedence over⟨𝑏2, 𝑑2⟩ when 𝑑1 < 𝑑2.

As shown in Fig. 5, the bandwidth-based model outputs a decision
ector, and each element is compared with the threshold to generate a
ew vector �⃗�, where the element is 1 if the corresponding element in �⃗�
s greater than the threshold, otherwise, it is 0. The delay-based model
utputs decision vector �⃗� and multiplies the corresponding elements
f �⃗� and �⃗� to generate 𝑇 . The index of the maximum value of 𝑇 is the
inal decision result.

. Evaluation

In this section, we explain the experimental setup and analyzed
he RLR-M in convergence time and reconvergence time when network
tate changes under different network scales.

.1. Experiment setup

The two modes of centralized and distributed RL-based models
re implemented by TensorFlow 1.3.0 and on the Ubuntu 16.04-LTS
perating system. The GPU is GeForce GTX 970 and the CPU is Intel
eon 3.30 GHz × 8.

The neural network in DQN adopts the mode of full connection of
10 layers neural network. By minimizing the value of loss function,

he mean square error of network output and input reward, to adjust
odel weights and bias. The optimizer is stochastic gradient descent

SGD).
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Fig. 6. Topologies.

Fig. 7. Accuracy performance of centralized mode.

Fig. 8. Accuracy performance of distributed mode.

Fig. 9. Tail accuracy performance of 20 nodes topology.
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Fig. 10. Accuracy performance of agency strategy.
Fig. 11. Pruning and Routing decision performance distribution.
Topologies: Two topologies, with 20 nodes and 8 nodes, were set
up in the experiment shown in the Figs. 6 and 6(b). The 20-nodes one
is based on Savvis 2011 USA topology [43]. To increase the number of
alternative paths in this topology, three routers are added to form some
loops. Link weights (delays in ms) are assigned. And setting acnodes
(𝑁8) and unconnected subgraphs (𝑁6 and 𝑁7) in 8-nodes one is to
verify the validity of setting edge weights to represent node exits. In
the process of model retraining, topology changes as following rules,
the 20-nodes changes the weight of some links randomly, and 8-nodes
is connected to all subgraphs, as shown in Fig. 6(c).

4.2. Experimental results

In this subsection, we analyze the routing decision model perfor-
mance, effects of optimization for centralized mode and the perfor-
mance of model fusion-based multi-optimality routing scheme.

4.2.1. Model performance
Based on the experimental setup above, for single-optimality routing

decision model, we take delay as example and use centralized and
distributed mode respectively in the two topologies. The verification
label of accuracy is the globally optimal decision calculated according
to the shortest path algorithm. The accuracy of each calculation is to
verify whether the forwarding port of all points to other points except
itself conforms to the label.
8

(a) Centralized mode
In this mode, the relationship between accuracy and training time

in the two topologies is shown in Figs. 7(a) and 7(b). The retraining
process is to save the convergent model of the initial training first,
and then modify the network state, such as modifying links weight
randomly or adding or deleting nodes, and then load the saved model
parameters for retraining. On the basis of some fitting ability, the
accuracy of the model at the beginning time has reached a relatively
high, so it can reconverge faster than the initial training. In the 8-N
topology, initial training time, as the line marked by ‘∙’ in Fig. 7(a),
takes about 30 s to stabilize at 100% accuracy. The retraining time,
as the line marked by ‘|’ in Fig. 7(b), only takes 10 s to reach 100%
accuracy state. In the topology with 20 nodes, the accuracy goes up
quickly, but it also takes a long time to reach 100% accuracy. Similarly,
the time of retraining is significantly shorter than its the initial training.

(b) Distributed mode
In this mode, each point needs to process distribute training first,

which means the model should fit neighbors states, and then completes
the federal training of the entire network via the neighbor-to-neighbor
𝑞_𝑣𝑎𝑙𝑢𝑒 exchange. In the topology with 8 nodes, due to the small
scale, the neighborhood fitting process makes it achieve relatively high
accuracy quickly, reaching 90% accuracy in less than 5 s and 100% in
less than 40 s, as shown in Fig. 8(a). The time to reach 90% accuracy of
retraining is similar to the initial training, but the time to reach 100%
is slightly shorter. In the topology with 20 nodes, the fluctuation in
the beginning stage of initial training is severe, because the updating
of neighbor 𝑞_𝑣𝑎𝑙𝑢𝑒 has a great influence on the decision making, and
the global 𝑞_𝑣𝑎𝑙𝑢𝑒 convergence is a conjunct process. The early stage of
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Fig. 12. Cumulative Distribution.
retraining is more stable, and the convergence state with high accuracy
can be achieved more quickly, as shown in Fig. 8(b).

(c) From excellent to perfect
For the model, it is time-consuming to converge to 100% accuracy.

The tail accuracy performance from 99% to 100% in the topology
with 20 nodes as shown in Figs. 9(a) and 9(b). Tail convergence
accounts for a large proportion of the overall situation. We analyze
the decision results of the tail stage. The most are suffered fitting
fluctuation between the sub-optimal and the optimal. Only a tiny
learning rate and multiple iterations can complete the final fitting.
And it will be more obvious when the sub-optimal and the optimal
are close, but this is not necessary. One is that it is acceptable to
choose a sub-optimal path approaching optimal when there is only one
optimal criterion. The second is that multi-optimal criteria are usually
considered in the current network, such as selecting the comprehensive
optimal path subjected by delay and bandwidth, so using top N optimal
sets intersection to relax the model fitting accuracy, and then avoiding
the tail convergence time.

(d) Analysis
According to the above results, the distributed mode requires a

process akin to route switching, so the reconvergence time is not as
good as the centralized mode. However, when the scale gradually
increases, the distributed can improve accuracy and converge faster
than the centralized. On large scale, directional diffusion optimization
can further improve the performance of the distributed mode, but the
centralized mode will be greatly affected.

4.2.2. Optimization performance

(a) Agency strategy
Under the two topologies, we counted the relationship between the

number of new connected nodes and the accuracy of the initial model
for the changed network. New access nodes establish 1 to 3 connections
with the network randomly. The comparison of accuracy is the shortest
path obtained by the Dijkstra algorithm. The final result, as shown in
Figs. 10 and 10(b), is the average of 50 random repetitions.

(b) Pruning performance
We performed pruning operations on more than 20 real network

topologies provided by Zoo [43] and obtained a node scale comparison
between the pruned network and its initial, as shown in Fig. 11. The
results show that, especially in a network containing star topology,
pruning can effectively reduce the scale of network nodes.
9

4.2.3. Multi-optimality routing scheme performance
The bandwidth values of 5, 10, 15, or 20 (𝑀𝑏𝑝𝑠) are randomly

assigned to each link of the topology with 20 nodes and train the delay-
based and bandwidth-based models respectively. In the topology, 20
nodes transmit to each other corresponding to a total of 20 × 19 = 380
tasks. We use bandwidth-first, delay-first, and multi-optimality routing
strategies to make routing decisions for these all tasks. And suppose
the bandwidth threshold is 10, that is, the link with bandwidth 5 will
be bypassed in the multi-optimality routing decision. Count the delay
and path bandwidth required by all tasks. The relationship between
bandwidth&delay and the number of corresponding tasks is shown
in Fig. 11(b). For the delay first algorithm, there will be many cases
where the transmission path bandwidth is 5. And for the bandwidth
first, detours occur to select the maximum bandwidth path, which
increases the transmission delay. The proposed multi-optimality routing
model makes a trade-off on the premise of satisfying the bandwidth and
most of its tasks are in the range of the satisfying bandwidth and the
lower delay.

We respectively count the number of tasks corresponding to band-
width and delay, and cumulative distributions are shown in Figs. 12
and 12(b). For bandwidth, although the value category of the overall
network bandwidth is small, it can still be seen that multi-optimality
routing model is closer to bandwidth first in bandwidth performance.
For delay, the multi-optimality routing model is close to that of the
delay first algorithm in delay performance, which is far better than the
bandwidth first algorithm.

5. Conclusion

This work adopts a DRL approach for routing optimization for
dynamic IoT network. Although conventional machine learning can
break through some bottlenecks of traditional methods in the network
routing, it still has some limitations, such as limited applicabilities
to some special scenarios. This paper designed a generic RL-based
routing decision model, implemented it in two modes, centralized
and distributed, compared, analyzed time of model convergence and
reconvergence, and revealed the advantages and characteristics of each
mode in different networks. The centralized mode can achieve 2.2 ×
speedup over distributed in reconvergence time, which is suitable to
cope with dynamic networks. While the distributed mode can achieve
1.6 × over centralized in scalability, which is better to handle with
large-scale networks. Moreover, the multi-optimality routing scheme is
realized through model fusion, which is more flexible and efficient than
traditional strategies to meet the development needs of the Internet of
Things.

Based on our research foundation on dynamic network control and
driving node selection, calculating which routers are suitable as key
nodes to hierarchize the network topology to improve the model’s
scalability and deploy the proposed system to the real network envi-
ronment are identified as main avenues for future works.
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