
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Constructing SDN Covert Timing Channels
Between Hosts With Unprivileged Attackers

Yixiong Ji , Graduate Student Member, IEEE, Jiahao Cao, Member, IEEE, Qi Li , Senior Member, IEEE,
Yan Liu, Tao Wei, Ke Xu , Fellow, IEEE, Member, ACM, and Jianping Wu, Fellow, IEEE

Abstract— Software-defined networking (SDN) has been widely
deployed due to its centralization and programmable features.
However, these new features bring new threats at the same time.
Previous studies have shown that SDN covert channels can be
built with a privileged adversary that controls SDN key compo-
nents, such as controller applications or SDN switches. In this
paper, we propose new SDN covert timing channels between hosts
without controlling applications, controllers, or having access to
switches. Experiments in a real SDN testbed demonstrate the
feasibility and effectiveness of our covert channels. To defend
against the covert timing channels, we design a defense system
named CovertGuard, which utilizes the timing characteristics
of the covert channels’ delays to detect and eliminate covert
channels effectively.

Index Terms— Covert channels, software-defined networking
(SDN), defense.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) [1], [2] sep-
arates data and control planes. As SDN standardizes

southbound and northbound interfaces, network administrators
typically do not need to design and implement different man-
agement and control software for different types of network
devices [3]. Hence, the cost of network management and
control is significantly reduced. Large companies such as
Microsoft, Google, Amazon, and Alibaba Cloud have deployed
SDN networks in their cloud networks on a large scale [4],
[5]. They have developed various SDN applications for traffic
engineering [6], QoS policing and management [7], load
balancing [8], and security [9], etc. Moreover, SDN enables
researchers to conduct experiments and test new network
protocols [10].

Received 14 December 2023; revised 28 August 2024; accepted 5 November
2024; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Edi-
tor N. Zhang. This work was supported in part by NSFC under Grant
62132011 and Grant 62202260, in part by China National Funds for Dis-
tinguished Young Scientists under Grant 62425201, in part by Ant Group,
and in part by the Leading Innovative and Entrepreneur Team Introduction
Program of Hangzhou under Grant TD2020001. (Yixiong Ji and Jiahao Cao
contributed equally to this work.) (Corresponding author: Qi Li.)

Yixiong Ji, Ke Xu, and Jianping Wu are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China (e-mail:
ji-yx20@mails.tsinghua.edu.cn; xuke@tsinghua.edu.cn; jianping@cernet.edu.
cn).

Jiahao Cao and Qi Li are with the Institute for Network Sciences
and Cyberspace, Tsinghua University, Beijing 100084, China (e-mail:
caojh2021@tsinghua.edu.cn; qli01@tsinghua.edu.cn).

Yan Liu and Tao Wei are with Ant Group, Hangzhou 310023, China (e-mail:
bencao.ly@antgroup.com; lenx.wei@antgroup.com).

Digital Object Identifier 10.1109/TNET.2024.3496997

Although SDN brings many advantages and enables innova-
tions with centralized control, it may also introduce emerging
security threats. Particularly, some studies [11], [12], [13],
[14], [15] have discovered covert channels in SDN. Attackers
can secretly disclose sensitive information to remote collabo-
rators with covert channels and launch targeted attacks. Covert
channels cause significant harm to SDN since they can bypass
existing SDN security checks [16] and network access control
policies [17], [18] to transmit messages.

Recent studies [19], [20], [21], [22] discover that covert
channels can be built with different SDN mechanisms. SDN
proxy and rule expiry mechanisms can be exploited to
build covert timing and storage channels between controllers
and switches [19]. Moreover, critical information can be
secretly transmitted between switches through out-of-bound
forwarding when malicious switches encode information into
packet-in and packet-out messages [20]. Flow re-configuration
and switch identification mechanisms enable secret commu-
nications between switches by declaring a fake connection
to trigger path update or path reset operations [20], [21].
Covert storage channels can be built among hosts if an
adversary controls SDN applications to add conflicting flow
rules into switches [22]. However, successfully building these
covert channels requires a privileged adversary that can control
SDN key components, such as switches, controllers, or SDN
applications. It is challenging in practice since there are
many advanced countermeasures [23], [24], [25] to prevent
adversaries from compromising SDN key components.

In this paper, we present new covert timing channels
between hosts in SDN with unprivileged attackers. The key
insight is to utilize the limited processing capacity of switches
and the controller for proxy requests. Specifically, a host can
quickly generate many proxy requests, such as ARP request
packets, to increase packet processing delay on the controller
or remain idle to signal a “1” or “0”, respectively. Mean-
while, another host can sense the timing signal by generating
proxy packets to measure the round-trip time (RTT) since the
controller also processes its proxy packets. Hence, the two
hosts originally isolated and unable to communicate have now
established a covert timing channel.

We develop a systematic four-step approach to construct
an efficient covert timing channel capable of transmitting
continuous messages consisting of multiple bits. We start by
probing three parameters that are crucial for constructing a
covert timing channel: (1) the minimum speed of generating

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-0107-3183
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-2587-8517

2 IEEE/ACM TRANSACTIONS ON NETWORKING

SDN Proxy Request (SPR) packets to cause higher-than-
usual RTTs, (2) the duration during which a sender host
continuously sends SPR packets to increase the RTTs, and
(3) the duration that the sender host remains idle to wait for
the decrease of RTTs. In the second step, we synchronize the
start time and period of the covert channel between the sender
and the receiver hosts so that the message can be correctly
encoded and decoded. In the last two steps, the sender encodes
the message and transmits it by chronologically controlling
the delay, while the receiver detects the delay sequence and
decodes the message.

We build a real SDN testbed consisting of commercial
SDN switches and controllers to evaluate our covert timing
channels. Experimental results demonstrate that our covert
channels can achieve an accuracy exceeding 98.5% when
transmitting multiple bits without any error-correcting code.
During the covert information transmission, CPU usage and
control traffic throughput do not change significantly, which
shows the acceptable overhead of our covert channels. More-
over, we demonstrate the successful transmission of a 512-byte
TLS key within 10 minutes when the two hosts are under
surveillance and unable to communicate.

To defend against the covert timing channels between hosts
in SDN, we propose a defense system named CovertGuard.
It exploits latency and timing characteristics to detect and
eliminate covert channels. To reduce detection overhead,
CovertGuard initiates a coarse-grained detection process to
assess the presence of covert timing channels from a large
volume of flows. Subsequently, it analyzes a subset of relevant
traffic, identifying attackers by calculating the similarity of
various flows and covert channel delay sequences. Finally,
it eliminates the covert channels by installing flow rules
that block the flows associated with covert timing channels.
We conduct experiments to demonstrate that CovertGuard can
effectively defend SDN covert timing channels. Our results
show that CovertGuard can detect covert channels of different
speeds in real time with 98% accuracy.

We highlight our key contributions as follows:
• We present new covert timing channels between hosts in

SDN with unprivileged attackers.
• We comprehensively evaluate the covert timing channels

in a real SDN testbed.
• We design and prototype CovertGuard, which utilizes

delay and timing characteristics of covert channels to
effectively detect and eliminate covert channels.

The rest of this paper is organized as follows: Section II
illustrates our threat model. Section III presents our key
insights and the design of covert timing channels between
hosts in SDN and evaluates our covert channels. Section IV
describes our design and implementation of CovertGuard.
Section V discusses the limitations of CovertGuard. Section VI
reviews related work. Section VII concludes this paper.

II. THREAT MODEL

We assume that an attacker compromises some hosts in the
target SDN. It may either be insiders who own hosts or users
who rent hosts in the target network. For example, an attacker

can rent hosts through SDN-based cloud services [26]. In addi-
tion, an attacker may compromise hosts through credential
stuffing attacks [27], phishing attacks [28], etc. We assume
that the SDN switches, the OpenFlow controller, and its appli-
cations are trusted. We also assume that the control channel
is trustworthy and may be encrypted. Since there are strict
access control policies and advanced security enhancements
for controllers and switches [23], [24], [25], we do not assume
that an attacker can compromise SDN controllers or switches.

We do not assume that the location of the compromised
hosts in the network can be controlled by the attacker. These
hosts may be connected to the same switch or connected to
different switches. They may even be physically disconnected
or logically disconnected. However, these hosts are all located
in the target SDN domain. We assume that communication
between these hosts is monitored and blocked by advanced
security countermeasures, such as firewalls and intrusion
detection systems. The goal of an attacker is to covertly
transmit sensitive information between these hosts even in the
presence of security mechanisms. The sensitive information
may include private keys [29], confidential metadata [30],
attack coordination messages [20], etc.

III. COVERT TIMING CHANNEL DESIGN AND EVALUATION

In this section, we introduce the design of our covert timing
channel. Moreover, we conduct experiments in a real SDN
testbed to evaluate our covert channels’ accuracy, efficiency,
stealthiness, and overhead.

A. Key Insight

In SDN, the network proxy functionalities are provided by
running applications on controllers that leverage SDN proxy
mechanisms, such as ARP Proxy [31], [32], [33], NDP Proxy
[34], DHCP Proxy [35]. For simplicity but without loss of
generality, we use ARP Proxy as an example to illustrate
the SDN proxy mechanisms: (1) a host generates an ARP
request packet for address resolution; (2) an SDN ingress
switch receives and encapsulates the packet into a packet-in
message and sends it to the controller; (3) the controller sends
back an ARP reply packet that is encapsulated into a packet-
out packet; (4) the ingress switch decapsulates the packet-out
packet and sends the ARP reply packet to the host.

As the SDN proxy mechanism enforces all the ARP
request/reply packets to be processed by the controller,1 it
can be utilized to transmit messages between hosts in SDN
covertly. Specifically, as shown in Fig. 1, a host can generate
a burst of ARP requests to increase packet processing delay
on the controller or remain idle to signal a “1” or “0”,
respectively. Meanwhile, another host can sense the timing
signal by generating ARP packets to measure the round-trip
time (RTT) since the controller also processes its ARP packets.
For example, if a host receives three ARP response packets
with RTTs of 1 ms, 10 ms, and 3 ms, respectively, 3 bits of
covert messages, represented as “010”, can be interpreted.

To verify our crucial insight, we conduct experiments
in a real SDN testbed consisting of commercial hardware

1It is similar to the NDP or DHCP request/reply packets.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

JI et al.: CONSTRUCTING SDN COVERT TIMING CHANNELS BETWEEN HOSTS WITH UNPRIVILEGED ATTACKERS 3

Fig. 1. The sender increases RTTs by generating ARP packets at a high
speed while the receiver monitors the RTTs.

Fig. 2. The processing delay on the controller for different ARP packet
generation rates.

SDN switches, EdgeCore AS4610-54T, and a popular open-
source controller, RYU [36]. The controller runs on a server
with 12 GB RAM and an Intel Xeon Quad-Core CPU E5504.
We run the ARP proxy application [33] on the controller.
We use a host in the network to generate ARP request packets
at different rates. The experimental results are shown in Fig. 2.
The delay fluctuates slightly when the generation rate of ARP
request packets is small. For example, the delay stays below
5 ms when the rate is smaller than 1000 pps. However,
the delay increases significantly when the speed exceeds a
threshold. For example, the delay exceeds 10 ms when the rate
reaches 3000 pps. Thus, a host can change its ARP generation
rate and leverage the low and high RTTs to signal “0” and “1”,
respectively.

B. Covert Channel Construction

Based on our crucial insight that high-speed request packets
triggering the SDN proxy mechanism would increase the
processing delay, we can construct our covert timing channel
between two hosts in SDN. To simplify, we will refer to the
packets triggering the SDN proxy mechanism as SDN Proxy
Request packets, specifically abbreviated as SPR packets.

The whole process of constructing the covert channel can
be divided into four steps. The first step is to probe feasible
construction parameters. For example, we will measure the
feasible rate at which SPR packets should be generated to
effectively and consistently increase the processing delay. This

Fig. 3. The illustration of Smin and Dthreshold. As the packet rate
increases, the RTT increases. When the packet rate is below Smin, the RTT
remains lower than Dthreshold, indicating a low RTT. Conversely, when the
packet rate exceeds Smin, the RTT surpasses Dthreshold, signifying a high
RTT.

step ensures that we can control the processing delays of
the controller to transmit one-bit messages covertly. In the
second step, we synchronize necessary information, such as
the start time of the covert channel between the sender and
the receiver host. Thereby, covert message can be encoded
and decoded correctly. The sender encodes and sends the
message in the last two steps by controlling the processing
delay. Meanwhile, the receiver detects the delay sequence and
decodes the message. Each step will be described in detail in
the following subsections.

1) Probing Feasible Construction Parameters: In our covert
channel, the RTTs of SPR packets serve as the message
carrier. To ensure that the sender can generate higher-than-
usual RTTs that represent “1”, we need to know the rate at
which we should generate SPR packets to archive this (as
shown in Fig. 3). To ensure that the receiver can identify
consistent and detectable increases in RTTs denoting “1”,
we must determine the duration for maintaining a continuous
generation of SPR packets (as shown in Fig. 4). Hence, we can
maintain an elevated RTT level for a brief period. Moreover,
to transmit a sequence of covert messages, we need to ensure
that the transmission of different bits of message does not
interfere with each other. In this context, the generated high
delays do not impact the subsequent message transmission.
Consequently, we must determine how long we should wait
for the delay to decrease from a high level to a normal range.

In summary, before we can transmit messages between hosts
through the covert channel, there are mainly three parameters
that must be probed: the minimum speed of generating SPR
packets to cause a high delay denoted as Smin, the duration
for which the sender generates SPR packets to ensure that
messages can be received, denoted as δdata, and the duration
for which the sender remains idle to ensure that the current
one-bit message’s transmission does not affect the following
one-bit message’s transmission, denoted as δidle. Table I lists
the related notations and meanings.

First, the sender needs to find Smin (as shown in Fig. 3),
the minimum speed of generating SPR packets to cause
higher-than-usual RTTs in the current network environment
consistently. To increase the maximum transmission rate of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I
NOTATIONS USED IN THE COVERT CHANNEL

Fig. 4. The illustration of δdata and δidle. The sender would increase the
RTT for the duration of δdata if the one-bit message is “1”; otherwise, the
sender would not increase the RTT. Afterward, the sender will enter an idle
state for the duration of δidle, during which it patiently waits for the RTT to
revert to a low RTT.

the covert channel and to make the covert channel as covert
as possible to avoid being detected by defense systems, the
higher-than-usual RTTs, which represent “1”, should be as
low as possible. Based on our finding in Fig. 2 that a higher
sending rate led to a higher delay, to make the higher-than-
usual RTTs as low as possible, the sending rate Smin should
be as low as possible.

The sender measures how the RTT changes as the SPR
packet generating speed rises and finds Smin, the minimum
speed of generating SPR packets to cause higher-than-usual
RTTs consistently. First, the attacker detects the RTTs of
SPR packets when there is no attack. Then, to determine the
threshold for RTT, we employ a statistical approach based on
the mean and standard deviation of the RTT distribution. The
threshold Dthreshold is set at µ + 3σ, where µ is the mean
and σ is the standard deviation. This method is commonly
known as the three-sigma rule in statistics. Approximately
99.7% of the data falls within three standard deviations of
the mean in a normal distribution. Finally, the sender generates
SPR packets at different speeds. Meanwhile, the sender counts
the RTTs of SPR packets. Based on how the RTT changes
as the SPR packet generating speed raises, the sender finds
Smin. When generating SPR packets at speed Smin, the
RTT is Dthreshold. By setting the threshold Dthreshold at
µ + 3σ, we aim to capture the vast majority of delay values
within an acceptable range, considering deviations beyond this
threshold as potential outliers. This selection is reasonable as
it provides a balance between accommodating the majority of

delay variations expected in normal operation and identifying
instances that deviate significantly from the norm. It helps
in distinguishing delays that may indicate unusual network
behavior or potential security threats.

Moreover, δdata (as shown in Fig. 4), how long the sender
keeps sending SPR packets at speed Smin, is vital for the
covert channel. The δdata should be big enough to increase
the RTTs. Moreover, it takes time for the receiver to detect
the high delays, which means the δdata can not be too small.
Meanwhile, a smaller δdata led to a smaller δi, thus leading to
a higher transmission rate. To determine an appropriate value
for δdata, the sender continuously transmits SPR packets at
a rate of Smin for varying durations. Meanwhile, the sender
starts a new procedure to detect how long the RTT of SPR
packets remains bigger than Dthreshold. We select the duration
δdata as the minimum duration which can ensure that the RTT
remains bigger than Dthreshold for a duration exceeding Smin,
making sure that the receiver can detect the RTTs steadily.

Finally, δidle (as shown in Fig. 4), the time that the sender
remains idle to wait for the decrease of RTTs, should be
chosen as an appropriate value. After the sender sends SPR
packets at rate Smin for time δdata, the sender should remain
idle for time δidle to wait for the decreasing of RTTs. Other-
wise, the transmission of a certain bit would be affected by
the transmission of the preceding bits, and the covert channel’s
accuracy would decrease. To find a suitable δidle, the sender
keeps sending SPR packets at speed Smin for time δdata. Then,
the sender starts a new procedure to detect how the RTTs of
SPR packets decrease. The duration δidle is selected as the
minimum duration that ensures the RTTs consistently decrease
to a level below µ + σ.

2) Time Synchronization: Time synchronization is critical
for covert timing channels. If the time is not synchronized, the
received covert timing messages may be decoded incorrectly.

For example, the sender may send messages one bit per
second, and the receiver may try to detect the delays and
receive messages in each second. However, there may be a
significant offset between the sending and receiving times
because of a lack of time synchronization. Due to significant
deviations in sending time and receiving time, the receiver can
not correctly receive the messages from the sender.

We assume both sender and receiver can access Network
Time Protocol (NTP) servers to synchronize the clocks to
achieve at least millisecond accuracy. Because it takes time for
the sender to increase the RTTs and for the receiver to detect
the high RTTs, there is still a short time offset between the
sender sending a one-bit message and the receiver receiving
it. We still need to make a fine-grained correction for the
time δoffset. To achieve this, the sender keeps sending “1”
and the receiver tries to detect them with a receiving rate
higher than the sending rate. The following example shows
how synchronization works. During each second, the sender
generates SPR packets from 0 ms to 10 ms at a high speed
and remains idle for the remaining 990 ms. The receiver tries
to detect the delay at a rate of 200 times per second and
finds that the delay is higher than usual from the fifth to
the fifteenth millisecond of each second (δoffset = 5 ms).
Therefore, the receiver shifts the receive window by 5 ms and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

JI et al.: CONSTRUCTING SDN COVERT TIMING CHANNELS BETWEEN HOSTS WITH UNPRIVILEGED ATTACKERS 5

receives messages 5 ms after the sender starts generating SPR
packets at a high speed every time.

3) Encoding and Sending: In this step, according to the
configuration synchronized in the previous steps (what the
SPR packets generating speed is, what the sending rate is,
etc.), the sender encodes the message to form the bitstream
data and sends the bitstream data chronologically. We transmit
messages on a bit-by-bit basis, where the transmission of
each bit requires a duration denoted as δi, which we term a
“time slot”. This time slot encompasses two segments: δdata,
representing the time taken by the sender to transmit a one-bit
message by altering the RTTs, and δidle, signifying the period
during which the sender remains inactive after adjusting the
RTTs. If the current bit message is “1”, the sender would
generate SPR packets at speed Smin that is high enough for a
short duration δdata to cause a delay higher than Dthreshold,
which can be easily detected by the receiver. Otherwise, the
sender would remain idle for a short duration δdata. Then, the
sender remains idle for δidle to wait to send the following bit
message. The meaning of these parameters and how to probe
them are described in detail in subsection III-B.1.

After we finish probing these parameters, we can transmit
as follows. The sender sends messages one bit by one bit.
The sending of each bit costs duration δi, which consists
of duration δdata (the time for the sender to send a one-bit
message by changing the RTTs) and duration δidle (the time
the sender remains idle after changing the RTTs, to ensure the
correct sending of the following bit message). If the current
bit message is “1”, the sender would generate SPR packets
at speed Smin that is high enough for a short duration δdata

to cause a delay higher than Dthreshold, which can be easily
detected by the receiver. Otherwise, the sender would remain
idle for a short duration δdata. Then, the sender would remain
idle for δidle to wait to send the following one-bit message.

4) Receiving and Decoding: In this step, the receiver needs
to keep sending SPR packets to measure the current processing
delay of SPR packets and record it for subsequent analysis
of covert message. After recording the delay sequence, the
receiver decodes it into a message based on the configuration
in the previous steps. For each delay di in the delay sequence,
if di ≥ Dthreshold, the decoded message mi = 1; otherwise,
the decoded message mi = 0.

C. Evaluation

We conduct experiments in a real SDN testbed to evaluate
our covert channels’ accuracy, efficiency, stealthiness, and
overhead.

1) Setup: Our SDN testbed consists of commercial hard-
ware SDN switches, namely EdgeCore AS4610-54T, and a
popular open-source controller, namely RYU. The controller
runs on a server with 12 GB RAM and an Intel Xeon Quad-
Core CPU E5504. The network topology of the testbed is
shown in Fig. 5. The controller runs an ARP proxy application,
which an attacker can exploit to build covert timing channels.
A host named h3 in the testbed applies Tcpreplay [37] to
replay real traffic traces as background traffic, aiming at
emulating a real-world network environment. As illustrated in
Fig. 8b, when the transmission speed is set to 0, the packet-in

Fig. 5. The network topology of our SDN testbed. Host h1 serves as the
sender, host h2 functions as the receiver and host h3 generates background
traffic using Tcpreply.

Fig. 6. The accuracy of the covert timing channel with different transmission
rates.

speed fluctuates dynamically between 700 pps and 950 pps.
These packet-in messages are generated in response to the
varying background traffic, primarily comprising ARP traffic,
that we introduced. This implies that the background traffic
has introduced varying noise levels to the covert channel.

2) Accuracy: In our experiments, We probe these parame-
ters as described in subsection III-B.1. When there is no covert
channel, the RTTs of SPR packets do not exceed 5 ms. When
we generate about 30 SPR packets in 10 ms, the RTTs would
exceed 10 ms. The outcomes of the experimentation reveal
that Smin = 3000 pps, δdata = 10 ms, and Dthreshold =
10 ms. Since the parameter δidle is notably influenced by
the maximum RTT and is directly responsible for determining
the transmission rate, we have opted not to set a fixed value
for δidle.

Under the condition that the host h3 applies Tcpreplay to
replay real traffic traces as background traffic, the message
is transmitted through the covert channel at different trans-
mission rates. The original message is compared with the
message parsed by the receiver to calculate the transmission
accuracy, and the experimental results are shown in Fig. 6. The
results of our experiments indicate that when the transmission
rate remains below the maximum transmission rate where the
transmission of different bits of message would interfere with
each other, the accuracy of the covert channel is not less
than 98.5%. When the transmission rate is lower than the
maximum transmission rate, the high delay caused by sending

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. The efficiency of our covert timing channels. We conduct experiments
using covert channels of different rates to transmit TLS keys of different
lengths.

a “1” can be reduced to a low delay within a time slot, and
the transmission of messages in different time slots will not
affect each other. Therefore, when the transmission rate is
lower than the maximum transmission rate, the accuracy of
the covert channel is irrelevant to the transmission rate. The
background traffic essentially does not cause high delays as
background traffic does not exceed the processing capacity.
The experimental results demonstrate that in scenarios where
only background traffic is present without any covert channels,
there is approximately one high-delay sample point for every
300 delay sample points. Considering that only delays within
a short duration, denoted as δdata, carry the message and
are minimally influenced by background traffic, it can be
inferred that background traffic does not significantly impact
the accuracy of covert channels.

However, when the transmission rate is higher than the
maximum transmission rate, the delay cannot be reduced to a
normal delay within a time slot after sending several “1”, and
the subsequent “0” will inevitably cause bit errors. Therefore,
when the transmission rate is higher than the maximum
transmission rate, the accuracy rate is largely affected by
the continuous “1” in the message, which is unacceptable.
Therefore, to ensure the accuracy of the covert channel,
we should ensure that the transmission rate is not higher than
the highest transmission rate. In our experiments, the RTTs of
SPR packets may be increased to 50 ms sometimes so that the
transmission rate cannot be higher than 20 bps.

3) Efficiency: To evaluate the efficiency of our covert
channels, we perform experiments using covert channels of
different rates to transmit TLS keys of different lengths. The
result is shown in Fig. 7. The lengths of TLS keys are 64 bytes,
128 bytes, 256 bytes, and 512 bytes. The transmission rates
of our covert channels are 1 bps, 2 bps, 5 bps, and 10 bps.
The experiment result shows that when the transmission rate
is constant, the transmission time is positively related to the
length of the TLS keys. When the length of the TLS key
is constant, the transmission time is negatively related to the
transmission rate. By setting the transmission rate to 10 bps,
we can successfully transmit a 512-byte TLS key within
10 minutes.

Fig. 8. CPU utilization and control traffic throughput in the presence of
covert channels of different rates.

4) Stealthiness: For covert channels, stealthiness is rel-
atively more important than the transmission rate. Since
the communication between the two parties is monitored or
restricted, and the message transmitted through the covert
channel is often relatively private and of higher value, the
two parties hope to use the covert channel to bypass the
monitoring and restrictions for communication and do not
want the communication to be detected. The controller’s
control flow throughput and CPU utilization are two indicators
for judging whether the current working status is abnormal.
Therefore, we conducted experiments to observe control traffic
throughput and CPU utilization for the covert timing channels
we constructed to evaluate their stealthiness. In the exper-
iments, h3 generates background traffic, and at the same
time, a covert channel with different transmission rates is
constructed between h1 and h2.

The results are shown in Fig. 8. As you can see, when
the transmission rate is lower than 5 bps, the control flow
throughput and CPU utilization are almost the same as they
would be without the attack, and the covert channel is very
well hidden. The transmission rate can be increased selectively
and appropriately for SDN networks with low detection efforts.

The stealthiness of the covert channel is also related to the
network environment. When the processing capacity of the
controller is bigger, and the corresponding background traffic
bandwidth is larger, the traffic generated by the covert channel
accounts for a lower proportion of the total traffic. The covert
channel is more difficult to detect. Our covert channels can
hardly be detected by analyzing the controller’s control flow
throughput and CPU usage.

5) Overhead: The cost to the receiver of receiving one bit
is to send an SPR packet to detect the RTT. The overhead
of receiving one bit is approximately 42 bytes when we use
ARP packets as SPR packets. The main overhead of the covert
channel is on the sender. Although the sender must generate
SPR packets at a high speed, we don’t need to do this for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

JI et al.: CONSTRUCTING SDN COVERT TIMING CHANNELS BETWEEN HOSTS WITH UNPRIVILEGED ATTACKERS 7

Fig. 9. Overview of CovertGuard.

too long. Experiments have shown that generating dozens of
packets instantly can cause a significant increase in delay.
So the overhead of sending one bit is not as significant as
you might think, just dozens of packets. In our testbeds,
the overhead of sending one bit is approximately 1 KB,
about 25 SPR packets.

IV. DEFENSE

To defend against covert timing channels between hosts
in SDN, we have designed and implemented our defense
system, CovertGuard, which exploits the delay and timing
characteristics of covert channels to detect the covert channel,
identify malicious hosts, and eliminate covert channels. In this
section, we will first introduce the overall framework of
CovertGuard and then introduce each module of it in detail.

A. Overview

There are severe challenges in the defense. First, in a real-
world network environment, the background traffic is several
orders of magnitude higher than the traffic associated with
the covert timing channel. If we directly perform fine-grained
detection of all traffic, the high-speed background traffic will
introduce significant overhead to the detection, making it
impossible to perform online detection. Second, the attackers
can transfer information at different speeds. They can transfer
several bits in a second, and they can also transfer one bit in
a few minutes. We need to make the detection effective for
detecting covert channels at any transmission rate. In addition,
the attacker may compromise multiple hosts or forge the
contents of the packet header. So, there is a big challenge
in identifying the attacker accurately. Finally, we should not
interfere with normal traffic when defending covert channels.

To address these challenges and make the defense efficient,
we design CovertGuard as three main modules: detection,
identification, and enforcement. The overall framework of
CovertGuard is shown in Fig. 9. In the detection module,
we collect the delay sequence and utilize machine learning
methods to detect whether there are covert channels. Once
a covert channel is detected, we identify the relevant flows
and hosts based on finding the flows’ cluster with the highest
similarity to the channel among all the flows’ clusters in
the identification module. Finally, we dynamically restrict
the relevant traffic from the relevant host to the controller.
The detection module handles the first challenge and the

second challenge, the identification module handles the third
challenge, and the enforcement module handles the fourth
challenge. We will illustrate how they work in detail in the
following subsections.

B. Detection

Compared to applying detection directly to all the traffic,
filtering out most of the irrelevant traffic before detection can
greatly reduce the overhead of detection. Instead of analyzing
all the traffic directly, we can first perform a coarse-grained
attack existence detection and perform fine-grained attack
identification when covert channels are detected. The covert
timing channels constructed in this paper have a timing effect
on the RTTs of SPR packets. Therefore, we can judge whether
there is a covert timing channel by whether the RTTs of
SPR packets are sequential and sometimes exceed the normal
delay range. Some samples are shown in Fig. 10. Fig. 10a
and Fig. 10d show that when there is no covert channel, the
RTTs fluctuate in small increments within the normal range
(sometimes there may be occasional high RTTs due to bursts
of traffic), with no significant peaks in the corresponding
frequency domain. Fig. 10b, Fig. 10e, Fig. 10c, and Fig. 10f
show that when there is a covert channel, the delay exceeds the
normal delay range more frequently and has a timing pattern,
with regular and distinct peaks in the corresponding frequency
domain.

In the detection module, our solution is to collect the delay
sequence at the controller and utilize bi-LSTM to detect the
time domain information and frequency domain information of
the delay sequences. The detection module provides a coarse-
grained attack existence detection. If the detection result is
that there are no covert channels, then further detection is
not needed. Otherwise, we use corresponding traffic for fine-
grained attack identification.

C. Identification

Once our detection module detects the presence of a covert
timing channel, we need to identify the attacker efficiently.
Although, thanks to the detection module, we only need to
analyze packets when there is a covert timing channel, there
is still too much background traffic. To make matters worse,
the attacker may use multiple types of flows, use multiple
hosts, or modify the contents of the packet headers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. The time domain and frequency domain of delay samples. “TD”
means time domain, “FD” means frequency domain. When there is no covert
channel, the RTTs fluctuate in small increments within the normal range.
When there is a covert channel, the delay exceeds the normal delay range
more frequently and has a timing pattern, with regular and distinct peaks in
the corresponding frequency domain.

To solve these challenges, we cluster flows and find the
cluster with the biggest similarity with the covert channel.
Since it is difficult to directly distinguish between normal
traffic and malicious traffic based on a single packet, we cluster
the flows at different granularities based on the incoming
port, outgoing port, protocol type, etc. Then, we calculate the
similarity between the delay sequence and the flow clusters.
If the traffic within a cluster frequently appears when the delay
exceeds the normal range and rarely appears when the delay
is within the normal range, this cluster is highly correlated
with the covert channel. Based on this idea, we first measure
and record the delays within each time slot, forming the delay
sequence D. Then, we calculate the packet counts within a
cluster for each time slot, forming the sequence C. We define
the similarity function [38] between the delay sequence D and
the packet count sequence C of a cluster as follows:

SDDD,CCC =

n∑
i=0

DiCi√
n∑

i=0

D2
i

√
n∑

i=0

C2
i

(1)

Then, we can identify the attacker based on the cluster
with the highest similarity to the covert channel. If there are
multiple types of packets in the cluster, the attacker may utilize
multiple types of SPR packets for the covert channel. If the
packets in the cluster have different ingress ports, the attacker
may control a few hosts for the covert channel. If the attack
traffic has different IPs but has the same ingress port, it means
the attacker may modify the contents of the packet header or
control a few hosts that connect to the same switch. Based on
the above information, we can find the hosts compromised by
the attackers.

D. Enforcement

In this module, we destroy the covert channel with the
least amount of effort. Enforcement should be as lightweight
as possible and avoid adversely affecting normal traffic. The

key to eliminating the covert channel is to disrupt the chan-
nels’ timing or avoid causing high delays. The information
cannot be transmitted accurately if the sender cannot cause
distinguishably high delays. And the information cannot be
received if the timing of the covert channel is disturbed.
In our enforcement, we start from the source and try to avoid
the emergence of high delays. Due to the limited resources
of switches and the controller, we dynamically allocate the
upstream(from the data plane to the controller) bandwidth of
SPR packets to prevent attackers from maliciously causing
high delays. Due to the possibility of misjudgment and the
possibility of normal traffic from the attacking host, we do
not directly and permanently block all traffic from the relevant
hosts.

We have developed a dynamic bandwidth allocation
algorithm. We use the Max-Min Weighted Fairness algorithm
[39] to allocate the upstream bandwidth of each type of SPR
packet on each port of edge switches. If covert timing channels
are detected, we continuously halve the weight of the types of
SPR packets related to the covert channel and reuse the Max-
Min Weighted Fairness algorithm for bandwidth allocation
until the high latency no longer occurs. For example, the
weights of the SPR packet and the benign packet are 2 and 2,
and the bandwidth requirements of the SPR packet and the
benign packet are 80 Mbps and 40 Mbps while the bandwidth
of the control path is 80 Mbps in total. In this case, we halve
the weight of the SPR packet to 1. Since the weight of
the benign packet is larger than the SPR packet, we would
allocate 40 Mbps bandwidth to the benign packet and the
SPR packet can only be allocated with 40 Mbps bandwidth.
To ensure normal usage of the compromised hosts, we will
remove the restrictions when covert channels disappear long
enough or when we kick attackers out of the compromised
hosts. We do not limit flows of other types from these
compromised hosts, as these flows may be benign.

E. Experimental Result

1) Setup: The topology of our testbed is shown in Fig. 5.
The host h3 replays real traffic traces as background traffic,
and host h1 transmits messages to host h2 through covert
channels at different rates. We collect a few delay sequences
(each delay sequence contains 200 delay samples) when there
is no attack and when the attacker transmits messages at
different rates. For each rate, we have collected hundreds
of samples. Then, we get the frequency-domain dataset by
Fourier transform. We combine the time-domain information
and frequency-domain information and then split them into
train datasets and test datasets. After that, we use these data for
training our Bi-LSTM detection models and test these models
on different rate data and full data.

2) Detection Result: As shown in Tabel II, Bi-LSTM per-
forms well even when there is a significant difference in
the transmission rate of train data and test data. We utilize
precision, recall, and f1-score to evaluate these models. If the
train data is 0.4 bps data, 1 bps data, or all the data, when
testing on all the data, the precision, the recall, and the f1-
score are all above 0.998. If the train data is 5 bps data, the
result is good when testing on the same rate data, but the result

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

JI et al.: CONSTRUCTING SDN COVERT TIMING CHANNELS BETWEEN HOSTS WITH UNPRIVILEGED ATTACKERS 9

TABLE II
THE DETECTION RESULT OF UTILIZING BI-LSTM ON DIFFERENT TRAINING DATA FOR DETECTION

Fig. 11. The distribution of cosine similarity between covert channels and
malicious or benign flows.

is unacceptable when testing on 0.4 bps data, 1 bps data, or all
the data. The result means training on higher rate data and
testing on data of lower rate channels would get bad detection
results. However, we can certainly get perfect detection results
when we use data from low-rate channels or all the data for
training.

3) Identification Result: We log the packet information
(timestamp, ip src, ip dst, in port, etc.) on the controller and
collect the delay sequence. Then, we cluster the data according
to ip src, etc. Finally, we calculate the cosine similarity
between the delay sequence and these clusters. This process
has been done hundreds of times. The results show that we can
clearly distinguish malicious flows from benign flows based
on cosine similarity. As is shown in Fig. 11, the similarity
between malicious flows and the covert channel is very close
to 1, while the similarity between benign flows and the covert
channel is smaller than 0.8. The similarity between malicious
flows and the covert channel is concentrated and distributed
between 0.95 and 1. The distribution of the similarity between
malicious flows and covert channels is roughly a normal
distribution. The similarity between benign flows and the
covert channel is relatively scattered and distributed around
0.7. It should be noted that if the bandwidth of a flow is
very low, the similarity between it and the covert channel
will be even lower, close to 0. We can distinguish malicious
flows from benign flows with 100% accuracy based on cosine
similarity (even simply setting the threshold as 0.8 can achieve
it).

4) Enforcement Result: After we detect the covert channel
and identify the associated malicious traffic, we use the Max-
Min Weighted Fairness algorithm to limit the bandwidth of the

Fig. 12. The change of delay and transmitting accuracy.

malicious flows. As shown in Fig. 12, when the enforcement
is activated, the delay can not be increased by the malicious
flows, and the transmitting accuracy of the covert channel
drops to 0 instantly (the transfer does not work properly,
and the accuracy is meaningless). Before we activate our
enforcement, the delay of the sample points would be influ-
enced by malicious flows, and the covert channel can transmit
information accurately. At around 110 seconds, we activate
our enforcement. The delays of the sample points did not
change significantly anymore, and information could not be
transmitted by changing the delay, which means that the covert
channel was cut off.

5) Overhead: We evaluated the overhead introduced by
CovertGuard across its key components: monitor, detection,
location, and enforcement. The results, detailed in Table III,
illustrate both CPU utilization and memory consumption
for each component. The CPU utilization across Covert-
Guard components shows a relatively modest impact, with
the detection component being the most resource-intensive
at 13.23%. Furthermore, employing a GPU to execute the
detection algorithm can significantly reduce CPU utilization,
as GPUs are more adept at handling our Bi-LSTM detection
algorithm. The monitor, location, and enforcement components
exhibit lower CPU utilizations of 1.73%, 2.30%, and 0.56%,
respectively. In terms of memory consumption, the detection
component records the highest usage at 235.91 MB, largely
due to runtime memory demands for intermediate compu-
tations, dependencies on deep learning libraries, and data
handling. Given that the Bi-LSTM model and its parameters
consume 32.4 MB, there is substantial potential to reduce the
memory footprint of the detection component. Meanwhile,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III
THE OVERHEAD OF COVERTGUARD

the monitor and location components use 56.06 MB and
113.27 MB, respectively, and the enforcement component
maintains a minimal footprint of 0.13 MB. These findings
demonstrate that although CovertGuard imposes some over-
head, particularly through the detection component’s reliance
on the Bi-LSTM model, the overall impact on system
resources remains manageable, supporting its deployment in
large-scale SDN environments.

V. DISCUSSION

A. Limitations of CovertGuard

Covert timing channels operating at extremely low trans-
mission rates may evade detection by CovertGuard. Consider
a scenario where a covert channel transmits only one bit of
information per second. In such cases, the resulting delay
sequence may resemble that of normal traffic within a short
detection window, potentially preventing CovertGuard from
triggering an alert. However, this limitation could be addressed
by implementing multiple detection windows in CovertGuard,
each with varying granularities, to enhance detection accuracy.
In addition to covert timing channels, there are covert storage
channels [20], [40] in SDN. They embed messages into
specific fields of packets without intentionally altering the
round-trip times (RTTs) or inter-packet delays (IPDs). Thus,
covert storage channels can not be detected by analyzing the
timing characteristics of the RTTs or the IPDs. The detection
of such covert storage channels, however, falls outside the
scope of our current research. This area has been extensively
covered in related studies [41], [42], [43], which explore
various aspects and defenses.

B. Defense Against Adaptive Attackers

It is possible that attackers dynamically change the transmis-
sion rate during runtime within covert timing channels. Despite
these modifications, attackers are still required to control the
delays chronologically to transmit messages. Consequently,
the frequency domain of the delay sequence will display
periodic peaks, aiding in the differentiation of covert channels
from normal traffic. CovertGuard has been trained to recognize
patterns in both the frequency and time domains of delay
sequences originating from normal and covert channel traffic.
As a result, CovertGuard can effectively detect covert channels
that dynamically adjust their transmission rates at runtime.

VI. RELATED WORK

A. Covert Channels in SDN

SDN proxy mechanisms and SDN rule expiry mechanisms
are exploited to transmit information from the controller to

switches [19]. SDN information, such as TLS Keys and
Certifications, Routing Policies, and Network Topology, can be
leaked from the controller to switches by being embedded in
packets generated by the controller, and timing affects packet-
out delay. With the help of the controller, information can
be secretly transmitted between switches by being embed-
ded in the packet-in messages [20]. Flow (re-)configurations
and switch identification also provide opportunities for secret
communication between switches [20], [21]. Switches can get
information through whether a specific DPID has been used
or there are specific flow (re-)configurations. Communication
restrictions between hosts can be broken by adding a few
OF flow rules [22]. As you can see, these works require
the attacker to have more or less access to the switches or
controller. Moreover, there is no work aimed at constructing
covert timing channels between hosts in SDN. Our covert
timing channels do not need any support from the switches
or controller and help transmit information between hosts.

B. Covert Channels in Traditional Networks

Unused header fields may be utilized for transforming
information in storage channels [40], [44], [45], [46]. The
Type of Service (ToS) bits in the IP header are possible for
carrying messages [47], as many networks never use them.
An IP Identification field (IP ID) generation scheme based on
the toral automorphism is designed to ensure that the modified
field is random and embedding data in the IP ID field [45].
IP Fragment Offset field can transmit information covertly
by modulating the size of the fragments [40]. Even TCP
timestamps are used for storage channels [48]. The presence
or absence of an IP packet in an interval conveys a one-bit
message [49]. Zillien and Wendzel [50] modify the covert
channel’s behavior by dynamically choosing the inter-packet
times, to escape from some recent covert channel detection
methods [49], [51], [52], [53]. The attacker can increase the
router’s packet response time by interacting with a single
shared router in a specific manner, thereby leaking sensitive
information between two logically separated (or isolated) net-
works hosted by a single router [54]. Wang et al. [55] propose
a blockchain covert communication model that utilizes a label
tree to form a chained relationship between transactions and
output addresses. Cloak [56] uses the different combinations of
N packets sent over X flows in each round to represent a covert
message. Luo et al. [57] proposes a method for designing TCP
covert timing channels and discusses corresponding detection
mechanisms.

C. Defense Against Covert Channels

Aiming at the regularity of covert channels, Serdar Cabuk
et al. developed and tried two methods to detect covert timing
channels in IP traffic [49]. The IPDs corresponding to simple
covert timing channels tend to be concentrated around a
few values, while the arrival time of normal traffic is often
unlimited and may arrive at any time. In addition, the higher-
order entropy and distribution of IPD can also be used for
channel detection [41]. The corrected conditional entropy test
can detect the covert timing channels with abnormal regularity,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

JI et al.: CONSTRUCTING SDN COVERT TIMING CHANNELS BETWEEN HOSTS WITH UNPRIVILEGED ATTACKERS 11

while the entropy test can detect the covert timing channels
with abnormal shape [58]. Fuzzing time is added to the delay
to interfere with the timing of covert channels and affect the
transmission of information [59].

Safety checks of SDN applications and control messages
censorship on SDN controllers are two directions for mit-
igating the covert channels in SDN [19]. Covert channels
constructed by the DPID can be deterred if OpenFlow connec-
tions are secured via a hardened authentication scheme [21].
Packet-in-Packet-out watcher, audit-trails and accountability,
and enhanced IDS with waypoint enforcement are possible
countermeasures [20]. However, our covert channel does not
rely on changing the DPID or modifying the packet-in message
or the packet-out message, thus these defenses can not discover
or cut off our covert channel. Our defenses do not need a
flow-by-flow inspection because we first do a coarse-grained
detection. Subsequent identification modules can identify mali-
cious flows that cause high delays in a more targeted manner.

VII. CONCLUSION

In this work, we present new covert timing channels
between hosts in SDN, by utilizing the key insight that the
delay of processing new SDN proxy packets would exceed
the normal delay variation range when encountering flow
processing bottlenecks. Our covert channels do not require
any access to switches and controllers. They can help covertly
transfer information between hosts even if traffic between the
two hosts is monitored or blocked. We implement a prototype
of our covert channels and present an extensive evaluation of
the accuracy, efficiency, stealthiness, and overhead of it. Exper-
imental results show that we can maintain more than 95%
accuracy. To defend against our covert channels, we design and
implement our defense system, named CovertGuard, which
utilizes the latency and timing characteristics of covert chan-
nels to detect covert channels, identify the malicious hosts, and
eliminate the covert channels. Our experimental results show
that CovertGuard can detect and eliminate covert channels of
different speeds in real time.

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intel-
lectual history of programmable networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[2] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[3] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 114–119, Feb. 2013.

[4] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[5] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[6] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-openflow networks,” Comput. Netw., vol. 71,
pp. 1–30, Oct. 2014.

[7] A. O. Adedayo and B. Twala, “QoS functionality in software defined
network,” in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2017, pp. 693–699.

[8] Y. Zhou et al., “A load balancing strategy of SDN controller based on
distributed decision,” in Proc. IEEE 13th Int. Conf. Trust, Secur. Privacy
Comput. Commun., Sep. 2014, pp. 851–856.

[9] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A sur-
vey,” in Proc. IEEE SDN Future Netw. Services (SDN FNS), Nov. 2013,
pp. 1–7.

[10] M. Cicioglu and A. Çalhan, “HUBsFLOW: A novel interface protocol
for SDN-enabled WBANs,” Comput. Netw., vol. 160, pp. 105–117,
Sep. 2019.

[11] C. G. Girling, “Covert channels in LAN’s,” IEEE Trans. Softw. Eng.,
vol. SE-13, no. 2, p. 292, Feb. 1987.

[12] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, “Pattern-based survey
and categorization of network covert channel techniques,” ACM Comput.
Surv., vol. 47, no. 3, pp. 1–26, Apr. 2015.

[13] J. C. Wray, “An analysis of covert timing channels,” J. Comput. Secur.,
vol. 1, nos. 3–4, pp. 219–232, Oct. 1992.

[14] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-
bandwidth and reliable covert channel attacks inside the cloud,”
IEEE/ACM Trans. Netw., vol. 23, no. 2, pp. 603–615, Apr. 2015.

[15] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” IEEE Commun.
Surveys Tuts., vol. 9, no. 3, pp. 44–57, 3rd Quart., 2007.

[16] Z. Hu, M. Wang, X. Yan, Y. Yin, and Z. Luo, “A comprehensive security
architecture for SDN,” in Proc. 18th Int. Conf. Intell. Next Gener. Netw.,
Feb. 2015, pp. 30–37.

[17] S. T. Yakasai and C. G. Guy, “FlowIdentity: Software-defined network
access control,” in Proc. IEEE Conf. Netw. Function Virtualization Softw.
Defined Netw. (NFV-SDN), Nov. 2015, pp. 115–120.

[18] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “FlowNAC:
Flow-based network access control,” in Proc. 3rd Eur. Workshop Softw.
Defined Netw., Sep. 2014, pp. 79–84.

[19] J. Cao et al., “Covert channels in SDN: Leaking out information from
controllers to end hosts,” in Proc. Int. Conf. Secur. Privacy Commun.
Syst. Cham, Switzerland: Springer, 2019, pp. 429–449.

[20] K. Thimmaraju, L. Schiff, and S. Schmid, “Outsmarting network security
with SDN teleportation,” in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS P), Apr. 2017, pp. 563–578.

[21] R. Krösche, K. Thimmaraju, L. Schiff, and S. Schmid, “I DPID it my
way! A covert timing channel in software-defined networks,” in Proc.
IFIP Netw. Conf. (IFIP Netw.) Workshops, May 2018, pp. 217–225.

[22] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A security enforcement kernel for OpenFlow networks,” in Proc. 1st
Workshop Hot Topics Softw. Defined Netw., Aug. 2012, pp. 121–126.

[23] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a reliable SDN
firewall,” in Open Networking Summit 2014. Santa Clara, CA, USA:
USENIX Association, 2014.

[24] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “Enabling
security functions with SDN: A feasibility study,” Comput. Netw.,
vol. 85, pp. 19–35, Jul. 2015.

[25] Z. Abaid, M. Rezvani, and S. Jha, “MalwareMonitor: An SDN-based
framework for securing large networks,” in Proc. CoNEXT Student
Workshop, Dec. 2014, pp. 40–42.

[26] D. Firestone, “VFP: A virtual switch platform for host SDN in the public
cloud,” in Proc. NSDI, vol. 17, 2017, pp. 315–328.

[27] S. Rees-Pullman, “Is credential stuffing the new phishing?” Comput.
Fraud Secur., vol. 2020, no. 7, pp. 16–19, Jan. 2020.

[28] S. Gupta, A. Singhal, and A. Kapoor, “A literature survey on social
engineering attacks: Phishing attack,” in Proc. Int. Conf. Comput.,
Commun. Autom. (ICCCA), Apr. 2016, pp. 537–540.

[29] J.-H. Lam, S.-G. Lee, H.-J. Lee, and Y. E. Oktian, “Securing distributed
SDN with IBC,” in Proc. 7th Int. Conf. Ubiquitous Future Netw.,
Jul. 2015, pp. 921–925.

[30] M. Sneps-Sneppe and D. Namiot, “Metadata in SDN API for WSN,” in
Proc. 7th Int. Conf. New Technol., Mobility Secur. (NTMS), Jul. 2015,
pp. 1–5.

[31] T. Alharbi and M. Portmann, “SProxy ARP–efficient ARP handling
in SDN,” in Proc. 26th Int. Telecommun. Netw. Appl. Conf. (ITNAC),
Dec. 2016, pp. 179–184.

[32] Onos ARP Proxy. Accessed: Mar. 25, 2023. [Online]. Available:
https://github.com/opennetworkinglab/onos/tree/master/apps/proxyarp

[33] Floodlight ARP Proxy. Accessed: Mar. 25, 2023. [Online]. Available:
https://github.com/mbredel/floodlight-proxyarp

[34] Onos Neighbour Resolution Service. Accessed: Mar. 25, 2023.
[Online]. Available: https://wiki.onosproject.org/display/ONOS/
Neighbour+Resolution+Service

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

[35] Floodlight DHCP Proxy. Accessed: Mar. 25, 2023. [Online]. Available:
https://github.com/floodlight/floodlight/tree/master/src/main/java/net/
floodlightcontroller/dhcpserver

[36] RYU Controller. Accessed: Mar. 25, 2023. [Online]. Available:
https://ryu.readthedocs.io/en/latest/

[37] K. Fred and AppNeta. Tcpreplay—PCAP Editing and Replaying
Utilities. Accessed: Mar. 25, 2023. [Online]. Available: https://
tcpreplay.appneta.com/

[38] A. Huang, “Similarity measures for text document clustering,” in
Proc. 6th New Zealand Comput. Sci. Res. Student Conf., Christchurch,
New Zealand, vol. 4, 2008, pp. 9–56.

[39] P. Marbach, “Priority service and max-min fairness,” in Proc. 21st
Annu. Joint Conf. IEEE Comput. Commun. Societies, vol. 1, Jun. 2002,
pp. 266–275.

[40] S. J. Murdoch and S. Lewis, “Embedding covert channels into TCP/IP,”
in Proc. Int. Workshop Inf. Hiding. Cham, Switzerland: Springer, 2005,
pp. 247–261.

[41] J. Xing, A. Morrison, and A. Chen, “NetWarden: Mitigating network
covert channels without performance loss,” in Proc. 11th USENIX
Workshop Hot Topics Cloud Comput. (HotCloud), 2019, pp. 1–7.

[42] C.-R. Tsai, V. D. Gligor, and C. S. Chandersekaran, “On the identifica-
tion of covert storage channels in secure systems,” IEEE Trans. Softw.
Eng., vol. 16, no. 6, pp. 569–580, Jun. 1990.

[43] S. Cabuk, “Network covert channels: Design, analysis, detection, and
elimination,” Ph.D. dissertation, Purdue Univ., West Lafayette, IN, USA,
2006.

[44] K. Ahsan, “Covert channel analysis and data hiding in TCP/IP,”
M.S. thesis, Univ. Toronto, Toronto, ON, Canada, 2002.

[45] K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in Proc.
Workshop Multimedia Secur. ACM Multimedia, vol. 2, no. 7. New York,
NY, USA: ACM Press, 2002, pp. 1–8.

[46] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil, “Eliminating steganog-
raphy in internet traffic with active wardens,” in Proc. Int. Workshop Inf.
Hiding. Cham, Switzerland: Springer, 2002, pp. 18–35.

[47] T. G. Handel and M. T. Sandford, “Hiding data in the OSI network
model,” in Proc. Int. Workshop Inf. Hiding. Cham, Switzerland: Springer,
1996, pp. 23–38.

[48] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibetts, “Covert messaging
through TCP timestamps,” in Proc. Int. Workshop Privacy Enhancing
Technol. Cham, Switzerland: Springer, 2002, pp. 194–208.

[49] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing channels:
Design and detection,” in Proc. 11th ACM Conf. Comput. Commun.
Secur., Oct. 2004, pp. 178–187.

[50] S. Zillien and S. Wendzel, “Weaknesses of popular and recent covert
channel detection methods and a remedy,” IEEE Trans. Dependable
Secure Comput., vol. 20, no. 6, pp. 5156–5167, Feb. 2023.

[51] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert channel detection,”
ACM Trans. Inf. Syst. Secur., vol. 12, no. 4, pp. 1–29, Apr. 2009.

[52] H. Li, T. Song, and Y. Yang, “Generic and sensitive anomaly detection
of network covert timing channels,” IEEE Trans. Dependable Secure
Comput., vol. 20, no. 5, pp. 4085–4100, Sep. 2022.

[53] S. Al-Eidi, O. Darwish, Y. Chen, and G. Husari, “SnapCatch: Automatic
detection of covert timing channels using image processing and machine
learning,” IEEE Access, vol. 9, pp. 177–191, 2021.

[54] O. Shvartzman et al., “Characterization and detection of cross-router
covert channels,” Comput. Secur., vol. 127, Apr. 2023, Art. no. 103125.

[55] Z. Wang et al., “A covert channel over blockchain based on label
tree without long waiting times,” Comput. Netw., vol. 232, Aug. 2023,
Art. no. 109843.

[56] X. Luo, E. W. W. Chan, P. Zhou, and R. K. C. Chang, “Robust network
covert communications based on TCP and enumerative combinatorics,”
IEEE Trans. Dependable Secure Comput., vol. 9, no. 6, pp. 890–902,
Nov. 2012.

[57] X. Luo, E. W. W. Chan, and R. K. C. Chang, “TCP covert timing
channels: Design and detection,” in Proc. IEEE Int. Conf. Dependable
Syst. Netw. FTCS DCC (DSN), Jun. 2008, pp. 420–429.

[58] S. Gianvecchio and H. Wang, “An entropy-based approach to detecting
covert timing channels,” IEEE Trans. Dependable Secure Comput.,
vol. 8, no. 6, pp. 785–797, Nov. 2011.

[59] W.-M. Hu, “Reducing timing channels with fuzzy time,” J. Comput.
Secur., vol. 1, nos. 3–4, pp. 233–254, Oct. 1992.

Yixiong Ji (Graduate Student Member, IEEE) received the B.Eng. degree from
Tsinghua University in 2020, where he is currently pursuing the Ph.D. degree
in computer science and technology. His research interests include network
security, software-defined networking, and machine learning for security.

Jiahao Cao (Member, IEEE) received the B.Eng. degree from Beijing
University of Posts and Telecommunications in 2015 and the Ph.D. degree
from Tsinghua University in 2020. He was a Visiting Scholar with George
Mason University. He is currently an Assistant Research Professor with the
Institute for Network Sciences and Cyberspace, Tsinghua University. His
current research interests include network protocol security, network attack
detection, and network traffic analysis.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University. He is currently an Associate Professor with the Institute for
Network Sciences and Cyberspace, Tsinghua University. He is an Editorial
Board Member of IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING and ACM TOPS.

Yan Liu is currently a Researcher and the Director of Ant Group. Before that,
he was a Senior Researcher with Baidu, in charge of the AI Security Team.
His research interests include trusted AI, networking security, and private
computing. He works on broad applications of machine learning and privacy
computing technologies in enterprise security.

Tao Wei received the B.S. and Ph.D. degrees from Peking University, Beijing,
China, in 1997 and 2007, respectively. He is currently the Vice President of
Ant Group and an Adjunct Professor with Peking University. He is in charge
of foundational security with Ant Group. His work has helped Windows,
Android, iOS, and other operating systems improve their security capabilities.

Ke Xu (Fellow, IEEE) received the Ph.D. degree from the Department of
Computer Science and Technology, Tsinghua University, Beijing, China. He is
currently a Full Professor with the Department of Computer Science and
Technology, Tsinghua University. He has published more than 200 technical
articles and holds 11 U.S. patents in the research areas of next-generation
internet, blockchain systems, the Internet of Things, and network security.
He is a member of ACM. He was the Steering Committee Chair of IEEE/ACM
IWQoS. He has guest-edited several special issues in IEEE and Springer
journals. He is an Editor of IEEE INTERNET OF THINGS JOURNAL.

Jianping Wu (Fellow, IEEE) received the B.S., M.S., and Ph.D. degrees from
Tsinghua University, Beijing, China. Since 1994, he has been in charge of
China Education and Research Network. He is currently a Full Professor and
the Director of the Network Research Center and also a Ph.D. Supervisor with
the Department of Computer Science and Technology, Tsinghua University.
His research interests include next-generation internet, IPv6 deployment and
technologies, and internet protocol design and engineering.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 26,2025 at 02:41:09 UTC from IEEE Xplore. Restrictions apply.

