Pegasus: A Universal Framework for Scalable Deep Learning
Inference on the Dataplane

Yinchao Zhang* Su Yao* Yong Feng*
Yi Zhao® Lexuan Zhang*

*Tsinghua University ~ *Zhongguancun Laboratory

Abstract

The paradigm of Intelligent DataPlane (IDP) embeds deep learning
(DL) models on the network dataplane to enable intelligent traf-
fic analysis at line-speed. However, the current use of the match-
action table (MAT) abstraction on the dataplane is misaligned with
DL inference, leading to several key limitations, including accu-
racy degradation, limited scale, and lack of generality. This paper
proposes Pegasus to address these limitations. Pegasus translates
DL operations into three dataplane-oriented primitives to achieve
generality: Partition, Map, and SumReduce. Specifically, Partition
“divides” high-dimensional features into multiple low-dimensional
vectors, making them more suitable for the dataplane; Map “con-
quers” computations on the low-dimensional vectors in parallel
with the technique of Fuzzy Matching, while SumReduce “combines’
the computation results. Additionally, Pegasus employs Primitive
Fusion to merge computations, improving scalability. Finally, Pe-
gasus adopts full-precision weights with fixed-point activations to
improve accuracy. Our implementation on a P4 switch demonstrates
that Pegasus can effectively support various types of DL models, in-
cluding Multi-Layer Perceptron (MLP), Recurrent Neural Network
(RNN), Convolutional Neural Network (CNN), and AutoEncoder
models on the dataplane. Meanwhile, Pegasus outperforms state-
of-the-art approaches with an average accuracy improvement of up
to 22.8%, along with up to 248x larger model size and 212X larger
input scale.

5

CCS Concepts

« Networks — Programmable networks; - Computing method-
ologies — Learning paradigms.

Keywords

Programmable Dataplane, Deep Learning, Intelligent Dataplane

ACM Reference Format:

Yinchao Zhang, Su Yao, Yong Feng, Kang Chen, Tong Li, Zhuotao Liu, Yi
Zhao, Lexuan Zhang, Xiangyu Gao, Feng Xiong, Qi Li, Ke Xu. 2025. Pe-
gasus: A Universal Framework for Scalable Deep Learning Inference on
the Dataplane. In ACM SIGCOMM 2025 Conference (SIGCOMM °25), Sep-
tember 8-11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 15 pages.
https://doi.org/l().1145/3718958.3750529

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1524-2/25/09

https://doi.org/10.1145/3718958.3750529

Xiangyu Gao*
*Renmin University of China
Beijing National Research Center for Information Science and Technology

Kang Chen*’
Feng Xiong®

Tong Li* Zhuotao Liu**

QiLi* Ke Xu*¥

°Beijing Institute of Technology
SBeihang University

1 Introduction

In recent years, there has been a growing demand for Intelligent
DataPlane (IDP), which leverages data-driven learning models to
overcome the limitations of traditional rule-based approaches [21,
25, 39, 54, 64]. By utilizing high-performance programmable hard-
ware [4, 53], IDP supports forwarding-native execution of learning
models, enabling intelligent traffic analysis at line-speed, without
affecting network throughput and latency. This empowers fine-
grained traffic classification and malicious flow detection, essential
for coping with increasingly complex network environments.

The core challenge in realizing IDP lies in the fact that switch dat-
aplanes are primarily optimized for high-speed packet processing
using the match-action table (MAT) abstraction [5], which inher-
ently limits their ability to represent learning models. While many
recent works [25, 60, 64] have explored tree-based models due to
the similarity between their decision processes and the MAT ab-
straction, there remain scenarios that demand more expressive and
versatile models. Consequently, the community has also explored to
incorporating neural network (NN)-based models in IDP. However,
the MAT abstraction on the dataplane lacks the flexibility to support
complex computations such as multiplication and exponentiation,
which are essential for DL.

To address this challenge, two main approaches have been pro-
posed: computation simplification [33, 37, 61] and computation
bypassing [49]. Computation simplification simplifies operations,
for example, by binarizing the entire model. For instance, N3IC [38]
replaces multiplication with binary XNOR and population count
(popcnt) operations, directly implementing binary Multi-Layer Per-
ceptron (MLP) within the MAT on SmartNICs. Computation by-
passing avoids computation by storing input-output relationships
on the dataplane, recording an enumerative mapping from input
bit strings to output bit strings, as demonstrated in BoS [51].

However, both methodologies suffer from three key limitations:
Accuracy. Accuracy refers to how well a model accomplishes its
task, measured by metrics such as precision, recall, or F1-score, de-
pending on the specific traffic analysis tasks. Computation simplifi-
cation, such as model binarization in N3IC [38], degrades accuracy
due to the reduced numerical range. For example, N3IC may lead
to accuracy degradation in VPN traffic classification tasks [51]. In
contrast, computation bypassing through mapping can improve
accuracy compared to computation simplification. However, the
mapping has limitations in scale (see below). This limitation forces
reductions in input precision or dimensionality, leading to a loss of
critical information necessary for accurate predictions [22, 42, 65].
Scalability. Scalability represents the ability to perform DL infer-
ence at a larger scale, and this larger scale applies to both the input
scale and the model size. Computation simplification encounters

https://doi.org/10.1145/3718958.3750529
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718958.3750529

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Design o 6 & 0 6
Accuracy v
Scalability v v 7/

Generality v

Table 1: The goals of different designs in Pegasus.

difficulties in both the input scale and the model size. N3IC [38]
cannot scale its throughput on the dataplane, such as in Barefoot
Tofino architecture switches [8], due to additional limitations on
binary operations in high-speed environments (e.g., shorter process-
ing cycles allowing only one binary operation on one variable per
MAT stage). Computation bypassing methods like BoS [51] suffer
from limited input scale (e.g., a 21-bit input requires 22! table en-
tries, exceeding the capacity of the Barefoot Tofino 2 programmable
switch [7]), resulting in poor scalability.

Generality. Generality refers to whether the system can support
different DL operations, and thereby utilize these operations to per-
form inference for various models. The computation simplification
strategy of N3IC is limited to Matrix Multiplication (MatMul) and
fails to generalize to other DL layers, such as Batch Normalization
(BN) and activation functions. BoS [51] also faces the generality
problem. It processes a small number of inputs per time step for
binary Recurrent Neural Network (RNN), making it unsuitable for
other model types. This limitation conflicts with the current trend
in networking to design specialized models for different tasks and
to leverage larger input scales to capture more complex relation-
ships [2, 14, 28, 45, 48]. The generalization issue restricts flexibility
and limits the broader potential of IDP.

This paper proposes Pegasus to address the three limitations
above with five tightly-coupled designs. @ For a wide range of
model types, Pegasus translates operations (e.g., MatMul, BN and
ReLU) within DL layers into three primitives: Partition, Map, and
SumReduce. Specifically, @ Pegasus uses Partition to divide one-
time operations on the entire input into multiple fine-grained com-
putations on minimal input units, uses Map to retrieve precomputed
results from mapping tables for each unit and uses SumReduce for
aggregation to handle multi-input scenarios, which reduces table
sizes. This method reduces the number of inputs that each table
has to process. ® Therefore, Pegasus is able to adopt full-precision
model weights (precomputed with full-precision parameters) while
using fixed-point numbers for activation representations instead of
binary numbers (since an 8-bit number query requires only 28 table
entries). This leverages a wider numerical range, allowing the cap-
ture of more detailed and precise information crucial for accurate
model predictions. Pegasus also adopts two additional methods
to further optimize the primitive implementation. @ Divide the
input into minimal units increases the number of lookups, plac-
ing considerable additional pressure on memory access bandwidth.
To mitigate this overhead, we introduce Fuzzy Matching, which
groups multiple units together and maps it to a corresponding table
entry, enabling a single lookup to cover multiple units, effectively
reducing memory access bandwidth consumption. @ Additionally,
Pegasus adopts Primitive Fusion to merge multiple operations,
thereby reducing the total number of tables. Table 1 shows how
these designs contribute to addressing the three limitations of pre-
vious approaches.

Concretely, Pegasus introduces the following key innovations:

Zhang et al.

Model Input
size scale
N3IC [38] (binary MLP) 22.8% T 248x T 29x 7
BoS [51] (binary RNN) 17.9% T 237x T 212x T

Leo [25] (Decision Tree) 17.2% 1 - -

Prior Works Accuracy

Table 2: Pegasus v.s. Prior Works.

(i) A primitive-based framework that abstracts DL operations
into dataplane-executable forms, enabling diverse models to run
directly on commodity programmable switches without hardware
modifications (See §4.1).

(ii) A Fuzzy Matching paradigm for table lookups on the data-
plane, systematized and adapted in this work to enable compact and
approximate indexing over feature vectors using match rules com-
patible with P4. This mechanism avoids exhaustive input-output
mappings and significantly reduces storage and lookup overhead.
In addition, by encoding inputs into compact Fuzzy Indexes, it in-
creases fusion capacity by allowing more inputs to be processed
within a single lookup, and enhances flow scalability by reducing
per-flow state storage requirements (See §4.2).

(iii) A Primitive Fusion mechanism tailored to the dataplane,
which—unlike prior fusion techniques on Al accelerator platforms
that primarily reduce memory traffic—also reduces the number of
executed operations, making it well-suited for resource-constrained
environments (See §4.3).

Contributions. The major contribution of this paper is the
design, implementation and evaluation of Pegasus?, the first IDP de-
sign that supports multiple DL models on commodity programmable
switches. Our implementation on the P4 switch demonstrates that
Pegasus can effectively support various model types on the data-
plane, including MLP, RNN, Convolutional Neural Network (CNN),
and AutoEncoder. Experiments show that Pegasus can support
3840 bit input scale, 6083 Kb model size, and achieves an average
classification accuracy of 97.3%. This represents up to 248X larger
model size, 212X larger input scale, and up to 22.8% higher accuracy
compared to state-of-the-art approaches (Table 2 gives a preview
of Pegasus’s benefits, see Table 5 for the full results).

2 Background and Motivation

Deep Learning. Deep Learning (DL) utilizes neural networks com-
posed of multiple layers to model complex patterns in data [26].
The implementation of DL involves a variety of operations that pro-
cess data through different types of layers, such as fully connected
(FC), convolutional (Conv), activation (Act), normalization (Norm),
pooling (Pool), recurrent (Rec), and embedding (Emb) layers.

In DL, each layer performs specific mathematical operations.
For instance, FC layers compute weighted sums of inputs plus bi-
ases, enabling the network to capture linear relationships. Conv
layers apply convolution operations to detect local patterns like
edges in images. Rec layers handle sequential data by maintaining a
hidden state that captures temporal dependencies. Activation func-
tions like ReLU, Softmax, and tanh introduce nonlinearity, allowing
the network to learn complex, non-linear relationships. Norm lay-
ers adjust the input distributions to subsequent layers, enhancing
model stability and performance. Pooling layers reduce the spatial
dimensions of data, decreasing computational load and controlling

! Available at https://github.com/afireswallow/Pegasus.

Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane

overfitting by summarizing features. Embedding layers transform
discrete data into continuous vector spaces, which is particularly
useful for capturing temporal features in time series data. All these
operations involve intensive computations, such as Matrix Multi-
plications (MatMul), convolutions, and non-linear transformations.
Programmable Dataplane. The emerging programmable
switches [5, 36, 53] offer flexible dataplane programmability,
allowing developers to execute custom processing logic on
each data packet. Many programmable switches today can be
programmed using the P4 [4] language, a domain-specific language
based on the match-action table (MAT) [5] abstraction. The MAT
abstraction extracts fields from packet headers and matches them
against flow tables, where matched entries specify the actions to
be executed on the packets. While the MAT abstraction provides
significant flexibility for designing network functions, its practical
implementations often face critical limitations.

For instance, the Protocol-Independent Switch Architecture
(PISA)—one of the most widely adopted implementations—supports
only basic integer operations such as bitwise operations (e.g., NOR,
XNOR), shifts, addition, and subtraction. It does not support floating-
point numbers, multiplication, division, nor exponential opera-
tions—operations that are essential for DL inference computations.
Secondly, the resources available for MAT on the dataplane are lim-
ited. For instance, on Barefoot Tofino 2, each pipeline only has 20
MAT stages, with each stage equipped with 10 Mb of SRAM, 0.5 Mb
of TCAM, and a 1024-bit-wide Action Data Bus [7]. Given that DL
involves numerous operations across multiple layers, the 20 MAT
stages and 1024-bit bus make it difficult to meet the computational
and data transfer demands.

Why DL on the dataplane? The increasing demand for real-time,
intelligent network traffic analysis has created a need to deploy
learning models directly on the dataplane switch [31, 35], enabling
tasks like Intrusion Prevention systems (IPS) to analyze and block
malicious traffic with terabit throughput and nanosecond-level la-
tency. Traditional approaches [25, 60, 64] often rely on tree-based
models, which are valued for their simplicity and interpretability.
DL complement these methods by offering significant advantages in
addressing certain unique challenges of networking: (1) The trans-
mission of network data inherently exhibits temporal characteris-
tics, and DL models, such as RNNs and 1D CNNss, are well-suited to
capture temporal patterns, making them better fit network-specific
tasks. (2) DL can extract features directly from raw packets, over-
coming the difficulties of complex feature computation in the con-
strained dataplane environment [51]. (3) The networking field often
lacks labeled data [63] and needs to address continually emerging
new attacks [30], such as zero-day attacks [18, 52], making the unsu-
pervised learning capabilities of DL an invaluable tool for adapting
to these dynamic and unpredictable scenarios.

Motivation. DL inference typically involves highly compute inten-
sive operations, which conflict with the flow table-centric dataplane.
This requires developers to design DL inference implementations
that better align with the dataplane MAT abstraction.

N3IC uses XNOR and population count (popcnt, counting the
number of 1s in the binary representation) to replace the mul-
tiplication and addition operations in MatMul. This enables the
implementation of a simple binary Multi-Layer Perceptron (MLP)
on the computation-constrained dataplane. However, binarizing

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Computation-Centric DL

@
Deep Learning Models 8

00000
CX X)
o0

Deep Learning Layers (85)
| FC H Conv“ Act HNorm“ Pool “ Rec “ Emb

F)
L 4
Abstraction (§4)

Primitives
Partition ‘ Map } SumReduce
Fuzzy Matching ‘
.
Primitive Fusion I
) 3k
Flow table-centric Dataplane (§6)
Match Match Match
e || | e |
) e |Eee= L=

Figure 1: Pegasus Architecture.

the entire model reduces precision, leading to accuracy degradation.
Moreover, this method does not support other DL operations, such
as activation functions, limiting its generality. Finally, this approach
has poor scalability, making it hard to fit within switch pipelines. For
example, a 128-bit to 64-bit MatMul requires 64 XNOR and popcnt
operations, with each popcnt taking up 14 switch stages [51].

In contrast, state-of-the-art BoS [51] bypasses all DL operations
by looking up the mapping from input bit strings and output bit
strings. This allows binary activations only at the input and output
layers, while enabling full-precision computation within the model.
This improves accuracy to some extent compared to N3IC. How-
ever, this method limits input scalability, requiring 2" entries for
an n-bit input, resulting in poor overall scalability. This limitation
brings two additional issues. First, input binarization is required
to increase dimensionality and boost accuracy. This binarization,
however, reduces the numerical range of input data, leading to accu-
racy degradation, as evidenced by our experiments in §7.2. Second,
the restricted input scale limits the method’s generality, making
it primarily suitable for models like Recurrent Neural Networks
(RNN), where small inputs are processed at each time step.

We noticed that a recent work, Taurus [39], explores the design
of a novel ASIC by incorporating additional hardware resources
to enable DL inference. In this paper, We focus exclusively on
implementing DL inference on commodity programmable switches.

3 Design Overview
3.1 Design Goals

We propose Pegasus to achieve higher accuracy, greater scalabil-
ity, and generality in supporting various DL models. (1) Pegasus

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Primitives Expression
Partition Partition(X) = {X1, Xz, ..., X}
Map Map(‘]", {Xl,Xz,...,Xk}) =
{F1(X1), 2(X2), ..., F (Xp)}
SumReduce | SumReduce({X1,X2,...,X;}) = Z{le X

Table 3: Primitives in Pegasus. X is the input vector, X; rep-
resents the i-th segment of X, and ¥ is a set of functions
including F;.

introduces three primitives, including Partition, Map, and Sum-
Reduce, to decompose DL models into a sequence of primitives,
achieving generality. (2) Pegasus uses Partition to divide input into
segments, uses Map with Fuzzy Matching to retrieve precomputed
results for each segment, and applies SumReduce to aggregate re-
sults through summation. Additionally, Pegasus employs Primitive
Fusion to merge multiple primitives, reducing the number of oper-
ations. These methods enable Pegasus to efficiently handle larger
model scales, achieving scalability. (3) Finally, Pegasus employs
full-precision weights and fix-point activations to enhance model
accuracy.

3.2 Pegasus Architecture

Figure 1 shows the hierarchical design of Pegasus. DL layers are
composed of various DL operators, which are further converted
into primitives for computation. The design of these primitives is
dataplane-oriented and can be integrated tightly with the MAT ab-
straction. The lowest-level implementation of the primitives needs
to satisfy the limitations of the specific programmable switch.

We analyzed common operations in DL (detailed in §5) and
found that many functionalities can be realized through parallel
data operations, necessitating the design of the Map primitives.
DL often requires simple sum aggregation, and implementing this
process on the dataplane is not complex. The SumReduce primitives
are proposed. Finally, to enable data flow between primitives, the
Partition primitive is needed. DL operators are then represented
using these primitives. For example, consider a MatMul operation.
We can use Partition to divide the input, apply Map to compute
the product of each segment with the target matrix, and obtain the
final result through SumReduce.

4 Pegasus Primitives

4.1 Primitives

Pegasus primitives fall into three categories: Partition, Map, and
SumReduce, as illustrated in Table 3. The three primitives can be
combined in varying quantities and orders to assemble various DL
operators, enabling the construction of distinct DL models. Specifi-
cally, as the dataplane is better suited for handling multiple parallel
small-scale computations rather than a single large-scale opera-
tion, the Partition primitives divide the multi-dimensional input
vector into sub-vectors, reducing computational complexity. Map
primitives execute specific functions (e.g., activation function and
batch normalization) on each segment of inputs. Fuzzy matching
(§4.2) efficiently supports multiple Map primitives with minimal
storage resources and table lookups. SumReduce primitives per-
form element-wise summation on multiple vectors, resulting in an

Zhang et al.

@ Centroid Results
Idx

E— No X0 X; X0 X
X0 % @ @ 0 2 4 18 Unary
=
X X
3 7 Yes ! 2 25 18 2 0]
Input 2 2 75 18 4 H— 18 4
3 45 95 28 48 Output

Fuzzy Matching

Figure 2: Implementation of a Map primitive: how input sub-
vector (3,7) retrieves results (1.8,4) as the approximation of
f(Xi) =04X; + 1.

Xo | X
Xo | X1 1| 2
SSE= 0| | 2 C.
x=<1 3
Xo | X1 IssE=05) 2 [2 Centroid
SSE= 1.33
2 2|3 212 X, | x
w
wid ; ;) 2|3 ||]2
5
BE X <5 Ca 2 | 25
sgl 7 2 |75
3|38 V17— 45]9s5
419 L7 3 (8
SSE = 13.75 ssE=25) 3 | 8 Mean of leaf node
5|10 SE< X <3 Cs
Co B 419 419
5110 s 10
C, <

Figure 3: An example of obtaining cluster parameters and
centroids from the training dataset in Pegasus.

aggregated vector. These primitives are simple enough to be im-
plemented using the MAT abstraction. More importantly, Pegasus
employs primitive fusion (§4.3) to reduce resource overhead and
improving the scalability.

4.2 Fuzzy Matching

Instead of retrieving results through exhaustive and non-scalable
input-output mapping table lookups, Fuzzy Matching groups multi-
ple input units into a vector and executes a feature-threshold-based
search on the vector, following ideas from prior work on table-based
quantization [3].

Fuzzy Indexing. Specifically, a clustering tree is constructed where
each node contains a specific feature (one dimension in the vector)
and its corresponding threshold. The input vector is mapped to the
index of a leaf node through simple comparison operations, where
each leaf node corresponds to a precomputed centroid (i.e., cluster
center) representing the approximate value for data in that region.
Compared to traditional distance-based clustering methods, this
approach can be easily implemented on the constrained dataplane.
Figure 2 shows an example for the input (xo = 3, x1 = 7). Based on
the conditions x; > 5 and x¢ < 3, the input is mapped to centroid
index (Fuzzy Index) 2. This index corresponds to the precomputed
centroid (2,7.5). After applying Map f(X;) = 0.4X; + 1, the approx-
imate results are (1.8, 4). This approach leverages the continuity
of DL operators (e.g., MatMul and BN), where the operator f(x)
remains relatively stable within a small range of input x, allowing
minor variations in the input without significantly affecting the
output [67].

Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane

Partition === Map == SumReduce
[t _______ 3 — ; _____ 3 = 3
I i o i | Value i | Action | i
i P P i
' g g i1 Action2 |
1> — ! 1
is — b i
1 £ | I b |
H 1 1 1 H 1
: P P Act] |

1 1
L loskpley! ilookwpTablei || Actonn |

Figure 4: Correspondence between the MAT abstraction and
primitives.

Parameter Learning. Based on the independent and identically
distributed (i.i.d.) assumption of DL [43, 44], we can learn the pa-
rameters (including features and thresholds at the non-leaf nodes,
and centroids at the leaf nodes) from the training set for inference.
We adopt a greedy clustering strategy, starting with all training data
as a single cluster Cy at the root. At each step, we split the current
cluster into two sub-clusters by selecting the optimal feature dimen-
sion and threshold that minimize the total Sum of Squared Errors

(SSE), thereby enhancing intra-cluster similarity. For example, as

shown in Figure 3, cluster Cj is split along feature x; at threshold 5,

forming two sub-clusters assigned to the left and right child nodes.

This process continues recursively until the tree reaches the target
size. Although the greedy strategy does not guarantee a global
optimum, it provides a near-optimal split, suitable for efficient data-
plane implementation. The centroid of each cluster is computed as
the mean vector of its feature dimensions. For instance, the centroid

of cluster Cq (4.5, 9.5) is the average of (4, 9) and (5, 10).

Benefits of Fuzzy Matching. Compared to storing precomputed

input-output mappings for each input unit on the dataplane, Fuzzy

Matching offers four key advantages:

o Storage Efficiency: traditional methods suffer from exponential
storage growth as the number or bit-width of operands increases.
For example, a binary operation (e.g., Hadamard product) or two
8-bit inputs requires 21 table entries. Fuzzy matching avoids stor-
ing all possible input-output pairs, drastically reducing storage
overhead and enhancing scalability, albeit with a slight accuracy
drop of approximately 1% (see §7.5).

o Lookup Reduction: Fuzzy Matching enables a single table lookup
to cover multiple input units, substantially reducing the num-
ber of table lookups and improving memory access bandwidth
utilization.

e Primitive Fusion: Fuzzy Matching significantly enhances the
capability of Advanced Primitive Fusion (see §4.3).

e Flow Scalability: Fuzzy Matching supports concurrent flow scal-
ability by storing Fuzzy Indexes of per-flow features instead of
raw data (see §7.3).

4.3 Primitive Fusion

In many systems, fusion is employed to optimize resource utiliza-
tion [6, 19, 62]. These techniques, commonly applied on hardware
accelerators such as GPUs and TPUs, fuse multiple operators into a
single execution kernel to reduce intermediate memory access and

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Initial r S & Meaning of Shapes
8 Linear Reordering &) SumReduce
Reordered 4 € Non-Linear Map
O Merging Consecutive Map|
Results (S @ S RelLU @ Fused
Linear Map
Initial N g ' 4 P
O Linear Reordering) (
o> r— BN MatMul Bias Fused
Reordered Q
3 Merging Consecutive Map| | Fusion
Results (Q D) =
N) =
Initial "4 4 N
& Linear Reordering :
Reordered 4 4 =
¥ Merging Consecutive Map =
Results @ R =

| 8

Figure 5: Primitive Fusion techniques (based on an MLP
model): ® Basic Primitive Fusion; ® Advanced Primitive
Fusion with Removal of Nonlinear Mappings; ® Advanced
Primitive Fusion with Reduction of SumReduce.

kernel launch overhead. However, they do not reduce the number of
computations, as each operator in the fused kernel still executes in
full. In contrast, we further optimize our primitive implementation
through Primitive Fusion, which focuses on compressing multiple
operations into a single table lookup. This not only eliminates inter-
mediate memory traffic but also reduces the number of operations
executed, making it particularly effective for resource-constrained
dataplane environments.

As shown in Figure 4, an MAT firstly extracts specific fields
from the input vector for Partition, and then performs ta-
ble lookups to retrieve precomputed results of Map primi-
tives, followed by executing corresponding Actions on these re-
sults, such as SumReduce primitives. This process aligns with
SumReduce(Map(F, Partition(X))), where X denotes the input
vector, and 7 represents a set of functions that are applied individ-
ually to each partitioned group.

Basic Primitive Fusion. We propose a general approach to fuse
primitives without modifying the model architecture. Specifi-
cally, we introduce two simple techniques to realize this approach:

(1) Linear Reordering. If a SumReduce is followed by a Map
whose function f satisfies the linearity property f(a +b) = f(a) +
f(b), we can swap the order of SumReduce and Map. This preserves
correctness because applying f on each partition and then summing
is equivalent to summing first and then applying f, provided that
f is linear.

(2) Merging Consecutive Map Primitives. Because each Map
function applies independently to each partition, consecutive Map
operations can be merged into a single Map.

By leveraging these techniques, Pegasus can fuse complex
sequences of primitives without altering the underlying model,
thereby enabling more efficient inference pipelines. For example,
consider an MLP with two hidden layers, where each hidden layer
includes: (1) a BN layer that applies an element-wise linear trans-
form (y - xf;‘u + f), (2) a FC layer that performs MatMul plus bias

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

addition, (3) a ReLU activation defined as max(0, x). The layout
of the MLP is shown in the “initial” state of Figure 5 @. By lever-
aging basic primitive fusion, we are able to compress seven table
lookups into just two (Fused Maps and Fused Non-Linear Maps
in the “results” state), thereby eliminating five lookup operations
and significantly reducing computational overhead. As a result, the
entire MLP can now be executed through this compact two-step
lookup process.

Advanced Primitive Fusion. To further reduce the overhead
associated with table lookups, we propose two modifications to
the model architecture. As illustrated in Figure 5, the key to
achieving deeper fusion lies in addressing the nonlinear mappings
and SumReduce primitives.

(1) Removal of Nonlinear Mappings. As shown in Figure 5 @, by
removing the nonlinear mapping (i.e., the ReLU activation) from
the two-layer MLP, the entire computation—originally composed of
multiple BN and FC layers—collapses into a single linear transfor-
mation. This enables the model to be compressed into a single table
lookup, regardless of the number of intermediate operations. How-
ever, while this approach is highly efficient, purely linear models
often struggle to capture complex patterns and relationships within
the data, potentially leading to a significant drop in accuracy.

(2) Preservation of Nonlinearity via SumReduce Reduction. To
preserve nonlinearity in the model while still enabling advanced
fusion, we propose a second approach. As shown in Figure 5 ©,
by retaining only the final SumReduce operation and removing all
others, the model can fuse nonlinear transformations within each
partition into a single table lookup. In the MLP example, this cor-
responds to performing the entire MLP within each feature group,
followed by a final SumReduce to produce the model output. This
method, similar to Neural Additive Models (NAM) [1], can effec-
tively capture complex and nonlinear relationships within each
segment. This method benefits from Fuzzy Matching, which allows
for more data within each segment. The outputs from each partition
are then aggregated through SumReduce, allowing for a straight-
forward yet comprehensive integration of global information while
maintaining the independence of individual sub-models.

4.4 Mapping Optimization

Primitive Fusion allows us to cluster inputs only before the fused
large operators, replacing the original inputs with centroids to
reduce the pressure on the dataplane. However, this approach in-
evitably introduces approximation errors. To ensure the map-
ping table more accurately aligns with the model’s actual output,
we employ backpropagation to dynamically adjust the stored
centroids and cluster parameters, making it closer to the ideal per-
formance.

Backpropagation. Pegasus first trains an initial model on the
training dataset to generate cluster parameters and centroids in
the mapping table. Subsequently, Pegasus constructs mapping ta-
bles and performs centroid assignment within the model using the
technique from Zhang [56]. This method simulates the decision
process of a decision tree via matrix operations, where the decision
logic is functionally equivalent to our centroid assignment. Rather
than relying on the original non-differentiable centroid assignment,

Zhang et al.

DL Layers | DL Operators

Emb Embedding Lookup

Matrix Multiplication (Weighted Aggregation)
Bias Addition (Element-wise Transformation)
Conv Convolution (Weighted Aggregation)

ReLU, tanh (Element-wise Transformation)
Softmax (Multi-Input Operation)

FC

Act

Batch Normalization (Element-wise Transformation)
Layer Normalization (Multi-Input Operation)

Pool Pooling (Multi-Input Operation)

Matrix Multiplication (Weighted Aggregation)

Bias Addition (Element-wise Transformation)

tanh, Sigmoid (Element-wise Transformation)
Hadmard (Element-wise Transformation)

Norm

Rec

Table 4: Operators in DL layers.

we leverage the differentiable matrix operations to apply back-
propagation, fine-tuning the cluster parameters and centroids to
better align with the model’s output while minimizing performance
degradation.

Adaptive Fixed-Point Quantization. During the inference pro-
cess, the fixed-point positions of inputs and outputs can differ, es-
pecially when there are significant differences in numerical ranges
(e.g., input range [-100, 100] versus output range [0, 5]). Some in-
ference hardware employs Post-Training Static Quantization [32],
which pre-defines the fixed-point positions for each layer’s weights
and activations based on known numerical ranges. This method
helps maximize register bit-width utilization and improve numeri-
cal precision during inference.

In Pegasus, since the mapping table stores operations at full
precision, we only need to perform fixed-point quantization on the
final outputs before the SumReduce primitive. We pre-calculate the
fixed-point positions and store the corresponding outputs in a map-
ping table. This approach allows Map primitives to handle inputs
and outputs with different fixed-point positions, enhancing preci-
sion, particularly when there is a mismatch in numerical ranges. By
optimizing in this manner, Pegasus flexibly processes data across
varying ranges without sacrificing computational accuracy.

5 Deep Learning Operators

In deep learning (DL), layers are the building blocks of neural
networks, each designed to perform specific transformations on the
input. DL layers are typically constructed from a set of DL operators,
as outlined in Table 4, which maps layers to their corresponding
operators. In this section, we explain how Pegasus primitives can
be used to implement these DL operations. All references to DL
layers are focused on the inference phase.

« Embedding Lookup. Embedding Lookup is commonly used in
embedding layers during inference, mapping discrete input indices
to dense vectors. It can be viewed as an indexing function f(x) =
E[x], efficiently implemented using the Map primitive.

+ Element-wise Transformation. Element-wise Transformation
refers to operations performed independently on each element of
the input, making it naturally suitable for implementation using the
Map primitive. During inference, most parameters, such as weights,
biases, and other model parameters, are known in advance. These
can be treated as constants, part of the function rather than inputs,
reducing the computational overhead during the mapping process.

Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane

« Weighted Aggregation. Weighted Aggregation is the most com-
putationally intensive operation in DL [10, 17, 40], generating out-
put by performing element-wise multiplication between input el-
ements and their corresponding weights, followed by summing
the results. This operation can be partitioned into multiple parts,
with each part processed using the Map primitive to obtain the
corresponding result vectors. The final output is then obtained
by applying the SumReduce primitive to aggregate these partial
results.

« Multi-Input Operation. Multi-Input Operation refers to com-
putations where an element’s output depends on multiple input
elements. These inputs may be too numerous to fit into a single
partition due to combinatorial explosion. There are two common
ways to implement this operation. The first method uses the Map
primitive to process each partition, then apply the SumReduce prim-
itive to aggregate their influence on the output, followed by Map
primitives to operate on the aggregated result and produce the final
output. For example, Softmax (defined as Softmax(x;) = %) in-

volves a Map primitive to exponentiate each element e*i, followed
by a SumReduce primitive to sum these values) e*i, and a final

Map primitive to normalize each element by this sum ZEJZX]. . The
J

second method uses consecutive Map primitives to progressively

compute operations between multiple elements. For instance, aver-

age pooling requires several Map primitives to iteratively compute

the average value, yielding the final result.

6 Implementation

Pegasus is generalizable to commodity programmable switches,
such as PISA-based [4] and Trio-based [53] switches, which support
the P4 language. This generalizability stems from Pegasus’s reliance
solely on comparisons, table lookups, and additions. To demonstrate
its practicality, we have implemented Pegasus on the PISA switch.

While the core logic of Pegasus maps well to P4-compatible
programmable switches, deploying it on real hardware still involves
several architectural constraints and engineering considerations.
In this section, we first describe the platform-specific design and
implementation of Pegasus on PISA switches, addressing hardware
constraints such as limited arithmetic and matching capabilities
(§6.1). We then introduce a syntax-level abstraction, Pegasus Syntax,
which allows users to define models without dealing with low-level
P4 programming (§6.2). Finally, we introduce the DL models we
implemented to evaluate Pegasus (§6.3).

6.1 PISA-specific Design and Implementation

Fixed-point Aggregation. Pegasus uses the Map to generate
result vectors, and aggregates them via SumReduce. However, PISA
switches do not support native aggregation operations, and each
pipeline stage can perform at most one addition per element. As a
result, Pegasus must immediately accumulate each element of the
result vector into the final output during the Map phase. Each stage,
however, supports only a limited number of 8-bit, 16-bit, and 32-bit
fields along with their corresponding table-related ALUs. As shown
in Figure 6 @, 8-bit fields are insufficient for 8-bit fixed-point
addition, as this can lead to severe and unpredictable overflow
issues, significantly impacting performance. This necessitates using

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

o 2] -
01001 00001001 {1 1IELI001 A
+ =(o100) ¥ | |
0l0l1 oooololLi ol
Negative ‘--K/‘Error
carry data

X Overflow BLE) (B X Overflow

eII 10010 00 00 01001

+ = 1110000 00 00 10100
[T 1111000000101

+ — 0000101 100001000

000111000 11 11001

i =00 lol0l 110100
0000111 Irriorl

\/ Correct
Overflow Guard Carry Isolation

re—

= -
—
00000/000001 11 [Tl rnrion

13-6-13 data format

Figure 6: ® ® show issues with implementing fixed-point
aggregation on the dataplane; ® shows the correct approach,
and @ presents our proposed data format.

larger bit-width fields (e.g., 16-bit) for addition, with higher bits
as an Overflow Guard to manage overflow effectively. However,
the limited number of 16-bit ALUs makes large-vector aggregation
challenging. To improve efficiency, we adopt 32-bit fields in specific
scenarios to aggregate two 8-bit dimensions concurrently.

Yet, directly packing two 16-bit values into a 32-bit field can still

cause overflow in the lower half, potentially corrupting the upper
value (see Figure 6 @). To address this, as shown in Figure 6 @, we
adopt a 13-6-13 layout, where each 8-bit value is extended to 13 bits
with overflow guard bits, and a 6-bit isolation region is inserted in
between to block inter-field overflow. This format safely supports
the accumulation of at least 32 signed values per field and remains
robust under highly skewed inputs.
Fuzzy Matching Implementation. In Pegasus, the input traverses
the clustering tree to obtain the Fuzzy Index. This process requires
a multi-level comparator, which is not natively supported by PISA-
based switches. To address this, we use the numerical range of
values to represent the leaf nodes of the clustering tree. enabling
efficient implementation via range matching. This also allows us to
mask unused bits, making the design compatible with our 13-6-13
fixed-point format. To efficiently convert these ranges into ternary
rules, we introduce the Consecutive Range Coding (CRC) algorithm
[64], which enables the effective transformation of numerical ranges
into ternary rules.

Despite this, additional optimization is needed to reduce the
cost of Fuzzy Indexing in hardware. In software, a 4-bit index is
a typical choice for partitioned sub-vectors, but such fine-grained
representation leads to excessive TCAM and transfer overhead. We
therefore design simple strategies based on original sub-vector size
to reducing TCAM usage and data transfer cost.

(1) One-dimensional Partitioning. When applying the CRC
method, splitting 15 thresholds within an 8-bit number typically
yields no more than 32 ternary rules. Allocating an entire TCAM
query resource for such a small rule set would be inefficient. Instead,
we increase the partition granularity to two dimensions, which al-
lows us to encode the combinations using only 1024 entries, thereby

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

struct InputVec_t {

bit<8> input_dimo;

bit<8> input_dim7;
}; /* Definition of OutputVec_t is eliminated. */
struct ig_metadata_t {

InputVec_t input_vec;

OutputVec_t output_vec;

V0N A WN =

3

10 [ig_metadata_t meta;

-

12 |meta.output_vec = SumReduce(

13 Map(

14 Partition(meta.input_vec, dim = 2, stride = 2),
15 clustering_depth = 4,

16 CNN_dimension = 3,

17 CNN_kernel = cnn_kernel,

18 CNN_stride = cnn_stride

19)

20 |);

Figure 7: Pegasus Syntax.

halving both the number of TCAM queries and the data transfer
volume, while the actual TCAM slot usage remains comparable.

(2) Multi-dimensional Partitioning. Using the CRC method to
encode two elements into 16 or fewer fuzzy regions does not signif-
icantly reduce TCAM overhead compared to composing two one-
dimensional Fuzzy indices [64]. As a result, unlike One-dimensional
Partitioning, we cannot directly combine multiple partitions into a
single TCAM query. Instead, we encode each pair of 8-bit values
into a 4-bit Fuzzy Index, and aggregate three such indices for an
SRAM-based lookup. This design reduces data transfer cost at the
expense of modest SRAM consumption.

6.2 Pegasus Syntax

To facilitate the implementation of various DL models on the Pega-
sus framework, we have designed a specialized syntax called Pega-
sus Syntax. Figure 7 illustrates the proposed syntax, which provides
a high-level abstraction for defining and configuring DL models.
To support the translation of Pegasus Syntax into P4 language, we
developed a translation tool. This tool significantly reduces pro-
gramming complexity, allowing developers to focus on high-level
logic design without delving into the intricacies of low-level P4
code.

Specifically, our Pegasus Syntax maintains a consistent form with
the primitives. In Partition phase, input data and its partitioning
rules are explicitly specified. The partitioned data in each segment
is used to perform Map operations. In the Map phase, we define
the depth of the clustering tree and a series of CNN parameters
to determine the output dimensions for each group of inputs. The
translator automatically calculates the output dimensions based
on these parameters. This design is motivated by the fact that
certain operations, such as the convolution process in CNNs, are
partially connected. Reducing the output dimensions of the Map
primitives can effectively minimize table resource overhead. The
specific allocation of hardware resources is automatically handled
by the translator.

Zhang et al.

6.3 Implemented Neural Networks

We implemented the following six representative DL models? within
Pegasus, all of which utilize the Fuzzy Matching and Basic Primitive
Fusion. Additionally, we applied the Advanced Primitive Fusion
technique in CNN-M, CNN-L and AutoEncoder to enable larger
model scales with lower overhead, achieving improved accuracy.
MLP-B. MLP is well-suited for handling high-dimensional data,
making it particularly effective in processing statistical features.
We implemented a basic MLP model (MLP-B) that operates on stat-
ical features, including flow-level and packet-level features. How-
ever, It’s hard to extract effective statistical features for MLP on
the dataplane. For example, calculating averages is challenging on
programmable switches, while using cumulative sums can lead to
overfitting to large flows. To ensure fairness, we only use the maxi-
mum and minimum packet lengths and inter-packet delays (IPD) as
flow-level information. Our MLP-B consists of three hidden layers,
each comprising a sequence of Batch Normalization, a FC layer,
and a ReLU activation function.

RNN-B. RNNs are well-suited for capturing temporal dependencies
in sequential data, making them particularly effective for handling
time-series features. Our implementation is based on the windowed
binary RNN design in BoS [51], which processes multiple time steps
on the switch to capture sequential dependencies without requiring
hidden state write-backs. It classifies packets based on the sequence
of packet lengths and inter-packet delays (IPD). The RNN-B model
consists of an Emb layer, a tanh activation function, and multiple
FC layers.

CNN-B, CNN-M, and CNN-L. The one-dimensional CNN demon-
strates unique advantages in processing windowed sequence data
[24]. We implemented three CNN models: CNN-B (basic), CNN-M
(medium), and CNN-L (large), with increasing model complexity
and scalability. CNN-B serves as the baseline model, employing
only the Basic Primitive Fusion technique. It uses packet length
and IPD sequences as input features. CNN-M extends CNN-B by
incorporating Advanced Primitive Fusion, enabling larger model
scales with lower overhead. CNN-L builds on CNN-M by further
leveraging Advanced Primitive Fusion to support even larger model
sizes and input scales. This enables CNN-L to extract 60 raw bytes
from each packet as a raw packet sequence. Specifically, CNN-L
supplements the packet-level features used in the MLP-B model
with additional bytes extracted from the packet payload (i.e., the
content beyond the TCP header), padding the input to a fixed size
of 60 bytes. This feature construction is inspired by recent work in
traffic analysis using large language models [46, 58], which empha-
sizes the semantic value of raw packet content. All three models
are based on the textcnn architecture proposed by Zhang et al. [57],
consisting of multiple Conv layers, FC layers, Pool layers, and ReLU
activation functions.

AutoEncoder. Autoencoders are effective for unsupervised anom-
aly detection by learning compact representations and reconstruct-
ing input data. Our implementation uses mean absolute error (MAE)
to calculate reconstruction error, which is then used to determine
whether a flow is anomalous. The Autoencoder model consists of an

2In addition to the six DL models mentioned in the text, their variants can also be
implemented using these methods. Note that large models, such as Transformers,
cannot be supported due to resource limitations.

Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane

Emb layer and multiple FC layers for encoding and decoding. Each
FC layer is preceded by a Batch Normalization layer and followed
by a ReLU activation function.

7 Evaluation

Our evaluation addresses the following questions: (i) Whether Pe-
gasus can achieve higher accuracy and generality in supporting a
variety of DL models? (§7.2). (ii) How scalable is Pegasus across
model size, input scale, and the number of simultaneous flows?
(§7.3). (iii) Whether the unsupervised models implemented by Pe-
gasus can effectively defend against real-world unknown attack
traffic? (§7.4). (iv) What advantages DL model implementations on
the dataplane offer compared to those on the control plane? (§7.5).

7.1 Experiment Setup

Testbed Setup. We implemented Pegasus using P4 [4] on a Barefoot
Tofino 2 programmable switch [7], connected to two Linux servers.
One server replays pcap files via tcpreplay, while the other server
receives packets from the programmable switch.

Traffic Classification Datasets. We use three publicly available
and widely used traffic classification datasets, which are also utilized
in BoS [51]: (i) PeerRush [34]: This dataset contains traffic generated
by P2P applications, categorized into three classes (eMule, uTor-
rent, and Vuze). (ii) CICIOT2022 (CICIOT) [9]: This dataset contains
traffic collected from IoT devices in different working states, catego-
rized into three classes: Power, Idle, and Interact. (iii) ISCXVPN2016
(ISCXVPN) [16]: This dataset consists of VPN-encrypted network
traffic, categorized into seven classes (Email, Chat, Streaming, FTP,
VolIP, P2P). For each dataset, we selected 75% of the flows (identi-
fied by five-tuple) from each class to train the DL models, 10% for
validation, and 15% for testing.

Baselines. We implemented N3IC [38], Leo [25], and BoS [51],
using the largest model configurations specified in their respective
papers. Among these, Leo and BoS were deployed on the switch,
while N3IC was evaluated through software simulation because
the largest models in their papers could not be implemented on the
switch. It is important to note that our evaluation focuses solely
on the accuracy of the models themselves. We did not employ
common optimization techniques, such as those in BoS, which
enhance accuracy by aggregating predictions from multiple packets
within a flow and offloading hard-to-classify cases to the control
plane via the Integrated Model Inference System (IMIS).

Metrics. Consistent with prior works [51, 64], we use packet-level
macro-accuracy, defined as the average F1-score across different
classes, to evaluate model accuracy. Unless otherwise specified, all
accuracy measurements in the evaluation refer to macro-accuracy.
Additionally, we report the overall Precision (PR) and Recall (RC)
to provide a comprehensive evaluation of the models.

7.2 Accuracy Comparison and Analysis

In this section, we compare the accuracy of Leo, N3IC, and MLP-B
using the same statical features; BoS, RNN-B and CNN-B using the
same raw packet sequences. These models serve to demonstrate
that even a direct implementation of prior architectures using our
method can already superior accuracy compared to the original
designs. Detailed analysis of CNN-M and CNN-L, which leverage

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Advanced Primitive Fusion to improve scalability and enhance
model accuracy, is deferred to §7.3. Table 5 summarizes the input
scale, model size (i.e., the total size of parameters involved in com-
putation, excluding embedding layers), and classification accuracy
for all evaluated models.

Statical Features. As shown in Table 5, MLP-B achieves better ac-
curacy than N3IC, with improvements ranging from 5.8% to 11.9%,
despite the two models having similar sizes. This illustrates the ac-
curacy degradation caused by the full-model binarization in N3IC,
particularly in the absence of Norm and Act layers. In contrast,
Pegasus uses full-precision model weights and fixed-point activa-
tions to enhance accuracy. These design choices allow Pegasus to
maintain its accuracy advantage even under the Fuzzy Matching-
induced errors (See §7.5 for accuracy degradation compared to
CPU/GPU-based execution).

Compared to Leo, Pegasus achieved a 7.3% accuracy improve-

ment on the CICIOT dataset. This advantage may stem from the
complex relationships among CICIOT features, which an MLP
model of this scale can capture more effectively than tree-based
approaches. However, the improvement remains modest on the
PeerRush and ISCXVPN tasks, with only an average 1.0% gain. This
is consistent with the fact that decision trees perform well on sta-
tistical features. Nevertheless, DL models excel at processing raw
packet sequences, a capability we will demonstrate through the
CNN-L implementation (see 7.3).
Raw Packet Sequence. As shown in Table 5, despite using full-
precision model weights, the BoS still exhibits a 4.1% to 7.1% lower
accuracy than RNN-B across the three traffic classification tasks.
This confirms the impact of input and output binarization on model
accuracy.

Additionally, the CNN-B model demonstrates comparable ac-
curacy to the RNN-B model but performs slightly lower, with an
average gap of 0.6%. This may be attributed to RNN’s superior
ability to capture sequential dependencies under the same model
size.

7.3 Scalability Evaluation

MLP models are constrained by the switch’s limited ability to extract
complex statistical features, while RNN models face implementa-
tion challenges on the switch due to the requirement for sequential
execution over multiple time steps. Given these limitations, we
select CNN models to evaluate the impact of scalability on classifi-
cation accuracy, as their accuracy is significantly affected by model
size.
Model Scale Scalability. As shown in Table 5, as the model size
increases, CNN-M achieves accuracy improvements of 1.5% to 2.6%
over CNN-B, while outperforming RNN-B by 1.2% to 1.6%. This im-
provement is not proportional to model size, as larger models face
diminishing returns due to feature saturation and dataset complex-
ity limits. Nevertheless, CNN-M achieves these gains with lower
overhead compared to CNN-B (see §7.4). By leveraging Advanced
Primitive Fusion, CNN-M significantly reduces the number of tables,
optimizing resource utilization.

To further improve traffic classification accuracy, we expanded
the feature set and model size. With this enhancement, CNN-L
demonstrates exceptional accuracy, achieving 99.66%, 93.80%, and

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Zhang et al.
Method Input Model PeerRush CICIOT ISCXVPN
Scale (b) | Size (Kb) PR RC F1 PR RC F1 PR RC F1

Leo [25] (Decision Tree) 128 - 0.8720 0.8776 0.8728 0.7910 0.8072 0.7848 0.7338 0.7797 0.7475

N3IC [38] (binary MLP) 128 244 0.8217 0.8308 0.8241 0.7855 0.7877 0.7745 0.6688 0.6521 0.6388

MLP-B 128 343 0.8823 0.8826 0.8823 0.8555 0.8615 0.8581 0.7676 0.7552 0.7574

BoS [51] (binary RNN) 18 25.6 0.8677 0.8696 0.8678 0.8311 0.8253 0.8276 0.7033 0.7089 0.6907

RNN-B 128 10.9 0.9083 0.9100 0.9090 0.8707 0.8708 0.8707 0.7848 0.7658 0.7617

CNN-B 128 114 0.9051 0.9069 0.9057 0.8861 0.8657 0.8659 0.7706 0.7600 0.7520

CNN-M 128 974 0.9201 0.9220 0.9207 0.8821 0.8839 0.8829 0.7942 0.7897 0.7780

CNN-L 3840 6083 0.9967 0.9966 0.9966 | 0.9391 0.9377 0.9380 | 0.9868 0.9877 0.9872

Table 5: Comparison of classification accuracy across different methods.

98.72% on the PeerRush, CICIOT, and ISCXVPN datasets, respec-
tively. This represents an improvement of 7.2% to 23.5% over CNN-
B, and average accuracy gains of 17.2%, 22.8% and 17.9% over Leo,
N3IC, and BoS, respectively.

Additionally, CNN-L has a model size of 6083Kb, which is 248x
and 237x larger than those of N3IC (24.4Kb) and BoS (25.6Kb), re-
spectively (see §7.4). CNN-L also supports input sizes of 3840 bits,
representing a 29x increase over N3IC (128 bits) and a 212x increase
over BoS (18 bits). Traditional methods struggle to support such
large input sizes for two main reasons: (a) PISA switches only have
4096-bit Packet Header Vector (PHV), making it difficult to han-
dle such large-scale features while supporting basic functionalities.
CNN-L benefits from the design of primitives. Specifically, CNN-L
uses Partition to divide the input, distributing the inference process
across each packet within the window. Each packet only processes
480 bits of features, allowing CNN-L to successfully implement.
(b) Excessive per-flow register usage can impact the number of con-
current flows that can be supported (see below). This demonstrates
Pegasus’s exceptional scalability.

Number of Concurrent Flows Supported. Storing per-flow fea-
tures on the switch requires the use of its stateful SRAM resources.
Supporting more per-flow features reduces the number of concur-
rent flows that can be managed, which is why previous works did
not support features at the same scale as CNN-L on the dataplane.

However, Pegasus achieves this at a low cost. For scenarios
requiring a larger number of per-flow features, such as CNN-L,
Pegasus executes an expressive convolutional neural network di-
rectly on the switch to compress 60 raw per-packet features (480
bits) into 2 compact features. As shown in Figure 8, increasing
the feature width from 2 to 4 brings negligible accuracy improve-
ment, which justifies our compact design choice. This compressed
representation is further reduced through Fuzzy Matching, which
maps the features into 4-bit Fuzzy Indexes stored in the mapping
table (this technique is broadly used across our models to minimize
per-flow register usage; see Table 6). These two steps together sig-
nificantly reduce per-flow storage overhead. We defer the detailed
implementation of CNN-L to Section §A.

Figure 8 summarizes how classification accuracy varies with the
per-flow storage overhead, where the X-axis corresponds to the
required SRAM overhead to support 1 M flows for different per-flow
storage sizes. The CNN-L model uses 48 bits per flow, including 16
bits for the previous packet timestamp (used for IPD calculation) and
4 bits for the Fuzzy Index extracted from each packet (for a window
size of 8, the features of 7 packets need to be stored). Additionally,

a 28-bit version of CNN-L removes the IPD feature, while a 72-
bit version extracts 8 bits for the Fuzzy Index (corresponding to 4
compressed features) from each packet ®. Even with 28 bits of per-
flow storage, the model achieves classification accuracies of 99.1%,
92.9%, and 97.2% on the PeerRush, CICIOT, and ISCXVPN datasets,
respectively. Compared to Leo, N3IC, and BoS, it improves the
average accuracy by 16.2%, 21.8%, and 16.9%, respectively. Moreover,
the 28-bit per-flow storage usage is significantly lower than BoS’s
72-bit usage and the 80-bit usage of Leo and N3IC (see §7.4).

7.4 Unsupervised Malicious Traffic Detection
Evaluation

Previous works have predominantly focused on leveraging learning
models to classify traffic on the dataplane under scenarios with
abundant labeled data. However, in real-world networks, attacks
often come from unknown traffic, such as zero-day attacks. It is
unrealistic to anticipate such attack traffic in advance and train
supervised models accordingly. Detecting unknown traffic through
unsupervised models is challenging as it requires extracting multi-
ple complex features from the traffic, reconstructing the original
inputs using large model structures, and determining whether the
traffic is malicious based on reconstruction errors [30, 41]. This
complexity has prevented prior works from addressing this area on
the dataplane.

In this section, we validate that the AutoEncoder implemented

by Pegasus can utilize a large model structure to extract features
from raw packet sequences (packet length and IPD) and identify
unknown attack traffic by calculating reconstruction errors using
MAE. Specifically, the model leverages knowledge learned in the
Emb layer during traffic classification tasks to capture relation-
ships and features from raw packet sequences. These features are
reconstructed through the encoder and decoder.
Datasets. We use the AutoEncoder to reconstruct traffic on the
training sets of the PeerRush, CICIOT, and ISCXVPN datasets.
To evaluate the model’s ability to detect unknown attacks, we
inject two representative malicious traffic at a 1:4 mixture of attack-
to-benign traffic into the testing set: (a) Malware Attack, includ-
ing Cridex, Geodo, Htbot, Neris, and Virut, sourced from USTC-
TFC2016 [47]. (b) DoS Attack, utilizing SSDP Reflection Flood traffic,
collected from Kitsune [30].

3In fact, since PISA switches do not support 4-bit registers, we actually used 4 8-bit
registers to replace the 7 4-bit registers.

Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

1.00
——————o— 2
1.0 = 1.0 . — e 1.0f g oo -
0.98 ././- o @ /} 7 @ 7
v o8 208 i 0.8
: : :
|9}]
] 0.94 E 0.6 Htbot (AUC = 0.8963) E 0.6 Htbot (AUC = 0.8563) E 0.6 —e— Htbot (AUC = 0.9930)
o A/"/i D 7 Flood (AUC = 0.9986) G Flood (AUC = 0.9906) D ! -m- Flood (AUC = 0.9868)
0.92 —&— PeerRush L 044k Cridex (AUC = 0.9993) £ o4 Cridex (AUC = 0.9415) L0471} —A- Cridex (AUC = 0.9912)
: —A— ciclot o i -+ Virut (AUC = 0.9236) o -+ Virut (AUC = 0.8610) o b -¥- Virut (AUC = 0.9903)
0.90 —H— ISCXVPN 2021 Neris (AUC = 0.9404) 2021 ¢ Neris (AUC = 0.8576) 20214 -4 Neris (AUC = 0.9904)
ZYN7.0% 25.5% 38.3% =] Geodo (AUC = 0.9398) =] Geodo (AUC = 0.8553) = I Geodo (AUC = 0.9877)
0.0~ 0.0+ 0.0 L=
(28) (44) (72) 00 02 04 06 038 1.0 00 02 04 06 038 1.0 00 02 04 06 08 1.0

Num of bits per flow False Positive Rate

Figure 8: Impact of per-flow (a) PeerRush

storage usage on classifica-
tion accuracy.

Metrics. We use AUC (AURo0C, Area Under the Receiver Operating
Characteristic Curve) as metrics, as these are commonly used in
existing studies [11, 13, 20, 66]. AUC measures the model’s ability
to distinguish between normal and malicious traffic.

Results. As shown in Figure 9, the AutoEncoder achieves average
AUCs of 95.0%, 89.4%, and 99.0% on the PeerRush, CICIOT, and
ISCXVPN datasets, respectively, across different types of malicious
traffic. This demonstrates that the AutoEncoder can effectively dis-
tinguish normal traffic from anomalous traffic when only normal
traffic is available during training. In practical deployments, pro-
grammable switches can dynamically adjust response strategies
based on the MAE value and its abnormal fluctuations. For instance,
they can enforce traffic rate limits or send real-time alerts to admin-
istrators, enabling the system to handle potential malicious traffic
or attacks more efficiently. This system can be integrated into a
broader security analysis framework to fully leverage its capabil-
ities in detecting anomalous traffic and enabling timely, adaptive
responses.

Hardware Resource Utilization. Unlike the accuracy evaluation,
we implemented moderately sized versions of BoS (with a hidden
size of 8) and Leo (with 1024 nodes) to assess resource overhead, as
models like BoS are inherently designed for small-scale scenarios.

We report the stateful per-flow bit usage, stateless SRAM and
TCAM overhead, and Action Data Bus utilization for implementing
different methods on the switch in Table 6. In Pegasus, TCAMs
are used to retrieve the Fuzzy Index, the SRAMs are used to store
mapping tables, and the Action Data Bus are used to transfer data
fetched from SRAM/TCAM.

Compared to CNN-B, CNN-M has a larger model size but
lower resource overhead. This is primarily due to the fusion of
all intermediate-layer operations through Advanced Primitive Fu-
sion, which improves resource utilization. This effect is even more
pronounced in CNN-L. Despite having a model size of 6083Kb,
CNN-L only occupies 7.12% of SRAM and 13.33% of TCAM. The
majority of the model parameters are fused, so they do not occupy
storage resources during inference.

Compared to BoS and Leo, CNN-L has a larger resource overhead,
which is understandable given its larger model scale and higher
numerical precision. However, this drawback is alleviated as the
number of concurrent flows increases, because CNN-L has a lower
per-flow register usage. As shown in Figure 8, when supporting
1M concurrent flows, the 28-bit per-flow storage version of CNN-L

False Positive Rate Félse Positive Rate

(b) CICIOT (c) ISCXVPN

Figure 9: ROC curves across different datasets.

Models Stateful (p M TCAM Bus
bits/flow

Leo 80 2.44% 21.67% 3.55%

BoS 72 2.81% 0% 0.74%
MLP-B 80 7.75% 12.92% 29.45%
RNN-B 240 7.38% 23.33% 33.36%
CNN-B 72 5.56% 7.08% 13.16%
CNN-M 72 3.50% 6.67% 3.98%
CNN-L 44 7.12% 13.33% 7.11%
AutoEncoder 240 5.06% 7.92% 7.23%

Table 6: Hardware resource utilization for different methods.

saves 21.3% of SRAM overhead compared to the 72-bit requirement,
thereby significantly mitigating this drawback.

7.5 Compare With Control Plane DL

Pegasus uses Fuzzy Matching instead of precise computation to
perform DL inference, which inevitably reduces model accuracy.
To evaluate the impact of Pegasus on accuracy and throughput
improvements, we implemented full-precision DL inference on the
edge using an Intel Xeon E5-2699 v4 CPU and four Tesla V100 GPUs.
Since the PISA pipeline on programmable switches ensures that
any program compiled for it can run at line-rate, the size of the DL
model does not affect dataplane throughput. To maximize control
plane throughput, we pre-loaded features into CPU memory and
GPU VRAM, using multi-threading to fully utilize all CPU cores
and four GPUs, minimizing communication overhead. The accuracy
and throughput comparison results are shown in the Figure 10.

The results indicate that Pegasus results in an average reduction
of 1.08% in model accuracy, ranging from 0.2% to 1.7%. Notably,
the CNN-L model, which features richer inputs and higher model
capacity, experiences below-average accuracy loss (0.3%, 0.2%, and
0.9% across three datasets). This encourages us to fully leverage
Pegasus’s potential in designing more powerful models, rather than
limiting its use to simple, small-scale neural networks.

However, it increases throughput by over 3800x and 600X com-
pared to CPU and GPU, respectively. This throughput improvement
represents the idealized capacity of these devices. In real-world con-
ditions, although the gap may be narrower, the throughput gains
would still be significant. Given the substantial throughput improve-
ment, the reduction in accuracy can be considered acceptable.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

72 Pegasus Y GPU/CPU 72 Pegasus Y GPU/CPU

Zhang et al.

71 Pegasus ESY GPU/CPU 771 Pegasus Y GPU E= CpPU

1.0

Macro-F1
Macro-F1
o
©

)
®

Macro-F1

1.0

o
©

o
o
Throughput (samples/s)

S ® FRRNNY v
W7 QT T T WY

S 2 2 N ~
W QYT T T W

(a) PeerRush (b) CICIOT

JER R

° N ~
W7 QT T T W

(c) VPN

(d) Throughput

Figure 10: (a—c) Comparison of classification accuracy for different models implemented on the programmable switch v.s.
CPU/GPU across various datasets. (d) Throughput comparison for models on the programmable switch v.s. CPU/GPU.

8 Discussion and Related Work

Data-Driven Traffic Analysis. Researchers have proposed various
methods for intelligent traffic analysis [15, 29], such as encrypted
traffic classification, website fingerprinting and malicious traffic
detection. There is a growing recognition of the benefits of per-
forming traffic analysis at line-rate. NetBeacon [64] and Leo [25]
leverage decision trees in the dataplane to enable IDP. However, like
N3IC [38], these methods face the challenge of extracting complex
features directly on the dataplane. BoS [51] addresses this limitation
by using DL to automatically extract features, supporting IDP with-
out manual feature engineering on the dataplane. Building on this
foundation, Pegasus further enhances the capability of executing
deep learning inference within the dataplane.

Hardware Dependency. Taurus [39], Trio [53], Trident [23] have
explored adding computational capabilities to the dataplane to
support IDP. However, achieving line-rate computation is often
prohibitively expensive and difficult to integrate with the fundamen-
tal operations of the dataplane, such as table lookups and packet
forwarding. In contrast, Pegasus is specifically designed to align
with the flow-table-centric architecture of the dataplane. Opera-
tions like multi-level comparisons and fixed-point addition, which
Pegasus relies on, can be more efficiently implemented on other
dataplane devices. In fact, the majority of our overhead is caused
by the limitation of the Barefoot Tofino architecture. We believe
that with lightweight hardware adjustments, Pegasus could enable
more advanced capabilities for IDP.

Deployment in Real-World Environments. Pegasus is designed
to implement DL models on the dataplane, allowing users to bal-
ance accuracy and resource overhead based on their specific re-
quirements. Beyond its standalone utility, our approach can also
be combined with other analysis techniques to achieve better over-
all effectiveness. While such integrated deployments can help re-
duce overall resource consumption, addressing this challenge is
beyond the scope of this work and is left for future investigation.
Additionally, IDP may encounter issues with limited flow registers,
particularly in extreme conditions. This limitation is inevitable in
scenarios requiring stateful functionalities [12, 27, 50]. For such
challenges, prior works such as AIFO [55] and P4LRU [59] offer
more relevant solutions. These methods can store flow characteris-
tics for large flows and utilizing packet features to identify small
flows, ultimately achieving higher classification accuracy.
Practical Deployment of Fuzzy Matching. As a core mecha-
nism in Pegasus, Fuzzy Matching may face efficiency issues in
practical deployment, especially when inputs deviate significantly

from the training set. However, such deviations violate the i.i.d.
assumption in machine learning and often indicate a shift in traffic
behavior—potentially due to emerging malicious activities. In such
cases, our unsupervised model plays a key role in detecting abnor-
mal patterns. Meanwhile, the control plane can enhance robustness
by continuously collecting evolving flow features and updating
the model to adapt to distributional drift. Although training Fuzzy
Matching takes longer than conventional models—due to the con-
struction of Fuzzy Matching and quantization optimization—this
cost arises only at deployment or during major shifts, and can be
amortized over long-term use. In practice, retraining is infrequent
and incurs minimal overhead.

9 Conclusion

The limited computational resources of programmable switches are
not the root cause hindering intelligence realization; rather, it is
the ineffective use of the MAT abstraction that becomes the real
obstacle. Simple but useful, Pegasus expresses DL models using
dataplane-friendly primitives, enabling implementation on com-
modity programmable switches without requiring additional com-
plex computational resources. The primary goal of Pegasus is to
address the accuracy, scalability, and generality limitations of prior
IDP designs. Experimental results demonstrate Pegasus’s advan-
tages in realizing intelligent models. It serves as a viable option
for line-rate DL inference and offers an alternative to the growing
trend of continuously adding line-rate computational resources to
the dataplane.

Ethics: This work does not raise any ethical issues.

Acknowledgement

We thank the anonymous reviewers and our shepherd Vishal Shri-
vastav for their insightful comments and suggestions which help im-
prove this paper. We also thank Yuhang Li from Tsinghua University,
Xiangsheng Zeng and Fu Song, interns from Tsinghua University,
for conducting the experiments. This work was supported in part by
the National Science Foundation for Distinguished Young Scholars
of China under No. 62425201, the National Natural Science Foun-
dation of China under U22B2031, No. 62472240, No. 62394322, No.
62472036, No. 62202258, No. 62202473, No. 62441230, No. 62132011,
No. 62472247, the Beijing National Research Center for Informa-
tion Science and Technology under Grant BNR2025RC01010. Ke
Xu (xuke@tsinghua.edu.cn) and Su Yao (yaosu@tsinghua.edu.cn)
are the corresponding authors.

Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane

References

(1]

A

=
&

[10]

[11

[12

=
&

[14]

[15]

[16

==
ot

[19

[20]

[21

[22

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich,
Rich Caruana, and Geoffrey E Hinton. 2021. Neural additive models: Interpretable
machine learning with neural nets. Advances in neural information processing
systems 34 (2021), 4699-4711.

Abd AlRhman AlQiam, Yuanjun Yao, Zhaodong Wang, Satyajeet Singh Ahuja,
Ying Zhang, Sanjay G Rao, Bruno Ribeiro, and Mohit Tawarmalani. 2024. Trans-
ferable Neural WAN TE for Changing Topologies. In Proceedings of the ACM
SIGCOMM 2024 Conference. 86—102.

Davis Blalock and John Guttag. 2021. Multiplying matrices without multiplying.
In International Conference on Machine Learning. PMLR, 992-1004.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99-110.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578-594.

Intel Corporation. 2024. Barefoot Tofino 2. https://www.intel.cn/content/www/
cn/zh/products/details/network-io/intelligent-fabric- processors/tofino-2.html.
Intel Corporation. 2024. Barefoot Tofino Series. https://www.intel.
com/content/www/us/en/products/details/network-io/intelligent-fabric-
processors/tofino.html.

Sajjad Dadkhah, Hassan Mahdikhani, Priscilla Kyei Danso, Alireza Zohourian,
Kevin Anh Truong, and Ali A Ghorbani. 2022. Towards the development of a
realistic multidimensional IoT profiling dataset. In 2022 19th Annual International
Conference on Privacy, Security & Trust (PST). IEEE, 1-11.

Jeff Dean, David Patterson, and Cliff Young. 2018. A new golden age in computer
architecture: Empowering the machine-learning revolution. IEEE Micro 38, 2
(2018), 21-29.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285-1298.

Yong Feng, Zhikang Chen, Haoyu Song, Yinchao Zhang, Hanyi Zhou, Ruoyu
Sun, Wenkuo Dong, Peng Lu, Shuxin Liu, Chuwen Zhang, et al. 2024. Empower
programmable pipeline for advanced stateful packet processing. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). 491-508.
Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. 2024. Detecting tunneled flooding
traffic via deep semantic analysis of packet length patterns. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer and Communications Security.
3659-3673.

Massimo Gallo, Alessandro Finamore, Gwendal Simon, and Dario Rossi. 2020.
Real-time deep learning based traffic analytics. In Proceedings of the SSGCOMM’20
Poster and Demo Sessions. 76-78.

Xiangyu Gao, Tong Li, Yinchao Zhang, Ziqiang Wang, Xiangsheng Zeng, Su
Yao, and Ke Xu. 2025. FENIX: Enabling In-Network DNN Inference with FPGA-
Enhanced Programmable Switches. arXiv preprint arXiv:2507.14891 (2025).
Gerard Drapper Gil, Arash Habibi Lashkari, Mohammad Mamun, and Ali A
Ghorbani. 2016. Characterization of encrypted and VPN traffic using time-related
features. In Proceedings of the 2nd international conference on information systems
security and privacy (ICISSP 2016). SciTePress Settbal, Portugal, 407-414.

Tan Goodfellow. 2016. Deep learning.

Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han
Zhang, Zhihua Wang, Minghui Jin, Jiahai Yang, et al. 2023. Anomaly Detection
in the Open World: Normality Shift Detection, Explanation, and Adaptation.. In
NDSS.

Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-
scale preemption for concurrent { GPU-accelerated} {DNN} inferences. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22).
539-558.

Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New
directions in automated traffic analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 3366—3383.

Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast connectivity recovery
entirely in the data plane. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). 161-176.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2018. Quantized neural networks: Training neural networks with low
precision weights and activations. Journal of Machine Learning Research 18, 187

[23

[24

[29

[30

[31

@
&,

[33

[34

[35

'S
S

[37

[38

[39

[40

[41

[42

[43

[44

[46

[47]

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

(2018), 1-30.

Broadcom Inc. 2024. Trident 5/ BCM78800 Series. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm78800.

Alon Jacovi, Oren Sar Shalom, and Yoav Goldberg. 2015. Understanding convo-
lutional neural networks for text classification. arXiv preprint arXiv:1809.08037
(2015).

Syed Usman Jafri, Sanjay Rao, Vishal Shrivastav, and Mohit Tawarmalani. 2024.
Leo: Online {ML-based} Traffic Classification at {Multi-Terabit} Line Rate. In
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI
24). 1573-1591.

John D Kelleher. 2019. Deep learning. MIT press.

Alberto Lerner, Davide Zoni, Paolo Costa, and Gianni Antichi. 2024. Rethinking
the Switch Architecture for Stateful In-network Computing. In Proceedings of the
23rd ACM Workshop on Hot Topics in Networks. 273-281.

Chenning Li, Arash Nasr-Esfahany, Kevin Zhao, Kimia Noorbakhsh, Prateesh
Goyal, Mohammad Alizadeh, and Thomas E Anderson. 2024. m3: Accurate Flow-
Level Performance Estimation using Machine Learning. In Proceedings of the
ACM SIGCOMM 2024 Conference. 813-827.

Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. 2019. Neural packet classification.
In Proceedings of the ACM Special Interest Group on Data Communication. 256—-269.
Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
an ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089 (2018).

Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth Kandula, Ishai Men-
ache, Michael Schapira, and Aviv Tamar. 2023. A Deep Learning Perspective on
Network Routing. arXiv preprint arXiv:2303.00735 (2023).

PyTorch. 2024. Post Training Quantization (PTQ) — Torch-TensorRT. https:
//pytorch.org/TensorRT/tutorials/ptq.html. Accessed: 2024-09-18.

Qiaofeng Qin, Konstantinos Poularakis, Kin K Leung, and Leandros Tassiulas.
2020. Line-speed and scalable intrusion detection at the network edge via feder-
ated learning. In 2020 IFIP networking conference (Networking). IEEE, 352-360.
Babak Rahbarinia, Roberto Perdisci, Andrea Lanzi, and Kang Li. 2013. Peerrush:
Mining for unwanted p2p traffic. In Detection of Intrusions and Malware, and Vul-
nerability Assessment: 10th International Conference, DIMVA 2013, Berlin, Germany,
July 18-19, 2013. Proceedings 10. Springer, 62-82.

Michael Seufert, Katharina Dietz, Nikolas Wehner, Stefan Geifller, Joshua Schiiler,
Manuel Wolz, Andreas Hotho, Pedro Casas, Tobias Hoffeld, and Anja Feldmann.
2024. Marina: Realizing ML-Driven Real-Time Network Traffic Monitoring at
Terabit Scale. IEEE Transactions on Network and Service Management (2024).
Vishal Shrivastav. 2022. Programmable multi-dimensional table filters for line
rate network functions. In Proceedings of the ACM SIGCOMM 2022 Conference.
649-662.

Giuseppe Siracusano and Roberto Bifulco. 2018. In-network neural networks.
arXiv preprint arXiv:1801.05731 (2018).

Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
Gianni Antichi, Paolo Costa, Hamed Haddadi, and Roberto Bifulco. 2022. Re-
architecting traffic analysis with neural network interface cards. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). 513-533.
Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle
Olukotun. 2022. Taurus: a data plane architecture for per-packet ML. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 1099-1114.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient
processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12
(2017), 2295-2329.

Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, Haixin Wang, Qi Li, Yongqian
Sun, Dan Pei, Tao Wei, Yanfei Xu, et al. 2020. Zerowall: Detecting zero-day web
attacks through encoder-decoder recurrent neural networks. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2479-2488.

Laurens Van Der Maaten, Eric O Postma, H Jaap Van Den Herik, et al. 2009.
Dimensionality reduction: A comparative review. Journal of Machine Learning
Research 10, 66-71 (2009), 13.

Vladimir Naumovich Vapnik, Vlamimir Vapnik, et al. 1998. Statistical learning
theory. (1998).

Ulrike Von Luxburg and Bernhard Scholkopf. 2011. Statistical learning theory:
Models, concepts, and results. In Handbook of the History of Logic. Vol. 10. Elsevier,
651-706.

Jiazhao Wang, Wenchao Jiang, Ruofeng Liu, Bin Hu, Demin Gao, and Shuai
Wang. 2024. {NN-Defined} Modulator: Reconfigurable and Portable Software
Modulator on {IoT} Gateways. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). 775-789.

Tongze Wang, Xiaohui Xie, Wenduo Wang, Chuyi Wang, Youjian Zhao, and Yong
Cui. 2024. Netmamba: Efficient network traffic classification via pre-training
unidirectional mamba. In 2024 IEEE 32nd International Conference on Network
Protocols (ICNP). IEEE, 1-11.

Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. 2017.
Malware traffic classification using convolutional neural network for representa-
tion learning. In 2017 International conference on information networking (ICOIN).

https://www.intel.cn/content/www/cn/zh/products/details/network-io/intelligent-fabric-processors/tofino-2.html
https://www.intel.cn/content/www/cn/zh/products/details/network-io/intelligent-fabric-processors/tofino-2.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78800
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm78800
https://pytorch.org/TensorRT/tutorials/ptq.html
https://pytorch.org/TensorRT/tutorials/ptq.html

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

IEEE, 712-717.

[48] Duo Wu, Xianda Wang, Yaqi Qiao, Zhi Wang, Junchen Jiang, Shuguang Cui, and

Fangxin Wang. 2024. NetLLM: Adapting Large Language Models for Networking.

In Proceedings of the ACM SIGCOMM 2024 Conference. 661-678.

Zhaoqi Xiong and Noa Zilberman. 2019. Do switches dream of machine learning?

toward in-network classification. In Proceedings of the 18th ACM workshop on hot

topics in networks. 25-33.

Wenquan Xu, Zijian Zhang, Yong Feng, Haoyu Song, Zhikang Chen, Wenfei

Wu, Guyue Liu, Yinchao Zhang, Shuxin Liu, Zerui Tian, et al. 2023. Clickinc:

In-network computing as a service in heterogeneous programmable data-center

networks. In Proceedings of the ACM SIGCOMM 2023 Conference. 798-815.

[51] Jinzhu Yan, Haotian Xu, Zhuotao Liu, Qi Li, Ke Xu, Mingwei Xu, and Jianping Wu.
2024. {Brain-on-Switch}: Towards Advanced Intelligent Network Data Plane
via {NN-Driven} Traffic Analysis at {Line-Speed}. In 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24). 419-440.

[52] Liyan Yang, Yubo Song, Shang Gao, Aiqun Hu, and Bin Xiao. 2022. Griffin: Real-

time network intrusion detection system via ensemble of autoencoder in SDN.

IEEE Transactions on Network and Service Management 19, 3 (2022), 2269-2281.

Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie, Swamy

Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya Ghobadi. 2022. Using

trio: juniper networks’ programmable chipset-for emerging in-network applica-

tions. In Proceedings of the ACM SIGCOMM 2022 Conference. 633-648.

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. 2022. Practical

gan-based synthetic ip header trace generation using netshare. In Proceedings of

the ACM SIGCOMM 2022 Conference. 458-472.

[55] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braverman,
Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. 2021. Programmable packet
scheduling with a single queue. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference. 179-193.

[56] Jinxiong Zhang. 2021. Yet Another Representation of Binary Decision Trees: A

Mathematical Demonstration. arXiv preprint arXiv:2101.07077 (2021).

Ye Zhang and Byron Wallace. 2015. A sensitivity analysis of (and practitioners’

guide to) convolutional neural networks for sentence classification. arXiv preprint

arXiv:1510.03820 (2015).

[58] Ruijie Zhao, Mingwei Zhan, Xianwen Deng, Yanhao Wang, Yijun Wang, Guan

Gui, and Zhi Xue. 2023. Yet another traffic classifier: A masked autoencoder

based traffic transformer with multi-level flow representation. In Proceedings of

the AAAI Conference on Artificial Intelligence, Vol. 37. 5420-5427.

Yikai Zhao, Wenrui Liu, Fenghao Dong, Tong Yang, Yuanpeng Li, Kaicheng Yang,

Zirui Liu, Zhengyi Jia, and Yongqiang Yang. 2023. P4LRU: towards an LRU cache

entirely in programmable data plane. In Proceedings of the ACM SIGCOMM 2023

Conference. 967-980.

Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensous-

sane, Antoine Bernabeu, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.

2022. IIsy: Practical in-network classification. arXiv preprint arXiv:2205.08243

(2022).

Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensoussane, Shay

Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. 2022. Automating in-network

machine learning. arXiv preprint arXiv:2205.08824 (2022).

[62] Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu, Zixuan Ma, Tuowei
Wang, Shuhong Huang, Xupeng Miao, Shizhi Tang, Kezhao Huang, et al. 2023.
{EINNET}: Optimizing tensor programs with {Derivation-Based} transforma-
tions. In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 739-755.

[63] Guangmeng Zhou, Xiongwen Guo, Zhuotao Liu, Tong Li, Qi Li, and Ke Xu.

2024. TrafficFormer: An Efficient Pre-trained Model for Traffic Data. In 2025 IEEE

Symposium on Security and Privacy (SP). IEEE Computer Society, 102-102.

Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. 2023. An efficient

design of intelligent network data plane. In 32nd USENIX Security Symposium

(USENIX Security 23). 6203-6220.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.

2016. Dorefa-net: Training low bitwidth convolutional neural networks with low

bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

Shitong Zhu, Shasha Li, Zhongjie Wang, Xun Chen, Zhiyun Qian, Srikanth V

Krishnamurthy, Kevin S Chan, and Ananthram Swami. 2020. You do (not) be-

long here: detecting DPI evasion attacks with context learning. In Proceedings

of the 16th International Conference on emerging Networking EXperiments and

Technologies. 183-197.

[67] Eric R Ziegel. 2003. The elements of statistical learning.

[49

[50

[53

[54

[57

[59

[60

[61

[64

[65

[66

Appendix

Appendices are supporting material that has not been peer-reviewed.

Zhang et al.

I. Per-Packet Feature Compression

CNN

Raw Packet
D Module

Features

Partition

SumReduce

MLP
Module

sliding window

Figure 11: CNN-L model architecture.

A Model Realization

In this segment, we supplement the implementation details of the
CNN-L model, which is the most complex and accurate classification
model we have deployed on the dataplane.

A.1 CNN-L Model Architecture

Figure 11 illustrates our data-plane-friendly CNN-L model architec-
ture. The overall design consists of two key components: Per-Packet
Feature Compression and Temporal Concatenation and Classifica-
tion, which we describe in turn.

(1) Per-Packet Feature Compression. Ideally, each packet (repre-
sented by a 480-bit feature vector) would be directly processed by
the CNN Module, which includes multiple inter-segment SumRe-
duce primitives, to generate a compressed representation. However,
such designs are inefficient to implement on switch hardware, as the
SumReduce primitive significantly increases processing complexity
(see §4.3).

To address this, we eliminate all SumReduce primitives inside the
CNN Module, following the design principle of Advanced Primitive
Fusion. Functionally, this is equivalent to first applying a Partition
primitive to divide each packet into multiple feature segments, and
then processing each segment independently through the CNN
Module to produce a compressed representation of the segment.
Finally, a lightweight SumReduce is applied across these outputs
to generate the final compressed representation of the packet.

It is worth noting that to better capture dependencies among
segments, feature-level shuffling or stacking additional intermediate
layers could be introduced in the future. However, in this work, we
adopt a simple, lightweight architecture that trades a small amount
of accuracy for significantly improved hardware resource efficiency.

(2) Temporal Concatenation and Classification. Finally, we collect
the compressed representations of the most recent 8 packets using
a sliding window. These vectors are concatenated into a single 16-
dimensional input and fed into an MLP Module, which produces
the final classification result.

A.2 On-Switch CNN-L Implementation

We implement the CNN-L model prototype on a Barefoot Tofino 2
programmable switch. The processing pipeline is divided into four
phases, each corresponding to a key functional phase:

Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane

Stage | Flow State Module | Primitives Stage | Flow State | Module | Primitives
0 calculate flow s Map: get
hash Fuzzy Index
. Fuzzy Index
! get flow index Map: ? formatting
2 get packet count, get Fuzzy 10 cr window
last timestamp Index; update
CNN ieve M
3 caculate IPD, Module | "etrieve Map " cr window
window position results; dispatch
accumulate
4 during Map 12 Map
5 13 MLP
Module | SumReduce
6 14
7 SumReduce

Figure 12: The breakdown of CNN-L implementation on a
Barefoot Tofino 2 programmable switch.

(1) Flow State Acquisition. In stage 0-3, the switch computes
and retrieves necessary per-flow metadata, including the flow index,
packet count, and the timestamp of the last packet. Based on this
information, we calculate the inter-packet delay (IPD) and deter-
mine the correct position in the sliding window where the current
compressed representation (cr) should be stored.

(2) CNN Module. Each 60-dimensional input feature vector is
divided into 10 segments using the Partition primitive, with each
segment containing 6 dimensions. For each segment, a Fuzzy Index
is extracted from every pair of features; three such indices are then
combined to form a 12-bit key, which is used to retrieve Map results
from on-chip SRAM. To reduce stage consumption, we perform
accumulation during the Map phase by executing the addition in
the Action block immediately after the table lookup. This avoids the
need for a separate SumReduce primitive, as each stage supports
only one addition per element.

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Notably, the Map process can begin at stage 0, as most of the
raw input features reside in the packet payload and do not depend
on previously fetched flow state. Finally, we perform a lightweight
SumReduce in a single stage to complete the CNN Module, since
most of the aggregation has already been distributed across the
Map stages.

(3) CR Concatenation and Window Management. To mini-
mize register usage, we store the Fuzzy Index—serving as a logical
equivalent of the cr—instead of the full compressed vector. In CNN-
L, each Fuzzy Index is 4 bits and must be formatted before storage
to ensure proper placement in the upper or lower half of an 8-bit
register. The formatted index is then written into the cr window.
We retrieve all stored cr, reorder them temporally, and feed them
into the MLP module.

(4) MLP Module. The MLP module receives the 8 crs from
the window, partitions them into four pairs, and applies the Map
primitive to each. A two-level SumReduce (i.e., log, 4 stages) is then
used to aggregate the results and produce the final classification
output.

Overall, the CNN-L model requires only 15 pipeline stages,
demonstrating the efficiency of Pegasus. On Barefoot Tofino 1 and
Tofino 2, this leaves 8 and 25 stages respectively for downstream
packet processing based on model outputs (considering both ingress
and egress pipelines).

Noted that, in our hardware resource utilization report (see Ta-
ble 6), we only include the cost associated with the operations
listed under the Primitives column. This is because the resource
consumption of flow state depends on the number of concurrent
flows, which is analyzed separately in our scalability evaluation

(§7.3).

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design Overview
	3.1 Design Goals
	3.2 Pegasus Architecture

	4 Pegasus Primitives
	4.1 Primitives
	4.2 Fuzzy Matching
	4.3 Primitive Fusion
	4.4 Mapping Optimization

	5 Deep Learning Operators
	6 Implementation
	6.1 PISA-specific Design and Implementation
	6.2 Pegasus Syntax
	6.3 Implemented Neural Networks

	7 Evaluation
	7.1 Experiment Setup
	7.2 Accuracy Comparison and Analysis
	7.3 Scalability Evaluation
	7.4 Unsupervised Malicious Traffic Detection Evaluation
	7.5 Compare With Control Plane DL

	8 Discussion and Related Work
	9 Conclusion
	References
	A Model Realization
	A.1 CNN-L Model Architecture
	A.2 On-Switch CNN-L Implementation

