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Abstract
With the explosive development of mobile 

Internet and deep learning (DL), intelligent 
edge computing services based on collabora-
tive learning are widely deployed in various 
application scenarios. These intelligent services 
include intelligent applications based on edge 
computing and DL-based optimization for edge 
computing (e.g., caching and communicating). 
However, in a wide variety of domains, DL 
has been found to be vulnerable to adversari-
al attacks, especially architecture-independent 
backdoor attacks. It embeds the attack pattern 
into the learned model and only performs the 
attack when it encounters the corresponding 
trigger. In this article, for the first time we ana-
lyze the impact of backdoor attacks on intelli-
gent edge computing services. The simulation 
results demonstrate that once one or more edge 
nodes implement backdoor attacks, the embed-
ded attack pattern will rapidly expand to all rel-
evant edge nodes, which poses huge challenges 
to security-sensitive intelligent edge computing 
services. Subsequently, we analyze the trade-off 
between expected performance and ability to 
defend against backdoor attacks, which sheds 
new light on designing defense mechanisms for 
intelligent edge computing services. To address 
the challenges posed by backdoor attacks, we 
propose a stability-based defense mechanism. 
The experimental results demonstrate that the 
newly proposed defense mechanism can effec-
tively defend against different levels of back-
door attacks without knowing whether there are 
adversaries, which is conducive to the deploy-
ment of the stability-based defense mechanism 
in real-world scenarios.

Introduction
With the rapid development of mobile and wire-
less communication technologies, the number 
of mobile terminals (e.g., iPhone and iPad) and 
Internet of Things (IoT) devices (e.g., camera and 
wearable devices) have also grown exponential-
ly. Meanwhile, the performance requirements of 
these devices are constantly increasing, bringing 
new pressure on the backbone network.

To alleviate the pressure on the backbone 
network and support the intelligent service 

requirements (e.g., storage capacity required 
for large-scale data and computation resource 
required for parameter optimization) of mobile 
terminals and IoT devices, edge computing has 
become one of the most promising approaches, 
attracting widespread attention from industry and 
academia [1, 2].

It has been found that deep learning (DL) 
methods such as deep neural network (DNN) 
and deep reinforcement learning (DRL) signifi-
cantly outperform previous shallow machine 
learning techniques [3, 4]. In terms of intelligent 
edge computing services, therefore, a DL-based 
framework is an indispensable cornerstone. 
Note that the intelligent edge computing ser-
vices referred to in this article include not only 
intelligent applications (e.g., security surveil-
lance [5]) based on edge computing, but also 
DL-based configuration optimization (e.g., DRL-
based edge caching [6]) for edge computing. 
However, DL models have been found to be 
vulnerable to adversarial attacks [7, 8]. For exam-
ple, via adding small pixel-level perturbations to 
legitimate inputs, an adversary can fool numer-
ous excellent DL models in the field of comput-
er vision. Among multiple attack approaches, 
architecture-independent backdoor attacks [7] 
have been considered one of the most prom-
ising directions. In terms of implementing this 
attack, the backdoored DL network has the same 
architecture as the benign network. Moreover, 
the attack is only activated when it encounters 
the corresponding trigger. For benign samples 
without triggers, the backdoored model works 
almost normally, thereby avoiding detection. 
Overall, architecture-independent backdoor 
attacks are more effective in implementing real-
world attacks and bring serious security issues.

Since existing studies mainly focus on central-
ized learning, one common scenario for imple-
menting this attack is assuming that backdoor 
samples (i.e., benign samples with embedded 
triggers) applied to the attack are distributed in 
the Internet and sneak into training data when 
the web crawler collects data. However, the 
probability of having sufficient backdoor sam-
ples to sneak into the training data to achieve 
effective backdoor attacks is low. In fact, intelli-
gent edge computing services are more suitable 
scenarios for achieving backdoor attacks. One 
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characteristic of edge computing is that although 
each edge node can be associated with multi-
ple users, the data that can be obtained is still 
limited. Collaborative learning can protect the 
privacy of users associated with a certain edge 
node while exploiting the value of other nodes’ 
well-trained model. Regarding edge computing, 
it is common for multiple nodes to share data 
or models learned from data to achieve collab-
orative learning [6, 9]. Motivated by this, the 
intelligent edge computing services we focus on 
are based on collaborative learning. In such a 
scenario, once a malicious node (i.e., adversary) 
exists, or normal nodes are hacked, the attacked 
model/data can infect other edge nodes, facili-
tating the propagation of backdoor attacks. Note 
that in this article, we focus on collaborative 
edge computing based on model sharing. This 
is more conducive to the privacy protection of 
each individual node. As illustrated in Fig. 1, via 
DL-based collaborative learning, edge comput-
ing enables intelligent services for resource-con-
strained devices (e.g., energy-constrained 
smartphones, computation-constrained cameras, 
and storage-constrained watches). Once a mali-
cious edge node (i.e., adversary) exists on the 
edge cloud, it embeds the attack pattern into 
the learned DL model. After aggregation and 
synchronization, other edge nodes will also be 
attacked to a certain extent. Therefore, the secu-
rity issues posed by backdoor attacks on edge 
computing services are more prominent, deserv-
ing further analysis.

To the best of our knowledge, we for the first 
time analyze the impact of backdoor attacks on 
intelligent edge computing services, and experi-
mentally demonstrate the propagation effect of 
backdoor attacks among different edge nodes. 
We propose a stability-based defense mechanism, 
which sheds new light on robustness enhance-
ment of intelligent edge computing services, 
achieving effective defense performance against 
backdoor attacks on edge computing services. 
More specifically, as formerly noted, collabora-

tive learning in edge computing scenarios is more 
vulnerable to backdoor attacks in reality. In this 
article, we utilize the federated learning (FL) 
framework to achieve collaborative learning for 
intelligent edge computing services. Then we ana-
lyze the propagation of the backdoored model 
among multiple collaborative workers,1 as well as 
the negative effects on intelligent edge computing 
services. In addition, there are multiple robustness 
enhancement approaches for a DL model via sta-
bility-inducing operations [10], including dropout, 
regularization, gradient clipping, and so on. From 
the perspective of stability, we further analyze 
the trade-off between expected performance and 
ability to defend against backdoor attacks on 
DL-based intelligent services. Subsequently, via 
the theoretical analysis of information theory and 
simulation experiments, we for the first time pro-
pose a stability-based defense mechanism. It can 
configure the stability-inducing operation param-
eters of each worker involved in intelligent edge 
computing services in order to achieve effective 
defense against backdoor attacks.

The key contributions we make in this article 
are summarized as follows:
•	 We for the first time analyze the backdoor 

attacks on intelligent edge computing ser-
vices from the perspective of stability, and 
demonstrate that stability-inducing opera-
tions are indispensable modules for defense 
against backdoor attacks on edge comput-
ing services. 

•	 We propose an innovative stability-based 
defense mechanism for real-world scenarios, 
which can enable collaborative learning for 
intelligent edge computing services to effec-
tively defend against backdoor attacks with-
out knowing whether there are adversaries.

•	 Extensive experimental results demonstrate 
the potential negative effects of backdoor 
attacks, and that the proposed defense 
mechanism can achieve efficient defense 
performance for intelligent edge computing 
services.

FIGURE 1. Example of backdoor attacks on intelligent edge computing services, where one edge node is an adversary (i.e., training a 
local model with samples embedded in a backdoor trigger), and the embedded attack pattern is propagated to all edge nodes 
after the model is aggregated and synchronized.

1 In terms of edge com-
puting, each participant in 
collaborative learning refers 
to one edge node. As far 
as collaborative learning is 
concerned, each participant 
refers more precisely to one 
worker. In this article, the 
participant, therefore, is inter-
changeably represented by 
edge node or worker. 
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Related Work
Due to the ubiquity of smart mobile terminals and 
IoT devices [11], intelligent edge computing ser-
vices have attracted widespread attention from 
academia and industry. More specifically, intelli-
gent edge computing services can be divided 
into two directions: intelligent application service 
based on edge computing [12, 13] and DL-based 
configuration optimization service for edge com-
puting [1, 6]. For example, to enable data-driven 
applications (e.g., image classification) to run on 
resource-constrained mobile terminals and IoT 
devices, Wang et al. [12] propose an adaptive FL 
method for resource-constrained edge computing 
systems. Via the short-delay and high-performance 
computing services at the edge of the network, 
Chen et al. [14] innovatively propose label-less 
learning for emotion cognition and deploy it on 
the edge cloud. With regard to the optimal con-
figuration of edge computing, Wang et al. [6] pro-
pose a new intelligent optimization framework with 
mobile edge computing by integrating DRL with 
FL, which can intelligently optimize mobile edge 
computing, caching, and communication issues.

As far as intelligent edge computing services 
are concerned, most of the existing intelligent 
modules are based on deep neural networks, 
including DL, DRL, and FL. Despite many surpris-
ing advances in deep neural networks, DL is vul-
nerable to adversarial examples [7, 8] due to the 
lack of interpretability. For example, Shafahi et al. 
[15] proposes the one-shot kill poisoning attack 
on transfer learned networks, which can achieve 
100 percent attack success rate through injecting 
one poison instance into the training dataset. One 
way to achieve backdoor attacks on DL is pro-
viding a parallel network to the benign network, 
which can be applied to detect the backdoor 
trigger. However, this attack modifies the benign 
network architecture and is difficult to apply in 
reality. Gu et al. [7] propose the architecture-in-
dependent backdoor attack. It embeds the attack 
pattern into the benign network, which is con-
sistent with the original architecture. As a result, 
this attack cannot be detected and poses a more 
serious challenge for DL.

In this article, we for the first time analyze 
architecture-independent backdoor attacks on 
intelligent edge computing services. Different 
from existing studies on backdoor attacks, edge 
computing focuses on implementing intelligent 
services through collaborative learning (e.g., FL), 
which makes it possible for backdoor attacks to 
spread from some nodes to other nodes. It poses 
severe challenges for intelligent edge computing 
services. Moreover, traditional cloud-based col-
laborative learning has a large number of partici-
pants, which can more effectively defend against 
backdoor attacks from some nodes during model 
aggregation. In contrast, the number of collabora-
tive learning participants in the edge computing 
scenario is relatively small; thus, the propagation 
effect of backdoor attacks will be more obvious. 
Since there are multiple stability-inducing oper-
ations for DL models [10], we for the first time 
propose a stability-based defense mechanism, 
which can improve the ability of intelligent edge 
computing services to defend against backdoor 
attacks in real-world scenarios.

Backdoor Attacks on  
Intelligent Edge Computing Services

To fully and concisely analyze the backdoor 
attacks on intelligent edge computing services, we 
utilize FL [6, 12] to achieve collaborative learning 
under the edge computing scenario. More specif-
ically, intelligent edge computing services mainly 
involve users and edge nodes. As illustrated in Fig. 
1, edge nodes refer to base stations with com-
puting and storage capabilities, denoted by B = 
{B1, B2, …, BN}. Meanwhile, users refer to mobile 
terminals and IoT devices, denoted by U = {U1, 
U2, …, UN}. Note that each individual edge node 
can be associated with multiple users, as illustrat-
ed in Fig. 1. As formerly noted, intelligent edge 
computing services include intelligent application 
service based on edge computing and DL-based 
configuration optimization service for edge com-
puting. In the former scenario, resource-con-
strained users can upload their data to the nearest 
edge nodes, and then these edge nodes obtain 
effective DL models through local training and 
global sharing of model parameters. Finally, the 
learned models are distributed to users, enabling 
them to enjoy intelligent services. For each indi-
vidual edge node, all its associated users are also 
running the same network architecture, but with 
different data. Therefore, all users with the same 
task can be regarded as one user. In the latter 
scenario, via collaborative learning, edge nodes 
optimize mobile edge computing, caching, and 
communication issues. For the DL-based configu-
ration optimization of each individual edge node, 
the only user is itself. That is, the number of users 
is the same as the number of edge nodes. Over-
all, the learning task and the learned model are 
deployed on each individual edge node. To this 
end, we use M = {M1, M2, …, MN} to represent 
the learned models from these edge nodes.

In terms of FL for edge computing scenarios, 
the architecture of the model trained by each 
worker (i.e., edge node) is the same. The differ-
ence among workers is local data, which results 
in different local parameters. After completing 
local training, the parameters of these different 
workers will be aggregated together. In this arti-
cle, the aggregation method we adopt is the aver-
age parameter. In addition, the training process is 
divided into multiple time slots. During time slot 
t, the parameters of Mi ∈ M are denoted by q i

t. 
The aggregated parameters are denoted by –

qt. 
Note that not all workers can update parameters 
in every time slot, so we use g to represent the 
proportion of active workers.

To implement backdoor attacks on intelligent 
edge computing services, we have to inject back-
door samples (i.e., the legitimate inputs embed-
ded with specific triggers) into the training data. In 
this article, we focus on targeted backdoor attack. 
That is, once the adversary successfully infects a 
victim, the victim will perform a targeted errone-
ous behavior when encountering an input with a 
specific trigger. For example, in the case of digital 
recognition tasks with MNIST, the victim misclassi-
fies each grayscale image with the specific trigger 
into the correct value plus one and then take the 
remainder of 10 (i.e., regarding the real label i, 
the output is (i + 1)% 10). Obviously, the targeted 
attacks are more complicated than non-targeted 
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attacks, posing more challenges to DL models. In 
the edge computing scenario, backdoor attacks 
are initiated by some nodes and then spread to 
other nodes, putting intelligent services at risk. Dif-
ferent from collaborative learning based on cloud 
computing, the number of participants in collabo-
rative learning under edge computing scenarios is 
relatively small, and the impact of attacks is more 
obvious. To demonstrate this, the relevant simula-
tion experiment results can be found in Fig. 2.

As illustrated in Fig. 2, we use distributed digital 
recognition learning tasks to simulate the propa-
gation effect of backdoor attacks among different 
edge nodes. More specifically, the simulation 
experiment includes N = 10 edge nodes. The pro-
portion of active workers is g = 0.8. Clean ACC 
refers to the probability that the learned model 
correctly classifies the legitimate inputs, which can 
be used to measure the expected performance 
of the model. In contrast, backdoor ACC refers to 
the probability that the learned model misclassi-
fies the legitimate samples with the specific trigger 
as the corresponding targeted labels, instead of 
the corresponding real labels. Thus, the backdoor 
ACC can be applied to evaluate the performance 
of backdoor attacks. A higher value of backdoor 
ACC means a higher probability of successful 
attack. Both clean ACC and backdoor ACC are 
in terms of testing results. The violin plots in Fig. 
2 briefly describe the distribution of evaluation 
indicators (i.e., clean ACC and backdoor ACC) 
for 10 workers. For example, we perform exper-
iments with four different attack proportions. It 
can be found that when there is no adversary, the 
expected performance of the learned model is 

good enough, where the clean ACC of all work-
ers is higher than 98.4 percent. In addition, since 
the attack pattern is not embedded, the success 
rate of the attack is almost zero. However, when 
there is only one adversary (i.e., 10 percent), the 
models learned by all workers are attacked. The 
specific phenomenon declines in clean ACC, and 
backdoor ACC is higher than 0. As the propor-
tion of adversaries increases, the expected perfor-
mance of the learned model gradually decreases, 
and the probability of successful attacks signifi-
cantly increases. Moreover, the more discrete 
distribution of violin appearance indicates that 
the differences between workers have become 
more obvious. These results indicate that for edge 
computing scenarios, once the backdoor attack 
occurs, it will spread to all participants. Moreover, 
it will rapidly intensify as the proportion of adver-
saries increases. Especially in some security-sensi-
tive applications, it will bring huge challenges.

In the experiments involved in Fig. 2, the 
adopted optimizer is stochastic gradient descent 
(SGD). For DL models, the optimizer is one of the 
indispensable modules. The target of the optimiz-
er is to minimize the empirical risk of DL models. 
Due to its scalability and  stability, SGD has been 
applied in many different domains. It updates 
the model parameters by repeatedly computing 
the gradient of the loss function. To make the 
SGD-based model have sufficient stability (i.e., 
improving the generalization), there are many sta-
bility-inducing operations [10], and some of the 
major operations are listed in Table 1.

To further clarify the impact of backdoor 
attacks, we analyze the trade-off between expect-
ed performance and ability to defend against 
backdoor attacks on DL-based intelligent ser-
vices. Specifically, we use dropout operation as 
an example for analysis. As described in Table 1, 
the dropout operation improves the generalization 
of a DL model through randomly setting a frac-
tion of the gradient weights to zero. In our simula-
tion experiments on the MNIST dataset, we have 
trained 100 models with different parameters of 
dropout, and the results can be found in Fig. 3. 
We can observe the relationship between back-
door ACC and clean ACC through Fig. 3a. It can 
be found that as the expected performance (i.e., 
clean ACC) of the model improves, the probabil-
ity of successful attacks (i.e., backdoor ACC) also 
increases. It is worth noting that there are obvious 
transition points in Fig. 3a. To the right of the tran-
sition point, backdoor ACC increases rapidly while 
clean ACC remains almost unchanged. To the left 
of the transition point, the value of backdoor ACC 
is always at a relatively low level. In addition, Figs. 
3b and 3c show the changes in clean ACC and 
backdoor ACC, respectively. As the fraction of 
dropout increases, clean ACC gradually decreases. 
When the fraction of dropout exceeds a certain 
threshold, clean ACC will decrease sharply. A sim-
ilar trend applies to backdoor ACC. The difference 
is that the thresholds of the transitions correspond-
ing to the two indicators are different. This shows 
that the impact of stability-inducing operations on 
different indicators (i.e., clean ACC and backdoor 
ACC) is different, which provides an opportunity 
for the design of the defense mechanism. Through 
the analysis of Figs. 3a, 3b, and 3c, we can find 
that an appropriate parameter of dropout can 

FIGURE 2. Propagation effects of backdoor attacks with different attack propor-
tions in the intelligent edge computing scenario.

TABLE 1. Major stability-inducing operations.

Operation Description

Dropout Setting a fraction of the gradient weights to zero

Weight 
decay

Preventing excessive weight growth through 
penalties

Clipnorm Clipping gradient norm

Clipvalue Clipping gradient at specified value

Averaging Averaging weights of different models
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effectively defend against backdoor attacks. To be 
precise, this parameter corresponds to the transi-
tion point in Fig. 3a. It needs to be restricted to 
the left of the transition point in Fig. 3b and to the 
right of the transition point in Fig. 3c.

Stability-Based Defense against  
Backdoor Attacks on  

Intelligent Edge Computing Services
Through the previous analysis, we can find that 
the stability-inducing operations provide an oppor-
tunity to defend against backdoor attacks. In this 
section, we focus on the stability of a DL model 
and propose the stability-based defense mech-
anism, enabling intelligent edge computing ser-
vices to be more suitable for real-world scenarios.

As discussed earlier, the target of intelligent 
edge computing service is to use some optimiza-
tion algorithms (back-propagation, SGD, etc.) to 
find the optimal parameters (i.e., the weights of the 
neural network). According to information theory, 
by increasing the uncertainty of parameters during 
the training phase, the generalization on the testing 
data can be improved. Stability-inducing opera-
tions (e.g., dropout, clipping, and averaging) can 
improve the generalization of a DL model by dis-
carding part of the optimization information. Based 
on the analysis of stability by Hardt et al. [10], we 
further define the upper bound of generalization 
error e for evaluating the learned model stability. 
More specifically, based on the initial benign data-
set, we first construct the backdoor dataset with 
backdoor samples by adding the specific backdoor 
trigger to some of the samples. In other words, 
there are both benign and backdoor samples in the 
backdoor dataset. Then we duplicate a completely 
identical backdoor dataset and remove the samples 
with triggers to construct a new benign dataset. 
We separately train two models, backdoor model 
and benign model, with exactly the same network 
architecture on the referred two datasets (i.e., 
backdoor dataset and benign dataset). For each 
item with index i in the backdoor dataset, we cal-
culate the loss values through backdoor model and 
benign model, respectively. The absolute value of 
the error between these two loss values is defined 
as the generalization error of the model (i.e., ei). 
Finally, we use the largest ei to represent the upper 
bound of generalization error (i.e., e = maxei).

After defining the upper bound of the gen-
eralization error, we take dropout as an exam-
ple to further analyze the relationship between 
different stability-inducing parameters and the 
upper bound of generalization. Note that when 
defining the stability-based defense mechanism, 
the definition is not restricted to the operation of 
dropout. In practice, we can specifically imple-
ment our stability-based defense mechanism 
according to the stability-inducing operations 
selected by the model. As notified above, e can 
be used to reflect the stability of the learned 
model. A larger e means that the model stability 
is relatively low; otherwise, vice versa. Figure 4 
shows how the upper bound of generalization 
error e changes with different stability-inducing 
parameters. It can be found that for different 
models trained with a specific proportion of 
backdoor samples, the upper bound of gener-

alization error gradually decreases as the param-
eters increase. In other words, the model is 
more and more stable, and the ability to defend 
against backdoor attacks brought by adversarial 
samples is gradually enhanced, which is consis-
tent with Fig. 3c. Moreover, the upper bound of 
generalization error also shows a transition point 
when it changes. Once the parameter exceeds 

FIGURE 3. Trade-off between collaborative learning performance and ability to 
defend against backdoor attacks: a) backdoor ACC vs. clean ACC; b) clean 
ACC with different parameters; c) backdoor ACC with different parameters.

(a)

(b)

(c)
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the value corresponding to this transition point, 
the stability of the learned model (i.e., e) chang-
es dramatically. In addition, for different attack 
proportions, the upper bound of generalization 
error changes are very similar (e.g., the decreas-
ing trend and the transition point position).

Through analysis of Figs. 3 and 4, we are clear 
about the existence of transition points. Note that 
the transition point will be proved theoretically in 
future work. Since the change in the upper bound 
of generalization error, which can be used to 
reflect the stability of the learned model, is hardly 
affected by the proportion of backdoor samples, 
we can use the upper bound of generalization 
error to find the relevant transition point and then 
find the optimal stability-inducing parameter for 
DL models. Regardless of whether or not the 
dataset is injected with backdoor samples, the 
parameter corresponding to the transition point 
of e is approximate. This meets our requirements 
for defending against backdoor attacks without 
knowing whether there are adversaries.

Experiments and Performance Evaluation
To evaluate the performance of the newly pro-
posed stability-based defense mechanism, we 
conducted simulation experiments on FL-based 

intelligent edge computing services. More specif-
ically, the reference intelligent edge computing 
service takes the distributed digital recognition 
task as an example, which is an important appli-
cation for intelligent traffic management in real-
world scenarios.

Compared to cloud computing, the number of 
participants in edge computing is relatively small, 
so our simulation experiments assume N = 10 
different workers to learn this task collaborative-
ly. For each worker, the training and testing data 
comes from the MNIST dataset. The data of differ-
ent workers are independent and identically dis-
tributed, and there are no duplicate samples. For 
those attacked data, the trigger embedded in the 
legitimate input is a pattern of four pixels, which 
is consistent with Gu et al. [7]. As found in Fig. 4, 
the transition point for a particular architecture is 
similar regardless of the proportion of backdoor 
samples. Therefore, any worker can find the opti-
mal stability-inducing parameter corresponding 
to the transition point via the upper bound of 
generalization error. In our simulation, we set the 
basic parameter of the convolutional layer to 0.25 
(abbreviated as conv_0.25), and that of the dense 
layer to 0.5 (abbreviated as dense_0.5). The coef-
ficients are from [0, 2) with the interval 0.02. The 
real stability-inducing parameter is the product of 
coefficient (i.e., the value of X-axis in Fig. 4) and 
basic parameter. The transition point refers to the 
fact that the change of the upper bound of gener-
alization error for the first time is greater than four 
times the average of the previous 15 changes in 
the upper bounds of generalization error.

Figure 5 shows the evaluation results, where 
the baseline model is trained without dropout. 
Note that for clean ACC and backdoor ACC, the 
data utilized in Fig. 5 is an average of all 10 work-
er performance indicators. It can be found that 
regardless of the proportion of adversaries among 
all workers, the backdoor ACC is almost 0 when 
we leverage the proposed stability-based defense 
mechanism to configure stability-inducing param-
eters. This demonstrates that our proposed mech-
anism can effectively prevent potential backdoor 
attacks from different proportions of adversaries. 
Moreover, the average expected performance 
(i.e., clean ACC) of all 10 collaborating workers 
has improved compared to the baseline (i.e., with-
out any stability-inducing operations to defend 
against backdoor attacks). This is mainly because 
during training, some workers (i.e., adversaries) 
provide backdoor samples, and the implicit back-
door patterns embedded in the models by these 
backdoor samples are offset by dropout opera-
tion. Therefore, when we calculate the clean ACC 
through benign samples, the expected perfor-
mance is improved.

Conclusion and Future Work
In this article, we analyze the impact of backdoor 
attacks on intelligent edge computing services. 
Through simulation experiments, it has been 
demonstrated that once some workers become 
adversaries, all workers will be infected by the 
malicious models. Moreover, the probability of 
successful attacks increases significantly with the 
proportion of adversaries. From the perspec-
tive of stability, we further analyze the trade-off 
between expected performance and ability to 

FIGURE 4. Upper bound of generalization error with different parameters.

FIGURE 5. Impact of the proposed defense mechanism on different indicators.
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defend against backdoor attacks on DL-based 
intelligent services. According to the difference of 
model stability for different indicators, we propose 
a stability-based defense mechanism to configure 
stability-inducing parameters. The experimental 
results demonstrate that the proposed defense 
mechanism can effectively defend against different 
levels of backdoor attacks without knowing wheth-
er there are adversaries. Moreover, in the case of 
backdoor samples implicit in the training data, the 
newly proposed stability-based defense mecha-
nism can also improve the expected performance.

The proposed stability-based defense mecha-
nism sheds new light on robustness enhancement 
of intelligent edge computing services. In future 
work, we will further prove the existence of the 
transition point theoretically. To the best of our 
knowledge, this is the first article that analyzes 
how backdoor attacks affect intelligent edge com-
puting services and proposes an effective defense 
mechanism. Moreover, how to achieve more 
stable intelligent edge computing services and 
how to detect backdoor attacks are open issues 
to study.
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