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Abstract— Sponsored Data Plan (SDP) is an emerging pric-
ing model for the wireless data market where the Content
Provider (CP) can sponsor the data usage for specific content
on behalf of the users. This strategy sheds new light on the
data pricing model and receives significant attention from the
Internet Service Provider (ISP). However, the existing SDP
studies consider traffic price (e.g., sponsorship) as the only factor
that affects user decision. The impact of other classic market
features, such as the demand for a variety of contents (i.e., love
of variety), remains largely unclear. In this paper, we develop a
new model to understand the love of variety in the wireless data
market under SDPs. Our model has demonstrated that, such
variety is important to understand the complex gaming between
ISPs, CPs, and users in both short-run and long-run markets. For
example, the analysis indicates that the advantage of CPs with
higher revenue will be significantly reduced when users have a
greater love of variety. Moreover, to help the ISP better adopt the
proposed model in the real market, we also develop a practical
method to calibrate the related parameters, which can also be
applied to quantity the love of variety.

Index Terms— Sponsored data plan (SDP), relative love of
variety (RLV), competition among CPs.
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I. INTRODUCTION

TO HANDLE the explosive growth of mobile data usage,
Sponsored Data Plans (SDPs) have surged as a promising

and sustainable solution in recent years. This new type of
smart data pricing enables collaboration between the Internet
Service Provider (ISP) and the Content Provider (CP) by
bridging their related revenues [2] from the content consumers
(i.e., users). As illustrated in Fig. 1, the CP can sponsor the
data usage for specific content on behalf of the users from a
given ISP. The users can, therefore, enjoy the content without
impacting their postpaid or even prepaid data plan allowance.
Meanwhile, unlike other solutions, which break the network
neutrality to mitigate congestion, SDPs are compatible with
network neutrality, allowing ISP to have sufficient funds to
upgrade the infrastructure for mitigating congestion. Despite
the elimination of mandatory net neutrality in some regions,
e.g., USA [3], [4], there are multiple countries that man-
date network neutrality, e.g., Canada, Brazil, India, in which
SDP can enable CPs to subsidize their users without violating
network neutrality.

To better understand this novel pricing strategy, early stud-
ies develop models to explore the interactions among users,
ISPs and CPs. These studies show that SDPs create a triple-win
situation [5]–[8]. To better adapt SDP in real marketing, recent
studies develop models to analyze the impact of SDPs on the
competition among different CPs [9], [10]. The conclusions of
these models indicate that SDPs may benefit big CPs1 who can
afford a higher sponsored level, which brings serious concerns
on SDPs. That is, SDP will lead to unfair competition in the
market, which in turn will weaken the incentives for CPs to
innovate. It is worth noting that the existing SDP studies only
consider traffic price (e.g., sponsorship) as the only factor that
affects user decision. However, pricing is never the only factor
in most real-world market models [1], [11]. Other important
features, such as the demand for a variety of contents [1], [12],
[13], should also be carefully considered in the SDP modeling.

Nowadays, people have become accustomed to a wide
variety of services over the Internet, e.g., e-shopping, online
meetings, and online entertainments. This can be reflected in
many practical applications and research areas (e.g., app usage
modeling [14], [15] and app usage prediction [16]). For

1In this work, a big CP is defined as one CP with higer per unit revenue.
Therefore, the big CP can also be called more profitable CP, which has the
opposite meaning to the small CP.
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Fig. 1. The wireless data market under SDPs.

example, the average smartphone user has 80 apps on his or
her phone, and uses 40 of them in a given month [17]. Another
example, considering the frequent use of multiple services
(i.e., the intrinsic demand for various contents), recommen-
dation system can use behavioral data from multiple sources
to infer friendship with high-quality performance [18]. It is
known that every user has a preference for such diversity [19].
Having a vast variety of products, services, and options is a
value in itself. The demand for a variety of contents can be
considered as a positive consumption externality, i.e., the more
contents are different, the more users feel satisfied. This
fundamental feature is widely considered in most of the classic
marketing models [12], [13]. Unfortunately, how this feature is
going to affect the SDP system still remains largely unknown.

Modeling the detailed features of variety is challenging.
In particular, the variety demand cannot simply be charac-
terized as the user’s cost. The nature of the variety demand
is how hard it is to replace many different contents with
a single content [20], [21]. In other words, if the variety
demand is high, a user is more likely to access different
contents during a fixed period. Moreover, it is also hard to
directly measure users’ variety demands and then integrate
such a new index into the SDP market model. To address these
problems, we characterize variety demand by using the notion
of substitution and for the first time introduce the Relative
Love of Variety (RLV) index into SDP. The key contributions
we have made in this paper are summarized follows:

• With time being the benchmark, we characterize users’
love of variety, and for the first time integrate RLV into
an overall two-stage Stackelberg game model, analyzing
the love of variety in the market under SDPs.

• Through extensive theoretical analysis and simulation
experiments, the newly proposed model in this paper not
only rectifies some conclusions of the past studies, but
also derives some completely new results.

• To quantity the love of variety in the practical market,
we develop a method to calibrate the RVL-related para-
meters through collectable data in the market.

Through analyzing the proposed model, we can explore
RLV’s potential impacts on SDPs, and the following summa-
rizes the major findings and their implications:

• Different types of varieties (i.e., variety-lovers,
variety-avoiders and variety-free) may have different
effects on multiple factors (e.g., CP quantity and
sponsored level), which can greatly affect the results of
SDP analysis.

• CP sponsored level can be affected by CP/user quantity,
which is a completely new result and has an impact on
the choice of CP entering a certain market under SDPs.

• The influence of SDPs is not as significant as we
believed before. For example, big CPs have advan-
tages over small CPs. But such advantages will quickly
decrease when the users have a greater love of variety
(e.g., variety-lovers).

• ISP’s strategy produces some new conclusions. For exam-
ple, when users are variety-avoiders, greater data cap2

may lead to an increase in the sponsored level, and the
competition among CPs will become tougher.

The remainder of this paper is organized as follows.
In Section II, we review related studies. Section III introduces
our new model. Section IV presents the competition among
CPs with considering variety demand. Furthermore, the impact
of ISP’s strategy is analyzed in Section V. In Section VI,
we provide a method to obtain parameters for the real-world
market, smoothing the gap between modeling and deployment.
Section VII concludes this paper.

II. RELATED STUDIES

Nowadays ISPs typically obtain the majority of their
revenue from users. However, this one-side pricing model
becomes unviable since users have limits on how much they
are willing to pay while their demand for bandwidth keeps
increasing. The newly proposed SDP is a two-sided model
that encourages CPs to transfer part of their revenue to users
so as to revamp the constrained traffic usage [5]. The proposal
of SDP and its emerging in practice made it important to
study how SDP will affect the market. Early works study the
broad impact of SDP on the users, CPs and ISPs. It has been
demonstrated that SDPs overall create a more balanced market
and can vitalize network expansion [6], [9]. Njoroge et al. find
that through CP-side pricing, ISPs could secure higher surplus
and maintain higher investment levels [23]. Hande et al. find
that subsidizing the user’s connectivity costs by pricing CPs
benefits both users and CPs [24], since CPs can gain more
revenue, e.g., from advertising, when users consume more
contents. To better adapt to the future 5G wireless network,
Sun et al. propose a joint optimization scheme, in which CPs
have to consider sponsoring strategies in both cellular network
and edge caching networks [25].

Recent studies emphasize on the impact of SDPs on the
competition among different CPs [6], [7], [9], [10]. Through
analyzing the competition between one big CP and one
small CP, Zhang et al. observe that SDPs favor the big CP
in the long-run competition, but favor the small CP in the
short-run competition [9]. A two-class service model with
consideration of Quality of Services (QoS) [10] shows that
SDPs may increase the imbalance in revenue distribution
among CPs. Through one model on regulated sponsorship
competition among CPs, Ma et al. find that the main reason
that certain CPs might be harmed is the high access prices [6].
Joe-Wong et al. [7] find that sponsorship favors less cost con-
strained CPs and more cost constrained users. These studies

2Each user has a total traffic usage limitation (or data cap [22]) by paying
a fixed fee, which will be described in detail in Section III.
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enable us to thoroughly understand the complicated interplay
among stakeholders in the market under SDPs, especially the
competition among CPs.

We find that all these models are limited in the sense
that they only consider the price as the factor affecting the
decisions of users. This may not be precise. In fact, consumers
have an inherent demand for diverse of products, which
plays a pivotal role in market decision-making. For example,
to analyze monopolistic competition and product diversity,
Dixit and Stiglitz [26] proposed the Dixit-Stiglitz model.
In the utility function of this model, when the consumption
level equals to zero, the marginal utility is infinite, indicating
the characteristics of preference diversity. And the variant
of this model has been used in numerous macroeconomic
literatures. In Krugman’s love of variety model of international
trade [12], consumers always get positive effects regardless
of consumer products, but the marginal utility is diminishing,
which implicitly demonstrates the consumers’ love of variety.
Similar phenomena exist not only in the economic field but
also in many other fields. Hamlen [13] finds that in the
singles and albums markets, there are many non-quality factors
affecting the market demand, which are also ascribed to the
consumers’ love of variety. Overall, the consumers’ love of
variety is widely found in various markets, but its impacts on
the market under SDPs remain largely unclear. For a deeper
understanding of the impacts, consumers’ love of variety
should also be considered in the economic models.

In this paper, we model variety as an intrinsic factor
and reconsider the competition among CPs in the wireless
data market under SDPs. Our new model rectifies certain
conclusions of the past studies and derives some completely
new results, which prove that love of variety in the market
cannot be neglected. Overall, through our new model, various
stakeholders (i.e., ISP, CPs and users) in the wireless data
market could have a more comprehensive understanding of the
application of SDP in reality, which is conducive to promoting
the further development of SDP.

III. GENERAL MODEL

To fully and concisely analyze the competition among CPs,
we focus on the situation with the single ISP,3 like [10], [28],
[29], which is common in reality. Thus, the market consists of
three stakeholders: a set of potential CPs N , where N = |N |
and a specific CP with index i, which is denoted by CPi,
a set of users L, where L = |L|, and a monopolistic ISP
which provides the link capacity μ. We also denote Ñ as the
set of incumbent CPs, where Ñ ⊆ N and Ñ = |Ñ |. Then we
can denote the system as a quadruple (N , Ñ , μ, L).

For the sake of clarity, Table I lists the major notions in
market. It is worth noting that the specific meaning of the
symbol also depends on its superscript and subscript. All the
parameters except ρ, a, b, can obtain their real value from

3We set up this model not only for mathematical simplicity, but also capture
one ISP’s monopoly access power for a majority of CPs. Current long-term
contracts also limit end users’ transition from one ISP to another. In addition,
if the multiple ISPs could form an unified coalition, our model can be extended
into the market with multiple ISPs and our results will hold. Otherwise,
the variety matters may different in oligopolistic market [27].

TABLE I

MAJOR NOTATION LIST

TABLE II

FREQUENTLY USED TERMS

CP and ISP. Especially the parameter ρ, a.k.a., the indicator
of user’s preference for variety, can hardly obtain from the
market. We can only obtain its approximation by other ways,
such as the method proposed in Section VI. In addition, we list
the frequently used terms in Table II for a more concise
understanding of the subsequent content.

In this section, we first model the behaviors of end users.
And we introduce how to use RLV to capture their variety
demand. We then model the utilities and behaviors of the CPs
and the ISP, respectively. Finally, we model the overall market
as a two-stage Stackelberg game.

A. Behaviors of End Users

To portray the behaviors of end users as realistically as
possible, while integrating user’s love of variety into the
newly proposed model, we use a time vector t = ti∈N to
represent the user’s consumption in contents of different CPs.
Here ti indicates user’s access time in a certain CPi during
a fixed period, e.g., one month. We note that rather than
the traffic volume, the utility of end users depends on the

Authorized licensed use limited to: University of Illinois. Downloaded on April 30,2020 at 00:50:31 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: UNDERSTAND LOVE OF VARIETY IN WIRELESS DATA MARKET UNDER SDPs 769

Fig. 2. An illustration for RLV. Given the same amount of total time T ,
user utility will increase if he or she consumes more different contents, since
the marginal utility u′ for single content always decreases with more time
consumed.

access time, i.e., ti. We thus define the user’s utility function
as u(ti). We assume that u(0) = 0 and u(ti) is a strictly
increasing and concave function, which is consistent with
consumer utility characteristics in the Krugman’s model [12].
Intuitively, a longer time means a higher user utility, but a
smaller marginal user utility. We assume that the utilities from
different CPs are additive. Then the aggregated utility of a user
is

∑
i∈N u(ti).

1) Variety/RLV: We now introduce the variety used in this
paper. Intrinsically, one challenge is to quantify the willingness
of a user to exchange one content x to another content y.
We address the exchange of two contents by using the concept
of elasticity [30]. Another challenge is that each user consumes
different contents and we need to quantify the willingness of
exchanging multiple contents. We address this issue by using a
benchmark: each content is first exchanged to this benchmark.
In this paper, we select time as the benchmark. Since time is
equally valuable to anyone with any CP in terms of the abstract
concept of willingness, it has the ability to be viewed as any
content. This is also one of the reasons why we choose time
to define the user’s utility function. We first present the formal
definition of elasticity.

Definition 1 (Elasticity): For two variables x and y, the x-
elasticity of y is define as εyx = − ∂y

∂x
x
y .

The elasticity can be interpreted as the percentage change
in y in response to the percentage change in x. The larger elas-
ticity implies y is more sensitive to variation of x. To depict
user’s preferences for a variety of contents, we define RLV
through elasticity.

Definition 2 (Relative Love of Variety (RLV)): The user’s
RLV is the elasticity of the marginal utility with respect to the
consumption level ti,

ru(ti) = εu
′

ti
= −u

′′ti
u′

> 0. (1)

As formerly notified, we use time as a media to make
different contents exchangeable. And we show an illustration
to understand RLV in Fig. 2. From Definition 2, we can see
that the value of RLV implies whether users are willing to
exchange their access time for higher marginal utility. That is,
RLV can reflect the substitutability of the content. Note that
the definition of RLV is with respect to a particular CPi. It can
be used to compare the substitutability of different CPs relative

to the specific user. In addition, when we want to analyze the
overall RLV difference between different users, for each user,
we can use the average (or sum) of the RVLs from all CPs in
the market to describe the overall RLV level.

2) Behavior of Users: We define the rate of traffic con-
sumption as user’s average traffic consumption per unit time
towards CPi, which is usually less than the bandwidth require-
ment. Different CPs may have different rates of traffic con-
sumption. For example, a user may watch movies on YouTube
and do shopping on Amazon for the same time duration,
but the traffic he or she consumed on watching movies is
obviously greater than that on shopping. Let αi be the rate of
traffic consumption for CPi. Then, the traffic volume a user
consumes on CPi is αiti. With the SDP, the traffic volume
can be partially sponsored. Let hi ∈ [0, 1] be the sponsored
traffic fraction provided by CPi for a user in consuming its
content (we call it sponsored level hereafter). Let h̄i = 1− hi

be user’s afforded traffic fraction in consuming the content
of CPi (we call it afforded level hereafter). Then, the traffic
volume that a user needs to pay for is

∑
i∈N h̄iαiti, which

will be accumulated in user’s cap quota. Under the present
tiered pricing scheme provided by the ISP, each user has a
total traffic usage limitation (or data cap [22]) by paying a
fixed fee, which is denoted by H , e.g., H = 10GB per month.
The additional usage beyond the cap will be charged by a
much higher price. As Zheng et al. [31], [32] have proved,
users with such data cap have a strong incentive to plan their
usage per month. That is, in reality, users do usually limit their
usage below this cap due to the high fee charged for beyond.
Thus, it is reasonable to assume that rational user’s usage is
below the cap. Under the assumption, user’s access fee is a
constant and does not affect any result. Therefore, we omit
user’s access fee in his or her utility formula. As mentioned
in Section I, for each user, the monthly average number of
apps used is up to 40 (i.e., 40 CPs) [17]. It is impossible
to use total usage time on one CP. Even if there are similar
cases, they are very few exceptions. Therefore, each user also
has time limitation on different CPs, e.g., 18% of total usage
time is spent on music [33]. The time limitation for CPi is
denoted by t̂i. Taking these constraints into account, an user
l ∈ L can maximize his or her utility as follows,

max
t

Ul =
N∑

i=1

u(ti),

s.t.

N∑
i=1

h̄iαiti ≤ H, ti ∈ [0, t̂i]. (2)

The above optimization can be solved by the Lagrange
Multiplier with the optimal solution as follows.

Lemma 1: The optimal access time of a user towards the
content from CPi, denoted as t∗i ,

t∗i = min{t̂i, u′−1(λh̄iαi)}, (3)

where λ is the Lagrange multiplier associated with the cap
constraint.

Proof of Lemma 1: We introduce the Lagrange multiplier λ
for the cap constraint, then we have the KKT condition as
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∑N
i=1 u

′(ti) = λ(
∑N

i=1 h̄iαi). Then u′(ti) = λh̄iαi. Note
that ti ≤ t̂i, thus t∗i = min{t̂i, u′−1(λh̄iαi)}. �

We now study the relationship between RLV and the spon-
sored level. We first give a definition on Sponsoring-Response
Elasticity (SRE) and then link RLV and SRE by Lemma 2.

Definition 3 (Sponsoring-Response Elasticity (SRE)): The
SRE of a user is the elasticity of time ti with respect to afforded
level h̄i after sponsoring, i.e., εti

h̄i
.

Lemma 2: SRE is equal to the inverse of RLV, i.e.,

ε
t∗i
h̄i

= − h̄i

t∗i

∂t∗i
∂h̄i

=
1

ru(t∗i )
, t∗i ∈ (0, t̂i). (4)

Proof of Lemma 2: From Lemma 1, h̄i = u′(t∗i )
λαi

, which

follows ∂t∗i
∂h̄i

= λαi

u′′(t∗i ) . Thus, εt
∗
i

h̄i
= − h̄i

t∗i
∂t∗i
∂h̄i

= − u′(t∗i )
t∗i u′′(t∗i ) .

According to Definition 2, we have εt
∗
i

h̄i
= 1

ru(t∗i ) . �
From the proof, we can see that both RLV and SRE

are linked to the user utility function u′(ti). This lemma is
important because RLV, i.e., a separately defined index, can
now be integrated into the model and optimization through h̄i.

B. RLV Classification and Examples

As mentioned above, time is chosen as the benchmark to
solve the challenge of quantifying the willingness of exchang-
ing multiple contents. Therefore, time-based user utility is
closely related to RLV. In fact, not all users like to exchange
among multiple. For example, Silva et al. [34] has demon-
strated the transition diversity among users, which can indi-
rectly reflect whether the user likes to use a variety of different
contents. It demonstrates that 18% of users will only exchange
between one or two applications, while most users prefer to
exchange between various applications. Accordingly, we fur-
ther classify users into three categories: variety-lover, variety-
avoider and variety-free, to denote RLV increases with ti
(i-RLV, i.e., r′u(ti) > 0), RLV decreases with ti (d-RLV,
i.e., r′u(ti) < 0), and RLV is constant with ti (c-RLV, i.e.,
r′u(ti) = 0), respectively. We emphasize again that all users
have diversity preferences. The difference among these three
categories is that for variety-lovers the RLV will increase when
ti increases, and variety-avoiders act oppositely. In addition,
the RLV for variety-free category is independent of ti.

To depict user’s preference of different types of RLV,
a general utility function can be defined as follows,

u(ti) =
1

1 − ρ
[(a+ ti)1−ρ − a1−ρ] + bti, (5)

where a ≥ 0, b ≥ 0 and 0 < ρ < 1.
Note that the user might have different utilities for different

CPs with the same time usage. For the sake of simplicity,
we adopt the same utility function for different CPs. It is
conducive to analyzing the love of variety, and cannot conflict
with the results of specifying different utility functions for
different CPs. Here we call ρ as the RLV index. With the
different value of parameters a and b, the utility function
indicates a certain RLV type of users. For example, when
a = 1, b = 0, the corresponding RLV ru(ti) = ρ

1+1/ti

increases with ti (i-RLV). When a = 0, b = 1, the cor-
responding RLV ru(ti) = ρ

1+tρ
i

decreases with ti (d-RLV).

Fig. 3. The three types of RLV, including i-RLV, c-RLV and d-RLV.

When a = 0 and b = 0, the corresponding RLV is a constant
ρ (c-RLV). Moreover, we plot the curves to illustrate these
three types of RLV in Fig. 3, in which the RLV index ρ is set
as 0.4.

C. Behaviors of CPs and the ISP

1) Utility and Behaviors of CPs: The CPi’s revenue
obtained from per unit content (we call it per unit revenue
hereafter) is denoted by vi. It is well known that CPs may
have different per unit revenue, such as Google and YouTube.
Although all CPs can sponsor traffic volumes for their users so
that more users access more contents, there may be differences
in sponsored level (i.e., hi). In other words, hi differs from
different CPs. For example, hi = 0.5 means that the relevant
expenses are shared equally between the CP and the user.
In particular, when hi = 0, it means that CPi gives up the
opportunity to participate in the sponsored data plan. The
cost of CPi consists of three parts: (i) the cost q ≥ 0 for
the connection service of per unit traffic; (ii) the additional
cost p ≥ 0 for the per unit fee an ISP charges the CPs for
the sponsored traffic (we call it sponsored price hereafter);
(iii) the cost of entering to the market si. For homogeneous
users, the total traffic usage for CPi is Lαiti, where L refers
to the user quantity in the market. In fact, our model is also
appropriate for heterogeneous users whose traffic usage is dif-
ferent for different CPs. Here we only consider homogeneous
users for mathematical simplicity. Let φi be the utility function
of CPi, then the decision of CPi is to choose appropriate hi

to maximize φi, formally,

max
hi∈[0,1]

φi = (vi−phi − q)Lαiti − si. (6)

2) Utility and Behaviors of the ISP: The revenue of the ISP
mainly comes from two sources: the unit price charged to CPs
for the connection service (i.e., q), and the sponsored price
charged to CPs for the sponsored traffic (i.e., p). Note that
we treat the connection service price and the sponsored price
for different CPs as equal so as to avoid the arguing about
network neutrality rules. We omit the price charged to end
users because it is only a constant under the cap scheme. Let
the traffic volume transmitted between CPs and users be η and
η =

∑
i∈N Lαiti. When the traffic demand (i.e., η) exceeds

the capacity (i.e., μ), the system falls into congestion which
generates operating costs to ISP. We define the congestion
cost as a function c(η, μ), which is convex and monotone
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increasing in η. In practice, the higher congestion implies
worse QoS, thus users may decrease their usage or even
transfer to other ISPs, which will reduce the ISP’s profit [30].
Then the ISP will consider the negative effects brought by
congestion when ISP make decisions. Therefore, we adopt the
cost function to depict such profit reduction. Let π be the
utility function of the ISP, then the decision of ISP is to choose
appropriate p, q to maximize π, formally,

max
{p,q}

π =
N∑

i=1

(phi + q)Lαiti − c(η, μ). (7)

One choice of c(η, μ) is the capacity sharing congestion
function [35]. Let load rate ω be the ratio of the traffic demand
over capacity, i.e., ω = η/μ. A higher load rate means a
higher level of network congestion. Then the congestion cost
is defined as c(η, μ) = χωδ, where χ is a congestion level fee
to the ISP and δ ≥ 1 represents the load sensitivity. Clearly,
c(η, μ) is continuous, increasing in η, decreasing in μ and
c(0, μ) = 0, limμ→∞ c(η, μ) = 0. We assume c(η, μ) is a
twice differentiable and convex function with respect to ω.

D. A Two-Stage Stackelberg Game Model of the Market

To model the interaction between various stakeholders
(i.e., the ISP, CPs and users), the wireless data market illus-
trated in Fig. 1 has been modeled as a two-stage Stackel-
berg game, which consists of two stages. In the first stage,
the monopolistic ISP is the first mover and CPs are the
followers. The ISP decides the sponsored price for CPs, and
the data cap for end users, i.e., its strategy profile is SI ∈
{(p,H)}. In the second stage, the CPs form a simultaneous
game themselves. Each CPi decides the sponsored level for
end users, i.e., its strategy profile is SP

i ∈ {hi}. The outcome
is determined by backward induction. In the second stage,
SI is considered to be fixed. Each CPi decides its optimal
sponsoring strategy. Then, in the first stage, the ISP decides
its optimal price and data cap based on the outcome of the
CPs decisions.

It is worth noting that many existing studies [10], [36]
have adopted similar mathematical models (i.e., Stackelberg
games), which have the ability to describe the decision hier-
archy in the wireless data markets. This is mainly owning to
that the market structure has price2respond property. Note that
we do not include the decision of q into the ISP’s strategy
profile. This is because we want to focus on the sponsored
data scheme provided by CPs, which influences end user’s
decisions, but has limited impacts on q. Therefore, we assume
q is predetermined and known. More precisely, we emphasize
on the competition among CPs, i.e., the simultaneous game in
the second stage of the game, which is analyzed in Section IV.
And we analyze the ISP decisions and the impact of ISP
decisions on the competition among CPs in Section V.

IV. COMPETITION AMONG CPS

Different from the previous mechanism of traffic pricing
by the ISP alone, SDPs introduce CPs into pricing market
for the first time, which has indirectly affected the pricing

process of the overall market by adjusting the sponsored level.
This inevitably triggers competition among different CPs.
To comprehensively analyze this novel competitive approach,
we focus on the CPs behaviors in two different scenarios.

We first study the market with homogeneous CPs, i.e.,
the CPs with the same rate of traffic consumption α and
the same per unit revenue v. We also assume that they
have the same cost of entering the market, denoted by s.
For example, we can consider the CPs that provide video
services to be homogeneous since they have the same rate of
traffic consumption. Note that these CPs can provide different
contents, thus the market has variety. This scenario is useful
since CPs with video services are heavily affected by this new
SDP pricing model and they are mostly eager to understand
the impact of SDPs on their competition. If we consider that
only CPs with video services conduct sponsorship, then it
is a market with homogeneous CPs. In addition, we study
the market with heterogeneous CPs, which is a general and
comprehensive case.

To reveal more insights into the competition among different
CPs, we further analyze both the short-run and the long-run
equilibrium states for each market (i.e., the market with
homogeneous CPs and the market with heterogeneous CPs).
In the short-run equilibrium, the number of CPs is fixed and
no CP in the market finds it profitable to change its sponsored
level unilaterally. Conversely, in the long-run equilibrium, CPs
can enter and exit freely, till no new CP wants to join or
existing CPs want to leave.

We now first analyze the optimal decision of CPs, and
then analyze the equilibrium state of the simultaneous game
of the CPs. These help our analysis in Subsection IV-A and
Subsection IV-B on the detailed CP behaviors.

From Equation (3), we have t∗i = u′−1(λh̄iαi) for any
t∗i ∈ (0, t̂i). We can see that user’s optimal time varies with
sponsored level. For the mathematical simplicity, we treat the
ti as t∗i hereafter. Thus, we have

h̄i =
u′(ti)
λαi

. (8)

With Equation (8), the optimization problem of CPi, i.e.,
Equation (6), is rewritten by

max
ti∈(0,t̂i)

φi = (
u′(ti)
λ

− αiAi)pLti − si, (9)

where Ai = p+q−vi

p . Here, we abuse the notation a little and
let zi = αiAi be the cost of CPi (we also call it CP’s type).
If zi > 0, CPi has a positive cost. A higher (lower) cost
usually indicates higher (lower) αi and smaller (higher) vi,
which demonstrates CPi has a smaller (higher) advantage in
the market competition. If zi < 0, CPi has a negative cost,
i.e., it always benefits from more traffic usage.

Note that when making decisions on its optimal sponsored
level, a CP may influence the Lagrange multiplier λ and the
traffic consumption of other CPs. Nevertheless, we consider
the case where the number of CPs is large and such influence
is ignorable. For example, there were about 2.2 million apps
available to download in Apple APP Store and users had an
average of 88.7 apps installed on their smartphones [37]–[39].
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Thus, we assume that CPs are price takers who are not
influential enough to affect the market price, like [40]–[42].
Under the assumption, each CP accurately treats the Lagrange
multiplier λ as an exogenous parameter and estimates the
equilibrium value of λ. Having done this, the CP behaves like
a monopolist on its market and thus maximizes its profit.

Let Di ≡ ∂u(ti)
∂ti

, D′
i ≡ ∂Di

∂ti
. The first-order condition of φi

respects to ti can be written as

Di + tiD
′
i = [1 − ru(ti)]Di = λαiAi. (10)

Recall that we have assumed that the user utility func-
tion is strictly concave, which implies that D > 0
and D′ < 0. It is thus sufficient to assume that the following
Inada conditions [43] hold as follows,

lim
ti→0

Di = ∞, lim
ti→∞Di = 0. (11)

When λαiAi > 0, we have

0 < ru(ti) < 1, for any ti. (12)

The conditions (11) and (12) imply that

lim
ti→0

(1−ru(ti))Di =∞, lim
ti→∞(1−ru(ti))Di =0. (13)

The intermediate value theorem implies that Equation (10)
has at least one positive solution.4 When λαiAi < 0,
the optimal time for CPi approaches the maximum time t̂i.
Furthermore, if the user utility function is strictly concave,
Equation (10) has a unique solution and this solution can
maximize the CP’s profit. The uniqueness condition of the
solution is equivalent to

ru′ (ti) = −tiD
′′
i

D′
i

< 2. (14)

In summary, we have the following lemma.
Lemma 3: If the conditions (11) (12) and (14) are satisfied,

then for any λ > 0, there exists a unique optimal decision in
equilibrium for CPi in Equation (9), given by

hi = 1 − u′(ti)
λαi

, ti = min{u′−1(
λαiAi

1 − ru(ti)
), t̂i}. (15)

Proof of Lemma 3: Considering CPi’s utility φi, the first-
order condition respects to ti is −pth̄′ = v − p − q + ph̄,
then we have h̄ = p+q−v

p·(1−ru(ti))
= A

1−ru(ti)
. Substituting h̄ in

Equation (3), then we obtain the result. �
Lemma 3 shows the sufficient conditions for the uniqueness

of each CP’s optimal decision. In fact, the condition (14)
itself can guarantee such uniqueness. The conditions (11)
and (12) guarantee that the optimal decision is reasonable
and meaningful. For example, if ru(ti) > 1 for all ti ≥ 0,
then for any Ai > 0 (even for vi > q), ti = 0. In other
words, this means that CPi can achieve its maximal profit
when no user accesses its content. Clearly, this contradicts to
the common sense. Note that the optimal decision here may
not be in the equilibrium unless λ is the equilibrium value.
In the next subsections, we will analyze the optimal decisions
of CPs in the equilibrium state.

4In reality, the condition of limti→0 Di = ∞ in Equation (11) may not
hold. However, we make the setting to ensure the Equation (10) has a valid
solution.

A. Homogeneous Content Providers

We now focus on the CPs behaviors in the first scenario,
in which homogeneous CPs have the same features of α and v.
Note that the same α and v do not imply that the CPs provide
identical contents.

1) The Short-Run Equilibrium: In the short-run market,
the quantity of incumbent CPs is fixed, that is, Ñ is a
constant. We first study the optimal decision of the CPs in the
equilibrium state. We then analyze the impact of CP quantity
on the short-run equilibrium under the variety preference.

We have known Equation (10) has a single solution ti. Note
that all CPs are homogeneous and face with the same λ, so ti
and hi are symmetric in equilibrium for all i ∈ Ñ . Let t and
h̄ = 1 − h be the symmetric results for end users and CPs.
In the equilibrium, if the time maximum is not reached, the cap
should be fully filled, i.e.,

t =
H

Ñαh̄
. (16)

With this condition and Lemma 3, we can estimate the λ
in the equilibrium and thus get the optimal solution. More
specifically, we have the following proposition.

Proposition 1: In the market with homogeneous CPs,
the optimal solution in the equilibrium is

h̄ = max
{ A

1 − ru( H
Ñαh̄

)
,
H

Ñαt̂

}
, (17)

where t = min
{

H
Ñαh̄

, t̂
}

.
Proof of Proposition 1: From CP’s utility Equation (6),

the first-order condition respects to t is −pth̄′ = v−p−q+ph̄
⇒ ru(t) = v−p−q+ph̄

ph̄
⇒ h̄ = p+q−v

p·(1−ru(t)) . According to

Equation (16), thus h̄ = A
1−ru(H/Ñαh̄)

. When t = t̂, then

h̄ = H
Ñαt̂

, thus we obtain the result. �
This proposition captures the characteristic of CP’s optimal

solution in the equilibrium. If t < t̂, the RLV affects the
optimal sponsored level. This condition is satisfied if and only
if h̄ > H

Ñαt̂
. If t = t̂, the sponsored level also approaches its

maximum, i.e., 1 − H
Ñαt̂

.
Theorem 1 (CP Quantity Effect): In the short-run equilib-

rium, if t < t̂, then the sponsored level is higher (lower) in
the market with the larger quantity of incumbent CPs when
r′u > 0 (r′u < 0). Otherwise, the sponsored level is always
proportional to the quantity of incumbent CPs.

Proof of Theorem 1: When t < t̂, we differentiate the h̄
with respect to Ñ from the Proposition 1, and we have the
below expression (1 − ru + tr′u) Ñ

h̄
dh̄
dÑ

= −tr′u. If r′u > 0,
then h̄ decreases with Ñ , that is, the sponsored proportion
increases with Ñ , and vice versa. When t = t̂, h̄ = H

Ñαt̂
, then

dh̄
dÑ

= − H
Ñ2αt̂

< 0, that is, h increases with Ñ . �
When users are variety-lovers, i.e., r′u > 0, the larger Ñ

in the market means smaller consumption level and thus
smaller RLV. The variety of contents are better substituted
with each other and the competition is more intense. Under
this circumstance, the CPs have to increase the sponsored
level. On the contrary, when users are variety-avoiders, i.e.,
r′u < 0, the larger Ñ leads to a higher RLV. The contents
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Fig. 4. Impact of Ñ on the short-run market.

become more differentiated. This time, the competition in the
market is relatively moderate, which leads to CPs decreasing
the sponsored level.

To further clarify the theorem, we perform some sim-
ulation experiments, which are independent of the content
of Theorem 1. As illustrated in Fig. 4(a), we can see that
no matter what type the RLV is, the average time usage
always decreases as the CP quantity increases. This finding
is consistent with previous studies. Fig. 4(b) demonstrates
the impact of CP quantity on sponsored level. Moreover,
these impacts are different for different RLV category markets,
which is consistent with Theorem 1.

2) The Long-Run Equilibrium: In the long-run market, CPs
could enter or exit according to their operating profit, that is,
Ñ could change. We first analyze the quantity of CPs in the
equilibrium state. Then we study the comparison of the market
with and without SDPs in the consideration with RLV.

When a potential CP can earn positive profit, it will enter the
market, which reduces the revenue of incumbent CPs. In the
equilibrium, no CP has the incentive to enter the market, i.e.,
all CPs in the market earn zero profit. More formally,

(h̄−A)pLαt = s. (18)

With Equation (18) and Proposition 1, we can capture the
equilibrium number of CPs in the long-run market by the
following proposition.

Proposition 2: In the market with homogeneous CPs,
the number of CPs in the long-run equilibrium satisfies

Ñ∗ = min
{pHLM

s
,

H

αt̂A+ s̄/p

}
, (19)

where M = ru

[
s

Lαp
1
A

(
1
M − 1

)]
, and s̄ = s

L .

Proof of Proposition 2: According to Lemma 2 and
Equation (8), we have M = h̄−A

h̄
= 1/εti

h̄i
= ru(t).

From Equation (18), we have p · (h̄ − A)t = s
Lα → pA ·

M
1−M t = s

Lα → t = s
αp

1
LA ( 1

M − 1), so M = ru( s
αp

1
LA

( 1
M − 1)).
From the constraint condition in Equation (2), then we have

Ñ h̄αiti = H , thus αiti = H
Ñh̄

. According to Equation (18),

then h̄−A
h̄
pLH = Ñs, thus Ñ = pHLM

s .
When t = t̂, Ñ can achieve the maximum value, denoted

by N̄ . From Proposition 1, we can have h̄ = H
N̄αt̂

. According

to Equation (18), h̄ − A = s
Lαt̂·p → H

N̄αt̂
= s

Lαt̂
+

Fig. 5. Impacts of α and v on equilibrium CP quantity in the long-run
market.

A = s+A·Lαt̂·p
Lαt̂·p → H

N̄
= s+AL·αt̂·p

L·p → N̄ = HLp
s+AL·αt̂·p =

H
s

Lp +αt̂A
= H

s̄
p +αt̂A

, where s̄ = s
L . Thus, we obtain the

results. �
There are two cases in the equilibrium. When t < t̂, the RLV

affects the number of CPs in the equilibrium. In particular,
if the RLV is a constant, then the number of CPs is inde-
pendent with the characteristics of CPs, e.g., α and v, unless
t = t̂. In fact, Ñ∗ represents the optimal CP capacity for
a given market. To further clarify the relationship between
the characteristics of CPs and the equilibrium CP quantity,
Fig. 5 illustrates some simulation results. It can be found from
Fig. 5(a) that, when users are variety-lovers (i.e., r′ > 0),
homogeneous CPs with a better technology level (i.e., smaller
α) can facilitate the expansion of CP capacity. And when
users are variety-avoiders (i.e., r′ < 0), the situation is the
opposite, which proves the different impact of RLV on the
market. Regarding another characteristic (i.e., v in Fig. 5(b)),
when r′ > 0 (r′ < 0), CPs with a larger (smaller) per unit
revenue can be more conducive to the expansion of the market.
When t = t̂, if some new CP enters the market, the sponsored
level will become higher according to Theorem 1. This reduces
all CPs’ revenue. And the negative profit prevents this new CP
entering the market.

Next, we assume that CPs do not participate in the SDP.
And the equilibrium quantity of these CPs is denoted as Ñno,
then we have the following theorem.

Theorem 2 (Market Variety): In the long-run market,
if A ≥ 0, then Ñno

Ñ∗ > 1 and decreases with RLV . Otherwise,
the relationship is reversed.

Proof of Theorem 2: We have defined M ≡ h̄−A
h̄

, then
h̄ = A

1−M . When h = 0 and h̄ = 1, then A = 1-M = p+q−v
p ,

M = 1 − p+q−v
p = v−q

p . From Equation (19), Ñ∗ = pHLM
s

and Ñno = pHL
s

v−q
p , thus Ñno/Ñ∗ = (v−q)/p

M = (v−q)(1−h)
v−ph−q .

When A ≥ 0, (v−q)(1−h)−(v−ph−q) = (p+q−v)h > 0
⇒ (v − q)(1 − h) > (v − ph− q). Thus Ñno

Ñ∗ > 1.

Since Ñno/Ñ∗ = (v−q)/p
M = (v−q)/p

ru
, it is obvious that the

value of Ñno/Ñ∗ decreases with ru, i.e., RLV.
When A < 0, the relationship is reversed. �
From literatures [9], [10], we know that the SDPs have

the positive effect of attracting users. This is true when the
market consists of the negative-cost CPs, which have high per
unit revenue and low rate of traffic consumption, like Google
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Search. However, when the market consists of positive-cost
CPs, the SDPs enforce the competition and increase the
operating cost to CPs simultaneously. Finally, more CPs exit
the market. Nevertheless, when users prefer a greater RLV,
the gap between the equilibrium number of CPs in the market
with and without SDPs is reduced.

B. Heterogeneous Content Providers

Different from the first scenario, in this subsection, we focus
on analyzing the behaviors of heterogeneous CPs, in which
CPs differ from each other in αi and vi. Specifically, CPi

with a larger vi has potential to sponsor more so as to obtain
more competitive advantages. Clearly, αi depends on the type
of contents, e.g., video as compared to email. αi can also be
considered as an indicator of the technology of CPi, especially
for the same type of contents. Considering two video CPs
CPi and CPj with same per unit revenue, they provide the
same content for users. A smaller αi may mean that CPi

has advanced video coding technology of transmitting the
same video in a smaller traffic volume, thus CPi has more
competitive advantages over CPj . And we will further analyze
how these factors affect the competition.

1) The Short-Run Equilibrium: We start from the short-run
scenario and study how SDP and RLV affect the competition
among heterogeneous CPs. To this end, we first derive the mar-
ket equilibrium. When the set of CPs Ñ is given, the market
equilibrium should satisfy the following conditions:

i) Each user maximizes his or her utility subject to the data
cap constraint;

ii) No CP can increase its profit by unilaterally changing its
sponsored level.

Lemma 4: If the conditions (11) (12) and (14) are satis-
fied, there exists a unique λ such that the market is in the
equilibrium.

Proof of Lemma 4: Considering the left side of users’
constraint, denoted as Λ, we have

Λ =
N∑

i=1

αiAiti/(1 − ru(ti)).

Then, it follows

∂Λ
∂ti

= αiAi
1 − ru + tr′u
(1 − ru(ti))2

= αiAi
1 + (ru)2 − ruru′

(1 − ru(ti))2

> αiAi
1 + (ru)2 − 2ru
(1 − ru(ti))2

> 0.

Note that

u′(ti)[1 − ru(ti)] = λ̃αiAi.

Let ψ(ti) = u′(ti)[1 − ru(ti)]. Since ψ′(ti) = (2 −
ru′(ti))u′′(ti) < 0, then ψ(ti) is strictly decreasing with ti.
Then, we can know that ti is strictly decreasing with λ.
It follows that Λ is strictly decreasing with λ. Thus, there
exist only one unique solution for optimal λ. �

This lemma guarantees the uniqueness of equilibrium λ
in the short-run market. Combined with Lemma 3, each

CP’s optimal sponsored level can be uniquely determined.
We now study how heterogeneous CPs differ their strategies
under the optimal decisions by the following theorems.

Theorem 3 (Differentiated Subsidy): In the short-run mar-
ket, for any CPi and CPj , where i, j ∈ Ñ , the sponsored
level in the equilibrium satisfies

i) If αi = αj and vi > vj , then hi > hj;
ii) If αi < αj and vi = vj , then hi > hj when r′u < 0, and

hi < hj when r′u > 0.
Proof of Theorem 3: Recalling from Equations (8) and (10),

under the equilibrium λ̃, we have first-order condition of φi

respects to ti as

u′(ti)[1 − ru(ti)] = λ̃αiAi.

Let ψ(ti) = u′(ti)[1 − ru(ti)]. Since ψ′(ti) = (2 −
ru′(ti))u′′(ti) < 0, then ψ(ti) is strictly decreasing with ti.
Thus, for any 0 < αiAi < αjAj , we have

ψ(ti)
ψ(tj)

=
αiAi

αjAj
< 1. (20)

The above equation implies that ti > tj .
Since h̄i = u′(ti)/(λαi) and u′(ti) decreases in ti, thus the

condition of ti > tj implies that αih̄i < αj h̄j . In other words,
the CPi with smaller cost will let its users take less bandwidth
cost. In particular, if CPi has higher bandwidth requirement,
i.e., αi ≥ αj , the sponsoring proportion should be higher. The
above equation is also equivalent to

h̄i/Ai

h̄j/Aj
=

1 − ru(tj)
1 − ru(ti)

. (21)

From Equation (20), we have u′(ti)
u′(tj)

=
αiAi

(1−ru(ti))
(1−ru(tj))

αjAj
= αih̄i

αj h̄j
. Since u′′(t) < 0, then

u′(t) decreases in t, thus u′(ti) < u′(tj) for ti > tj , so we
have u′(ti)

u′(tj)
< 1, that is αih̄i < αj h̄j . When αi = αj , then

h̄i < h̄j , that is hi > hj .
From Equation (21), if r′u > 0, then ru(ti) > ru(tj) for

ti > tj , thus h̄i/Ai > h̄j/Aj , and vice versa. When vi = vj

and r′u > 0, then h̄i > h̄j , that is hi < hj , and vice versa. �
In this theorem, αi = αj and vi > vj indicates that CPi

and CPj are of similar type of contents, e.g., all videos, yet
CPi has a greater per unit revenue as compared to CPj .
In such situation, CPi will sponsor more. Also in this theorem,
αi < αj and vi = vj indicates that the CPi has better
technology level and the same per unit revenue. In such
situation, the sponsored level is dependent with the market
types, that is, hi > hj in the variety-avoider market and
hi < hj in the variety-lover market.

Next we study the competition of CPs with and without
SDPs. Let φno

i be the utility of CPi where the market has not
adopted the SDPs.

Theorem 4 (Market Fairness): In the short-run market with
constant RLV ρ (or ρ′), for any CPi or CPj , where i, j ∈ Ñ
such that 0 < αiAi < αjAj , we have the following results in
the equilibrium,

i) φi

φj
= φno

i

φno
j

if vi = vj , and φi

φj
>

φno
i

φno
j

if αi = αj ;

ii) For any ρ < ρ′, we have φi

φj
>

φ′
i

φ′
j
> 1.
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Proof of Theorem 4: Considering the CPi’s utility after
sponsorship, we have φi(ti) = ru

1−ru
αiAipLti − s =

u′′(ti)t2i pL/λ − s. Here, we ignore the cost s and set it

as zero. Then, we have φi

φj
= u′′(ti)t

2
i

u′′(tj)t2j
= | u′′(ti)t

2
i

u′′(tj)t2j
|. Note

that when 0 < αiAi < αjAj , we have ti > tj . Define
g(t) = u′′(t)t2 (note that u′′(t)t2 < 0). Then, we have
g′(t) = tu′′(2 − ru′) < 0. Thus, we have |g(ti)| > |g(tj)|,
which implies that φi > φj .

In particular, for constant RLV (i.e., u(t) = t1−ρ

1−ρ ), we have

ti =
(

λαiAi

1−ρ

)−1/ρ
, φi

φj
=

(
αiAi

αjAj

)1−1/ρ
.

Considering the CPi’s utility before sponsorship, we have
φi(ti) = (vi − q)αitiL − s. If we ignore s, we have φno

i

φno
j

=
vi−q
vj−q

(
αi

αj

)1−1/ρ
. To compare φi

φj
and φno

i

φno
j

, we only need to

compare φi/φno
i

φj/φno
j

= (p+q−vi)
1−1/ρ/(vi−q)

(p+q−vj)1−1/ρ/(vj−q)
. When vi = vj , then

φi/φno
i

φj/φno
j

= 1, that is φi

φj
= φno

i

φno
j

.

When αi = αj , we have vi > vj . Let h(v) = (p + q −
v)1−1/ρ/(v − q), then, we have h′(v) = (p+q−v)−1/ρ

(v−q)2 [−p +
(v−q)/ρ]. When v > pρ+q, h(v) is increasing function, then
we have φi/φno

i

φj/φno
j

> 1. When v < pρ + q, h(v) is decreasing

function. Then, we have φi/φno
i

φj/φno
j
< 1. Note that A/(1− ru) ≤

1, then we have v > pρ + q. That means, φi/φno
i

φj/φno
j

> 1, i.e.,
φi

φj
>

φno
i

φno
j

.

When ρ < ρ′, we have φ′
i

φ′
j

= ( αiAi

αjAj
)1−1/ρ′

=

(αjAj

αiAi
)1/ρ′−1 > 1. To compare φi

φj
and φ′

i

φ′
j
, we only

need to compare φi/φ′
i

φj/φ′
j

= ( αiAi

αjAj
)1−1/ρ · (αjAj

αiAi
)1−1/ρ′

=

(αjAj

αiAi
)1/ρ−1/ρ′

> 1, i.e., φi

φj
>

φ′
i

φ′
j
> 1. Then, we complete

the proof. �
This theorem considers CPi and CPj in the market with

constant RLV, where the content of CPi incurs a smaller cost
as compared to CPj . The first part of this theorem shows
when the two CPs have the same profitability, SDPs will not
increase the differences of their revenue. It also states that a CP
with a higher revenue always has a larger difference via SDPs.
In other words, the market becomes more unfair. The second
part of this theorem shows that the advantage of big CPi under
SDPs is reduced as users prefer larger RLV (i.e., the gap of
CPi and CPj becomes smaller when ρ increases).

To further confirm the conclusions of Theorem 4, we have
provided more simulation results, which focus on the second
part of Theorem 4. Fig. 6 shows the impact of the greater RLV,
where two CPi and CPj only have different rates of traffic
consumption, i.e., αi 
= αj , or different per unit revenues, i.e.,
vi 
= vj . Both Fig. 6(a) and Fig. 6(b) show that the revenue
gap of the two CPs decreases quickly with the increasing of
RLV index, that is, the advantage of big CPi under SDPs is
reduced as users prefer larger RLV.

2) The Long-Run Equilibrium: Next, we study the impact
of user quantity on the long-run equilibrium under the variety
preference. For the CPs with the same type, let z and Γ(z) be
the random variable of types and the distribution of z over N ,
respectively. To derive the equilibrium, we assume that there

Fig. 6. Impact of greater RLV on the advantage of big CP.

exists a cutoff cost z̄ such that for any CPi, if zi < z̄, CPi

will stay in the market. Otherwise, it will leave the market.
Then, we have following lemma.

Lemma 5: If conditions (11) (12) and (14) are satisfied,
there exists a unique pair (z̄, N) in the market equilibrium.

Proof of Lemma 5: Due to the complexity of the proof,
the details can be found in our online technical report [44].
Similarly, proofs of Theorem 5, Theorem 6, and Theorem 7
can also be found in our online technical report [44]. �

This lemma guarantees the uniqueness of the market equi-
librium. Then, we can analyze the impact of user quantity on
the long-run equilibrium.

Theorem 5 (User Quantity Effect): In the long-run market,
if r′ > 0 (r′ < 0), then the cutoff cost decreases (increases)
with L and the sponsored level increases (decreases) with L.

To provide a clearer understanding about Theorem 5, some
simulation results can be found in Fig. 7. When the user quan-
tity becomes larger, the average time usage always decreases,
as shown in Fig. 7(a). This is because each CP can earn
more revenue and thus attracts more CPs entering the market,
as shown in Fig. 7(c). This has different effects on different
markets. Specifically, when the users are variety-lovers (i.e.,
r′ > 0), due to the user’s traffic consumption for each
individual CP is declining, the RLV becomes smaller, which
leads to more intense competition in the market. The CPs need
to sponsor more so as to survive in the market, as shown
in Fig. 7(b). It triggers the exiting of the higher-cost CPs (i.e.,
cutoff cost decreasing), as shown in Fig. 7(d). On the contrary,
Fig. 7(b) and Fig. 7(d) also show that when users are variety-
avoiders, a large market will weaken the competition, thus
the average sponsored level decreases. Meanwhile, the variety-
avoider market has lower cost of entering the market for CPs,
indicating that more CPs with higher-cost can survive in the
market (i.e., cutoff cost increasing).

In Summary: Through our analysis of the competition
among CPs, we once again prove some existing results of
previous studies when we take variety into consideration.
For example, under the influence of SDPs, the number of
CPs in the market decreases if each CP has positive cost
(Theorem 2) and big CPs (i.e., CPs with higher per unit
revenue) have advantage over small CPs (Theorem 3). But,
the influence of SDPs will be reduced if users have a greater
RLV (Theorem 2, Theorem 4). Furthermore, under SDPs,
the advantages of CPs with better technology may decrease
when users have higher variety demand (Theorem 4), which
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Fig. 7. Impact of L on the long-run market.

shows that the excessive RLV will cut down the benefit of
technology as well. In addition, we get some new results. After
taking variety into consideration, we find that the CP quantity
affects the sponsored level (Theorem 1). In previous studies,
it is previously believed that the CP quantity is independent
from the sponsored level. And we find that both the sponsored
level and the number of CPs are affected by the user quantity
(Theorem 5), which is a completely new result that has not
been discovered in previous studies.

V. IMPACT OF ISP’S STRATEGY

Although SDPs enables CPs to influence market pricing,
the ISP remains the dominant player in the wireless data
market. To study the monopolistic ISP’s best strategy and
its impact on the market, we first analyze the short-run
market where the (N , Ñ , μ, L) keeps unchanged. After that,
we further analyze the long-run market where the (N , Ñ , μ, L)
can be changed. In addition, we analyze the market with
homogeneous CPs at first and then carry out the evaluation
to analyze the market with heterogeneous CPs.

A. The Short-Run Market

In the short-run market, there exists a fixed number of CPs.
These CPs’ optimal decisions are significantly affected by
the ISP’s strategy, and thus affects users’ time usage. Based
on the best responses of CPs and users, the ISP decides its
optimal strategy to maximize its revenue. We first consider the
homogeneous market and derive the following theorem.

Theorem 6 (Short-run Impact): If t < t̂ in the short-run
equilibrium, the impact of ISP’s strategy satisfies

i) ∂t
∂p < 0 and ∂t

∂H > 0;

ii) ∂h
∂p < 0 and ∂h

∂H > (<) 0 when r′u < (>) 0.
Theorem 6 states that both users’ time usage and CPs’ spon-

sored level decrease with the sponsored price. When the ISP
increases the data cap, users’ time usage always increases until
it reaches the maximum value. However, the CPs’ sponsored
level depends on users’ RLV categories. The intuition is that
a larger data cap can make users prefer a smaller RLV in the
variety-avoider market. The CPs can be substituted more easily
and thus the competition becomes more intense. In particular,
when the market belongs to the variety-free category, the CPs’
sponsored level is independent with ISP’s data cap.

We now use simulations to understand the short-run mar-
ket with heterogeneous CPs. We consider the market with

N = 100 CPs and one ISP to explore the key features of
the market. The per unit revenue of each CP is randomly
selected from [$1, $10] [5], [7]. The rate of traffic consumption
of each CP is randomly selected from [0.05, 0.5] (GB/hour),
e.g., watching online movies on smartphone through 4G may
consume the volume of 350MB traffic per hour [45]. We adopt
user’s utility function in Equation (5), with the parameter ρ
for each CP randomly distributed over [0.2, 0.8] and (a, b) =
(1, 0) for variety-lovers and (a, b) = (0, 1) for variety-
avoiders. We set user’s maximum consumption time for one
CP in the scope of [1h, 20h] [46]. CP’s connection service
fee and user’s data cap are set as $1/GB and 10GB [47],
respectively. We adopt the capacity sharing congestion func-
tion and let the congestion level fee be χ = 10 and the load
sensitivity be δ = 3. Note that our simulations do not depend
on particular settings, and our purpose is to show qualitative
trends in general.

Through our experiments, the impact of ISP’s strategy
(p, H) on the short-run market has been illustrated in Fig. 8
and Fig. 9. Specifically, the impact of sponsored price can be
found in Fig. 8. As shown in Fig. 8(a) and Fig. 8(b), the aver-
age time usage and the sponsored level always decrease with
p increasing. And Fig. 8(c) shows that suitable p is required
for ISP, e.g., p = 8.5 can maximize ISP’s profit under the
variety-free markets. Fig. 8(d) shows that the consumers’
welfare always decreases with p increasing since the higher
sponsored price limits user’s traffic usage.

From Fig. 9(a), we can see when the ISP increases H , users’
time usage always increases. And different lines show that the
SDP can further increase user’s time usage. Fig. 9(b) shows
that the sponsored level always has a decreasing trend even
for variety-free markets, which may be contrary to Theorem 6.
The intuitive behind is that the maximum time usage for
some CPs are approached. Higher data cap usually means
the competition among CPs becomes more moderate. Each
user can approach its maximum time usage by sponsored less.
Even under the time usage constraint, the sponsored level
still increases with data cap under the variety-avoider market,
especially when data cap is small. Fig. 9(c) shows that the
optimal H for ISP is different under different market. Fig. 9(d)
shows that users’ welfare always increases with H increasing.
In addition, both Fig. 9(c) and Fig. 9(d) show that the ISP
and users always benefit from SDPs, especially when users
are variety-avoiders.
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Fig. 8. Impact of p on the short-run market.

Fig. 9. Impact of H on the short-run market.

Fig. 10. Impact of ρ on the Gini index in short-run market.

In addition to the direct impact of ISP’s strategy, we adopt
widely known metric, Gini index [48], to measure the market
fairness. Higher Gini index indicates smaller fairness. The Gini
index equals to 0 implying extreme fairness while the Gini
index equals to 1 implying extreme unfairness. Fig. 10 shows
the impact of variety indicator ρ on the market fairness. Both
Fig. 10(a) and Fig. 10(b) show that users would prefer a larger
RLV, because the market becomes more fair. Fig. 10(a) shows
that when CPs only have different rates of traffic consumption,
i.e., αi 
= αj , the fairness gap between the market with SDPs
and the market without SDPs may keep the same, or becomes
larger. Fig. 10(b) shows that when CPs only have different
per unit revenues, i.e., vi 
= vj , the fairness of the market with
SDPs approaches that of the market without SDPs.

Fig. 11(a) and Fig. 11(b) show the fairness, where CPs only
have different rates of traffic consumption, i.e., αi 
= αj , which
can be considered as an indicator, reflecting the technology
level of a CP. Generally, it is better for the market to encourage
the unfairness caused by technical difference, because an

unfair market can encourage CPs to improve the technology
and reduce the required bandwidth. Fig. 11(a) shows that SDP
cannot always increase the unfairness in the market, which
only happens when users are variety-avoiders (the line of
SDP+d-RLV is above that of NoSDP+d-RLV). When users
are variety-lovers, SDP makes the market more fair. It also
shows that higher sponsored price makes smaller difference of
fairness between the market with SDP and that without SDP.
Fig. 11(b) illustrates the market becomes more unfair (fair)
with increasing of H when users are variety-avoiders (variety-
lovers). In addition, the fairness gap between the market with
and without SDP becomes larger. Fig. 11(c) and Fig. 11(d)
show the fairness, where CPs only have different per unit
revenue, i.e., vi 
= vj . Fig. 11(c) illustrates that SDP always
makes the market more unfair. This may result in an unhealthy
market since the market prefers the rich CPs if the SDPs are
adopted. Fortunately, the unfairness can be alleviated when the
sponsored price is higher. In addition, when users are variety-
lovers, the market also becomes more fair as the ISP enlarges
its data cap, as shown in Fig. 11(d). However, when users are
variety-avoiders, the unfairness may increase.

B. The Long-Run Market

In the long-run market, the ISP can improve its capacity
so as to reduce the congestion cost via building more base
stations, and deploying advanced technology. However, these
improvements in infrastructures require financial support. The
ISP have to handle the trade-offs on pricing and performance.
And then, the monopolistic ISP’s strategy can affect the
revenue of CPs. Once the revenue has not reached expectations
for a long time, CPs have the right to withdraw from the
market. The incumbent number of CPs Ñ , therefore, is a
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Fig. 11. Impact of (p, H) on the Gini index in short-run market.

Fig. 12. Impact of p on the long-run market.

variable instead of a constant. In other words, the ISP’s
strategy can affect the equilibrium number of CPs in the
market. To thoroughly analyze these issues, we first consider
the market with homogeneous CPs, and the impact of such
capacity extension can be obtained by the following theorem.

Theorem 7 (Long-run Impact): In the long-run market,
we consider the equilibria in (N , Ñ , μ, L) and (N , Ñ ′, μ′, L)
two systems. If μ < μ′, then we have

i) The ISP’s strategy satisfies H ≤ H ′ and p ≥ p′;
ii) The number of CPs satisfies Ñ ≤ Ñ ′.
Theorem 7 states that when the ISP expends its capacity,

the ISP’s optimal p is reduced and H is increased. This will
increase the revenue of CPs, thus the market can accommodate
more CPs. It will facilitate the competition, which leads to
higher sponsored level and user’s traffic usage. This partially
counteracts the effect of capacity expansion.

To further analyze the impact of ISP’s strategy (p, H)
on the long-run market, we also provide some simulation
experiments, in which most of the basic parameters are the
same with the short-run market. Fig. 12 illustrates the impact
of sponsored price on the long-run market. It can be found
from Fig. 12(a) and Fig. 12(b) that, the average time usage
and the sponsored level always decrease with p increasing,
which is consistent with the short-run market. And it reduces
the burden of each CP due to the sponsored strategy. Thus,
each CP’s revenue increases, which results in more CPs in the
market, as shown in Fig. 12(c). Fig. 12(d) shows that the cutoff
of the market always increases with p increasing, especially
under SDP. This indicates that the requirement of the market
decreases and more CPs with higher cost can enter the market.

Different from the short-run market, the average time usage
and the average sponsored level both increase slightly in the

long-run market, as shown in Fig. 13(a) and Fig. 13(b). The
reason behind this is that the number of CPs in the market
increases a lot, as shown in Fig. 13(c), which counteracts
the effects of traffic cap increasing. Due to the operating
costs of CPs increasing more slightly, the requirement to
enter the long-run market only has a slight change, as shown
in Fig. 13(d). It also shows that SDP improves the requirement
to enter the long-run market. In addition, Fig. 12(c) and
Fig. 13(c) also show that the SDP reduces the number of CPs
in the market since it improves the requirement to enter the
long-run market.

In summary: Through our analysis, it has been found that
the influence of ISP’s strategy still cannot be neglected when
we consider the variety demand, and we get some new results.
In the short-run market, if the ISP increases the sponsored
price, both user traffic usage and the sponsored level of CPs
decreases. And if the ISP increases the data cap, the user
traffic usage increases. These conform to the conclusions of
previous studies. But the sponsored level depends on market
variety. And for a variety-lover market, a greater data cap
will lead to a smaller sponsored level. The surprising result
is that for a variety-avoider market, a greater data cap may
lead to an increase in the sponsored level, i.e., the competition
among CPs becomes tougher. Intuitively, this is because the
increased traffic usage does not lead to a matched increase
in variety. Thus, the competition among CPs has intensified.
In the long-run market, the number of CPs in the market
increases if the ISP increases the data cap. The increasing
number of CPs in the market counteracts data cap increase.
As a result, the sponsored level of CPs and users traffic
usage increase slightly as compared with the short-run market.
Meanwhile, if the user quantity becomes larger, the number of
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Fig. 13. Impact of H on the long-run market.

CPs increases. In such situation, when users are variety-lovers
the requirement to enter a market increases, and vice versa.

VI. OBTAINING MARKET PARAMETERS

Some parameters in our model are not directly available
for the ISPs. In this section, we develop a method to calibrate
these parameters through collectable data in the market, which
can also be applied to quantity the love of variety. It can
help the ISPs analyze SDPs more thoroughly, and further
promote the deployment of SDPs. And then, a large amount
of wireless data will be consumed per day, providing more
data for machine learning-based applications [49], [50].

In our model, Equation (5) is one of the important factors
to define the RLV. However, parameters ρ, a, b of Equation (5)
are abstract and cannot be directly obtained from the data in
the market. In real-world deployments, what an ISP can collect
are the sample values of tli, where tli refers to the time that
user l spent on a CPi. Let Yli be the sample values of tli.
Based on Yli, we propose a least square method to calibrate
ρ, a, b as follows.

Since the users can adjust their traffic consumption time tli
to maximize their utility, Yli can be considered as the sample
of user l’s optimal decision for CPi. Therefore, we can use
the optimal user’s decision (i.e., Equation (15)), to achieve the
calibration. In this equation, we have four unknown parameters
ρ, a, b and λ. Because both αi and Ai, which is determined
by p, q, vi, can be obtained from the data in the market. Note
that ρ, a, b are independent from each other. λ, on the other
hand, is a dependent parameter of ρ, a, b. To this end, we first
compute ρ, a, b and then compute λ.

Using the least squares method, we compute the sum of the
least squares errors between the observed data and theoretical
parameters. As such, we obtain a set of residual sum of squares
equations (RSS). After that, we take the partial derivatives of
these RSS equations with respect to ρ, a, b. The values of ρ, a
and b can be solved by setting these equations to 0. More
specifically, these equations are⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑Ñ

i=1
(Yli − ν−

1
ρ + a)ν−

1
ρ ln ν = 0,∑Ñ

i=1
(ν−

1
ρ − Yli − a)ν−

1
ρ−1 = 0,

a = −
∑Ñ

i=1(Yli − ν
−

1
ρ )

N
,

(22)

where ν = λαi − b.

Based on these results, we compute the λ by an iterative
algorithm, as shown in Algorithm 1. The idea of the algorithm
is to first set an initial value of λ and compute ρ, a, b using
the least squares method. Then we iteratively recompute λ by
Equation (23) until convergence, i.e.,

λ =
∑Ñ

i=1 ti[(a+ ti)−ρ + b]
H

. (23)

Algorithm 1 An Iteration Algorithm to Calculate λ

Input: The number of CPs, and initial λ0

1 Initialize the value of λ as λ = λ0

2 while the value of λ is not convergent do
3 for each sample value Yli do
4 Calculate ρ, a, b with Equation (22)

5 Calculate new λ by the new ρ, a, b
6 Updating λ by Equation (23)

7 Return λ

The above method provides a general approach for both
homogenous users with a uniform set of ρ, a, b, and heteroge-
neous users with different ρl, al, bl for each user l. Once the
specific values of these parameters are obtained, we can com-
bine the relevant definitions in Section III to quantify some of
the indicators, e.g., RLV and SRE. For example, the RLV can
be evaluated with Equations (1) and (5). Note that it is possible
to use more specific parameter calibration methods when we
can obtain certain pre-knowledge of the market [51], [52].
For example, if we have sample values of the user’s utility,
we can apply the Kmenta approximation [51], which is mainly
based on Taylor’s expansion and nonlinear least squares meth-
ods. Bayesian approaches [52] can also be applied where they
commonly have higher accuracy and require fewer observation
values.

VII. CONCLUSION

Previous studies, which are used to understand what SDPs
will bring about to the market regarding the only model
price as the driving factor for user decision optimization.
We argue that they overlook the content variety demand
of users. Therefore, we develop a new model to study the
competition among CPs under SDPs in this paper. In order to
integrate such variety into our new model, we define RLV as
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an index. Through a series of transformation, we integrate RLV
into an overall two-stage Stackelberg game model. We conduct
a comprehensive analysis on the competition among CPs, then
derive a set of results out of our new model, some of which
are consistent with (or rectify) previous studies, and some of
which are even completely new results, that is, they haven’t
appeared in previous studies. To make our new model more
practical, we further develop a method to calibrate the abstract
parameters, which bridges the gap between the model and
analyzing a practical market under SDPs. Overall, the new
model proposed in this paper further understands the impact of
SDPs on the practical market, and is conducive to stakeholders
making decisions in SDP ecosystem.
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