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a b s t r a c t 

Due to the explosive growth of mobile data traffic, it has become a common practice for Mobile Network Oper- 

ators (MNOs, also known as operators or carriers) to utilize cellular and WiFi resources simultaneously through 

mobile data offloading. However, existing offloading technologies are mainly established between operators and 

third-party WiFi resources, which cannot reflect users dynamic traffic demands. Therefore, MNOs have to de- 

sign an effective incentive framework, encouraging users to reveal their valuations on resources. In this paper, 

we propose a novel bid-based Heterogeneous Resources Allocation (HRA) framework. It can enable operators to 

efficiently utilize both cellular and operator-own WiFi resources simultaneously, where the decision cost of user 

is strictly controlled. Through auction-based mechanisms, it can achieve dynamic offloading with awareness of 

users valuations. And the operator-domain offloading effectively avoids anarchy brought by users selfishness and 

lack of information. More specifically, HRA-Profit and HRA-Utility , are proposed to achieve the maximal profit 

and social utility, respectively. addition, based on Stochastic Multi-Armed Bandit model, the newly proposed 

HRA-UCB-Profit and HRA-UCB-Utility are able to gain near-optimal profit and social utility under incomplete user 

context information. All mechanisms have been proven to be truthful and satisfy individual rationality, while 

the achieved profit of our mechanism is within a bounded difference from the optimal profit. In addition, the 

trace-based simulations and evaluations have demonstrated that HRA-Profit and HRA-Utility increase the profit 

and social utility by up to 40% and 47%, respectively, compared with benchmarks. And the cellular utilization 

rate is kept at a favorable level under the proposed mechanisms. HRA-UCB-Profit and HRA-UCB-Utility restrict 

pseudo-regret ratios under 20%. 
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. Introduction 

With the explosive growth of intelligent mobile devices and

andwidth-consuming mobile applications, mobile data traffic has expe-

ienced dramatic growth in the past decade [1] . There exists a shortage

f cellular capacity, especially in busy regions during peak periods. It is

ften too expensive or sometimes even impossible for Mobile Network

perators (MNOs) (we use the terms MNO, operator and carrier inter-

hangeably in this paper) to deploy enough cellular resources that can

eet the peak traffic demand [2–4] . Once excessive traffic exceeds the
∗ Corresponding authors. 

E-mail addresses: zhaoyi16@mails.tsinghua.edu.cn (Y. Zhao), xuke@tsinghua.edu

i), n.wang@surrey.ac.uk (N. Wang), suhui12@tsinghua.org.cn (H. Su), shenmeng@

ttps://doi.org/10.1016/j.comnet.2020.107226 

eceived 13 December 2019; Received in revised form 24 February 2020; Accepted 1

vailable online 20 March 2020 

389-1286/© 2020 Elsevier B.V. All rights reserved. 
ellular capacity, it will introduce high congestion cost to MNOs [5–7] .

herefore, MNOs have to utilize other complementary technologies to

nhance transmission capability. 

To reduce the pressure on the cellular networks, WiFi has been

idely used by mobile users to offload mobile data from cellular net-

orks at specific scenarios. It has been envisioned that one of the future

rends for MNOs is to utilize both licensed ( e.g. , cellular) and unlicensed

 e.g. , WiFi) spectrums in Heterogeneous Networks (HetNet) [8–13] . For

xample, Bennis et al. [8] constitute a cost-effective integration of mul-

iple infrastructures, efficiently coping with peak traffic and heteroge-
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Fig. 1. An Example of the System Model. 
eous Quality of Service (QoS) requirements. Unlicensed Long-Term

volution (LTE-U) is also proposed by industries to introduce Long-Term

volution (LTE) in unlicensed spectrums [14] , which will improve the

hroughput of radio access networks. 

WiFi can be divided into third-party WiFi and carrier WiFi (i.e.,

perator-owned WiFi). Third-party WiFi has provided widely deployed

nfrastructures for mobile data offloading. In contrast, infrastructures of

arrier WiFi are deployed and operated by carriers. Existing offloading

echnologies [11,12,15,16] mainly focus on how to utilize third-party

iFi, rather than carrier WiFi. In fact, carrier WiFi should also be ex-

lored and exploited considering the following advantages. First, many

NOs ( e.g. , AT&T, Verizon, China Mobile, and Vodafone) have widely

eployed WiFi Access Points (APs) [17] . Most of these APs are deployed

n busy regions, so they can offload the peak traffic from cellular net-

orks. Second, operator-owned WiFi APs can help improve the QoS.

uring peak hours, third-party WiFi APs may also serve heavy traffic.

n comparison, operators can reserve bandwidth on self-owned APs for

eak-hour cellular offloading. In addition, the security and privacy is-

ues [18] brought by third-party WiFi can also be solved by controlling

he access to operator-owned WiFi APs. Moreover, third-party WiFi APs

an also be utilized by MNOs to provide offloading services [11,19] ,

hich can be regarded as the resources of MNOs. Therefore, we focus

n how to utilize carrier WiFi resources from the perspective of eco-

omics, to alleviate the pressure on cellular networks. 

To achieve the integrated utilization of cellular and carrier WiFi re-

ources, user context information about their valuations on resources

annot be neglected. It is the foundation for achieving economic opti-

ization targets [20,21] , like the maximal profit of the operator and

ocial utility (i.e., the sum of utilities of all users). On the other hand,

perator-dominant offloading (i.e., dynamic resource allocation is dom-

nated by the operator), which has the ability to take into account

ser context information, can achieve better resource allocation per-

ormance, because the operators are better aware of network status. In

ddition, small-scale central control with users’ valuations cannot deal

ith the anarchy brought by users’ local views on the global network

ondition as well as their selfish behaviours, but also satisfy delay re-

uirements. These relevant factors have been considered in our work,

hich are further verified through the trace-based evaluations. 

However, several challenges are brought forth considering users’ val-

ations in heterogeneous resource utilization. First, incentive mecha-

isms are required to motivate users to reveal their true valuations on

esources. Second, the operator profit and social utility must be consid-

red under the premise of true users’ valuations. Third, the interactions

mong users and MNOs should minimize the costs of users. 

To solve the above issues under such circumstances, we propose a

ovel bid-based operator-dominant mobile data offloading framework

etween cellular and carrier WiFi networks, to achieve the Hetero-

eneous Resource Allocation (HRA). In summary, the proposed HRA

ramework in this paper is mainly due to the following motivations. 

• Different from a simpler resource scheduler operated by the MNO

alone, the newly proposed offloading mechanisms should enable

users to express their willingness to use WiFi resources according

to different scenarios. 

• In addition to alleviating the pressure of cellular networks, the newly

proposed framework should also encourage users to reveal their true

valuation on WiFi resources, so that operators can achieve economic

optimization targets. 

• Different from allowing users to freely decide whether to use WiFi

resources, the operator should achieve offloading on the basis of con-

sidering the global network condition, avoiding the anarchy brought

by users local views. 

Thus, MNOs can realize dynamic WiFi pricing and resource alloca-

ion, while mobile users can achieve dynamic data offloading according

o their bids. More specifically, all auction mechanisms proposed in this

aper are established between MNOs and mobile users, instead of MNOs
nd third-party resource owners. And it has been demonstrated through

heoretical analysis that, they can solve the above challenges to encour-

ge users to claim their true valuations and help MNOs make better use

f heterogeneous resources. 

The implementation of HRA framework needs the support of MNOs

r regulators. For operators, the goal is to maximize their profits with

ome constraints such as traffic performance and user experience as-

urance. For regulators, the policy is formulated in order to maximize

ocial utility. Thus, from the perspectives of both operators and regula-

ors, two auction mechanisms, HRA-Profit and HRA-Utility , are designed

o achieve the maximal profit and social utility, respectively. In addition,

RA-UCB-Profit and HRA-UCB-Utility are proposed to gain near-optimal

rofit and social utility under incomplete user information. The follow-

ng summarizes the contributions of this paper. 

• Through offloading between cellular and carrier WiFi networks, the

bid-based operator-dominant offloading framework for the first time

takes users’ valuations on resources into consideration, and effec-

tively avoids anarchy brought by users selfishness and lack of infor-

mation. 

• To enable the newly proposed framework to be applied to more com-

plex scenarios with incomplete information, HRA-UCB-Profit and

HRA-UCB-Utility are proposed to optimize operator profit and social

utility. 

• Compared with classical auction-based mechanisms, we cope with

the challenges brought by HRA’s distinct features. And the proposed

mechanisms have been proven to be truthful and satisfy individual

rationality . 

• Through theoretical analysis, the profit of HRA-Profit has been

proven to be within the bound of the optimal profit. And extensive

evaluations demonstrate the efficiency of the proposed mechanisms,

compared with benchmarks. 

The rest of this paper is organized as follows. Section 2 builds the

ystem model to formulate the problem. Section 3 proposes and the-

retically analyzes the bid-based dynamic resource allocation frame-

ork. Furthermore, Section 4 proposes a model to analyze the resource

llocation with incomplete information. And Section 5 sets up trace-

ased simulations and analyzes the performance of the proposed frame-

ork. Section 6 analyzes the implementation issues of the framework.

ection 7 introduces the related work. Finally, Section 8 concludes the

aper. 

. System model and problem formulation 

The key problem is to determine the allocation of cellular and

perator-owned WiFi resources, especially properly pricing WiFi re-

ources, so as to achieve dynamic resource allocation with considering

NO’s profit, social utility, resource utilization efficiency and QoS. In

his section, we first introduce the system model through an example,

llustrated in Fig. 1 . After explaining the relationship between the sys-

em participants and the main parameters through Fig. 1 , we further
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Table 1 

Major Notation List. 

Symbol Description 

 Set of base-stations, and 𝑁 𝐵 = | |
B j A specific base-station with an index of j , where 𝐵 𝑗 ∈  
 

𝑗 Set of WiFi access points, which are in the 

coverage of B j , and 𝑁 

𝑗 

𝐴 
= | 

𝑗 |
𝐴 

𝑗 

𝑘 
A specific WiFi access point with an index of k , which 

is in the coverage of B j , where 𝐴 𝑗 
𝑘 
∈  

𝑗 

𝐶 𝑗 , 𝐶 
𝑗 

𝑘 
Capacity of B j and 𝐴 𝑗 

𝑘 

𝐿̂ 𝑧 𝑗 , 𝐿̃ 
𝑗,𝑧 

𝑘 
Loads of B j and 𝐴 𝑗 

𝑘 
during time-slot T z 

𝛿𝑧 
𝑖 Connection state of U i during time-slot T z 

𝑝 𝑖 Price of the unit cellular traffic for U i 
𝑝 𝑧 Price of unit WiFi traffic during time-slot T z 
𝑣̄ 𝑧 𝑖 Average data-rate of U i during time-slot T z 
𝑠 𝑧 𝑖 Marginal surplus of U i during time-slot T z 
𝜑 𝑧 𝑖 , 𝜑 

′𝑧 
𝑖 

Ideal and actual marginal utility of U i during time-slot T z 
𝑒 𝑧 𝑗 , ̃𝑒 

𝑧 
𝑗 Marginal operating expense of cellular and WiFi 

networks during time-slot T z 
𝑒̆ 𝑧 Marginal allocation cost during time-slot T z 
𝑏 𝑧 𝑖 , 𝑏 

′𝑧 
𝑖 

Truthful and claimed bid of U i for WiFi during time-slot T z 
𝑟 𝑧 𝑗 Marginal revenue within B j during time-slot T z 
𝜋𝑧 

𝑗 MNO’s profit obtained from users of B j during time-slot T z 

𝑇 Length of each time-slot 
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rovide a high level description of the problem. And then, we present

he user model and operator model separately. Finally, we discuss the

ongestion control of the system model. 

.1. Overview 

In this paper, we consider one specific MNO 

1 , like some studies under

onopoly scenarios [3,22,23] . Considering the differences in traffic de-

and between different regions, the MNO deploys two types of cellular

ase stations (BSs), i.e., macrocell and small cell. Note that the number

f macrocell is more than one, and Fig. 1 merely illustrates that the BSs

ay be of different types. In our system model, the MNO has N B BSs, de-

oted by  = { 𝐵 1 , 𝐵 2 , … , 𝐵 𝑁 𝐵 
} . Since the infrastructures are deployed

y the same operator, the BSs are assumed to have no overlaps between

ach other [12] , and so are the WiFi APs. But each B j may cover multi-

le APs. For a specific BS 𝐵 𝑗 ∈  ( e.g. , the macrocell in Fig. 1 ), within

ts coverage there are 𝑁 

𝑗 
𝐴 

WiFi APs, denoted by  

𝑗 = { 𝐴 

𝑗 

1 , 𝐴 

𝑗 

2 , … , 𝐴 

𝑗 

𝑁 

𝑗 
𝐴 

} .

nd the number of APs in the coverage of different BSs can be different,

llustrated in Fig. 1 , so 𝑁 

𝑗 
𝐴 

is related to BS index j . To differentiate the

apacity of different BSs or APs, the capacity of B j is denoted by 𝐶 𝑗 and

hat of 𝐴 

𝑗 
𝑘 

is denoted by 𝐶 

𝑗 
𝑘 
. Note that the capacity of AP refers to that

f the idle WiFi resources. 

It has been found that the mobile data traffic shows a daily pat-

ern [24,25] . Thus, we consider a one-day time scale. Moreover, one-

ay is divided equally into N T time-slots  = { 𝑇 1 , 𝑇 2 , … , 𝑇 𝑁 𝑇 
} . And the

ength of each time-slot is denoted by 𝑇 on average. For example, one

ay has 1440 min , and if 𝑁 𝑇 = 24 , then 𝑇 = 60 . And T z is a specific time-

lot with an index of z . At time-slot T z , the dynamic load of B j is 𝐿̂ 

𝑧 
𝑗 

and

hat of 𝐴 

𝑗 
𝑘 

is 𝐿̃ 

𝑗,𝑧 
𝑘 

, which shows the dynamic traffic demand on the BS

r AP. When the total demand exceeds the corresponding capacity, net-

ork congestion happens [5] . 

Mobile data of users who are within the coverage of both cellular

nd WiFi networks can be transmitted via either one, thus mobile users

ithin the coverage of different BSs or APs can be different during dif-

erent time-slots. Specifically, the number of mobile users within the

overage of both B j and 𝐴 

𝑗 
𝑘 

during time-slot T z is 𝑁 

𝑗,𝑧 
𝑘 

. Note that 𝑁 

𝑗,𝑧 

0 
ndicates the number of users who are out of any AP coverage, while in

he coverage of B j . 𝑁 

𝑗,𝑧 = 

∑
𝑘 ∈[1 ,𝑁 

𝑗 
𝐴 
]∪{0} 𝑁 

𝑗,𝑧 
𝑘 

denotes the number of all

sers within the coverage of B j . Since some users are not in the cover-

ge of B j , but in the coverage of other BSs, the total number of users

 U in the market is different from N 

j,z , i.e., N 

j,z ≤ N U . If 𝑁 

𝑗,𝑧 = 𝑁 𝑈 ,

t means that there is only one BS in the market, or other BSs don’t

ave any users. Each user in the market can be denoted by U i , where

 ∈  = {1 , 2 , … , 𝑁 𝑈 } , and ̃ denotes the index set of the users connected

o WiFi, where ̃ ⊆ . We use  𝑗 to denote the index set of the users who

re within the coverage of B j in some time-slot, where | 𝑗 | = 𝑁 

𝑗,𝑧 . And

 ̃𝑗 denotes the index set of the users who are within the coverage of B j 

nd connected to WiFi. For example, ̃ 𝑗 = { 𝑈 2 , 𝑈 3 , 𝑈 6 , 𝑈 9 } and 𝑁 

𝑗,𝑧 = 10
ith the example illustrated in Fig. 1 . 

For the sake of clarity, Table 1 lists the major notations used in

his paper. It is worth noting that the specific meaning of the symbol

lso depends on its superscript and subscript. For example, the loads

f a specific base-station B j during time-slot T z is denoted by 𝐿̂ 

𝑧 
𝑗 
. The

ctual profit under HRA-Profit is denoted by 𝜋z , while the theoreti-

ally maximal profit is denoted by 𝜋∗ z . And some notations, which
1 We set up this not only for mathematical simplicity, but also capture one 

NO’s monopoly access power for a majority of users. In addition, if the mul- 

iple MNOs could form an unified coalition, our analysis can be extended into 

he market with multiple MNOs, and our conclusions on the newly proposed 

ramework and mechanisms will hold. Without doubt, it would be interesting 

o study how the presence of multiple competing MNOs could affect the pricing 

olicy. However, due to the complexity of the work, this point could be studied 

s future work. 

a  

c  

d  

g  

d  

a  

f  

i  

i

re easy to understand through the context, are not listed in Table 1 ,

uch as 𝑁 

𝑧 
𝑊 

, which is the simplified version of 𝑁 

𝑗,𝑧 
𝑊 

and represents

he number of winners who are in the coverage of B j during time-slot

 z . 

Since user’s connection states and data consumption behaviors are

ndependent among different BS coverage areas, we focus on the het-

rogeneous resource allocation problem within the coverage of one BS,

nd the detailed reason will be introduced in Section 2.3 . In this pa-

er, we assume that automatic access and transparent handover be-

ween cellular and WiFi networks is achieved, for instance, through

rotocols or application level technologies [26–28] . Therefore, what

s urgently needed to be solved is how to allocate heterogeneous re-

ources dynamically. Considering that mobile users valuations on re-

ources are very important in the market, the auction mechanisms for

eterogeneous resource allocation, therefore, are established between

he MNO and mobile users. To achieve efficient resource allocation, the

ynamic resource allocation is dominated by the operator. This is be-

ause the operator is better aware of network status and has the abil-

ty to take into account user context information. More specifically, in

he operator-dominant offloading, mobile users submit bids to the op-

rator, which can reflect their true valuations on WiFi resources. Sub-

equently, the operator comprehensively considers the bidding profile

nd network status ( e.g. , the capacity of BS and WiFi AP), and carries

ut a series of decision-making operations, including WiFi pricing and

inner determination. After the operator completes the decision-making

rocess, users are divided into two groups, i.e., winners and losers. The

inners and the losers enjoy the operator’s network services through

iFi and cellular networks, respectively. And the example illustrated

n Fig. 1 can provide a more concise overview of these interactions be-

ween the operator and mobile users. Note that when the operator makes

ecisions, there are two types of maximization targets (i.e., maximizing

rofit and maximizing social utility). Meanwhile, although these mech-

nisms for different maximization targets have to encourage users to

laim their true valuations on WiFi resources through their bids, the

etails of the auction mechanism used for different maximization tar-

ets are different, which can be found in Section 3 . In addition, the

ynamic resource allocation is achieved by executing the auction mech-

nism within limited time at the beginning of each time-slot T z . There-

ore, we need to analyze the complexity of relevant algorithms while

ntegrating users’ valuations on WiFi resources to achieve economic

mprovement. 
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Fig. 2. Actual Marginal Utility with Different Sensitivity levels. 
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2 Since the satisfaction level is directly related to the network congestion level, 𝛼

can also be regarded as the sensitivity of the network congestion level . Meanwhile, 

𝛼 has the similar effect to the congestion coefficient in [35] , both of which are 

used to further refine the negative effects of network congestion. 
.2. User model 

As formerly notified in Section 2.1 , each user has two types of states

t any time, being connected to cellular or being connected to WiFi . We

efine the connection state (i.e., 𝛿𝑧 
𝑖 
) of U i during time-slot T z , which is

hown as Eq. (1) . 

𝑧 
𝑖 = 

{ 

1 , if 𝑈 𝑖 is connected to cellular; 

0 , if 𝑈 𝑖 is connected to WiFi. 
(1)

In the real-world wireless data market, the operator provides users

ith a choice of different cellular plans to meet diverse needs. These

ellular plans fall into three main categories, i.e., the usage-based pric-

ng [6] , the flat-rate pricing [25] and tiered pricing [29] . For the usage-

ased pricing (also know as pay-as-you-go , usage-sensitive, etc. ), users

re charged by the volume of consumed mobile data. Instead, the flat-

ate pricing charges a fixed service fee for unlimited data usage within a

eriod of time ( e.g. , one month). And the tiered pricing refers to a mix-

ure of flat-rate pricing and usage-based pricing, where extra charges

er unit usage are imposed on the metered usage beyond the prede-

ned data cap. The volume of consumed mobile data by different users

an be different, thus we use TotalVolume i to represent the total vol-

me of consumed mobile data by U i within one billing cycle. To be

onsistent with reality, different users may have different traffic prices

 e.g. , the difference between plans of different categories, or the differ-

nce between different plans of the same category), which is denoted

y 𝑝 𝑖 . Without any doubt, it can describe the usage-based pricing. Re-

arding the flat-rate pricing, the fixed service fee for U i is denoted by

ixedFee i . And then, we have 𝑝 𝑖 = 

𝐹 𝑖𝑥𝑒𝑑𝐹 𝑒𝑒 𝑖 
𝑇 𝑜𝑡𝑎𝑙 𝑉 𝑜𝑙 𝑢𝑚𝑒 𝑖 

. As for the tiered pricing,

he fixed service fee for U i is also denoted by FixedFee i , which can cover

he predefined data cap DataCap i . Zheng et al. [30,31] have demon-

trated that users with such data cap have strong incentive to plan their

sage per billing cycle. That is, in reality, users do usually limit their

sage below this cap (i.e., TotalVolume i ≤ DataCap i ), due to the high

ee charged for beyond. For users with tiered pricing, therefore, we

ave ̂𝑝 𝑖 = 

𝐹 𝑖𝑥𝑒𝑑𝐹 𝑒𝑒 𝑖 
𝐷𝑎𝑡𝑎𝐶𝑎𝑝 𝑖 

. Overall, ̂𝑝 𝑖 has the ability to describe different traffic

rices for different users, even if these users use different categories of

lans. More specifically, we have ̂𝑝 𝑖 ∈ ($0 , $2)∕ 𝐺𝐵 in our simulation ex-

eriments, and all values of ̂𝑝 𝑖 follows the specific Gaussian distribution,

.e., { ̂𝑝 𝑖 |𝑖 ∈ } ∼ 𝑁 

(
𝜇 = 1 , 𝜎2 = 4 

)
. After subscribing MNO, U i will be as-

igned a Maximum Information Rate (MIR), denoted by V i , which limits

he instant data-rate. The actual instant data-rate depends on the data

equests of mobile applications, and the average data-rate of U i during

ime-slot T z is denoted by 𝑣̄ 𝑧 
𝑖 
, where 𝑣̄ 𝑧 

𝑖 
≤ 𝑉 𝑖 , ∀𝑖 ∈ . 

From the perspective of social utility, the goal of the dynamic re-

ource allocation is to maximize the sum of user utilities. And the user

tility describes the value that the user gains from consuming mobile

ata. The alpha-fair utility model [32,33] is often used to model user

tility on the Internet, where an increasing and concave utility function

mulates a decreasing marginal benefit to user’s additional bandwidth.

owever, the alpha-fair utility model ignores the temporal distribution

f mobile traffic demands. For example, although the utility of checking

n email at night is as much as that of checking an email in the morning,

he alpha-fair utility model generates different utilities. The reason is,

n the alpha-fair utility model, the marginal benefit gradually decreases

ith the increase of traffic, so the utility in the evening is smaller than

hat in the morning at the same day. Therefore, we introduce a new

efinition of marginal utility . 

efinition 1. U i ’s marginal utility 𝜑 

𝑧 
𝑖 
≥ 0 indicates the monetary value

ained from consuming one unit mobile traffic without congestion, i.e.,

he intrinsic value of per unit mobile traffic to U i during time-slot T z . 

For the design of a practical resource allocation mechanism, the user

tility should also take the network congestion into account, which is a

onsensus in many real-world scenarios [7,34–36] . That is, the marginal

tility should also have the ability to reflect the influence of network
ongestion. In these studies, it is consistently agreed that network con-

estion has a negative impact on the user utility. Meanwhile, the related

tility function can be defined as an abstract function with characteristic

estrictions, and the specific form may be different. For example, Gong

t al. [35] define the user utility as the intrinsic value minus the nega-

ive impact of congestion, where the negative impact is determined by

he user’s congestion coefficient and network congestion level. And Zou

t al. [7] define the user utility as the product of intrinsic value and sat-

sfaction discount function. The satisfaction discount function (i.e., v ( · )

n [7] ) can captures the negative effect of congestion on user’s intrinsic

alues. More specifically, the user cannot get any utility (i.e., 𝑣 ( ⋅) = 0 )
hen the network congestion level reaches the maximum, while the

ser can get all the intrinsic value (i.e., 𝑣 ( ⋅) = 1 ) when there is no net-

ork congestion. To this end, we propose the actual marginal utility to

ntegrate network congestion, which is defined as Eq. (2) . 

 

′𝑧 
𝑖 = 𝜑 

𝑧 
𝑖 ⋅ 𝛾

𝛼 = 𝜑 

𝑧 
𝑖 ⋅

⎛ ⎜ ⎜ ⎜ ⎝ min 
⎧ ⎪ ⎨ ⎪ ⎩ 

𝐶 𝑗 

𝐿̂ 

𝑧 
𝑗 

, 1 
⎫ ⎪ ⎬ ⎪ ⎭ 
⎞ ⎟ ⎟ ⎟ ⎠ 
𝛼

(2)

here 𝛾 = min { 𝐶 𝑗 
𝐿̂ 𝑧 

𝑗 

, 1} is used to reflect the satisfaction level , which is

elated to the network congestion level . For example, when the network

apacity (i.e., 𝐶 𝑗 ) is greater than the network load (i.e., ̂𝐿 

𝑧 
𝑗 
) during time-

lot T z , the user can get all the intrinsic value (i.e., 𝜑 

𝑧 
𝑖 
) without conges-

ion. And when 𝐶 𝑗 < 𝐿̂ 

𝑧 
𝑗 
, network congestion occurs and the satisfaction

evel (i.e., 𝛾) will be less than 1. In particular, if the network congestion

evel research the maximum (i.e., 𝐶 𝑗 ≫ 𝐿̂ 

𝑧 
𝑗 

and 𝛾 → 0), the user cannot

et any utility. And 𝛼 ∈ [1 , +∞) represents the sensitivity of the satisfac-

ion level 2 , indicating how sharply user’s marginal utility will decrease

ith congestion. To better understand the impact of 𝛼, we plot the curves

n Fig. 2 to illustrate some examples. 

Fig. 2 shows the effect on actual marginal utility at different sen-

itivity levels, where the marginal utility without congestion (i.e., the

ntrinsic value of per unit mobile traffic without congestion, defined in

efinition 1 ) is assumed to 1.0. And 𝛼 = 1 , 𝛼 = 2 . 5 , and 𝛼 = 4 are rep-

esented by three levels of low, medium and high. It can be found in

ig. 2 that, when there is no network congestion (i.e., 𝐶 𝑗 ≥ 𝐿̂ 

𝑧 
𝑗 
), the sen-

itivity level has no effect on the actual marginal utility . Once the network

s congested (i.e., 𝛾 < 0), the actual marginal utility is gradually reduced

ith the decrease of 𝛾 (i.e., more serious network congestion). In partic-

lar, when the network congestion level is relatively small (i.e., 𝛾 is close

o 1, which is a more likely scenario), the decrease in the actual marginal

tility is sharper with a higher sensitivity level. This demonstrates that
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can indicate how sharply user’s marginal utility will decrease with

ongestion. In contrast, when the network congestion level is extremely

evere (i.e., 𝛾 is close to 0, which is a rare scenario), the decrease in the

ctual marginal utility is sharper with a lower sensitivity level. This is be-

ause the actual marginal utility with higher sensitivity level is closer to

 earlier. Note that the sensitivity level is assumed to be the same for all

sers in this paper, as indicated in Eq. (2) , i.e., 𝛼 is not associated with

he user index i . We stress that this is for convenience of analysis, and

he conclusions of this paper are not affected with different 𝛼. Similar

implifications can be found in other studies [35] , where the congestion

oefficient in the utility function of all users is assumed to be the same.

ith regard to this hyperparameter, we have 𝛼 = 2 . 5 (i.e., the line of

edium level in Fig. 2 ) in the simulation experiments 3 . And different

sers can have different intrinsic valuation of the wireless services [35] ,

hich is similar to the marginal utility without congestion in this paper,

s indicated in Eq. (2) , i.e., 𝜑 

𝑧 
𝑖 

is associated with the user index i . 

efinition 2. U i ’s marginal surplus 𝑠 𝑧 
𝑖 

indicates the difference be-

ween the marginal utility 𝜑 

𝑧 
𝑖 

and the payment for the unit mobile traffic

 

𝑧 
𝑖 
, i.e., 𝑠 𝑧 

𝑖 
= 𝜑 

𝑧 
𝑖 
− 𝑚 

𝑧 
𝑖 
. 

Users are assumed to be rational in this paper, meaning that the max-

mum marginal surplus will be the eternal pursue for each user. Follow-

ng the definition of user connection state, the payment for unit mobile

raffic by U i is expressed as Eq. (3) . 

 

𝑧 
𝑖 = 𝛿𝑧 

𝑖 ⋅ 𝑝 𝑖 + (1 − 𝛿𝑧 
𝑖 ) ⋅ 𝑝 

𝑧 (3)

here 𝑝 𝑧 is the unit price of WiFi traffic during time-slot T z , and how

o get ̃𝑝 𝑧 will be discussed in Algorithm 1 . Note that ̃𝑝 𝑧 is the universal

iFi price for each winner in the auction. 

During the allocation of cellular and WiFi resources, we utilize 𝑏 𝑧 
𝑖 

o indicate the relative willingness for WiFi connection expressed by

 i ’s bid . And 𝑏 𝑧 
𝑖 

can be combined with 𝑝 𝑖 to express how much money

 i wants to pay for WiFi connection. U i ’s highest willingness to pay

 HWTP ) for WiFi traffic is denoted as 𝑃 𝑧 
𝑖 
, and the calculation will be

escribed later. And 𝑏 𝑧 
𝑖 

is defined as Eq. (4) . 

 

𝑧 
𝑖 = 

𝑃 𝑧 
𝑖 

𝑝 𝑖 
(4)

From Eq. (4) , we can see the real meaning of 𝑏 𝑧 
𝑖 

is the ratio value

f HWTP and cellular data traffic price. In other words, 𝑏 𝑧 
𝑖 

does not

ean that how much money U i wants to pay for WiFi connection, but

eans a relative coefficient. How much money U i wants to pay for WiFi

onnection will be introduced later, shown as Eq. (15) . 

efinition 3 (Individual Rationality (IR) ) . is satisfied if each user gets

he same or a higher surplus by using WiFi than cellular networks. 

According to Definition 3 , we have Eq. (5) . 

 ̃

𝑧 
𝑖 = argmax 

𝑃 𝑧 
𝑖 

{ 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 − 𝑃 𝑧 𝑖 ≥ 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 − ̂𝑝 𝑖 } = 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 − 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 + ̂𝑝 𝑖 (5) 

herefore, according to Eqs. (4) and (5) , 𝑏 𝑧 
𝑖 

can be expressed by Eq. (6) .

 

𝑧 
𝑖 = 1 + 

𝜑 

𝑧 
𝑖 
|𝛿𝑧 

𝑖 
=0 − 𝜑 

𝑧 
𝑖 
|𝛿𝑧 

𝑖 ′
=1 

𝑝 𝑖 
(6)

We further explain why 𝑏 𝑧 
𝑖 

means a relative coefficient. For example,

 

𝑧 
𝑖 
= 0 means that U i prefers to be offloaded to WiFi only if the WiFi

raffic is free. And 𝑏 𝑧 
𝑖 
= 1 . 5 means that U i is willing to pay 50% more for

iFi traffic than cellular traffic during time-slot T z . Similarly, 𝑏 𝑧 = 0 . 5

𝑖 

3 In fact, users can be divided into different groups with different sensitivity 

evel, and it can cause many complex issues, such as fairness between different 

roups. For example, users with higher sensitivity level have stronger intrinsic 

otivation to escape from the congested cellular network, but it also results in 

 greater cost. Due to the complexity of the work, this article focuses on the 

uction mechanism. 

𝑠

w  

T  

n  
eans that U i is only willing to pay half of cellular traffic price for WiFi

raffic. 

The claimed bid of U i during time-slot T z is denoted by 𝑏 ′𝑧 𝑖 . It should

e noted that users may choose to lie (i.e., 𝑏 ′𝑧 𝑖 ≠ 𝑏 𝑧 
𝑖 
) for higher surpluses,

nd there will be a more detailed discussion in the rest of this paper. 

efinition 4. Truthful means that all the users submit their real bids

ithout lying. Truthful is also called Incentive Compatible (IC) . 

Both IR and IC should be satisfied when we design the resource al-

ocation mechanism because they are the foundations for analyzing the

ptimization goals. 

User mobility can be modeled using the dynamic access status of

sers. The access status of U i during time-slot T z is denoted by 𝐚 𝑧 
𝑖 
=

 𝑎 𝑧 
𝑖, 1 , 𝑎 

𝑧 
𝑖, 2 ) , where 𝑎 𝑧 

𝑖, 1 indicates the BS index and 𝑎 𝑧 
𝑖, 2 indicates the AP in-

ex. It is assumed that all users will always be under the coverage of

ellular networks. But U i may be out of the access of APs during time-

lot T z , then 𝑎 𝑧 
𝑖, 2 = 0 . 

Then the BS/AP-level mobility of U i during one day can be denoted

y 𝐚 𝑖 = ( 𝐚 1 
𝑖 
, 𝐚 2 

𝑖 
, … , 𝐚 𝑁 𝑇 

𝑖 
) . User mobility also shows a daily pattern which

s determined by his/her home address, work place, daily schedule, and

o on. 

.3. Operator model 

For MNOs, we focus on their profit generated from the consumption

f mobile data. To this aim, we analyze the cost and revenue of operating

obile networks. 

1) Cost: The cost of both cellular and WiFi networks consists of CAP-

tal EXpenditure ( CAPEX ) and OPerating EXpense ( OPEX ). In this paper,

e focus on the utilization of the existing wireless resources of opera-

ors, so CAPEX is ignored in our analysis. OPEX consists of the cost for

ransmitting the mobile data via cellular and WiFi networks. 

efinition 5. Marginal OPEX is operator’s cost for transmitting mobile

raffic during one unit time via cellular or WiFi networks. 

When the cellular or WiFi traffic demand is below the correspond-

ng capacity, the marginal cost for transmitting more data is quite low.

owever, when the capacity is exceeded, the congestion cost will in-

rease dramatically. Therefore, we define the marginal OPEX of cellular

nd WiFi networks during time-slot T z by piecewise-linear and convex

unctions [5] , which are denoted by ̂𝑒 𝑧 
𝑗 
( ̂𝐿 

𝑧 
𝑗 
, 𝐶 𝑗 ) and ̃𝑒 

𝑗,𝑧 
𝑘 
( ̃𝐿 

𝑗,𝑧 
𝑘 

, 𝐶 

𝑗 
𝑘 
) , respec-

ively. 

2) Revenue: The operator’s revenue comes from user’s payments for

ellular and WiFi networks. We define marginal revenue as the opera-

or’s revenue within a specific base station ( e.g., B j ) during a unit time,

enoted by 𝑟 𝑧 
𝑗 
= 

∑
𝑖 ∈ 𝑗 𝑚 

𝑧 
𝑖 
⋅ 𝑣̄ 𝑧 

𝑖 
. 

3) Profit: The operator profit obtained from the users within the cov-

rage of B j during time-slot T z is denoted by 𝜋𝑧 
𝑗 
, which can be derived

rom its revenue and cost, as shown in Eq. (7) . 

𝑧 
𝑗 = 

⎡ ⎢ ⎢ ⎢ ⎣ 𝑟 
𝑧 
𝑗 − 

⎛ ⎜ ⎜ ⎜ ⎝ 𝑒 
𝑧 
𝑗 + 

∑
𝐴 

𝑗 
𝑘 
∈ 

𝑗 

𝑒 
𝑗,𝑧 
𝑘 

⎞ ⎟ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎥ ⎦ ⋅ 𝑇 (7) 

here 𝑇 denotes the length of each time-slot. The goal of MNO is to

ursue the maximal profit, as shown in Eq. (8) with constraints (9) . 

ax 
∑

𝐵 𝑗 ∈ 
∑

𝑇 𝑧 ∈ 
𝜋𝑧 

𝑗 (8) 

.𝑡. 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑏 𝑧 

𝑖 
= 𝑏 ′𝑧 𝑖 , ∀𝑖 ∈  𝑗 

𝑠 𝑧 
𝑖 
≥ 𝑠 𝑧 

𝑖 
|𝛿𝑧 

𝑖 
=1 , ∀𝑖 ∈  𝑗 

𝐿̃ 

𝑗,𝑧 
𝑘 

≤ 𝐶 

𝑗 
𝑘 
, ∀𝐴 

𝑗 
𝑘 
∈  

𝑗 

(9) 

here constraints (9) indicate that users always submit truthful bids .

hus, the individual rationality is achieved, and WiFi APs, as the alter-

ative access resources, will not be overloaded. It should be noted that,
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a  
hen deciding which users can use WiFi, MNO will consider the load of

Ps. In other words, MNO has the right to control the WiFi APs access,

t is easy to ensure WiFi APs cannot be overloaded. 

The profit of MNO is related to the revenue and costs of each BS,

nd users may move among different BSs. Therefore, profit optimiza-

ion needs to consider the collaboration among BSs. However, the HRA

echanisms proposed in this paper carry out periodic resource dynamic

llocation, in which the mobility of users will be discovered, so we do

ot need to consider the collaboration among different BSs. Without con-

idering the coordination among different BSs, the optimization prob-

em can be divided into each BS during each time-slot, expressed as

q. (10) with constraints (9) . 

ax 𝜋𝑧 
𝑗 (10)

As formerly notified, the optimization of different BSs can be simpli-

ed to that of each BS. For conciseness of the notions, in the rest of this

aper, the notions of the whole market may have the same meanings as

he related notions of a certain BS, unless there is special instructions.

n other words, in some cases, we can assume that there is only one BS

n the market. For example, 𝐴 

𝑗 
𝑘 
,  

𝑗 ,  𝑗 , ̃ 𝑗 can be simplified as A k ,  ,

, ̃ . And some newly defined nations may no longer specifically add

he superscripts and subscripts. For instance, 𝑁 

𝑧 
𝑊 

represents the num-

er of winners who are in the coverage of B j during time-slot T z . If not

implified, it can is denoted by 𝑁 

𝑗,𝑧 
𝑊 

. 

.4. Congestion control 

Oversubscription is a common strategy of MNO [37] . Due to the

emporal and spatial dynamics of mobile data demands, congestions

an frequently happen at the BSs within busy regions. MNO’s conges-

ion control strategies are assumed to control the instant data-rates of

he users with proportional to their MIRs mentioned in Section 2.2 . In

ther words, when congestions happen, the whole capacity of the BS will

e occupied, and the congestion cost will be derived from the marginal

PEX defined in Section 2.3 based on the capacity and the actual mobile

ata demands. 

. Bid-based resource allocation framework 

We propose a bid-based resource allocation framework, as shown in

ig. 3 . The allocation of cellular and WiFi resources is achieved through

he operator-dominant mobile data offloading, i.e., the cellular data of

ome users is offloaded to WiFi networks through a decision-making auc-

ion. More specifically, we first summary the heterogeneous resource

llocation, focusing on the distinctive features from classical auction-

ased allocation. We then discuss the trigger policy of HRA and how

sers can participate in resource allocation through bidding. Further-

ore, we give the implementation details of the two mechanisms (i.e.,

RA-Profit and HRA-Utility ), respectively. Finally, we prove that both

echanisms achieve incentive compatibility and individual rationality,

s well as the bounded difference between the actual achieved profit

nd the theoretically maximal profit. 
Fig. 3. Heterogeneous Resource Allocation Framework. 
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.1. Overview of heterogeneous resource allocation 

Users’ valuations on cellular resources have been revealed through

heir purchase and consumption behaviors of cellular data. However,

heir valuations on WiFi resources remain private. Note that the pri-

ate property mentioned in this article is mainly due to users’ subjec-

ive factors, such as the aspiration level of the activities they are engaged

n [38] , the emotional state they are in, etc. . And the uncertainty and

ynamics of similar subjective factors can only be actively reflected by

sers based on their own circumstances. Therefore, we design a bid-

ased resource allocation framework, which can encourage users to

laim their true valuations through some proper auction mechanisms.

hat is more, to achieve high-efficient resource allocation, central con-

rol within each BS area is preferred and feasible. Because the number of

sers in the coverage of each BS is limited, which is conductive to sat-

sfying delay requirements [39] . Meanwhile, compared to each user’s

wn decision-making, central control of operators can consider more

omprehensive information. 

We introduce Heterogeneous Resource Allocation mechanism to

olve the allocation of cellular and WiFi resources among heterogeneous

sers. In HRA, the winners of the auction can access the operator’s WiFi

nd the others remain connected to cellular networks. For each U i , the

rice of cellular data is predetermined, and may be different for each

ser. But the price of WiFi data is determined by the dynamic network

tatus and user demands. HRA will complete the resource allocation de-

ision at the beginning of each time-slot T z , so we focus on the resource

llocation problem in each time-slot. 

Compared with classical auction-based allocation, HRA has the fol-

owing distinct features: 

• The operator wants to sell WiFi in HRA. However, the amount of

resource to be sold is not predetermined. Instead, the sold amount

will be dynamically tuned to maximize the operator’s profit or social

utility. 

• Different from traditional auctions, users who fail in HRA can still

gain utilities by consuming cellular data. Thus, this feature has to be

considered when analyzing the constraint on individual rationality . 

• Once winning the auction, users can only access WiFi. But, the fi-

nal utilities gained by the winners are also closely related to their

data-rates, like the click-rates in the position auction for online ad-

vertisements [40] . 

In summary, traditional auction theories do not apply to the resource

llocation problem in this paper. We design HRA-Profit and HRA-Utility

o achieve the maximal profit and social utility, respectively. To achieve

hese goals, the allocation rule should make two decisions, including the

uction winners who can access WiFi, and the access price. It consists

f two phases, namely, winner determination and WiFi pricing. 

.2. Trigger policy of HRA 

The hybrid trigger policy for HRA involves two triggers, which are

utually independent. 

1) Time-driven trigger: MNO can set a time schedule for the resource

llocation controller to start HRA. For example, MNO can set a periodic

chedule based on the defined time-slot and possibly the daily mobile

ata traffic pattern within each cellular base station. 

2) Event-driven trigger: HRA can also be triggered by cellular load

rigger. For example, HRA will be triggered when data requests exceed

he capacity of cellular networks. 

.3. Bidding profile 

To participate in resource allocation, users only need to submit their

laimed bids 𝑏 ′𝑧 𝑖 . Users can preconfigure their bids, which will remain

nchanged without user’s modification. Then the bids can be submitted

utomatically by user devices, so as to ease user’s burden brought by
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Algorithm 3: Winner Determination - HRA-Profit . 

Input : 𝐟 𝑧 , 𝐶 𝑗 , ̂𝐿 

𝑧 
𝑗 
, 𝐶 

𝑗 
𝑘 
, ̃𝐿 

𝑗,𝑧 
𝑘 

Sort the bidders (bidding profile 𝐟 𝑧 ), i.e., Algorithm 2; 

Δ𝜋′ ← 0 is the temporary value of profit variation; 

̃ ′ ← ∅ temporarily record possible winners; 

for ( 𝑁 

𝑧 
𝑊 

← 1; 𝑁 

𝑧 
𝑊 

≤ 𝑁 

𝑗,𝑧 ; 𝑁 

𝑧 
𝑊 

← 𝑁 

𝑧 
𝑊 

+ 1 ) do 

if (AP is overloaded when the top 𝑁 

𝑧 
𝑊 

bidders win) then 

break ; 

Calculate the WiFi price ̃𝑝 𝑧 , i.e., Algorithm 1; 

if ( Δ𝜋𝑧 ( ̃𝑝 𝑧 , 𝑁 

𝑧 
𝑊 

) (Eq. (14)) > Δ𝜋′) then 

Add (Δ𝜋𝑧 ( ̃𝑝 𝑧 , 𝑁 

𝑧 
𝑊 

) , 𝑁 

𝑧 
𝑊 

) to  ′; 
Δ𝜋′ ← Δ𝜋𝑧 ( ̃𝑝 𝑧 , 𝑁 

𝑧 
𝑊 

) ; 

𝑁 

𝑧 
𝑊 

is assigned to the value of 𝑁 

𝑧 
𝑊 

that maximizes Δ𝜋𝑧 in ̃ ′; 
̃ is the set of top 𝑁 

𝑧 
𝑊 

bidders in the sorted bidder list; 

return ̃ , i.e., the set of winners; 
he auction. To achieve the allocation with high efficiency, operators

lso collect other information besides the claimed bids of users. First, as

entioned in Section 2.2 , U i has a data traffic price ̂𝑝 𝑖 , which can reflect

 i ’s valuations on cellular data. Combined with users’ bids, operators

an further derive their valuations (claimed) on WiFi traffic. Second,

t is useful to know users’ historical traffic consumption statistics, on

hich operators can depend to estimate their consumption behaviors in

he following time-slot. To sum up, the bidding profile of U i is expressed

s Eq. (11) . 

 

𝑧 
𝑖 = ( ̂𝑝 𝑖 , 𝑏 ′

𝑧 
𝑖 , 𝑣 

′𝑧 
𝑖 , 𝑣̄ 

𝑧 −1 
𝑖 ) (11)

here 𝑣 ′
𝑧 

𝑖 is the average data-rate of U i during time-slot T z on the pre-

ious day, and 𝑣̄ 𝑧 −1 
𝑖 

is the average data-rate during time-slot 𝑇 𝑧 −1 on the

urrent day. 

Note that the actual user data demand during the next time-slot is

nknown. To estimate the average data-rate in the following time-slot,

e provide the estimation function, which is denoted by Eq. (12) . 

̄ 𝑧 𝑖 = 𝛽 ⋅ 𝑣 ′𝑧 𝑖 + (1 − 𝛽) ⋅ 𝑣̄ 𝑧 −1 𝑖 (12)

here 𝛽 ∈ [0, 1] is the estimation factor . The estimation function con-

iders both the daily traffic pattern and the dynamics of mobile data de-

ands. The value of 𝛽 can be trained from historical data using the least-

quare method. Furthermore, to study the scenario with incomplete user

emand information, a learning-based Upper Confidence Bound (UCB)

llocation strategy will be proposed in Section 4 . The overhead for deal-

ng with the bidding profile is acceptable considering the distributed

ontrollers and limited user scale in each cell, which is conductive to

atisfying delay requirements. 

.4. Allocation rules of HRA-Profit 

From operators’ points of view, the goal of resource allocation opti-

ization is to maximize their profit. Therefore, HRA-Profit is proposed

o maximize operator’s profit, as described in Eq. (10) . The pricing strat-

gy of traffic has been widely studied [32,41–45] , so we just focus on

he profit change resulted from the mobile data offloading in this pa-

er. To capture the variation in operator’s profit, we first introduce the

oncept of marginal allocation cost . 

efinition 6. Marginal allocation cost is defined as the difference be-

ween the operator’s marginal revenue when all users use cellular net-

orks and users have been connected to heterogeneous networks, i.e.,

ellular and WiFi networks. 

The allocation cost 𝑒̆ 𝑧 can be expressed by Eq. (13) . 

̆ 𝑧 = 

∑
𝑖 ∈ 

𝑣̄ 𝑧 𝑖 ⋅ 𝑝 𝑖 − 

⎛ ⎜ ⎜ ⎝ 
∑

𝑖 ∈{ ∖ ̃ } 
𝑣̄ 𝑧 𝑖 ⋅ 𝑝 𝑖 + 

∑
𝑖 ∈̃ 

𝑣̄ 𝑧 𝑖 ⋅ 𝑝 
𝑧 
⎞ ⎟ ⎟ ⎠ = 

∑
𝑖 ∈ 

(1 − 𝛿𝑧 
𝑖 ) ⋅ 𝑣̄ 

𝑧 
𝑖 ⋅ ( ̂𝑝 𝑖 − ̃𝑝 𝑧 ) 

(13) 

Note that marginal allocation cost can be positive or negative. In

ther words, the operator may pay incentive cost or earn extra revenue

hrough user’s mobile data offloading. 

The change of the operator’s profit caused by mobile data offload-

ng during time-slot T z is denoted by Δ𝜋z , which can be derived from

q. (14) . 

𝜋𝑧 = −(Δ𝑒 𝑧 + Δ𝑒 𝑧 + 𝑒̆ 𝑧 ) ⋅ 𝑇 (14)

here Δ𝑒 𝑧 and Δ𝑒 𝑧 are the variation of marginal cost on cellular and

iFi networks, respectively. 

1) WiFi Pricing: Due to the strong user mobility and highly dynamic

raffic, WiFi pricing is dynamically determined in the proposed mech-

nism, so as to take advantage of users’ valuations and achieve higher

rofit or social utility. 

The pricing of WiFi resources during time-slot T z is calculated ac-

ording to the bidding profile 𝐟 𝑧 = { 𝐟 𝑧 1 , 𝐟 
𝑧 
2 , … , 𝐟 𝑧 

𝑁 

𝑗,𝑧 } and the number of

inners 𝑁 

𝑧 
𝑊 

, which will be determined by the Winner Determination
 HRA-Profit algorithm (i.e., Algorithm 3 ). The Claimed Willingness To

ay ( CWTP ) of U i for WiFi resources can be derived by Eq. (15) . 

 ̃

′𝑧 
𝑖 = 𝑏 ′

𝑧 
𝑖 ⋅ 𝑝 𝑖 (15) 

Then the WiFi pricing function ( 𝐟 𝑧 , 𝑁 

𝑧 
𝑊 

) → 𝑝 𝑧 can be demonstrated

y Algorithm 1 , and the Biddersort algorithm in WiFi Pricing algo-

ithm is shown in Algorithm 2 , which sorts the bidders in a descending

rder based on their CWTP . 

Algorithm 1: WiFi Pricing. 

Input : 𝐟 𝑧 , 𝑁 

𝑧 
𝑊 

, which is determined by Winner Determination 

algorithms (i.e., Algorithms 3, 4) 

Use Biddersort (i.e., Algorithm 2) to sort the bidders (bidding 

profile 𝐟 𝑧 ); 
if 𝑁 

𝑧 
𝑊 

< 𝑁 

𝑗,𝑧 then 

The WiFi price is assigned as the CWTP of the ( 𝑁 

𝑧 
𝑊 

+ 1) -th 
bidder in the sorted bidder list; 

else 

WiFi price is 0, i.e., WiFi will be free for winners; 

return ̃𝑝 𝑧 , i.e., the determined universal price of WiFi; 

Algorithm 2: Biddersort. 

Input : The original bidding profile, 𝐟 𝑧 
Compute CWTP for WiFi ̃𝑝 ′𝑧 

𝑖 
, of all bidders, i.e., Eq. (15); 

Use quicksort to sort the bidders (bidding profile 𝐟 𝑧 ) in descending 

order according to the calculated CWTP ̃𝑝 ′𝑧 
𝑖 
; 

return 𝐟 𝑧 ( 𝑠𝑜𝑟𝑡𝑒𝑑) , i.e., the sorted bidding profile; 

According to Algorithm 1 , the price of WiFi is determined by the

WTP of the first user who has failed in HRA-Profit in the sorted bidder

ist. This policy is the key to the truthfulness of the mechanism, which

ill be proven in Theorem 1 . ̃𝑝 𝑧 is the determined universal WiFi price

uring time-slot T z . 

2) Winner Determination: The process of HRA-Profit winner determi-

ation can be demonstrated by Algorithm 3 , which aims to maximize

perator’s profit under the constraints mentioned in Eq. (9) . Like other

ommon practices in an auction, the bidders are sorted in a descending

rder based on their CWTP using the Biddersort algorithm. However,

he amount of WiFi resources that will be auctioned is not predeter-

ined. Instead, it will be dynamically explored when the operator profit

s dynamically calculated based on the bidding profile. The winners will

e determined once the profit-maximizing allocation is found. 
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The operator profit can be considered as a function of the traffic

emand offloaded from cellular network to WiFi. Therefore, the theo-

etically maximal profit will be achieved only if the offloaded traffic de-

and is continuous upon various number of winners, i.e., the demand of

 single user is quite small (infinitely close to zero), which is apparently

nrealistic for some users. However, the actual profit under HRA-Profit

as a bounded difference with the theoretically maximal profit, which

ill be demonstrated and proven in Theorem 3 . Moreover, the bound

ill be quite small compared with the total profit because the demand

f a single user is quite small compared with the amount of total traffic

olume within a cellular. 

.5. Allocation rules of HRA-Utility 

The sum of user utilities indicates the social utility, which will be-

ome the optimization goal if considering public interest. Therefore, we

lso propose HRA-Utility to maximize user utilities to achieve the op-

imal social utility, which can be denoted by Eq. (16) with constraints

9) . 

ax 
∑
𝑖 ∈ 

𝜑 

′𝑧 
𝑖 𝑣̄ 

𝑧 
𝑖 𝑇 (16)

For the convenience of analysis, we define the difference between

he social utility before and after U i ’s offloading as Δ𝜑 

𝑧 ( ̃ , 𝑖 ) , which is

hown as Eq. (17) . 

𝜑 

𝑧 ( ̃ , 𝑖 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
∑

𝑖 ′∈∖{ ̃ ∪{ 𝑖 }} 
𝜑 

′𝑧 
𝑖 ′ |𝛿𝑧 

𝑖 ′
=1 ⋅ 𝑣̄ 

𝑧 
𝑖 ′
+ 

∑
𝑖 ′∈̃ ∪{ 𝑖 } 

𝜑 

′𝑧 
𝑖 ′ |𝛿𝑧 

𝑖 ′
=0 ⋅ 𝑣̄ 

𝑧 
𝑖 ′

− 

∑
𝑖 ′∈∖ ̃ 

𝜑 

′𝑧 
𝑖 ′ |𝛿𝑧 

𝑖 ′
=1 ⋅ 𝑣̄ 

𝑧 
𝑖 ′
− 

∑
𝑖 ′∈̃ 

𝜑 

′𝑧 
𝑖 ′ |𝛿𝑧 

𝑖 ′
=0 ⋅ 𝑣̄ 

𝑧 
𝑖 ′

⎫ ⎪ ⎬ ⎪ ⎭ ⋅ 𝑇 (17)

1) WiFi Pricing: The pricing of WiFi in HRA-Utility can also be demon-

trated by Algorithm 1 . But even so, the final WiFi price of each time-

lot is different from that under HRA-Profit because one of the inputs

f WiFi Pricing , i.e., the number of winners, is different from that under

lgorithm 3 . 

2) Winner Determination: The winner determination process in HRA-

tility can be demonstrated by Algorithm 4 , which aims to achieve max-

mal social utility, i.e., maximizing the sum of user utilities. 

Algorithm 4: Winner Determination - HRA-Utility . 

Input : 𝐟 𝑧 , 𝐶 𝑗 , ̂𝐿 

𝑧 
𝑗 
, 𝐶 

𝑗 
𝑘 
, ̃𝐿 

𝑗,𝑧 
𝑘 

Sort the bidders (bidding profile 𝐟 𝑧 ), i.e., Algorithm 2; 

̃ ← ∅; 

for ( 𝑁 

𝑧 
𝑊 

← 1; 𝑁 

𝑧 
𝑊 

≤ 𝑁 

𝑗,𝑧 ; 𝑁 

𝑧 
𝑊 

← 𝑁 

𝑧 
𝑊 

+ 1 ) do 

if (AP is overloaded when the top 𝑁 

𝑧 
𝑊 

bidders win) then 

break ; 

if ( Δ𝜑 

𝑧 ( ̃ , 𝑁 

𝑧 
𝑊 

) (Eq. (17)) ≥ 0 ) then 

Bidder 𝑁 

𝑧 
𝑊 

in the sorted bidder list is added to ̃ ; 
return ̃ , i.e., the set of winners; 

Sorted in a descending order based on CWTP , each bidder will be

ested if his/her offloading will increase the social utility, given that

ther bidders remain their connection statuses defined by  and ̃ ( ̃ is
onnected to WiFi and ∖ ̃ is connected to cellular networks). 

.6. Analysis of HRA-Profit and HRA-Utility 

As mentioned in constraints (9) , both our optimization goals of max-

mizing profit and maximizing social utility are achieved under the con-

traints of incentive compatibility and individual rationality. Besides,
he actual achieved profit under HRA-Profit has a bounded difference

ith the theoretically maximal profit. These favorable features of the

roposed mechanisms are introduced and proven in the following the-

rems, i.e., Theorems 1, 2 and 3 . 

heorem 1. In both HRA-Profit and HRA-Utility, submitting the truthful

id is a weakly dominant strategy for all users, i.e., 𝑏 ′𝑧 
𝑖 
= 𝑏 𝑧 

𝑖 
, ∀𝑖 ∈ . 

roof of Theorem 1. Due to the complexity of the proof, the details

an be found in Appendix. Similarly, proofs of Theorems 2 and 3 can

lso be found in Appendix. □

heorem 2. Individual rationality is satisfied in both HRA-Profit and HRA-

tility, i.e., users can gain equal or more surplus by participating in the auc-

ion. 

heorem 3. There may exist a difference between the actual profit un-

er HRA-Profit, 𝜋z , and the theoretically maximal profit, 𝜋∗ z , due to the

tomicity of winners. But the difference between them satisfies 𝜋∗ 𝑧 − 𝜋𝑧 <
𝜕𝜋( ̂𝐿 𝑧 

𝑗 
, Δ𝐿 ) 

𝜕Δ𝐿 
|max ⋅ 𝑉 , where ΔL is the traffic load that is offloaded to WiFi and

 = max { 𝑉 𝑖 |𝑖 ∈ } . 
Here we assume a simple scenario with only two users (i.e., U 1 and

 2 ) to illustrate the rationale behind Theorem 3 . Both U 1 and U 2 have

igh bandwidth requirements and both want to switch to WiFi. Mean-

hile, both of them have expressed high willingness to pay for WiFi.

owever, the load capacity of WiFi is greater than the demand of U 1 ,

ut it cannot meet the total demand of U 1 and U 2 at the same time. Ac-

ording to Algorithm 3 , only U 1 can be the winner in the auction, which

orresponds to the actual profit. Since U 2 also expressed the high will-

ngness to pay for WiFi, if the demand of U 2 can be partially offloaded

o WiFi, the operator can obtain more profits, which is the theoretical

aximal profit. Therefore, there may exist a difference between the ac-

ual profit and the theoretical maximal profit, and the upper bound of

his difference can be proved in the proof of Theorem 3 . 

The time complexity of Algorithm 3 is O (( N 

j,z ) 2 log N 

j,z ) and that of

lgorithm 4 is O ( N 

j,z log N 

j,z ). The cost of the algorithms are quite low

onsidering the user scale within the coverage of a single BS. 

According to Theorem 1 , the proposed mechanisms can well reveal

ser’s true values on WiFi resources, i.e., the CWTP is the user’s truthful

id. Then based on this fact, the maximal profit and social utility are

chieved through HRA-Profit and HRA-Utility , respectively. 

. Resource allocation with incomplete information 

As discussed in Section 3.3 , the actual data-rates of users are un-

nown to MNOs when they determine the winners of the resource allo-

ation. Instead, we use estimated data-rates (i.e., Eq. (12) ), which will

ffect the precision of the optimization result. And the estimation factor

in Eq. (12) depends on the historical data. However, in the real-world

ireless data market, there are inevitably some new users entering the

arket, and these users do not have sufficient historical data to support

he calculation of 𝛽. This scenario is similar to the cold start [46,47] of

he recommendation system, which cannot be ignored in a real-world

cenario. To be more applicable to real-world scenarios, the proposed

ramework should have the ability to enable operators to make decisions

ven if they do not know the exact distributions of user data-rates, and

earn from their past performance, addressing the fundamental trade-

ffs between exploration and exploitation [48,49] . 

In this section, the resource allocation problem is modeled by a

tochastic Multi-Armed Bandit (SMAB) problem. And two near-optimal

pper Confidence Bound (UCB) strategies are designed to help operators

ake decisions on heterogeneous wireless resource allocation. 

.1. Stochastic multi-Armed bandit model 

In an SMAB problem, there exist multiple arms on the bandit and

he player plays multiple rounds. Each arm corresponds to an unknown
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Fig. 4. Time-slots in SMAB Problem z . 
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𝑤 =0 , …,𝑁 
robability distribution and the reward of choosing 1 arm in a round

s independently drawn from the corresponding distribution. For each

ound, the player chooses one of the arms and the bandit draws the

eward independently from the past, revealing it to the player. 

The one-day time scale is divided into N T time-slots in the proposed

odel. We consider a  -day period for operators to analyze their strate-

ies, where  is a large number, reflecting the user’s traffic consumption

ehaviors. Therefore, the operator’s resource allocation problem is mod-

led by N T homogeneous SMAB problems, each of which corresponds to

he resource allocation problem within a specific time-slot of all days.

ince the N T SMAB problems are homogeneous, we focus on a specific

ne, e.g. , the z -th one to analyze the operator’s strategies. Specifically,

he z -th SMAB problem is defined in Definition 7 , and the time-slots

onsidered in SMAB problem z are shown in Fig. 4 . 

efinition 7. The z -th SMAB problem : The first round is defined as

he z -th time-slot of the first day, the second round is the z -th time-slot

f the second day, and so on. During each round, the operator should

ake a decision/choice on how to allocate the heterogeneous wireless

esources among users, then a reward ( e.g. , the profit) will be revealed

o the operator. The operator’s goal is to maximize the total reward of

ll the z -th time-slots on the  -day time scale. 

1) Choice Set: The group of arms are defined as the choice set in multi-

rmed bandits. In an SMAB model, the number of choices is required to

e no more than the number of time-slots. However, when considering

he allocation of two types of radio resources, i.e., cellular networks and

iFi, the number of allocation choices is 2 𝑁 

𝑗 
𝑀 , where 𝑁 

𝑗 
𝑀 

is the upper

ound of user scale that is allowed to be connected to B j . Apparently,

he number of elements in the choice set is a huge number, which is

gainst the requirement of SMAB model. 

To fix this problem, we try to reduce the scale of the choice set. We

an conclude from Section 3 that, to guarantee the optimization of the

llocation result, the strategy of MNO is actually to decide the number

f winners after sorting the bidding users according to the optimization

oal. And here, in order to make the following statement more concise,

e use w to denote N W 

. Then for a sorted user list, the choice set becomes

0 , 1 , … , 𝑁 

𝑗 
𝑀 

} and the number of choices can be reduced to 𝑁 

𝑗 
𝑀 

+ 1 . For

xample, if 𝑤 = 0 ( 𝑤 = 𝑁 

𝑗 
𝑀 

), it represents all users are connected to

ellular (WiFi) networks. And if 𝑤 ∈ (0 , 𝑁 

𝑗 
𝑀 

) , it means that only the first

 users in the sorted user list are connected to WiFi. As mentioned above,

 long-term strategy (i.e.,  is a large number) will be provided to the

perators. Then considering that the possible values of 𝑁 

𝑗 
𝑀 

is limited

y the capacity of BS, the number of choices will be smaller than that

f play rounds. Therefore, the requirement of SMAB model is met. 

2) Reward: Following the definition of the SMAB problem in this pa-

er, the “reward ” refers to the optimization goal, i.e., operator profit or

ocial utility. Now we analyze operator profit and social utility, respec-

ively. 

A. Operator Profit as Rewards 

Compared with that when all users connect to cellular networks,

here exists a change of operator profit within the coverage of B j during

ime-slot T z when heterogeneous resources are utilized. According to
q. (7) , Eq. (13) and Eq. (14) , operator profit as rewards, after the oper-

tor make the resource allocation decision, can be expressed as Eq. (18) .

𝑧 
𝑗 ( 𝑤 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 𝑝 
𝑧 
∑
𝑖 ∈̃ 

𝑣̄ 𝑧 𝑖 + 

∑
𝑖 ∈∖ ̃ 

𝑞 𝑧 𝑖 ̂𝑝 𝑖 − 

⎡ ⎢ ⎢ ⎣ 𝑟 𝑧 𝑗 − ( ̂𝑒 𝑧 𝑗 + 

∑
𝐴 𝑘 ∈ 

𝑗 

𝑒 
𝑗,𝑧 
𝑘 
) 
⎤ ⎥ ⎥ ⎦ 
⎫ ⎪ ⎬ ⎪ ⎭ ⋅ 𝑇 (18)

here w denotes the operator choice, i.e., ̃ is the first w users in the

orted user list, which is generated by Algorithm 2 . Therefore, w has the

ame meaning as 𝑁 

𝑧 
𝑊 

. 

The 𝑁 

𝑗 
𝑀 

+ 1 choices corresponds to 𝑁 

𝑗 
𝑀 

+ 1 probability distributions

0 , 𝜒1 , … , 𝜒
𝑁 

𝑗 
𝑀 

, from where the operator profit rewards are drawn inde-

endently. 

B. Social Utility as Rewards 

After the operator reallocate the heterogeneous wireless resources

mong users, the social utility as rewards within the coverage of B j dur-

ng time-slot T z can be denoted by Eq. (19) . 

𝑧 
𝑗 ( 𝑤 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
∑

𝑖 ∈∖ ̃ 
𝜑 

𝑧 
𝑖 𝑣̄ 

𝑧 
𝑖 ⋅

⎛ ⎜ ⎜ ⎜ ⎝ min 
⎧ ⎪ ⎨ ⎪ ⎩ 

𝐶 𝑗 

𝐿̂ 

𝑧 
𝑗 

, 1 
⎫ ⎪ ⎬ ⎪ ⎭ 
⎞ ⎟ ⎟ ⎟ ⎠ 
𝛼

+ 

∑
𝑖 ∈̃ 

𝜑 

𝑧 
𝑖 𝑣̄ 

𝑧 
𝑖 

⎫ ⎪ ⎬ ⎪ ⎭ ⋅ 𝑇 (19)

here w denotes the operator choice, i.e., ̃ is the first w users in the

orted user list, which is generated by Algorithm 2 . Therefore, w has the

ame meaning as 𝑁 

𝑧 
𝑊 

. 

The 𝑁 

𝑗 
𝑀 

+ 1 choices corresponds to 𝑁 

𝑗 
𝑀 

+ 1 probability distributions
′
0 , 𝜒

′
1 , … , 𝜒 ′

𝑁 

𝑗 
𝑀 

, from where the social utility rewards are drawn inde-

endently. 

3) Pseudo-regret: Even though the operators know that the profit they

ain or the social utility from each choice follow certain distribution,

he detailed properties of the distribution remain unrevealed. The profit

oss or the utility loss resulted from the incomplete information can be

eflected by pseudo-regret . 

efinition 8. Pseudo-regret of the z -th SMAB problem within the cov-

rage of B j during the  -day period is defined as 

 

𝑧 

𝑗 = max 
𝑤 =0 , 1 , …,𝑁 

𝑗 
𝑀 

𝔼 

[  ∑
𝑑=1 

𝑋 𝑤,𝑑 − 

 ∑
𝑑=1 

𝑋 𝑊 𝑑 ,𝑑 

] 

(20) 

here 𝑤 ∈ [0 , 𝑁 

𝑗 
𝑀 

] denotes the choice of operator, i.e., the number of

inners in the sorted user list. d denotes the d -th round (i.e., the z -th

ime-slot on day d ) and W d denotes the actual operator choice in round

. X w, d ~ 𝜒w or 𝑋 𝑤,𝑑 ∼ 𝜒 ′
𝑤 denotes the reward of round d when the

perator choice is w . 

In SMAB problems, it is easy to see that if we consider operator profit

s rewards, pseudo regret can be written as Eq. (21) . 

 

𝑧 

𝑗 =  𝜂∗ − 

 ∑
𝑑=1 

𝔼 ( 𝜂𝑊 𝑑 
) (21)

here 𝜂w denotes the mean of 𝜒w and 

∗ = max 
𝑤 =0 , …,𝑁 

𝑗 
𝑀 

𝜂𝑤 (22) 

Similarly, if the social utility is considered as the reward, pseudo

egret can be written as Eq. (23) . 

 

𝑧 

𝑗 =  𝜂
′∗ − 

 ∑
𝑑=1 

𝔼 ( 𝜂′
𝑊 𝑑 

) (23)

here 𝜂′𝑤 denotes the mean of 𝜒 ′
𝑤 and 

′∗ = max 
𝑗 

𝜂′𝑤 (24) 
𝑀 
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Algorithm 5: Winner Determination - HRA-UCB-Profit . 

Input : 𝐟 𝑧 , 𝐵 𝑗 , 𝐶 𝑗 , ̂𝐿 

𝑧 
𝑗 
, 𝐶 

𝑗 
𝑘 
, ̃𝐿 

𝑗,𝑧 
𝑘 

, and the winner sets of rounds 

1 ∼ 𝑑 − 1 ( ̃ 1 th , ̃ 2 th , … , ̃ ( 𝑑−1) th ) 
if ( 𝑑 > 1 ) then 

Calculate 𝜋𝑧 
𝑗 
( 𝑤, 1) , 𝜋𝑧 

𝑗 
( 𝑤, 2) , … , 𝜋𝑧 

𝑗 
( 𝑤, 𝑑 − 1) based on 

̃ 1 th , ̃ 2 th , … , ̃ ( 𝑑−1) th according to Eq. (18); 

Sort the bidders (bidding profile 𝐟 𝑧 ) according to Algorithm 2; 

Solve the optimal 𝑊 𝑑 according to Eq. (28), where ̂𝜂𝑤,𝑇 𝑤 ( 𝑑−1) 
can be derived based on 𝜋𝑧 

𝑗 
( 𝑤, 1) , 𝜋𝑧 

𝑗 
( 𝑤, 2) , … , 𝜋𝑧 

𝑗 
( 𝑤, 𝑑 − 1) . 

Note that if there exist multiple optimal 𝑊 𝑑 , choose the 

smallest one; 

̃ 𝑑 th ← ∅; 

for ( 𝑁 

𝑧 
𝑊 

← 0; 𝑁 

𝑧 
𝑊 

≤ 𝑊 𝑑 ; 𝑁 

𝑧 
𝑊 

← 𝑁 

𝑧 
𝑊 

+ 1 ) do 

Bidder 𝑁 

𝑧 
𝑊 

in the sorted bidder list is added to ̃ 𝑑 th ; 
else 

Determine ̃ 𝑑 th according to Algorithm 3; 

return ̃ 𝑑 th , i.e., the winner set of round 𝑑; 

Algorithm 6: Winner Determination - HRA-UCB-Utility . 

Input : 𝐟 𝑧 , 𝐵 𝑗 , 𝐶 𝑗 , ̂𝐿 

𝑧 
𝑗 
, 𝐶 

𝑗 
𝑘 
, ̃𝐿 

𝑗,𝑧 
𝑘 

, and the winner sets of rounds 

1 ∼ 𝑑 − 1 ( ̃ 1 th , ̃ 2 th , … , ̃ ( 𝑑−1) th ) 
if ( 𝑑 > 1 ) then 

Calculate 𝜃𝑧 
𝑗 
( 𝑤, 1) , 𝜃𝑧 

𝑗 
( 𝑤, 2) , … , 𝜃𝑧 

𝑗 
( 𝑤, 𝑑 − 1) based on 

̂ 1 , ̂ 2 , … , ̂ ( 𝑑−1) th according to Eq. (19); 

Sort the bidders (bidding profile 𝐟 𝑧 ) according to Algorithm 2; 

Solve the optimal 𝑊 𝑑 according to.(28), where ̂𝜂𝑤,𝑇 𝑤 ( 𝑑−1) can 

be derived based on 𝜃𝑧 
𝑗 
( 𝑤, 1) , 𝜃𝑧 

𝑗 
( 𝑤, 2) , … , 𝜃𝑧 

𝑗 
( 𝑤, 𝑑 − 1) . Note 

that if there exist multiple optimal 𝑊 𝑑 , choose the smallest 

one; 

̃ 𝑑 th ← ∅; 

for ( 𝑁 

𝑧 
𝑊 

← 0; 𝑁 

𝑧 
𝑊 

≤ 𝑊 𝑑 ; 𝑁 

𝑧 
𝑊 

← 𝑁 

𝑧 
𝑊 

+ 1 ) do 

Bidder 𝑁 

𝑧 
𝑊 

in the sorted bidder list is added to ̃ 𝑑 th ; 
else 

Determine ̃ 𝑑 th according to Algorithm 4; 

return ̃ 𝑑 th , i.e., the winner set of round 𝑑; 
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.2. Upper confidence bound strategy 

To demonstrate the UCB strategy, we define that 𝜓 is a convex func-

ion such that, ∀𝜆 ≥ 0, 

n 𝔼 𝑒 𝜆( 𝑋 − 𝔼 [ 𝑋 ]) ⩽ 𝜓( 𝜆) (25)

n 𝔼 𝑒 𝜆( 𝔼 [ 𝑋 ]− 𝑋 ) ⩽ 𝜓( 𝜆) (26)

here X is the normalized reward of the operator’s offloading strategy

uch that X ∈ [0, 1]. Then we can take 𝜓( 𝜆) = 𝜆2 ∕8 (generated from

oeffding’s lemma). 

Based on Eqs. (25) and (26) , we can estimate the upper bound of the

ean of each choice on some fixed level of confidence. Then under this

stimate, we can choose the current best choice. The Legendre-Fenchel

ransform of 𝜓 is defined by Eq. (27) . 

 

∗ ( 𝜀 ) = sup 
𝜆∈ 

( 𝜆𝜀 − 𝜓( 𝜆)) (27)

here 𝜀 is the dual space to 𝜆. 

Then we can define the upper confidence strategy as follows. 

efinition 9. ( 𝝃, 𝝍)-UCB is a resource allocation decision strategy

here 𝜉 is an input parameter. According to ( 𝜉, 𝜓)-UCB, during round

 , select 

 𝑑 ∈ arg max 
𝑤 =0 , …,𝑁 

𝑗 
𝑀 

[ 
𝜂𝑤,𝑇 𝑤 ( 𝑑−1) + ( 𝜓 

∗ ) −1 
( 

𝜉 ln 𝑑 
𝑇 𝑤 ( 𝑑 − 1) 

) ] 
(28)

here 𝑇 𝑤 ( 𝑑) = 

∑𝑑 
𝑧 =1 𝛿𝑊 𝑧 = 𝑤 denotes the number of times that the oper-

tor chooses w during the first d rounds, and 𝜂𝑤,𝑑 denotes the sample

ean of rewards by choosing w for d times. 

The resource allocation strategy is able to guarantee the bound of

seudo-regret if certain requirements are satisfied. To better illustrate

he bound of pseudo regret, we define that Δ𝑤 = 𝜂∗ − 𝜂𝑤 is the subopti-

ality parameter of choice w . Then we have the following conclusion. 

heorem 4. ( 𝜉, 𝜓) -UCB with 𝜉 > 2 satisfies 

 

𝑧 

𝑗 ⩽
∑

𝑖 ∶Δ𝑖 > 0 

( 

𝜉Δ𝑖 

𝜓 

∗ 
(
Δ𝑖 ∕2 

) ln  + 

𝜉

𝜉 − 2 

) 

(29)

roof of Theorem 4. The proof can be derived from that in [50] . □

Then based on Definition 9 and Theorem 4 , we can design resource

llocation strategies for operators. To guarantee a limited bound be-

ween the optimal operator profit and the actual profit, we propose the

echanism HRA-UCB-Profit . Similarly, HRA-UCB-Utility is proposed for

perators to allocate heterogeneous wireless resources, so as to generate

 near-optimal social utility. 

1) HRA-UCB-Profit: The winner determination processes of HRA-

rofit and HRA-Utility , i.e., those with complete information, focus on a

ime scale of one day. In contrast, the winner determination algorithms

f HRA-UCB-Profit and HRA-UCB-Utility consider a time scale of  days,

hough only a specific time-slot T z of each day is considered in SMAB

roblem z , as demonstrated in Fig. 4 . 

Algorithm 5 shows the winner determination process of opera-

ors during time-slot T z on the d -th day, which will generate a near-

ptimal operator profit with incomplete user information according to

heorem 4 . 

2) HRA-UCB-Utility: Similar to HRA-UCB-Profit , when the operator’s

oal is to achieve a near-optimal social utility, the algorithm illustrated

n Algorithm 6 can be used to determine the set of winning bidders,

ho will be offloaded to WiFi networks. Theorem 4 guarantees that the

ocial utility loss will remain in a limited bound. 

Based on Theorem 1 and Theorem 2 , it is easy to prove that HRA-

CB-Profit and HRA-UCB-Utility also have the properties of truthfulness

nd individual rationality . 
. Simulation and evaluation 

In this section, we simulate the proposed mechanisms based on

eal trace data and evaluate their performances compared with that of

enchmark resource allocation methods. 

.1. Dataset 

The two datasets used in our simulations are public datasets from

RAWDAD [51] . The first dataset includes fine-grained mobility data

rom commercial mobile phones over two months collected by a mo-

ility monitoring system called LifeMap . The second dataset contains

obile phone records of mobile traffic consumption behaviors over six

onths. Table 2 shows some details of the two datasets. 

.2. Simulation setup 

Based on the trace data, we simulate the dynamic heterogeneous

ireless resources allocation under different mechanisms. We generate

ser instance data from the dataset within 156 valid cells, including the

ovement traces and the real-time available BSs and APs. Among the

56 valid cells, we select 40 valid cells, within which there are plenty of

sers for the simulation of busy regions during peak hours. To configure
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Fig. 5. Comparison of HRA-Profit with Benchmarks. 

Table 2 

Datasets. 

Dataset Data Type Number/Description 

Dataset 1 Nodes (User Instances) 9681 

Meaningful Places 651 

Paths 1717 

Valid Cells 156 

WiFi APs 52,510 

Duration Over 2 Months 

Dataset 2 Duration Over 6 Months 

User Behavior Call/SMS/Data 
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Fig. 6. Profit with Different Lengths of Time-slots. 

Fig. 7. Comparison of Cellular Utilization Rate between HRA-Profit and HRA- 

Utility . 
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t  
he data consumption behavior of each user instance, we extract mobile

hone data behaviors from the second dataset and match them with user

nstances. 

It is assumed that user bids and utilities follow specific distributions.

e take the Gaussian distribution for both of them in the simulation.

he auction is triggered by the hybrid policy introduced in Section 3.2 .

.3. Evaluation results 

1) Mechanisms with Complete Information: Four resource allocation

echanisms, Cell Only, HRA-Profit, HRA-Utility and User Choice , are con-

idered in the evaluation. Cell Only means that no idle WiFi resources

re utilized, and User Choice indicates that users will choose to connect

iFi only if they can gain higher surpluses than connecting to cellular

etworks. 

The comparison of HRA-Profit with benchmarks is shown in Fig. 5 .

perator’s profit increase by 25%-40% compared with that under User

hoice . However, user utilities within most cells are lower than that

nder User Choice . Note that the operator’s profit under HRA-Profit are

ery close to the theoretically maximal profit ( HRA-Profit Ideal ), and

heir bounded difference has been proven in Theorem 3 . 

To investigate the performance of HRA-Profit with different lengths

f time-slots, we plot the relation between profit and time-slot lengths in

ig. 6 . We can see that shorter time-slots (i.e., smaller 𝑇 ) generate higher

rofit because they can better capture the dynamic of user demands and

raffic loads. It should be noted that exceptions still exist, such as the

rofit with 45 min and 40 min , because the profit are also closely related

o the dynamic bids of users. 

Fig. 7 shows the dynamic utilization rate of a BS under different al-

ocation mechanisms. We can see from the figure that both HRA-Profit

nd HRA-Utility can effectively relieve the overload of the BS, which

eans that the offloading framework can help improve the QoS in cel-
ular networks when congestions happen. With HRA-Utility , the BS load

s maintained between 60%-70% of the capacity, indicating that the

ellular capacity is underutilized. In comparison, HRA-Profit achieves a

etter cellular utilization rate of 85%-95%. 

The evaluation of HRA-Utility is shown in Fig. 8 . Social utility un-

er HRA-Utility increases by up to 47% compared with that under User

hoice , while the profit of HRA-Utility and User Choice is quite close. Both

RA-Utility and User Choice significantly increase the profit and social

tility compared with that when only cellular resources are utilized. 

Combining our motivations and experimental results, the gained in-

ights are mainly divided into three aspects. First, in addition to allevi-

ting network congestion, offloading can further optimize different eco-

omic targets with an appropriate economic framework. Secondly, the

illingness of users is a non-negligible factor in the market’s resource

llocation. And encouraging users to participate honestly in resource al-

ocation can help the operator achieve approximate theoretical optimal-

ty. In the end, the effectiveness of individual user decisions is limited,

nd it is necessary to cooperate with the operator, who has the access

o the global network information. In summary, the improvement of
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Fig. 8. Comparison of HRA-Utility with Benchmarks. 

Fig. 9. Performance of HRA-UCB-Profit . 
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conomic targets in the market require participants (i.e., the MNO and

sers) to optimize together. 

2) Mechanisms with Incomplete Information: According to Definition 7 ,

00 SMAB problems are selected randomly from all the SMAB prob-

ems within the 40 valid cells for evaluation. We consider a 1000-day

uration when evaluating the performance of HRA-UCB-Profit and HRA-

CB-Utility . It is assumed that the data consumption volumes of all users

ithin the coverage of each cell follow normal distribution. 

Fig. 9 illustrates the performance of mechanism HRA-UCB-Profit . We

an see from Fig. 9 (a) that the profit gained by HRA-UCB-Profit are

lose to that gained by the optimal choice. Fig. 9 (b) indicates that the

seudo regret ratios (the ratio between pseudo regret and the optimal

rofit) are under about 20%. Similarly, Fig. 10 shows the performance of

RA-UCB-Utility according to the pseudo regret, i.e., the difference be-

ween the utility gained by the optimal choice and that gained by HRA-

CB-Utility . The pseudo regret ratios are within the range of around

% ~ 14%. 

. Implementation issues 

In this section, we discuss the implementation issues of the proposed

ramework from multiple perspectives, which may provide some useful

uggestions for framework deployment. 
1) Controller: The controller involves three function modules: i ) In-

ormation module obtains cellular load information from the Base Station

ontroller (BSC), user’s available networks from BSs and APs, user’s bids

rom APs, and etc.; ii ) Computation module implements the auction mech-

nism and the WiFi Pricing algorithm; iii ) Scheduler controls the pace

f dynamic resource allocation decisions, which is based on the cellular

oad information and the configuration of MNOs. 

Existing protocols, like ANDSF [26] , provide network discovery and

election functions based on the network status information. Therefore,

he logical controllers for the mechanism in this work can be built on

nd supplement these protocols considering users’ valuations. 

The two types of heterogeneous networks and the deployment of Of-

oading Controllers (OCs) are illustrated in Fig. 11 . The OC and Access

oint Controller (APC) are deployed on the switch of the WiFi network.

C is connected with the serving gateway (MME/S-GW) to dynamically

eceive cellular network information and user bids. OC consists of in-

ormation processing function module and resource allocation decision-

aker, which are shown in Fig. 3 . APC is connected with APs to receive

he WiFi connection states of users and send certification signals based

n offloading decisions. 

The interaction between OC and APC can be illustrated via the bi-

ateral information flows. OC informs APC the auction results, accord-

ng to which APC will send certification signals to APs. And APC pro-
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Fig. 10. Performance of HRA-UCB-Utility . 

Fig. 11. Controller Deployment in Macrocell and Small Cell. 
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ides OC with user connection information for the next-round auction

rocess. 

2) User-side Management: With the wide spread of intelligent mobile

evices, application-level solution ( e.g. , mobile application) becomes a

easible way to achieve user-side management. MNOs like AT&T have

lready developed applications with smart WiFi management functions.

hese applications should allow users to set configuration information

nd customize conditional options, e.g. , automatically tuning their bids

ccording to different battery levels, and making application-level con-

ection constraints. 

3) User Experience: The handoffs among different networks are as-

umed to be transparent because they are beyond the scope of this pa-

er. In reality, the handoffs will affect user experience due to handoff

elays, disconnections and so on. But these problems will be relieved

ith the development of carrier-grade WiFi and seamless handoffs. 

. Related work 

To solve the conflicts between the shortage of cellular resources and

he increasing mobile data demands, both industry and academia have

roposed various solutions. 

Temporal Dynamics: From operator’s perspective, cellular traf-

c obeys obvious diurnal and weekly patterns [24,25] , allow-

ng researchers to propose dynamic time-dependent pricing strate-

ies [4,5,25,52] , which encourage users to shift their delay-tolerant de-

ands during peak hours to off-peak periods. With time-dependent pric-
ng, operator’s service capacity remains unchanged, while the carrier

iFi is not fully utilized, which actually leads to a waste of resources. 

From user’s perspective, unlike the proposed HRA framework in this

aper, information about user’s delay-tolerance is involved in the re-

ource allocation in some work [22,53] , which imposes extra decision

ost on users. 

Third-party Resources: Many researchers have studied cellular data

ffloading utilizing third-party WiFi from economic or quantitative per-

pectives [16,19] . Zhuo et al. [54] study a coupon-based incentive

echanism to encourage delay-tolerant users to offload their traffic de-

and. However, the offloaded traffic amount is assumed to be predeter-

ined, without considering the dynamic load of cellular networks. J. Lee

t al. [22] study the economic benefits of operators and users brought

y delayed data offloading based on a two-stage sequential game. Lu

t al. [8] propose a bid framework that allows third-party sellers to

ubmit imprecise valuations in offloading. Apostolaras et al. [2] design

 new mechanism for offloading to wireless mesh networks, which can

ignificant save power consumption. Yu et al. [11] give out a detailed

iscussion of various economic challenges and benefits for data offload-

ng. 

However, this type of method transfers user demands on MNOs to

hird-party WiFi or other users, rather than improves the operator’s ser-

ice capacity. Actually, most literatures study the supplies and demands

etween MNOs and third-party resource owners, without considering

ynamic demands of users. In our work, we do not care about how MNOs

et third-party resources. Both the resources of MNOs and that of third-

arty are regarded as the resources of MNOs, with the assumption that

NOs have succeed in getting third-party resources. In other words, the

iFi resources in this paper refers only to the MNOs’ own resources, i.e.,

arrier WiFi resources. What we really care about is the relationship be-

ween MONs and mobile users, enabling MNOs to achieve offloading

ith considering users’ valuations on resources. 

HetNet and Carrier WiFi: HetNet is a promising way to enlarge serving

apacity and improve mobile communication performance by making

ull use of heterogeneous network infrastructures, such as WiFi [53] . For

xample, due to the numerous benefits ( e.g. , enhancing throughput and

mproving coverage) brought by small cells, heterogeneous small cells

 e.g. , femtocell and carrier WiFi) have achieve massive deployments,

aising excessive energy consumption issues. To provide possible solu-

ions, Wu et al. [55] design the green-oriented traffic offloading with

mall cells, which exploits multiple advanced energy technologies and

larifies valuable challenges. Moreover, the related studies on hetero-

eneous resource allocation can be divided into the technical perspec-
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Δ  
ive [10] and the economic perspective [56,57] . For example, Zhou et al.

or the first time consider different queuing models to distinguish the

haracteristics of licensed and unlicensed bands, which is from a tech-

ical optimization perspective, while the proposed framework in this

aper investigates heterogeneous resource allocation from the perspec-

ive of economic optimization. Joe-Wong et al. [56] study user’s adop-

ion behaviors for supplementary wireless technologies. In contrast, we

tudy the operator-dominant integrated resource utilization, which can

void anarchy brought by user’s selfishness and lack of information. 

Communication industries like Cisco and Ericsson have provided

olutions for involving carrier WiFi to enlarge mobile service capaci-

ies [58,59] . However, they only consider technical issues. Poularakis

t al. [60] analyze whether carrier WiFi can help reduce the costs of

NO. But the differentiated QoS and various users’ valuations are not

aptured. To capture the differentiated QoS and various users’ valua-

ions, economic issues like pricing should also be considered. 

Auction-based Pricing: Pricing mechanisms are preferred to deal with

he allocation of scarce resources. For example, Zhou et al. [13] de-

elop a pricing-based stable matching algorithm to match users with re-

ources, effectively improving the transmission rate. But it emphasizes

he allocation of resources and cannot stimulate the increase of resource

alue in the context of scarce resources. Compared with other pricing

echanisms, auctions can better utilize users valuations on resources to

ncrease profit and social utility [61,62] . Thus, auctions are widely used

n the studies of resource allocation in wireless communications [19,63–

6] . To deal with the complicated process of auction, we design a simple

nd feasible bidding manner for mobile communication circumstances,

hich could satisfy delay requirements. 

. Conclusion 

In this paper, we propose a novel bid-based operator-dominant of-

oading framework for the dynamic allocation of MNO’s heterogeneous

ireless resources. The HRA framework not only enables operators to

fficiently utilize both cellular and carrier WiFi simultaneously, but

lso encourages users to reveal their valuations on resources through

uctions, without increasing users’ decision cost. Thus, the operator-

ominant offloading can avoid anarchy brought by users selfishness and

ack of information. In detail, two auction mechanisms, HRA-Profit and

RA-Utility , are designed to achieve the maximal profit and social util-

ty, respectively. Both of them have been proven to be truthful and sat-

sfy individual rationality, while the trace-based simulations and evalua-

ions have proven their efficiency. To enable the newly proposed frame-

ork to be applied to more complex scenarios with incomplete infor-

ation, HRA-UCB-Profit and HRA-UCB-Utility are proposed to optimize

perator profit and social utility. In addition, the proposed allocation

ramework can also be applied to other scenarios where two types of

imited heterogeneous resources (substitutes) are required to be allo-

ated among requesters. 
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ppendix A 

roof of Theorem 1. If U i fails to change the result set of winners by

elling a lie, the WiFi price and U i ’s surplus will not change either accord-

ng to Algorithm 1 . So we discuss the circumstances where the auction

esult on U i is affected by his/her lies. The effect can be divided into

wo categories, from winner to loser and from loser to winner. 

(1) If U i becomes a loser from a winner because of lying, we first

erive the surplus when U i tells the truth according to ̃𝑝 𝑧 ≤ 𝑏 𝑧 
𝑖 
⋅ 𝑝 𝑖 (from

lgorithm 1 ) and Eq. (6) , shown as Eq. (30) . 

 

𝑧 
𝑖 ( 𝑡𝑟𝑢𝑡ℎ ) = 𝜑 

′𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 − ̃𝑝 𝑧 ≥ 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 − 𝑏 𝑧 𝑖 ⋅ 𝑝 𝑖 

= 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 − ( ̂𝑝 𝑖 + 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 − 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 ) = 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 − ̂𝑝 𝑖 (30) 

The surplus of U i when he/she lies is Eq. (31) . 

 

𝑧 
𝑖 ( 𝑙𝑖𝑒 ) = 𝜑 

′𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 − ̂𝑝 𝑖 = 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 ⋅ ( min { ̂𝑝 𝑖 , 1}) 𝛼 − ̂𝑝 𝑖 (31) 

Then according to Eq. (30) and Eq. (31) , we have 

 

𝑧 
𝑖 ( 𝑡𝑟𝑢𝑡ℎ ) − 𝑠 𝑧 

𝑖 ( 𝑙𝑖𝑒 ) ≥ 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 ⋅

⎡ ⎢ ⎢ ⎢ ⎣ 1 − 

⎛ ⎜ ⎜ ⎜ ⎝ min 
⎧ ⎪ ⎨ ⎪ ⎩ 

𝐶 𝑗 

𝐿̂ 

𝑧 
𝑗( 𝑙𝑖𝑒 ) 

, 1 
⎫ ⎪ ⎬ ⎪ ⎭ 
⎞ ⎟ ⎟ ⎟ ⎠ 
𝛼⎤ ⎥ ⎥ ⎥ ⎦ ≥ 0 

(2) Assume U i becomes a winner from a loser by lying, then 𝑝 𝑧 ( 𝑙𝑖𝑒 ) =
 ̃

𝑧 
( 𝑡𝑟𝑢𝑡ℎ ) if no one loses the auction due to U i ’s lies and ̃𝑝 𝑧 ( 𝑙𝑖𝑒 ) ≥ ̃𝑝 𝑧 ( 𝑡𝑟𝑢𝑡ℎ ) oth-

rwise. According to the fact that U i will lose if he/she tell the truth,

e know ̃𝑝 𝑧 ( 𝑡𝑟𝑢𝑡ℎ ) ≥ 𝑏 𝑧 
𝑖 
⋅ 𝑝 𝑖 . In conclusion, we can derive that ̃𝑝 𝑧 ( 𝑙𝑖𝑒 ) ≥ 𝑏 𝑧 

𝑖 
⋅ 𝑝 𝑖 ,

hich means U i will gain a negative surplus by lying. 

Overall, users will gain an equal or higher surplus by telling the truth

ather than lying, i.e., submitting the truthful bid is a weakly dominant

trategy. □

roof of Theorem 2. The users may win or lose when participating

he auction. Therefore, we discuss their surplus variation in these two

ituations. 

(1) If U i loses the auction, the change in his/her surplus is denoted

y Eq. (32) . 

𝑠 𝑧 𝑖 = 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=1 − ̂𝑝 𝑖 − ( 𝜑 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 
𝑖 
=1 − ̂𝑝 𝑖 ) = 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=1 − 𝜑 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 
𝑖 
=1 (32) 

It is obvious that 𝐿̂ 

𝑧 
𝑗( 𝑎𝑓𝑡𝑒𝑟 ) ≤ 𝐿̂ 

𝑧 
𝑗( 𝑏𝑒𝑓𝑜𝑟𝑒 ) because some users may be

ffloaded to WiFi. Then according to Eq. (2) , we have 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=1 ≥

 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 
𝑖 
=1 , and Δ𝑠 𝑧 

𝑖 
≥ 0 . 

(2) If U i wins the auction, then he/she will be offloaded to WiFi. 

𝑠 𝑧 𝑖 = 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=0 − ̃𝑝 𝑧 − 

(
𝜑 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 
𝑖 
=1 − ̂𝑝 𝑖 

)
= 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=0 − 𝜑 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 
𝑖 
=1 − ( ̃𝑝 𝑧 − ̂𝑝 𝑖 ) (33) 

From Algorithm 1 and Theorem 1 , we know that the WiFi price ̃𝑝 𝑧 ≤
 

𝑧 
𝑖 
⋅ 𝑝 𝑖 . Therefore, 

𝑠 𝑧 𝑖 ≥ 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 =0 − 𝜑 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 =1 − ̂𝑝 𝑖 ⋅ ( 𝑏 𝑧 𝑖 − 1) (34)

𝑖 𝑖 

https://doi.org/10.13039/501100014219
https://doi.org/10.13039/501100001809
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Combined with Eq. (2) and Eq. (6) , we have 

𝑠 𝑧 𝑖 ≥ 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=0 − 𝜑 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 
𝑖 
=1 − 

(
𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 − 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 

)
= 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=0 − 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 + 

(
𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 − 𝜑 

′𝑧 
𝑖 |( 𝑏𝑒𝑓𝑜𝑟𝑒 ) 

𝛿𝑧 
𝑖 
=1 

)
= 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=0 − 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 + 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=1 ⋅ [1 − ( min { ̂𝑝 𝑖 , 1}) 𝛼] 

≥ 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=0 − 𝜑 

𝑧 
𝑖 |𝛿𝑧 

𝑖 
=0 

Algorithm 3 avoids congestions in WiFi networks, so 𝜑 

′𝑧 
𝑖 |( 𝑎𝑓𝑡𝑒𝑟 ) 

𝛿𝑧 
𝑖 
=0 =

 

𝑧 
𝑖 
|𝛿𝑧 

𝑖 
=0 . Therefore, Δ𝑠 𝑧 

𝑖 
≥ 0 . □

roof of Theorem 3. Assume that 𝜋∗ z is achieved when Δ𝐿 = Δ𝐿 

∗ ∈
0 , ̂𝐿 

𝑧 
𝑗 
] . The actual profit 𝜋z is satisfied when Δ𝐿 = 

∑𝑁 

𝑧 
𝑊 

𝑖 =1 𝑣̄ 𝑥 
𝑖 
( 𝑁 

𝑧 
𝑊 

∈

1 , 2 , … , 𝑁 

𝑗,𝑧 }) . Note that 𝐿̂ 

𝑧 
𝑗 
= 

∑𝑁 

𝑗,𝑧 

𝑖 =1 𝑣̄ 𝑧 
𝑖 
. From Algorithm 3 , we know

hat 

(1) If 
∑𝑁 

𝑧 
𝑊 

𝑖 =1 𝑣̄ 𝑧 
𝑖 

< Δ𝐿 

∗ < 

∑𝑁 

𝑧 
𝑊 

+1 
𝑖 =1 𝑣̄ 𝑧 

𝑖 
( 𝑁 

𝑧 
𝑊 

< 𝑁 

𝑗,𝑧 ) , 

∗ 𝑧 − 𝜋𝑧 = ∫
Δ𝐿 ∗ 

∑𝑁 𝑧 
𝑊 

𝑖 =1 𝑣̄ 𝑧 
𝑖 

𝜕𝜋( ̂𝐿 

𝑧 
𝑗 
, Δ𝐿 ) 

𝜕Δ𝐿 

𝐝 Δ𝐿 

< | 𝜕𝜋( ̂𝐿 

𝑧 
𝑗 
, Δ𝐿 ) 

𝜕Δ𝐿 

|max ⋅ 𝑣̄ 
𝑧 
𝑁 

𝑧 
𝑊 

+1 < | 𝜕𝜋( ̂𝐿 

𝑧 
𝑗 
, Δ𝐿 ) 

𝜕Δ𝐿 

|max ⋅ 𝑉 

(2) If 
∑𝑁 

𝑧 
𝑊 

𝑖 =1 𝑣̄ 𝑧 
𝑖 
≥ Δ𝐿 

∗ , 

∗ 𝑧 − 𝜋𝑧 = − ∫
∑𝑁 𝑧 

𝑊 
𝑖 =1 𝑣̄ 𝑧 

𝑖 

Δ𝐿 ∗ 

𝜕𝜋( ̂𝐿 

𝑧 
𝑗 
, Δ𝐿 ) 

𝜕Δ𝐿 

𝐝 Δ𝐿 

< | 𝜕𝜋( 𝐿 

𝑧 
𝑗 
, Δ𝐿 ) 

𝜕Δ𝐿 

|max ⋅ 𝑣̄ 
𝑧 
𝑁 

𝑧 
𝑊 

< | 𝜕𝜋( ̂𝐿 

𝑧 
𝑗 
, Δ𝐿 ) 

𝜕Δ𝐿 

|max ⋅ 𝑉 
□
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