IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

3485

Blockchain-Empowered Collaborative Task
Offloading for Cloud-Edge-Device Computing

Su Yao, Mu Wang

, Qiang Qu, Ziyi Zhang, Yi-Feng Zhang, Ke Xu, Senior Member, IEEE,

and Mingwei Xu, Member, IEEE

Abstract—How to enable high-performance task offloading
and preserve the trust between participants is imperative yet
nontrivial to the Cloud-Edge-Device (CED) computing, mainly
because the resources are geo-distributed and operated by dif-
ferent parties. Also, the CED participants are highly dynamic
and heterogeneous in resource provision and may conflict in
interest. This paper proposes BlockChain-empowered CED (BC-
CED), a blockchain-empowered collaborative task offloading for
CED computing. In BC-CED, blockchain plays a central role
in the main functionality of CED, including task offloading,
brokerage of resource usage, and incentives. We distinguish
the BC-CED from the existing solutions by modifying the
blockchain consensus process, enabling the participants to reach
an agreement via solving the task offloading problem. For this
purpose, we formulate the offloading problem by considering
the computation capabilities of candidate nodes and the net-
work performance. BC-CED allows each participant to apply
reinforcement learning-based methods to solve this problem and
compete for the right of block output by comparing the offloading
policy performance and accepting the best policy as the offloading
scheme within the next period. We also propose a truthful incen-
tive mechanism to encourage resource contributions in BC-CED
and force them to be honest. Extensive tests by implementing our
solutions in a commercialized blockchain platform have shown
how BC-CED achieves a superior performance in task offloading
and blockchain maintenance.

Index Terms— Cloud-edge-device computing, task offloading,
blockchain, reinforcement learning.

Manuscript received 16 March 2022; revised 16 June 2022; accepted 30 June
2022. Date of publication 31 October 2022; date of current version 22 Novem-
ber 2022. This work was supported in part by the China National Funds
for Distinguished Young Scientists under Grant 61825204; in part by the
NSFC Project under Grant 61932016, Grant 62101301, Grant 62132011,
and Grant 62132009; in part by the Beijing Outstanding Young Scientist
Program under Grant BJJWZYJHO01201910003011; in part by the China
Computer Federation (CCF)-Huawei Populus Euphratica Forest Fund under
Grant CCF-HuaweiBC2021005; in part by the Chinese Association for
Artificial Intelligence (CAAI)-Huawei MindSpore Open Fund under Grant
CAAIXSJL]IJ-2020-014A; and in part by the China Postdoctoral Science
Foundation under Grant 2021M691787. (Corresponding author: Mu Wang.)

Su Yao, Mu Wang, and Yi-Feng Zhang are with the Beijing National
Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing 100190, China (e-mail: yaosu@tsinghua.edu.cn;
yifengzhang @tsinghua.edu.cn; muwang @tsinghua.edu.cn).

Qiang Qu and Ziyi Zhang are with the Blockchain Laboratory,
Huawei Cloud Tech Company, Shenzhen 518129, China (e-mail:
qugiang4 @huawei.com; zhangziyi@huawei.com).

Ke Xu and Mingwei Xu are with the Beijing National Research Center for
Information Science and Technology (BNRist), Tsinghua University, Beijing
100190, China, and also with the Zhongguancun Laboratory, Beijing 100081,
China (e-mail: xuke@tsinghua.edu.cn; xumw @tsinghua.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2022.3213358.

Digital Object Identifier 10.1109/JSAC.2022.3213358

I. INTRODUCTION

ARIOUS network applications with delay and com-
Vputational intensive features, such as multimedia data
processing [1], artificial intelligence (AI) [2], Internet-of-
things (IoT) [3], quickly exhaust the computation and com-
munication resources at the edge. With the recent fast devel-
opment in wireless communication technologies and human-
carried devices, researchers are now aware of and attracted
by exploiting the resource residing in various mobile devices
(MDs) [4], [5], [6]. This emerging trend conceptualizes a new
computation paradigm known as Cloud-Edge-Device (CED)
computation system [1], [7]. The clusters of MDs with elastic
resource provision make CED substantially different from the
existing centralized computation frameworks and simultane-
ously overcome the resource shortage, backbone inefficiency,
and delay issue. Besides, with stabilized resource provision by
Cloud and edge computing servers, CED can also meet task
publishers’ quality-of-service (QoS) demand.

Despite CED’s promise, bringing this novel networked
computation paradigm into reality remains problematic. CED
is a networked system where computation units are geo-
distributed, interconnected via the public Internet, and operated
by different parties. Such a character of decentralization makes
the CED’s performance heavily rely on the task offloading
scheme that schedules the tasks among various nodes with
different computational capabilities. Several studies [9], [10],
[11] attempt to formulate the CED task offloading problems as
a non-convex optimization problem and prove its NP-hardness.
Solving such a problem requires heuristic algorithms that are
suboptimal and difficult to theoretically ensure the perfor-
mance given the randomness of MD’s behaviors. An emerging
trend is to apply reinforcement learning (RL) [8], [12] which
is tailored for the optimal controls in dynamic system [13],
[14]. RL-based methods accommodate the system variation
by formulating the task offloading problems as a Markov
decision process (MDP) aiming to maximize the long-term
cumulative utilities. By observing the interplay between deci-
sions and environments, the RL agent iteratively optimizes
the policy towards the optimal long-term utility. Since the
system state variation is unpredictable, ensuring the optimality
of the output decisions requires the RL method to explore
the system state variation as much as possible when training
the model, which is time-consuming. Besides, considering the
increasing scale of the system and privacy concerns, it is
also non-trivial to fully capture the knowledge of the whole

0733-8716 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1147-911X

3486

system when relying on a centralized coordinator as in current
solutions.

The resource of CED comes from multiple parties which
may have conflicts of interest, raising the concern of trustwor-
thiness and data security. Recently, an emerging technology
blockchain has been treated as a promising solution for this
issue. Every agreement on resource usage/provision in the
blockchain will be verified by all the blockchain participants,
which is tractable and tamper-resistant. Such a salient feature
provides great confidence in CED participants’ honesty with-
out a third party’s support. Studies such as [15] and [6] attempt
to leverage blockchain to build a truthful incentive mechanism
when user devices are involved in task offloading. Some efforts
such as [16] apply the blockchain to solve the data security
problems in distributed learning systems. Several studies such
as [17] and [18] use blockchain to build a federated learning
structure. Although the increasingly popular blockchain in
distributed computation systems, including the CED, the com-
bined usage of the current blockchain and CED can be a chal-
lenging task. The major problem is that operating a blockchain
in CED can be costly. Each blockchain node requires gen-
erating blocks and reaching the agreement via consensus
algorithms. Current mechanisms such as proof-of-work (PoW)
are computation intensive. For example, the well-known Bit-
Coin using PoW consumes 204TWh of electricity every
year, almost comparable to the consumption of the whole
Thailand. The transactions per second are only 4.6, which
is unacceptable to CED with frequent resource exchange.
Thus, consensus mechanisms such as Delegate proof-of-stake
(DPoS) [20], or practical byzantine fault tolerance (PBFT)
[21] with features of higher throughput and energy-friendly
are much more preferred. Still, these methods inevitably
introduce extra delay and cost to the CED resource alloca-
tions. These concerns demand the design of blockchain-based
CED that can reuse the resource consumption on maintain-
ing the blockchain and allow a fast decision on resource
allocation.

This paper tackles the above challenges by proposing
the BlockChain-empowered task offloading scheme for CED
computing (BC-CED). BC-CED distinguishes itself from
existing solutions by incorporating the task offloading process
into blockchain’s consensus mechanism, aiming to improve
resource usage and leverage blockchain participants’ crowd
intelligence to solve the complex CED offloading problem.
Specifically, blockchain participants reach an agreement by
solving offloading problems rather than only applying con-
ventional consensus mechanisms. The participant with the
best results will be elected to output the blocks, including
the resources trading information. For this design purpose,
we formulate the task offloading problem in BC-CED as
a partially observable Markov decision process (POMDP) to
capture the system dynamically. Each blockchain participant
applies the RL methods to solve this problem. Blockchain
participants further compete for the right of block output by
comparing the optimality of their output policies. A truthful
incentive mechanism to ensure the honesty of computation
units in BC-CED is also proposed. Contributions of this paper
are multi-folded:

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

(1) We conceptualize the BC-CED, in which the blockchain
plays a central role in maintaining the resource trading infor-
mation and performing the task offloading scheme. A major
difference that distinguishes BC-CED from the existing
blockchain-based solution is that the blockchain participants
of BC-CED reach a consensus via solving the CED task
offloading problem. Each blockchain node outputs the task
offloading result and selects the one that maximizes the utility
within the given constraint to output blocks of the next
time slot. Such design improves the resource utilization of
blockchain participants and reduces temporal overhead since
the blockchain operations have become necessary steps of the
CED system. Also, BC-CED can benefit from the competition
between different blockchain participants, given the selected
scheme are always among the numerous candidates.

(2) We formulated the CED task offloading problem as
a POMDP. The formulated problem not only focuses on
the delay or energy consumption on task processing as in
most existing solutions but also considers the dynamic of
transmission condition because the bandwidth competition at
bottleneck links can significantly affect the offloading per-
formance. To solve this problem, we allow each blockchain
participant uses an RL-based model trained via its observation
of the system dynamic. To further ensure the trustworthy when
processing the offloaded tasks, we propose a truthful incentive
mechanism integrating the functionality of smart contracts of
BC-CED.

(3) By cooperating with the Hangzhou Blockchain Tech-
nology Research Institute, we implement BC-CED in their
self-developed blockchain platform, BROP [22], and evaluate
the performance under various conditions. We first compare
BC-CED with several widely used solutions DPoS and PBFT,
in terms of the blockchain throughput and delay, showing
BC-CED’s feasibility. We also compare the task offloading
performance with several RL-based methods in terms of loss
convergence, total reward, overall latency, and resource usage.

The rest of the paper is organized as follows: The
background and related works are reviewed in Section II.
Section IIT presents the system overview of BC-CED.
Section IV formulates the CED task offloading problem and
discusses how to use RL-based methods to solve this prob-
lem. Section V introduces the design and implementation of
BC-CED. Section VI evaluates our design through numer-
ical simulations and prototype-level tests and Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the related studies,
including the blockchain-based distributed computation system
and task offloading schemes in CED. The main attributes of
these solutions are summarized in Table I.

A. Task Offloading in CED System

So far, only a few efforts have been afforded to the desig-
nated task offloading strategies in CED. Hong et al. in [9] for-
mulate the resource scheduling problem of the CED system as
a multi-task partitioning optimization problem, and an online

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: BLOCKCHAIN-EMPOWERED COLLABORATIVE TASK OFFLOADING FOR CED COMPUTING

algorithm is then proposed to timely allocate computational
resources. In [10], the task offloading problem is formulated
as a mixed-integer problem and decoupled into subproblems.
The first is to minimize the computation resources over a
given D2D pair, and the second is to maximize the number
of supported devices. Wen [11] et al. aim to improve the
energy efficiency of edge computing via a D2D offloading
strategy. Xing et al. [23] minimize the computation latency by
using D2D connection to offload the task to nearby users and
optimize the local users’ task assignments. Considering that
the formulated problem is mixed-integer and hard to solve,
a suboptimal task offloading algorithm is proposed by relaxing
the original problem to convex optimization.

The above offloading strategies commonly formulated the
problem as a nonconvex optimization problem and solved it
via heuristics methods which can only derive a suboptimal
solution. The deterministic optimization in these studies also
fails to capture the system variation. Consequently, the incon-
sistency between realism and modeling further impairs the
offloading performance. A recent promising trend to tackle
the above problems is leveraging the reinforcement learning
(RL) methods. Unlike deterministic optimization, RL-based
on solving a Markov decision process (MDP) approximates
the long-term optimum of a stochastic system. Yi et al.
in [24] apply deep reinforcement learning (DRL) to gen-
erate the resource allocation algorithm for computational-
intensive jobs. In this solution, a deep Q-network is offline
trained by maximizing the cumulative time reward. The trained
Q-network is forward-propagated to generate the offload-
ing policy to support online decision-making. Chen et al.
[25] consider ultra-dense cell scenarios where the client can
offload computational tasks to multiple base stations(BSs).
The offloading problem is then formulated as an MDP,
and a double deep Q-network-based method is applied to
learn the optimal offloading strategy. In [26], a multi-access
edge computing system with multiple cloud centers is con-
sidered. Due to each Cloud center having its interest and
competing resources. A distributed task allocation scheme
based on multi-agent reinforcement learning is proposed,
enabling cloud centers to determine the task offloading by
observing others’ decisions collaboratively. In [27], Liu et al.
apply the RL to minimize the average task completion time
when offloading the task to MEC. A distributed algorithm
based on the counterfactual MARL approach is presented
by further considering the existence of multiple independent
users.

B. Blockchain-Enabled Distributed Computation System

Enabling blockchain in computation systems such as Cloud,
the edge has begun in recent years. The decentralized
and tamper-resist features when recording data make the
blockchain perfect for resource management in a distributed
system with untrust participants. Numerous studies showcase
the promise of blockchain to distributed computation systems
from various perspectives. For instance, several studies attempt
to leverage blockchain to improve reliability and security.
In [28], a blockchain-based federated learning application

3487

trading platform called FLEX is given, which allows users to
buy and sell computing resources for model training without
sacrificing data privacy. In [17], a blockchain-based federated
learning for cognitive computing is proposed. Federated learn-
ing protects privacy and provides high processing efficiency,
while blockchain achieves full decentralization, providing
incentives and robustness against poisoning attacks. In [18],
Cheng et al. propose a resource pricing and trading scheme to
optimize the edge computing resource allocation and further
use blockchain to record the entire resource transaction process
to protect security and privacy.

Besides the security issues, several studies attempt to
facilitate resource utilization’s truthfulness via blockchain.
To ensure the truthfulness of incentive-based resource trad-
ing in edge computing, the study in [29] introduces the
blockchain-based incentive scheme that prevents malicious
edge servers from tampering with player information by main-
taining a continuous tamper-proof ledger database. In [18],
Cheng et al. proposes a trusted resource allocation mecha-
nism based on blockchain-driven smart contracts, in which a
group-buying pricing mechanism and a reputation evaluation
mechanism are proposed to effectively address the problems
existing in resources pricing and service quality evaluation of
edge servers. In [18], a general framework for blockchain-
based edge-computing-enabled IoT scenarios is proposed,
which designs smart contracts within a private blockchain
network to exploit the asynchronous advantage actor-critic
(AC)-based resource allocation methods. In [30], Bai et al.
considers the resources scheduling in edge computing scenar-
ios from the perspective of stable and real-time operation, and
proposes a multilateral blockchain structure that can contain
thousands of edge data, improve the efficiency of on-chain
data, and realize cross-chain edge data sharing heterogeneous
blockchain system.

Similar to our work, studies [31] and [15] design
blockchain-based task offloading for CED. In [15],Zavodovski.
et al. apply the blockchain for managing the auction mech-
anism of edge resource usage. In [31], Wu et al. design
a blockchain-based IoT-Edge-Cloud computing structure that
leverages blockchain to secure the task upload. In such
scenarios, the resource allocation problem is formulated as
Lyapunov optimization, whose objective is to minimize energy
consumption and task response time jointly. An energy-
efficient dynamic task offloading algorithm is given accord-
ingly. Although these studies also focus on Blockchain-based
CED systems, our work is different in the following perspec-
tives: (1) Different from these studies that use blockchain to
secure the data, BC-CED allows the blockchain to play a
central role in data recording, task offloading, and incentives;
(2) We also propose a modified consensus algorithm that
allows the blockchain members to reach the agreement via
solving the task offloading problem, which improves the
resource usage and fully exploits the crowd intelligence of
blockchain members for refining the offloading performance;
(3) To accommodate the complex and dynamic of the environ-
ment in CED, each blockchain member applies the RL-based
method to solve this problem rather than using conventional
optimization methods.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

3488

TABLE 1
COMPARISON OF RELATED STUDIES
CEI? RL-enabled Blockchain-enabled
Adoption
[9]-(11], [24] 4 X X
[25]-[28] VA V4 X
[18], [19], [29],

[30]-[32], [38] . . v
(31] x v v
[33], [34] v x v
BC-CED Vi v Vv

TABLE II

NOTIFICATIONS USED IN PROBLEM FORMULATION

Notation Definition

V, € set of the nodes and links

T the set of time slot in system

c (1) available bandwidth of link [at ¢

b; the volume of raw data for processing ¢

zi(t) data rate of delivering ¢

At time length of the time slot

By(t) task set using link ! during ¢

Vi(¢) the length of virtual queue for ! during ¢

Fu(t) available computation resource of unit w during ¢

T; the average transmission rate of %
the computation resources required to process %

Qu(t) task backlog of w during ¢
E;(t) the execution delay of 7
Ry (t) the unit resource usage of u during ¢
oy, Bi the weight for ¢
\% penalty parameter
G(t) the set of tasks generated during ¢
U, (t) the set of links used by ¢
13} time average capacity of [
III. SYSTEM OVERVIEW
This section presents the framework of BC-CED,

a collaborative CED task offloading scheme empowered by
the blockchain. Table II lists the notifications used in the prob-
lem formulation. Fig. 1 shows the structure of the proposed
BC-CED, which mainly consists of three layers: Applications
layer includes the various network applications running on top
of the BC-CED. These applications acting as BC-CED clients
subscribe their resource request and offload the tasks to the
computation units in BC-CED; Blockchain layer plays a cen-
tral role in the BC-CED functionality, including task offloading
decision, resource management, and incentives. Moreover, the
modified consensus mechanism proof-of-optimum that enables
blockchain to compete for the right of output blocks via
optimizing the task offloading schemes of BC-CED is also
implemented in this layer. Together with the blockchain tech-
nology, BC-CED aims to provide a truthful, decentralized and
high-performance task offloading; Resource layer maintains
the computation units contributing their resources to support
the BC-CED’s task offloading. We assume that all clients
can access BC-CED resources without loss of generality.
Computation units in CED include: (1) the data center or edge
computing servers with stabilized and powerful computing
capability but pricey in resource usage; (2) mobile or human
carried devices with limited and random resource provision.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

We define the type of members and basic concepts used in
our BC-CED based on the above structure.

Subscriber: The network applications or client offloads their
tasks to the BC-CED by specifying their demand on resources
and QoS requirement.

Transaction: When the client issues a request of resource
in BC-CED, a transaction that includes the resource and
task QoS requirement will be generated task brokerage. After
deciding on task offloading, the information of computation
units allocated to this task will also be recorded into the cor-
responding transaction. After the computation unit processing
the task and returning results to the client, the reward for
completing the task offloading will also be written in the
transaction.

Blockchain worker: Workers in Blockchain processes the
transactions defined above. Similar as current blockchain,
worker compete to output the block by achieving a pre-given
purpose.

Optimizer: The workers elected from the blockchain mem-
bers generate the task offloading policy via an RL model.
Furthermore, optimizers compare the results and select the
optimizer with the best-estimated performance as the leader
for the next time slot. The leader outputs the block and gains
block reward.

Computation unit: The entities that
resources to process the offloaded tasks.

Brokerage: This entity offers an interface for the subscriber
to interact with the blockchain and CUs. It is worth noting that
brokerage in BC-CED only acts as a relay to forward the tasks
and CUs information to the blockschain. Its main functions
include resource management, task offloading, and incentives
are deployed on the blockchains. Besides, the brokerage can
be either a trust component provided by the CED operator
or distributedly operated by multiple entities, for example,
blockchain workers.

Reward: The subscriber needs to pay the resource usage
fee of task offloading in BC-CED and this fee will be trans-
ferred to the entities contributing to the BC-CED. Specifically,
entities with contributions in BC-CED consist of blockchain
workers and computation units. The former gains the reward
by making task offloading decisions and recording transac-
tions, and the latter are rewarded for using their resources to
process the offloaded tasks.

contribute their

IV. TASK OFFLOADING PROBLEM IN BC-CED

In this section, we discuss the problem of task offloading
in BC-CED. We first present the system model, including the
computation and communication model. We formulate the task
offloading problem as a partially observable Markov decision
process (POMDP) and analyze how to solve this problem.

A. System Modeling

1) Communication Model: Before introducing the com-
munication model, we make the following assumptions for
BC-CED: (1) Subscriber access the computation resources
of Cloud via the backbone and wireless links; (2) Edge
computing servers directly connect the base station, and its

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: BLOCKCHAIN-EMPOWERED COLLABORATIVE TASK OFFLOADING FOR CED COMPUTING

Application Layer |

Smart Contract
Struct {
Trans

Distributed Ledger

Block ID Block ID
Hash Hash >
Data: Data:

Block ID
Hash
Data:

Blockchain Layer

}
Func1: Task Subscribing
Func2: Task Offloading
Func3: Rewarding

Resource Layer

Edge Computation Node

Fig. 1. The framework of blockchain-empowered CED system.

resources can be accessed via only the wireless link; (3) To
access the computation resources from mobile devices within
the same cell, clients use the base stations as the relay;
(4) System time is slotted and denoted by 7 = {1,2,...,T'}.
The system remains static within each slot and varies between
different slots.

CED topology can be modeled as an undirected graph
G(V,&), where V and & are the set of nodes and links,
respectively. Let V,,, V., V., V,,, V. C V denote the universe
of subscriber, Clouds, edge servers, MDs and routers, respec-
tively. Let [(u, v) € £ denotes the network link between node
u,v € V. To ease the description, we simplify [(u,v) to [.
For [€ £, ¢;(t) denotes its available bandwidth at time slot ¢.
Consider the dynamic of network condition, ¢;(¢) is defined
as a random variable of ¢ within the interval [0, ¢"®*], ¢***
is the capacity of [.

Let b, and x;(t) denote the volume of the raw data that
needs to be delivered when offloading task ¢ and the data rate
of delivering tlask ¢ within ¢, respectively. We accordingly
have b; = Ei:to x;(t)At, where to and ¢ denote the begin
and complete time slot of the data transmission. At is the
time length of slot ¢. Alternatively, let ; denotes the average
transmission rate, then we have the b, = (t' — to)AtT;.
Hence, the transmission delay (¢’ — to) At equals to the b; /T;.
Namely, a higher average transmission rate reduces the raw
data downloading time. The overall data rate over the [should
be within bandwidth constraint during ¢,

> @it) < alt) M

where B(t) denotes the set of tasks using link {. The above
constraints can be equally described by a virtual queue model
with length Vi(¢) shown in Fig 2(a). This virtual queue
indicates the backlog data awaiting to be transmitted at ¢. The
arrival rate of the queue is the overall data rate of tasks using [,
and dequeue rate is the available bandwidth ¢;(t). The dynamic
of V() is

Vit+1) =Vi(t) + Y xi(t) - Ci(t) 2)

1€B;(t)

3489

To avoid the congestion at [, following inequality should
hold:

el

1 Z 1 X

?Z D oait) < =) Gt
t=14i€B(t) t=1

namely, the Vj(t) is stable.

2) Computation Model: Recalls that Vi, k = c,e,m are
the CUs in BC-CED, their available computation resources
is denoted by a time-dependent variable F,(t). We measure
the computation capacity by its CPU cycles per second.
We assume the computation capacity of Cloud and edge
computing servers is stable since these commercialized plat-
forms are dedicated to task offloading. Namely, F,,(t),u €
Vi,k = c,e is a constant value. For MDs, however, the
resources provided can be time-varying since they can only
contribute their idle resources, which is dynamic. Hence, the
F,(t),u € Vi, is a random variable of ¢. Normally, we have

F,(t)> F,(t) > F,{t),u € Voo e Vo,w eV,

This inequality holds because Cloud computing runs on
the powerful data centers with the largest resources compared
with the edge and devices. The edge computing servers are
resource-limited but still more capable than MDs when per-
forming offloading tasks. For each task ¢ generated at time ¢,
we define a two tuple {s;(t),b;}, where s;(t) denotes the
computational resources required by processing ¢ and we recall
b; is the size of raw data that needs to be delivered the CUs.
Assuming computation unit begins to execute ¢ when received
all the raw data of 4, the task processing delay of ¢ allocated
to u can be the summation of delivery latency and execution
time. We denote the backlog of tasks waiting to be processed
at u as Q,(t). As Fig 2(a) shows, the queue input is the total
computation resource demand of tasks arrived during ¢, and
the dequeue rate equals F,(t). Hence, the dynamic of @, (t)
can be described as:

Qu(t + 1) = Qu(t) + Z Sz(t) -

1€AL(L)

Fu(t) 3)

where A, (t) denotes the set of tasks assigned to u. By the
Little’s law, we can estimate the total processing time of a
task by

S
’ Fu(t) @

B. Problem Formulation

The main purpose of task offloading is to minimize the
overall delay of task executions and resource usage overhead.
For any of the task ¢, we define the execution delay as the
summation of processing time and transmission time:

b;
Ei(t) = Pi,u(t) + — (5)
T

CUs in CED are normally operated by the third party and
gain income from processing tasks. For any of the computation
unit u, the rate charged for unit resource usage is R, and
the incomes for processing task ¢ at w can be given by

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

3490

@) %1 Data backlog increases:
& > w—a
((.)) i€ B(t

WA
Link 7 with capacity ¢,
T

(a) Data backlog dynamic at /
o 5
Task backlog increases:
5, (1) — F.(t)
Y R

“ﬁﬁ &

Queuing models for computation and transmission.

Computation Unit u with
computational capacity F,(7)

(b) Computing backlog dynamic at u

Fig. 2.

R,s;(t). By combining the execution delay and resource
usage, we define the cost function of task execution as follows:

Ei(t) + BiRusi(t) (6)

where the «; € [0,1] and 8; € [0,1] are the weight. Give
the dimension of the first term execution delay is seconds,
we remove the first term dimension by letting the dimension
of «; as 1/seconds.

Accordingly, we formulate the task offloading problem:

T
min Z Z (e E; ()

t=14ieG(t)
s.t C1:V;(t) is stable,

+ Bi Rusi(t)) @)

vie & (8)

where the objective of (7) is to minimize the cost function
of all tasks generated during the system running, where G(t)
denotes the set of the tasks generated at ¢. The constraint C1
indicates the decision of task offloading should avoid network
congestion. Moreover, an online method for this problem can
be derived via solving the following unconstrained optimiza-
tion problem [36] at each t:

min V) (aB(t) + BRusi(t))
i€ (t)
+) Vi)

le&

> ai(t)—alt))

1€B;(t)

where V' is a nonnegative parameter and denotes the penalty
to first term. Several features complicate this problem: First,
the decisions x;(t) of computation units using the same link
are coupled by the second terms. In such case, optimizing
x;(t) towards the direction of minimizing the overall delay are
difficult since it requires to consider not only ¢’s cost function
but also the decisions made by other CUs within the same
link; Second, due to the complex network status, having full
views of the system dynamic when solving this problem is
impossible in most cases. For instance, the underlying network
of BC-CED may be operated by different network operators.
The BC-CED participants cannot directly observe link condi-
tions required in (9). Namely, knowing V;(t) of each link [
is difficult for the coordinator. Instead, we can only estimate

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

the end-to-end delay D;(t) between any subscriber-CU pair
whose approximation.

Vi(t)
D;(t) = Zlem(t) Cll(t>

where U;(t) denotes the set of links used by i.

(10)

C. RL-Based Method for Task Offloading Problem

The formulated problem is a time-varying optimization,
and its dynamic is unpredictable, which makes the conven-
tional deterministic optimization, such as convex optimization,
unsuitable for such cases. Besides, because the system status
is unpredictable, it is not easy to model the system variation.
Namely, model-based dynamic programming methods are also
inapplicable to these problems. RL methods solve the stochas-
tic optimization via interacting with the environment and make
decisions by observing the feedback. Unlike conventional
optimization methods, RL methods approach the long-term
optimum by adapting the decision-making policy according to
the system variations. Such explorations make the RL methods
efficiently search for optimal solutions within a stochastic
environment. Various RL-based methods can be applied to
solve this problem. In the following, we discuss how to use
an actor-critic (AC) network to solve this method. We first
rephrase the problem to a Markov decision process(MDP).
The corresponding MDP to P1 can be defined as follows

Definition 1: The MDP for PI1 can be denoted by a tuple,
M={S, AP, R,by}, where

1) & the state space. We define the S by a tuple
S = {Q,V,C,N}, where Q,V,C,N are the value
set of task backlog at all computing nodes, value set
of the virtual queue length of all links in &, the set of
available bandwidth of all links in &£, the value set of
the |Vi|,k = ¢, e, m.

2) A the action space. BC-CED coordinators need to decide
which CU to offload tasks and the data rate of tasks. The
action at ¢ can be denoted by a 2-tuple (w(t),x(t)).
w(t) consists of one-hot vectors with [V, UV, U V,,|
dimension and each vector w;(t) is corresponding to a
task ¢ running upon the CU j. The components a;;(t)
of the one-hot vector wj;(¢) is defined as:

aij(t) = { _ (1)’

x(t) is a |G(t)| dimension vector defined as x(t) =

{xi(t)}iec(t)~

3) R the instant reward. According to the (9), we have

r(w(t),x())
T
=VY Y (aEi()

offload 7 to j at t

11
offload (i

+ BRusi(t))
t=14icG(t)
+ Y VI Y mi(t) — alt) (12)
leg 1€B;(t)

Instead of directly observing the Vi(t) in r(w(t),x(t))
which can be difficult as we discussed in IV.B,
we approximate the instant reward by the following:

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: BLOCKCHAIN-EMPOWERED COLLABORATIVE TASK OFFLOADING FOR CED COMPUTING

Let

g(wi(t),zi(t) = F(wi(t), zi(t)+ > Vi(t)Azi(t)
leU;(t)
(13)

where Az;(t) = wzi(t) — alt), f(wi(t),zi(t)) =
\% EtT:l(aEi (t)+ BRys;(t)). We recall that the end-to-
end delay D;(t) approximates the » ;.) (Vi(t)/ci(1))
by (10). Dividing the g(w;(t),x;(t)) by V:

(wi(t), z:(1))
A0 50 _ 1),)+ Y

leU;(t)

For each 7, we rephrase the penalty V' to a vector V; :=
{ci}iev, +)- We replace the g(w;(t), z;(t))/V by

P wilt),s(t) = Fwilt), o)+ 3 A0

et (t)
zi(t)) + Di(t)Azi(t) (14)

~ f(wi(t),

Since the end-to-end delay can be observed via lots of
network measurement methods, the above approximated
r'(w;(t), z;(t)) can be easily derived.

4) P the probability of observations Pr(b|s,(w;(t),
x,(t))). Instead of having full views of the system
dynamic, each CED agent can only observe the dynamic
Qu(t) at Cloud, edge. It is impossible to observe all
MDs’ @, (t) due to its large number and privacy issue.
Instead, we assume that the agent can only have the
average (), (t) of all MDs within the cell. Since the
operators maintain the network, knowing V;(t) of each
[is difficult for the agent. Instead, the agent can only
observe the end-to-end delay.

We can solve such a problem via various RL-based methods.
An example is applying the widely used Actor-Critic (AC)
based method.'

The AC is a type of RL model that includes two neuro
networks: an actor and a critic. The actor is a policy network
that outputs the actions at each time ¢ based on the current
observed system states, and the critic learns a critic function
based on the actions derived by actors and rewards.

1) Actor Network: We define the output policy by
mo(W(t),x(t)|St), where 6§ denotes the parameters of the actor
network, S; denotes the state at t. The network iteratively
updates the parameter 6 by the gradient-based method:

0(t +1)=0(t)+Vo(log mo (S [w(t), z(t)))
x AT (Sy,w(t), z(t)) (15)
where A™ (S, w(t), z(t)) is the advantage function
AT (S w(t), x(t) = QT (St w(t), x(t)) — V7™ (S;)

given the Q™ (S, w(t),z(t)) the action-value function and
V7o (S,) defined in [34], respectively.

U1t is worth mentioning that blockchain members in BC-CED can arbitrarily
apply any RL-based method to achieve the best performance on task offload-
ing.

3491

Task Subscriber Blockchain Resource Provider

Resource Management

Join request

Update resource info

Consensus Mechanism|

Task offloading Confirmg
Processing Tasks
Resource usage Reward for block output i
S T -2 11 LS o — i
Rwarding
Fig. 3. Workflow of task processing in BC-CED.
2) Critic Network: The critic network wuses the

TD(A) method to approximate the advantage function
A™0c® (S, w(t), z(t)) in (15), whose network parameter 0. ;
are updated as following:

dr = ' (Wi(t),zi(t)) + V™ (Sir1) = V™(Sr) (16)
Et = ’y)\Et,1 + O'(St) (17)
Oc(t) = 0.(t — 1) + g By (18)

where v and « are the learning rate and o(s;) is a indicator
function o(s;) = 1 if s = s; and 0 otherwise.

According to the above design, at each ¢, AC optimized the
offloading decision by the perform the following iteration until
reaching the iteration criterion:

1) The actor network outputs the task offloading action
(wi(t),z;(t)) according to the observed state S; and
Amocco (84, w(1), (1)),

2) The critic derives the reward r/(w;(t),z;(t)) by the
action (w;(t),z;(t)) and estimates the A™0¢+1(.) via
TD(A) method.

V. BLOCKCHAIN DESIGN IN BC-CED

In this section, we present the details of BC-CED. Fig.3
shows the main procedures in BC-CED, including resource
management, task offloading and resource pricing/rewarding.
Before introducing these procedures, we first describe the
smart contracts deployed upon the blockchain for performing
these functions in a self-governed and distributed way.

A. Smart Contracts in BC-CED

In BC-CED, blockchain plays a key role in CED task
offloading. Specifically, the blockchain of BC-CED can per-
form the following functions: 1) Maintain the information
about resource providers in BC-CED; 2)Verify and record the
task offloading information; 3) Manage the resource alloca-
tions in BC-CED; 3) Distribute reward/penalty according to

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

3492

the task completion status. To fulfill these functions in BC-
CED, we design the following smart contracts for BC-CED:

1) CU registration contract, this contract creates the
“public key” for the CU, which is the unique global
identification of CU and can be used to encrypt messages
sent to the corresponding MD for secure communication.
Once CU invokes this smart contract, it also periodically
updates the CU’s resource status to the blockchain.

2) Task offloading contract, when the client submits its
task offloading request to the brokerage of BC-CED,
this contract will be invoked to create a transaction
that records the task info, including resource and QoS
requirements, etc. Specifically, the task info is spec-
ified by a 6-tuple S = {TID,resReq.,duration,
reward(TID), Quality(TID)}, where TID is the
unique ID of the task. resReq specifies the detail
of resource requirement such as CPU frequency and
storage space, currency(T1D) is the reward for accom-
plishing the tasks, serQuality(T1D) specifies the QoS
requirement such as delay constraint of task processing.
confirm(T1D) is used to indicate whether the task is
accomplished.

3) Task offloading contract, during every ¢, the BC-CED
brokerage allocates the tasks to the CUs according to
the task offloading scheme generated by the consensus
mechanism. The information about CUs allocated to
each task ¢ will be written into ¢’s transaction.

4) Rewarding contract, once the CU accomplishes
the task or reaches the resource provision deadline, the
rewarding contract will decide whether to distribute the
reward to the CU according to the BC-CED incentive
mechanism.

B. Resource Management in BC-CED

The computation resources of CUs in BC-CED can be
geo-distributed and random in provision. Thus, managing the
resource that can timely update the resource status of CUs
is crucial for the performance of task offloading. During t,
when CU j sends the join request to brokerage, the CU
registration contract is invoked to generate the ID and record
the resource information such as CPU frequency, memory
size. The blockchain maintains the information and records in
the blocks generated within ¢ to ensure trustworthy resource
provision. Once the CU joins the BC-CED, it updates the
available resource at each ¢ to ensure that the task offloading
scheme can always make decisions based on the latest CED
resource status. Thus, any optimizer in BC-CED can access
the resource state via accessing the resource CUs’s info in
the block. When a CU needs to quit the CED system, a quit
notification will be sent to the BC-CED brokerage. The CU
registration contract will add new information to blocks that
set the available resource of CU to zero.

C. Task Offloading Procedure in BC-CED

We propose a task offloading optimization scheme based on
the designed smart contracts. We partition the task offloading

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

in BC-CED at every time slot ¢ into three stages, and the
pseudo-code of the task offloading is shown in Algorithm 1.

1) Observation Stage: optimizers in blockchain observe
tasks in arrival queue and resource requirement and raw data
volume of each task i. Meanwhile, optimizers access the
system states, including the task backlog @, (t), computation
capability F,(t) of each CU, and end-to-end delay of each
CU-subscriber pair. In practice, CU-subscriber pairs can be
large in scale and it is time-consuming to access all the end-
to-end delay pairs. Instead, we only ask each CU or subscriber
to update their delays to the edge periodically. For example,
for a client 7, the delay to the nearest based station is df (¢),
and CUs j delay to the nearest base station within the same
operator d5(t). Then, we use the d; (t) +dj(t) to approximate
the D;;(t) since compared with the end-to-end delay, the
backhaul latency between two stations is relatively small and
stable, which can be omitted.

2) Decision Stage: According to the above state infor-
mation, optimizers invoke the RL model to output the task
offloading actions and reach an agreement on the best actions.
The detail of this agreement is accomplished by our proposed
consensus mechanism, proof-of-optimality (POO), which will
be detailedly described in the next subsection. The output
action w;(t), z;(t) will then forward to the brokerage.

3) Offloading Stage: The brokerage allocates the tasks to
the CUs according to the w;(¢) and sends x;(t) to the
subscriber. Each subscriber uploads the task’s raw data with
data rate z;(t). Once the CUs receive the raw data, they will
begin to process the task and return the results once the task
is finished.

D. Consensus Mechanism in BC-CED

A major difference between the BC-CED and the exist-
ing blockchain-driven computation platform is that BC-CED
incorporates the task offloading optimization into the con-
sensus mechanism, which attempts to reuse the computation
and communication resources possessed by the blockchain
while supporting the high-performance task offloading.
To achieve this goal, we propose a consensus mechanism,
proof-of-optimality (POO), whose pseudo-code is shown in
Algorithm 2.

The procedure of POO consists following steps:

Optimizer election Similar to the conventional DPoS,
at time slot ¢, blockchain workers in POO use account balance
to elect a set of optimizers {0y }cq (1) from the worker set. For
the case of deploying BC-CED on the public chain, we only
include a small number of workers with a high stake in the
optimization process since they can be trusted in behaviors and
are more willing to contribute their resources to the system.
For private or consortium chain whose workers has no trust
issue, all worker can join the task offloading decision. We only
need to set a deadline for result submission, ensuring the
latency of the decision-making.

Task offloading optimization. Each optimizer o input
the Q. (t), Fy(t), D;;(t) from Algorithm 1, and use pol-
icy mp(w(t),z(t)|S;) derived the RL-based method such
as AC we discussed to output the offloading action

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: BLOCKCHAIN-EMPOWERED COLLABORATIVE TASK OFFLOADING FOR CED COMPUTING

Algorithm 1 Task Offloading in BC-CED
Input: Task set G(¢), Resource requirement
{si(t)}ica @) raw data size {b;}icq (), 0

15
Output: Task results

2 Observation Stage:;

3 foreach Optimizer n do

4 | Obtain the task backlog length @), (t), computation
capacity F,(t), edge delay d5(t) of CUs;

5 | Obtain the edge d(t) of Subscribers;

6 | ForEachsubscriber-CU pair (i, j)
Dij(t) < d5(t) + d; (t);

7 end

8 Decision Stage:;

9 foreach Optimizer n do

10 | Input the Q. (t), F,(t), D;;(t) into the RL model;

1 | Output the w;(t), z;(t) of ;

12 end

13 Derive the offloading action w (¢),x}(¢) via consensus

algorithm;

14 Forward the {w; (t)}icc (), {2] (t) }ica(r) to the brokage;

15 Offloading Stage:;

16 foreach i in G(t) do

17 | The associate subscriber deliver the raw data with
x;(t) to the CU j allocated to 4;

18 | The CU of ¢ process the tasks;

19 | Return the task results;

20 end

21 final ;

{wi(t)}icaw)s 17i(t) biea)- It is also worth noting that con-
sidering the large scale of the system and stringent constraints
on the offload action submission deadline, an optimizer with
limited capability may unable to transverse the status of
the whole system, and can only use partial state informa-
tion to optimize the offloading. An optimizer with powerful
computation and communication potentially provides a better
task offloading scheme since it can explore the environment
information as much as possible.

Leader selection. For each optimizer o, once o
derives {w;(t)}ieq(t), {7i(t) }icary Within the given
deadline, o broadcasts the {w;(t)}icq), {7:(t)}icaw
to all the optimizers. If the {w;({)}icq), {7:(t)}icaw
is not derives with the deadline, the result will be
discarded for the fairness on competition. For the results
{wl(t)Vieaw) {2} (1) Yiegy from other optimizer p, o
first check the {w!(t)}ica(), {2} (t)}ica) satisfying the
constraints w;(t) < |G(t)] and z;(t) < Tmax(t). If satisfies,
add the {w?(t)}icqu), {27 (t)}icgr) to the feasible list,
otherwise, discarded the {w?(t)}ica), {2} (t)}icaw). ©
ranks the {w! (t)}ie), {2} () }icqr) in feasible list by the
reward function and vote the p in the top rank as the leader.
The optimizer with the best performance will be selected as
the leader within ¢.

Block building and agreement. After the optimizer p
is selected as the leader, p builds the block containing the

3493

transactions generated within ¢. Each block contains M trans-
action items, and once it reaches the size limit, a new block
containing the subsequent transactions will be generated. The
block block; will be broadcast to the other optimizers who
will verify the transactions in the block. If most optimizers
vote for admitting the block;, then block; will be admitted
to the blockchain. Otherwise, reject. Specifically, block block;
is accepted in BC-CED if more than 2/3 of the optimizers
agree. Once the block block; is accepted, a reward s will be
distributed to the optimizers. Leader p takes a half share of
the reward, and the rest are uniformly distributed to the other
optimizers.

Fault tolerance analysis. In BC-CED, POO mainly consists
of two stages: First, similar to the proof-of-stake (PoS),
POO selects some workers with the highest stake to join
as the optimizer for task offloading. Thus, to entirely comprise
the system in this stage, malicious at least has 51% stake in
the system. In the second stage, all selected workers compete
for outputting blocks using the RL-based methods to solve
the task offloading problem. RL-based methods are machine
learning and require computation and storage resources to
train the network. Thus, learning performance partially relies
on the hardware conditions since large computation resources
train a much more complex network with more iterations that
approaches the optimum. Ideally, assuming that all the workers
are equal in computation resources, the number of malicious
nodes must be at least 51% for comprising the system. Besides,
the other workers will verify the results and discard them if
unsatisfied with the optimal condition. Thus, compared with
the existing consensus mechanism, POO can perform at least
equal or higher fault tolerance.

Time complexity analysis. To derive the offloading policy
in our proposed BC-CED, each blockchain worker first solves
the task offloading optimization problem via an RL-based
method and then compares the results with each other to elect
the next time slot leader. In the first step, all the workers
parallelly invoke the RL to solve the problem, and thus
the time complexity of this step is upper bounded by the
RL method with the highest time complexity. Let the time
complexity of worker n’s RL algorithm is o,,, then the time
complexity of this stage is max, o,. In the second stage,
each worker needs to traverse the results of other workers and
selects the best. Thus, the time complexity of this step relies
on the number of the workers joining the optimization process.
Let the number of workers selected to optimize the task
offloading is N,, the total time complexity is max,, o, + N,.

E. Incentive Mechanism

Given the BC-CED utilizes the resources from multiple
third parities, an incentive scheme can be the driven force
to encourage the participants to honestly and actively join the
task offloading. By the incentive mechanism, the reward or
penalties to the participants of task offloading are measured
in their contributions. In BC-CED, the incentive mechanism
mainly consists of two components: (1) Reward, to set the
prize of using resources of BC-CED. (2) Penalty, penalize the

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

3494

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

Algorithm 2 POO Concensus

Algorithm 3 BC-CED Rewarding and Penalizing

1 Optimizer selection:;

2 foreach Worker w in blockchain do

3 | Vote for a set of worker as the optimizers;

4 Caculate the votes for w;

5 end

6 Rank workers by its votes and select the top M workers
as the optimizers;

7 Leader selection:;

8 foreach Optimizer n do

9 | generate the action by policy

wo(w(t), 2(t)Qu(t), Fu (1), Dig(1));

10 | foreach Received offloading action do

w || if imestame of ({wi(t)}ico, {48 bieaq from
p) is within deadline then

12 | Check the feasiblity;

13 end

14 if w;(t) <|G(t)], z:(t) < Tmax(t) then

15 Add {w7(t)}zeG(t) {27 (t)}ica) to feasible

list;

16 end

17 Rank feasible list items by the value of
r'(w;(t), z;(t)) in a descent order;

18 Select p associate with the
Y (wh(t), 22 (1)) > 1 (Wl (1), (1)), Vg as the
leader;

19 | end

20 end
21 Block building and agreement:;
22 foreach block; do

23 | Calculate the votes for admitting ¢;

24 | if More than 2/3 optimizers admit blocki then
25 Accept the blocksi;

26 Transfer 0.5s reward to the leader;

27 Transfer 0.5s/(M — 1) reward to each optimizer;
28 | end

29 | else

30 Discard block;;

31 Replace block; by block;i1

32 | end

33 end

34 final ;

CUs failure to complete the results or provide false results will
be punished.

1) Reward: Recall that w}(t),z}(t) denotes the optimal
actions derived by POO, for CUs, we define its cost operator
Cii(w}(t), zf(t)) and R;(t) as price of offloading i to j
at t. Cjy(wy(t),z}(t)) can be a linear or convex function of
wy(t), zf(t). Given the CUs are rational, stimulating resource
provision should let R (¢) be no less than the cost processing 1,
ie., Cj (xf (), wi(t)) < R; (t), because the CUs attempts to
obtain the revenue from the task offloading. Let the C(.) =
max;ec () Ci(.), we define the total reward during ¢

= > Cela} (1), wi(1))

1€G(t)

19)

Input: {7 ()}icaw), {w] ()} ieaw, t.C: ()
1, Output: {R; (t)}ica)-{D; (t)}jen

2 Compute the total reward R; (t) during t;
3 while i € G(t) do

4 | Rewarding: R; (t) — SQUORG

S u® ~ mmY (0
Penalizing: vCye (2} () , w; (1)) /(()));

end

Subscriber verify the result of i;

while j € A/ do

if 7 finish the task then

10 transfer reward R; (t) to j’s account;

11 else if j fail then

12 confiscate Zi:tb
7’S account;

13 end

14 | end

15 end

16 final ;

L2 CHEE S B Y |

D; (7) units of currency from

CUs of tasks in G(t) share the payoff R (¢) based on the
volume of their providing resource. We determine the reward
for each task 7 by the following:

Ri() = LORO e

Dicgw Yi (8) hi(t)

where (y)) (t) R(t) = aw] (t) + Sz} (t) and o and (3 are the
non-negative pre-defined weight with a+ 3 = 1. According to
Eqn. (20), we have R; (t) > Cj; (wy(t),z} (t)) for all 4. This
indicates that providing resources to the task 7 is profitable for
CUs. Namely, the rewarding scheme is individually rational.
In the next section, we will also illustrate the truthfulness of
the incentive. Based on the above resource pricing and reward
calculation, we further provide a auto reward transferred
scheme as following:

Step 1, freezing: Once the subscriber issues the request for
task offloading, a payment to the brokerage with R;(t) will
be recorded and frozen.

Step 2, rewarding: Subscriber confirms whether the task is
successfully accomplished. If the task is completed, the reward
R;(t) will be automatically unlocked and transferred to the
corresponding CU’s account.

2) Penalizing: In CED, CUs can be human-carried devices
and may break their promise during resource provision, which
impairs the system performance and sustainability. Thus,
it necessary to penalize the CUs with dishonest behaviors
as well. We introduce the concept of deposit. After the
CU j confirming to process the assigned task, A deposit
for j according to its provision resource and reliability
of j. If the worker completes the task, the deposit will
be waived and return to the CU’s wallet. Otherwise, the
deposit will be confiscated for compensating the loss of
CED. We calculate the deposit for j processing ¢ by
D;(t) = vCjy (zf (t) ,w;(t)) /(h(j)), where « is a constant.

Algorithm 2 depicts the pesudo code of rewarding and
penalizing in BC-CED.

(20)

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: BLOCKCHAIN-EMPOWERED COLLABORATIVE TASK OFFLOADING FOR CED COMPUTING

Truthful analysis: According to [15], we define the incen-
tive is truthful if the reward of the participated CUs is
maximized. For our proposed task allocation and rewarding
algorithms, this indicates that no CU can obtain a higher
reward by dishonestly manipulating their costing function.
Following theorem ensures the truthfulness of our proposed
scheme.

Theorem 1: In each t, the incentive scheme is truthful,
namely, for any of CU j, we have R.(t) < R;(t), where
R(t) is reward derived by changing Cj.(.) to Cj(.), and
Ch (1) # Cji(.), @} (t) is the volume of contributed resource
calculated by using C7,(.).

Proof: We consider four different cases of each ¢:

(1) If 7;(t) > 0, worker j submits C7,(.) to replace C7,(.),
where C};(z,w) < C;(x,w). According to Algorithm 3,
if CU j has been selected to provide resource within ¢, we have
z;; (t) = @ (t), where the z; (t) is decision when applying
C! (.). Because the incentive applying the Cy (.) to calculate
the total reward, we have

GORD 1L

Yicom ¥i (1) hi ()™

_ wOBR) 1
Zieg(t) yir (1) ha ()7

Hence, i cannot gain any benefit from submitting a smaller
cost factor C/ ().

(2) If z7;(t) = 0, CU j set its submitted C%, (v) > Cj¢ (7).
Because Cj; (v,w) < Cji (w,w), we still have R;(t) =
R} (t). Namely, ¢ cannot gain any benefit from submitting a
larger cost factor C/ (.).

(3) If z7;(t) = 0, CU j set its submitted C}; (z) < C; ().
If x;j (t) > 0, namely, ¢ has been selected to processing j by
faking the cost function. According to the rewarding scheme,
the actual revenue of ¢ can be given by

Ci(a7 (8)) = Ci (27 (1) <0

This is because C; (.) > C; (.) otherwise the z(t) < 0.
Hence, the rewarding of such case is negative.

4 If z7;(t) = 0,CU j set its submitted C7, (z)! = Cj¢ (7).
The «(t) = 0 the revenue in this case is 0.

Based on above analysis, we can conclude that any CU
cannot gain his revenue by manipulating the C; (.), hence, the
theorem holds. u

R; (t) =

21

VI. EVALUATION

We implement our BC-CED prototype. First, we deploy
our blockchain design on BROP platform developed by
Hangzhou blockchain Technology Research Institute. BROP
is a blockchain-based environment for supporting efficient and
truthful cooperation among different parties. Besides, BROP
also supports various consensus mechanisms, which is ideal
to evaluate the performance of POO. In our prototype, the
blockchain consists of 4 workers and these workers are imple-
mented on a server (Intel 17-11700k, 8 cores 1.7GHz/32GB).
In each block, we specify the block ID, the generated time
stamp, number of transactions, and transaction information
described in Sec IV. The number of transactions in each block

3495

is set to 10000 unless otherwise specified. For every 3s, the
block will be agreed and added to the blockchain via the
consensus protocol.

Second, we build the RL environment based the a machine
learning platform MindSpore Lite tool [37]. The RL model
applies a convolution neural network (CNN) as the model.
A maxpooling layer follows the first convolutional layer.
The out channels of convolutional layers are 25, 48, 256,
64, 16, respectively. The kernel size layers are 9,2,7,3,3,3,4,
respectively. The final layer is fully connected and outputs
the action with probability distributions. To simulate the dif-
ference between the workers, the hyper-parameter, including
the learning rate and utility function’s weight parameters, are
different. We further consider four different RL methods:

(1) Deep Q network (DQN), each client equips with two
networks. The FEwval,.; estimates the state-action value, and
a Target,.; maintains the copy of Fuval,.; to calculate the
next state value function. A memory buffer caches the former
200 actions. The batch size is set to 32. The delay between
Fval,e; and Target,; is S iterations.

(2) Actor-Critic Network (AC), applies an AC network. The
critic outputs the current state value function using the TD
algorithm, and the actor outputs the action distribution by
minimizing the advantage of the actions based on the critic
output.

(3) Asynchronous Advantage Actor-Critic (A3C), extends
the AC by introducing paralleled processing. The learning
agent evokes four threads to train the model, and they col-
laboratively update a sharded model integrating the training
results.

(4)Multi-agent DQN (MADQN), this method consists of
four learning agent and each agent uses the DQN network
to generate the policy independently.

Third, to further test the offloading performance, the offload-
ing scheme derived by blockchain will be applied to guide the
transcoding task allocation in our previously designed collab-
orative video transcoding platform. Each joined device can
contribute resources for video transcoding on this platform.
The mobile devices generate the video transcoding request
and decide which CU to offload. Then, the video data will
be delivered to the target CU. After finishing the transcoding,
the transcoded content will be returned to the MD. This
platform consists of one server acting as the Cloud (Intel Xeon
Platinum 8163, 8 cores 2.5Ghz/64GB), three edge servers
(Intel 17-11700k, 8 cores 1.7GHz/32GB), and four laptops
(Intel 17-7700Kk, 4 cores 4.25Ghz/16GB, AMD Ryzen 5 Quad-
Core 3.2GHz/16GB, Intel i7-10750H, 6cores 2.6GHz/16GB,
Intel i7-10510U, 4 cores 1.8Ghz/16GB) acting as the MDs
and subscriber. The operating system is CentOS 7 and uses
FFmpeg as the transcoding tool. Each node installs a resource
monitor to record the resources variation. The bandwidth of
the wired link is 100Mbps. The length of the transcoding video
content is a random variable U2, 10]s. The transcoded bitrate
set of the original video includes 1080p(60fps), 1080p(30fps),
720p(60fps), 720p(30fps), 480p(301fps).

The subscriber generates a random number of tasks with
different computation resource requirements and video sizes
at each time slot. The number of the generated tasks follows a

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

3496

—+—DQN
—e—AC

A3C —+—DQN A3C
—e—AC -=—-MADQN

~ = MADQN

Unit Delay(s)

0 1000 2000 3000 4000 5000 0 100 200 300 400 500 600
Iterations(s) Iterations(s)

(a) Loss convergence during the
training

(b) Reward variation during the test

Fig. 4. RL algorithm performance.

Poisson distribution A;. The number of time slots between two
consecutive tasks generating follows a uniform distribution
with U[5,20], where Ula,b] denotes a uniform distribution
over the range [a, b].

A. RL Methods Performance

To test the generality of our formulated task offloading
optimization, we first evaluate the performance of four RL
methods (DQN, A3C, AC, MADQN) when solving this prob-
lem. The investigated metrics include loss variance during
training and unit processing delay during the test.

Loss variance: Fig. 4 (a) shows the loss function value
during the training. According to the figures, all solutions
experienced a fast decreasing trend and then entered the stable
phases, indicating that the algorithm converged. The reason
causes this phenomenon is that the learning agent has no
prior knowledge of the system dynamic at the beginning and
improves policies by estimating the values of actions at differ-
ent states. Once the value function or Q-value is learned, the
agent’s policy converges, making the curves stable. All these
curves converge around 2500s, revealing that they have similar
performance for task offloading problems. The difference is
that the AC-based method experiences an increasing trend
initially and then decreases after 900s. Meanwhile, DQN and
MADQN continue falling during the training. Thus, in the case
of insufficient training time, DQN and MADQN are preferred
for performing the task offloading.

Unit Delay (UD) during the test: We define the UD as
the latency of processing a unit raw data of the task. We test the
UD of different solutions via datasets of 600s and show the
results in Fig. 4 (b). As shown in the figure, A3C outperforms
the other solutions in most cases since it has the lowest
delay among all solutions. The advantage of A3C is that the
AC model always seeks the action better than the average.
Besides, A3C uses four different processes to explore the
environments for achieving better performance simultaneously.
The other three solutions are close in performance. The curves
corresponding to DQN are higher than AC and MADQN
initially and become very close after the 300s. Based on the
above analysis, we can conclude that all these RL methods
can be applied for solving the CED task offloading problem.
Therefore, blockchain workers can arbitrarily choose the RL
methods to output offloading policy since it is difficult to find
an RL method that dominates the other in all cases.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

1) Blockchain Results: Applying the consensus mechanism
to process the blocks can introduce extra resource consump-
tion and delay to the system. Lower resource consumption
and faster blocks processing can benefit the overall system
performance. We test our proposed POO with two widely
used consensus mechanisms DPoS and PBFT, in terms of
the CPU and memory occupancy, bandwidth consumption,
and block building latency. CPU occupancy: Fig. 5 shows
the CPU occupancy with the variant of transactions volumes
during the test. Our POO has the highest CPU occupancy
under four different cases, i.e., POO is about 500% and
200% higher than that of the DPOS and PBFT when the
transaction volume during the simulation is 2.5 million. The
high CPU consumption in POO is because each blockchain
worker applies an RL model to output the task offloading
policy, which consumes most of the computation resource.
DPoS maintains relatively low and is stable when transaction
volume varies, since a committee with a given number of
workers agree and output blocks. PBFT has a similar per-
formance compared with the PBFT since all nodes vote for
the right of the block. Although the PBFT and DPoS have
a lower CPU usage, these two consensuses cannot provide
the function of making task offloading decisions and require
an independent optimizer to perform the task offloading. The
purple curves in the figures indicate the CPU usage of an
RL-based task offloading optimizer whose performance is very
close to the POO, especially when in high transaction volumes.
Therefore, applying POO for the blockchain-based system will
not increase CPU consumption.

Memory occupancy: Fig. 6 shows the memory occupancy
with the variant of transactions volumes during the test.
Similar results as the CPU occupancy can be observed that the
POO has the highest memory occupancy under all conditions
of transaction volumes. Yet the independent optimizer also
achieves high memory usage, especially when the transac-
tion volume is large. For instance, the memory usage of
the independent optimizer is 14%, 26.1%, 35% and 40% at
1000s, comparing the POO with 20%, 38%, 40% and 46%
at 1000s, respectively. Besides, PBFT and DPoS memory
occupancy is about to 10% in most cases. The result indicates
applying the POO can save memory usage compared with
using a consensus mechanism and performing task offloading
optimization separately.

Bandwidth consumption: Fig. 7 illustrates the average band-
width consumption during the test under different transaction
volumes. According to the figure, POO has a higher bandwidth
occupancy than the other two consensus mechanisms when
the transaction volume is 1 million and becomes the lowest
when the number of transactions increases. The reason is
that workers in POO require to collect the environment infor-
mation that introduces extra bandwidth. With the transaction
volume increasing, the share of the bandwidth consumed by
the interaction between workers increases and becomes the
main consumer of the communication resources. DPoS has
the highest bandwidth consumption when transactions volume
equals 1.5 - 2.5 million since DPoS requires frequently elect
the witnesses and leaders among the witnesses.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: BLOCKCHAIN-EMPOWERED COLLABORATIVE TASK OFFLOADING FOR CED COMPUTING 3497
35 30 35
20 —+—P0OO DPOS —+—POO DPOS —+—P0OO DPOS —+—P0OO DPOS
18 —+—PBFT ——RL server 30 —+—PBFT ——RL server —+—PBFT ——RL server 30 —+—PBFT —+—RL server
) S PR W S » Wm _ {JMWWW
e @ S 20 L g, A A T e |
s < z
i W,-/\m\ﬂ,\/\/ww g £
& S | S A P i]
310 2 E 15
28 M s > 15 \g
S, © 20
4 [prtt s P e e o, g 10 LpP P Ao e b |
: B ool ;
2
WMWNM
%0 200 400 o0 80 1000 1200 1400 1600 1800 %0 200 400 e 0 1000 1200 1400 1600 1500 0 20 400 e S0 1000 1200 1400 1600 1500 9 200 40 o0 00 1000 1200 1400 1600 1500
Time(s) Time(s) Time(s) Time(s)
(a) Trans=1 million (b) Trans=1.5 million (c) Trans=2 million (d) Trans=2.5 million
Fig. 5. CPU occupancy during the test.
26 55 55
o —+—P0OO DPOS S0 —+—P0OO DPOS % ——P0OO DPOS
—+—PBFT ——RL ser —+—PBFT ——RL server > —+—PBFT —+—RL seryéf
2 45 45
@ 240 @
W < w2
28 g3 2
g 205 g
g g, :
LRE! E® £
= Z s =7
10 et
10 10
8
5 5
SM Fﬂw 0
0 200 400 600 800 1000 1200 1400 1600 1800 Oo 200 400 600 800 1000 1200 1400 1600 1800 00 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Time(s) Time(s) Time(s) Time(s)
(a) Trans=1 million (b) Trans=1.5 million (c) Trans=2 million (d) Trans=2.5 million
Fig. 6. Memory occupancy during the test.
10 5 18 25
#arert A PBFT
9 16 POS|

Bandwidth occupancy(MBytels)

ZIN

gN
Agentd

Agent3
Agent

(b) Trans=1.5 million

Agenl; Agent2

Agent

(a) Trans=1 million

Fig. 7. Average bandwidth consumption.

Transaction verifying delay: We define the transaction veri-
fication delay (TVD) as the time interval between issuing and
adding transactions to the blockchain. Fig. 8 shows the average
TVD under two different arrival patterns: (1) The burst arrival
pattern, the arrival rate (green bar in the figure) is relatively
high (up to 8000 per seconds) within 5s to 15 seconds and
remain stable in the rest of the simulation; (2) Stabilized arrival
pattern, the arrival rate is stable at 2800 in most cases during
the test. The TVD of three solutions in a burst arrival pattern
experiences an increase of up to 10s and then decreases to
5s. The reason is that the arrival rate during the 5s to 15s
is high and overwhelms the transaction processing rate. As a
result, the number of pending transactions increases, thereby
pushing up the TVD. The pending backlog decreases when
the transaction arrival rate becomes lower than the processing
rate. All curves fluctuate around the 2s during the test for the
stabilized pattern. The cause of this fluctuation is that each
block is added to the blockchain once the number of contained
transactions equals 10000 or reaches the 3s generating dead-
line. Thus, transactions added to a block almost full or close to

=

S

st o4

®

o

IS

Bandwidth occupancy(MByte/s)
3
e

Bandwidth occupancy(MBytels)

~

" - \‘ ZIN

Agent2 Agent3 Agentd
Agent

(d) Trans=2.5 million

AN

Agent1 Agentt

Agent2
Agent

(c) Trans=2 million

the building deadline can have a lower delay. We also observe
that three consensus algorithms have similar performance in
TVD since the RL network applied by the workers is trained,
and the optimization process is relatively fast compared with
the block processing latency.

2) Offloading Performance: Based on our designed collab-
orative transcoding platform, we compare the BC-CED with
our previous proposed task offloading algorithm AGO [1] and
the random policy. The AGO decides the task offloading policy
based on the stochastic network optimization framework, and
random policy selects the node to offload transcoding requests
by a uniform distribution. Fig. 9 (a) (b) show the average CPU
and Memory usage of different types of CUs. According to
the figure, BC-CED prefers offloads the task to the MDs while
AGO favors the Edge servers. This is because our formulated
problem considers the processing delay of the task and the
transmission capability. Heavily relying on the edge servers
may congest the links between subscribers and edge servers,
which increases the overall latency. This conclusion can be
derived by observing the Fig. 9 (c) where the BC-CED has

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

3498

‘-Arrival —-©--DPOS --*--PBFT - x--POO
X

o
=}
S
S

Arrival rate
Delay

0 5 10 15 20 25 30
Time(s)

(a) Burst arrival pattern

5000

4000

3000

Arrival rate

2000

1000

0 5 10 15 20 25 30 35 40
Time(s)

(b) Stablized arrival pattern

Fig. 8. Transaction verifying delay.

w
8

CPU Usage(%)
5

Memory Usage(%)

S

Client Side

Cloud Side Edge Side

Computation Unit

(a) CPU Usage

Cloud Side Edge Side

Computation Unit

Client Side

(b) Memory Usage

1200 7000
B2 Random|
SSAco 6000
[ZZBC-CED|

1000

®

3

3
@
3
S
3

4000

3000

I
3
3

Data throuhgput (kbps)
8
g
8

Processing delay (ms)
@
8

N
]
3

1000

o

on Unit

(d) Data Throughput

Computation Unit

(c) Processing Delay

Fig. 9. Performance of three solutions.

a lower delay at the edge side compared with AGO. Besides,
BC-CED also saves the pressure edge bandwidth as shown in

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

Fig. 9 (d). The random policy uniformly distributes the task
two to three types of CUs and hence has the highest processing
delay and throughput on the Cloud side, which is not preferred
by time-sensitive computation tasks.

VII. CONCLUSION

This paper proposes a blockchain-empowered task offload-
ing for CED computing, BC-CED. We first give the designate
of the BC-CED, which mainly consists of an application,
blockchain, and resource layers. We then formulate the CED
task offloading as a POMDP and illustrate how to use the
RL-based method to solve this problem. For functionality of
task publishing, task offloading, and resource management in
BC-CED, we further design four smart contracts and give the
detailed design of POO. This novel consensus mechanism
enables each blockchain worker to reach an agreement on
output blocks via solving the formulated POMDP. More-
over, we also provide an incentive mechanism that ensures
trustworthiness and encourages the CUs to contribute their
resources to the BC-CED. To evaluate the performance of
BC-CED, we conduct a series of numerical evaluations and
simulation tests based on a prototype system. Especially,
we implement the design of our POO in a commercialized
blockchain platform BROP to test the performance in the real-
istic. Simulation results show our proposed BC-CED improves
resource usage and reduces the overall processing delay when
using POO. Our prototype-level results also show that our pro-
posed algorithm outperforms the existing offloading schemes
in terms of the execution delay, load rate, and resource
usage.

REFERENCES

[1] X. Chen, C. Xu, M. Wang, Z. Wu, L. Zhong, and L. A. Grieco,
“Augmented queue-based transmission and transcoding optimization for
livecast services based on cloud-edge-crowd integration,” IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 11, pp. 4470-4484, Nov. 2021.

[2] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp- 1205-1221, Jun. 2019.

[3] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet
of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099-8110,
Sep. 2020.

[4] X. Wang, X. Chen, and W. Wu, “Towards truthful auction mechanisms
for task assignment in mobile device clouds,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), May 2017, pp. 1-9.

[5] I Jang, S. Choo, M. Kim, S. Pack, and G. Dan, “The software-defined
vehicular cloud: A new level of sharing the road,” IEEE Veh. Technol.
Mag., vol. 12, no. 2, pp. 78-88, Jun. 2017.

[6] M. Wang, C. Xu, X. Chen, L. Zhong, Z. Wu, and D. O. Wu, “BC-mobile
device cloud: A blockchain-based decentralized truthful framework for
mobile device cloud,” IEEE Trans. Ind. Informat., vol. 17, no. 2,
pp- 1208-1219, Feb. 2021.

[7]1 B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven off-
loading for DNN-based applications over cloud, edge, and end devices,”
IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5456-5466, Aug. 2020.

[8] K. Zhang, Z. Yang, and T. Basar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” Handbook of
Reinforcement Learning and Control (Studies in Systems, Decision and
Control). Cham, Switzerland: Springer, 2021, pp. 321-384.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: BLOCKCHAIN-EMPOWERED COLLABORATIVE TASK OFFLOADING FOR CED COMPUTING

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Y. Huang, F. Wang, F. Wang, and J. Liu, “DeePar: A hybrid device-edge-
cloud execution framework for mobile deep learning applications,” in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
Apr. 2019, pp. 892-897.

Y. He, J. Ren, G. Yu, and Y. Cai, “D2D communications meet
mobile edge computing for enhanced computation capacity in cellular
networks,” [EEE Trans. Commun., vol. 18, no. 3, pp. 1750-1763,
Mar. 2019.

J. Wen, C. Ren, and A. K. Sangaiah, “Energy-efficient device-to-
device edge computing network: An approach offloading both traffic
and computation,” IEEE Commun. Mag., vol. 56, no. 9, pp. 96102,
Sep. 2018.

D. Bertsekas, Reinforcement Learning and Optimal control. Nashua,
NH, USA: Athena Scientific, 2019.

M. Tang and V. W. S. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Trans. Mobile
Comput., vol. 21, no. 6, pp. 1985-1997, Jun. 2022.

L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware and
energy-efficient computation offloading in mobile-edge computing using
deep reinforcement learning,” IEEE Trans. Cognit. Commun. Netw.,
vol. 7, no. 3, pp. 881-892, Sep. 2021.

A. Zavodovski, S. Bayhan, N. Mohan, P. Zhou, W. Wong, and
J. Kangasharju, “DeCloud: Truthful decentralized double auction for
edge clouds,” in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Dallas, TX, USA, Jul. 2019, pp. 2157-2167.

J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 5,
pp. 2438-2455, Nov. 2021, doi: 10.1109/TDSC.2019.2952332.

Y. Qu, S. R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, “A blockchained
federated learning framework for cognitive computing in industry 4.0
networks,” IEEE Trans. Ind. Informat., vol. 17, no. 4, pp. 2964-2973,
Apr. 2021.

H. Cheng, Q. Hu, X. Zhang, Z. Yu, Y. Yang, and N. Xiong,
“Trusted resource allocation based on smart contracts for blockchain-
enabled Internet of Things,” IEEE Internet Things J., vol. 9, no. 11,
pp. 7904-7915, Jun. 2022.

Z. Qin, J. Ye, J. Meng, B. Lu, and L. Wang, “Privacy-preserving
blockchain-based federated learning for marine Internet of Things,”
IEEE Trans. Computat. Social Syst., vol. 9, no. 1, pp. 159-173,
Feb. 2022.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project, Zug, Switzerland, Yellow Paper 151, 2014,
pp. 1-32.

M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc.
OSDI, vol. 99, 1999, pp. 173-186.

BROP. Accessed: Jul. 2022. [Online]. Available: https://www.brop.cn/
H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment
and resource allocation for D2D-enabled mobile-edge computing,” I[EEE
Trans. Commun., vol. 67, no. 6, pp. 4193—4207, Jun. 2019.

D. Yi, X. Zhou, Y. Wen, and R. Tan, “Efficient compute-intensive job
allocation in data centers via deep reinforcement learning,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 6, pp. 1474-1485, Jun. 2020.

X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 40054018, Jun. 2019.

Y. Zhang, B. Di, Z. Zheng, J. Lin, and L. Song, “Distributed multi-
cloud multi-access edge computing by multi-agent reinforcement learn-
ing,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2565-2578,
Apr. 2021.

C. Liu, F. Tang, Y. Hu, K. Li, Z. Tang, and K. Li, “Distributed
task migration optimization in MEC by extending multi-agent deep
reinforcement learning approach,” IEEE Trans. Parallel Distrib. Syst.,
vol. 32, no. 7, pp. 1603-1614, Jul. 2021.

Y. Deng, T. Han, and N. Zhang, “FLeX: Trading edge comput-
ing resources for federated learning via blockchain,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), May 2021,
pp. 1-2.

W. Sun, J. Liu, Y. Yue, and P. Wang, “Joint resource allocation and
incentive design for blockchain-based mobile edge computing,” /EEE
Trans. Wireless Commun., vol. 19, no. 9, pp. 6050-6064, Sep. 2020.
F. Bai, T. Shen, Z. Yu, K. Zeng, and B. Gong, “Trustworthy blockchain-
empowered collaborative edge computing-as-a-service scheduling and
data sharing in the IIoE,” IEEE Internet Things J., vol. 9, no. 16,
pp. 14752-14766, Aug. 2022.

(31]

[32]

[33]

[34]

[35]

[36]

[37]

s

3499

H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO:
An energy-efficient dynamic task offloading algorithm for blockchain-
enabled IoT-edge-cloud orchestrated computing,” IEEE Internet Things
J., vol. 8, no. 4, pp. 2163-2176, Feb. 2021.

M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for IoT devices with energy harvesting,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930-1941, Feb. 2019.
M. E. Sudip, A. Mukherjee, A. Roy, N. Saurabh, Y. Rahulamathavan,
and M. Rajarajan, “Blockchain at the edge: Performance of resource-
constrained 10T networks,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 1, pp. 174-183, Jan. 2021.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 12, 1999, pp. 1-7.

Y. He, Y. Wang, C. Qiu, Q. Lin, J. Li, and Z. Ming, “Blockchain-based
edge computing resource allocation in IoT: A deep reinforcement learn-
ing approach,” IEEE Internet Things J., vol. 8, no. 4, pp. 2226-2237,
Feb. 2021.

M. Neely, Stochastic Network Optimization With Application to Com-
munication and Queueing Systems. San Rafael, CA, USA: Morgan &
Claypool, 2010.

(2020). Mindspore. [Online]. Available: https://www.mindspore.cn/

Su Yao received the Ph.D. degree from the National
Engineering Laboratory for Next Generation Inter-
net Interconnection Devices, Beijing Jiaotong Uni-
versity. Currently, he is with the Beijing National
Research Center for Information Science and Tech-
nology (BNRist), Tsinghua University, as an Assis-
tant Research Fellow. His research interests include
future network architecture, the IoT security, and
artificial intelligence for network systems.

Mu Wang received the Ph.D. degree in computer
technology from the Beijing University of Posts and
Telecommunications (BUPT) in 2020. He is cur-
rently serves as a Post-Doctoral Researcher with the
Beijing National Research Center for Information
Science and Technology (BNRist), Tsinghua Uni-
versity. His research interests include information
centric networking, wireless communications, and
multimedia sharing over wireless networks.

Qiang Qu is a Professor with the University of
Chinese Academy of Sciences, with Shenzhen Insti-
tute of Advanced Technology, Chinese Academy of
Sciences. He is currently the Director of Blockchain
Laboratory of Huawei Cloud Tech Company Ltd.
His research interests include blockchain and data
intensive systems.

/

)
-’

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2019.2952332

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 12, DECEMBER 2022

Ziyi Zhang is the Chief Architect of blockchain
with Huawei Cloud Tech Company Ltd. His research
interests include blockchain and cloud computing.

Yi-Feng Zhang is currently pursuing the D.Eng.
degree with Tsinghua University. He is the Direc-
tor of Zhongchao blockchain Technology Research
Institute. He won several prizes of Bank S and T
Progress Award from People’s Bank of China in last
ten years. His current research interests include cen-
tral bank digital currency, blockchain, and network
security.

Ke Xu (Senior Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Technology, Tsinghua University. He is a Full
Professor with Tsinghua University. He has pub-
lished more than 100 technical articles and holds
20 patents in the research areas of next generation
internet and P2P systems.

Mingwei Xu (Member, IEEE) received the B.Sc.
and Ph.D. degrees from Tsinghua University. He is
a Full Professor with the Department of Computer
Science, Tsinghua University. His research interests
include computer network architecture, high-speed
router architecture, and network security.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2022 at 09:09:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

