
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022 409

Off-Path TCP Hijacking Attacks via the Side
Channel of Downgraded IPID

Xuewei Feng , Qi Li , Senior Member, IEEE, Kun Sun , Member, IEEE, Chuanpu Fu,

and Ke Xu , Senior Member, IEEE, Member, ACM

Abstract— In this paper, we uncover a new off-path TCP
hijacking attack that can be used to terminate victim TCP
connections or inject forged data into victim TCP connections
by manipulating the new mixed IPID assignment method, which
is widely used in Linux kernel version 4.18 and beyond. Our
attack has three steps. First, an off-path attacker can downgrade
the IPID assignment for TCP packets from the more secure per-
socket-based policy to the less secure hash-based policy, thus
building a shared IPID counter that forms a side channel in
the victim. Second, the attacker detects the presence of TCP
connections by observing the side channel of the shared IPID
counter. Third, the attacker infers sequence and acknowledgment
numbers of the detected connection by observing the side channel.
Consequently, the attacker can completely hijack the connection,
e.g., resetting the connection or poisoning the data stream.
We evaluate the impacts of our attack in the real world, and
we uncover that more than 20% of Alexa top 100k websites
are vulnerable to our attack. Our case studies of SSH DoS,
manipulating web traffic, and poisoning BGP routing tables
show its threat on a wide range of applications. Moreover,
we demonstrate that our attack can be further extended to exploit
IPv4/IPv6 dual-stack networks on increasing the hash collisions
and enlarging vulnerable populations. Finally, we analyze the
root cause and develop a new IPID assignment method to defeat
this attack. We prototype our defense in Linux 4.18 and confirm
its effectiveness in the real world.

Index Terms— Side-channel, off-path exploit, hash collisions,
IPID assignment.

Manuscript received May 24, 2021; revised September 1, 2021; accepted
September 15, 2021; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor K. Ren. Date of publication October 1, 2021; date of
current version February 17, 2022. This work was supported in part by the
National Key Research and Development Program of China under Grant
2018YFB0803405, in part by China National Funds for Distinguished Young
Scientists under Grant 61825204, in part by the National Natural Science
Foundation of China under Grant 61932016 and Grant 62132011, in part by
the U.S. Office of Naval Research (ONR) under Grant N00014-16-1-3214 and
Grant N00014-18-2893, in part by the U.S. Army Research Office (ARO)
under Grant W911NF-17-1-0447, in part by Beijing Outstanding Young
Scientist Program under Grant BJJWZYJH01201910003011, and in part by
Beijing National Research Center for Information Science and Technol-
ogy (BNRist) under Grant BNR2019RC01011 and Grant BNR2020RC01013.
(Corresponding author: Ke Xu.)

Xuewei Feng, Chuanpu Fu, and Ke Xu are with Beijing National
Research Center for Information Science and Technology (BNRist), Depart-
ment of Computer Science and Technology, Tsinghua University, Beijing
100084, China (e-mail: fengxw18@mails.tsinghua.edu.cn; fcp20@mails.
tsinghua.edu.cn; xuke@tsinghua.edu.cn).

Qi Li is with the Beijing National Research Center for Information Science
and Technology (BNRist), Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China (e-mail: qli01@tsinghua.edu.cn).

Kun Sun is with CSIS, Department of Information Sciences and Technology,
George Mason University, Fairfax, VA 22030 USA (e-mail: ksun3@gmu.edu).

Digital Object Identifier 10.1109/TNET.2021.3115517

I. INTRODUCTION

S INCE the transmission control protocol (TCP) was first
presented in RFC 793 in 1981 [1], more than 100 TCP

related RFCs have been released to improve the protocol [2].
Consequently, it becomes difficult for off-path attackers to
hijack TCP connections, mainly due to the challenge of infer-
ring the 32-bit random sequence numbers and acknowledg-
ment numbers of a targeted TCP connection [1], [3]–[5]. When
launching a brute-force attack, the attacker has to flood more
than 300 million spoofed packets at a time to the target systems
that support both RFC 793 [1] and RFC 5961 [6]. Hence,
off-path TCP attacks mainly rely on discovering side channel
vulnerabilities to facilitate the inference of the sequence and
acknowledgment numbers [7]–[11]. Fortunately, most of the
uncovered vulnerabilities have been fixed or constrained by
the security community [7]–[9].

In this paper, we uncover a new off-path TCP hijacking
attack that exploits the mixed IPID assignment method in the
latest Linux kernels (i.e., version 4.18 and beyond) to either
terminate victim TCP connections or inject malicious data into
victim TCP connections. First, our attack tricks the victim
Linux machine into adopting the hash-based IPID assignment
policy, instead of the by default more secure per-socket-based
IPID assignment policy. Once the IPID assignment policy for
socket protocols (TCP in our attack) is downgraded, it builds a
side channel based on the IPID hash collisions of the globally
shared 2048 hash counters, i.e., identifying a shared IPID
counter on the victim by leveraging hash collisions. Second,
by observing the shared IPID counter, an off-path attacker can
detect the presence of TCP connections on the victim. Third,
the attacker infers sequence and acknowledgment numbers of
the victim connection to completely hijack the connection.
This new attack does not need any assistance of puppets,
i.e., unprivileged applications or sandboxed scripts controlled
by attackers on victim hosts [7], [12], [13].

The Identification field of IP protocol (IPID) is
used to indicate the uniqueness of a packet [14], [15]. After
abandoning two previous vulnerable IPID assignment methods
(i.e., global IPID assignment and per-destination IPID assign-
ment) [7], [16]–[19], Linux currently assigns IPID to packets
based on a mixed method [20]–[22]. If a packet is generated
from socket protocols such as TCP, Linux uses the per-socket-
based IPID assignment policy that assigns IPID to the packet
based on the counter recorded in the protocol socket. Other-
wise, Linux adopts the hash-based IPID assignment policy that
assigns IPID based on one of the 2048 globally shared hash
counters. In practice, Linux uses the DF (Don’t Fragment)

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3736-6623
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-4152-2107
https://orcid.org/0000-0003-2587-8517

410 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

flag in packet header [14] to choose between the two poli-
cies, since only socket protocols can set this flag to TRUE
to perform the path MTU discovery (PMTUD) mechanism
[23], [24]. In other words, if the DF flag is set to TRUE,
it uses the per-socket-based policy; otherwise, it chooses the
hash-based policy. However, our study shows that the mixed
IPID assignment in Linux implementations has vulnerabilities
that can be exploited to launch a new off-path TCP hijacking
attack.

Since Linux uses the more secure per-socket-based IPID
assignment by default for TCP connections, an off-path
attacker first tricks the victim into assigning IPID for its TCP
packets using the less secure hash-based IPID assignment. This
goal can be achieved by pretending to be a router and sending
a forged ICMP “Fragmentation Needed” error message [25]
to a victim. Since the ICMP error message informs the victim
that the packets issued from the victim need to be fragmented
and the DF flag is set, the victim will be tricked into cleaning
the DF flag of TCP packets and thus uses the hash-based IPID
assignment. Next, the victim chooses one IPID counter from
the 2048 hash counters to assign IPID for its TCP packets.
Among the 2048 globally shared hash counters, the target
counter is decided by the hash value of four components,
i.e., three fields of the packet (source IP address, destination
IP address, protocol number) and a random value generated
on system boot. Due to the small-sized hash counter pool,
the attacker may identify the target hash counter used in a
victim TCP connection via hash collisions, namely, alternating
IP addresses to collide with the target counter.

Once the shared IPID counter is known, attackers can use
the challenge ACK mechanism [6] as trigger conditions to
change the shared IPID counter, facilitating the next two attack
steps, i.e., to detect the presence of the victim TCP connection
and infer the sequence and acknowledgment numbers. The
attacker sends forged TCP packets to the victim, and the
triggered challenge ACK packets will alter the shared IPID
counter under different situations. It helps the attacker to
determine if the specified values in the forged TCP packets
are correct. Note that our attack only leverages the challenge
ACK mechanism as trigger conditions to assist the inference
of a victim TCP connection, instead of directly exploiting
vulnerabilities in the challenge ACK mechanism to hijack TCP
connections [8], [9].

Our attack does not suffer from traditional noise challenges
that other works have to address [16], [17], [26], [27]. Since,
in our attack, irrelevant TCP traffic using per-socket-based
counters, instead of the hash-based counters, will not interfere
with the attack traffic. Moreover, we measure that non-TCP
traffic also rarely interferes with the attack. We evaluate the
impacts of the new off-path TCP vulnerability on the Internet.
We find that more than 20% of the Alexa (www.alexa.com)
top 100k websites are vulnerable to our off-path attack.
Those websites can be tricked into cleaning the DF flag and
downgrading the IPID assignment from the per-socket-based
policy to the hash-based policy for their TCP packets after
receiving forged ICMP “Fragmentation Needed” messages.
We implement a PoC and perform case studies on a wide range
of applications, e.g., HTTP, SSH and BGP, to validate the
effectiveness of the attack in the real world. The experimental
results show that our off-path TCP attack can be constructed

within 215 seconds on average and the success rate is
over 88%.

Note that the attacks in IPv4 networks require that the off-
path attackers control 1,837 IPv4 addresses on average to
construct hash collisions and build the side channel. However,
this requirement may not be easily fulfilled in the IPv4 net-
works for individuals. We resolve this limitation by exploiting
IPv4/IPv6 dual-stack networks that hold adequate IP addresses
to build the side channel. Particularly, for Linux systems
running IPv4/IPv6 dual-stack, we show that attackers can more
easily construct hash collisions by leveraging the adequate
IPv6 addresses. Since the globally shared 2048 hash counters
on the victim are also used by IPv6 addresses [22], an off-path
attacker can misuse its adequate IPv6 addresses to construct
hash collisions and identify the target hash counter used in a
victim TCP connection. Hence, in IPv4/IPv6 dual-stack net-
works, the off-path attacker can more easily hijack victim TCP
connections between the vulnerable server’s IPv4 interface and
an arbitrary IPv4 client.

Finally, we propose countermeasures that aim to eliminate
the root cause of the newly discovered off-path TCP attack.
We fix the mixed IPID assignment in Linux kernels by
determining if a packet is originated from TCP protocol
on the Protocol field in IP header, instead of the DF
flag. We implement a prototype of our countermeasure in
Linux 4.18 and confirm its effectiveness through experimental
evaluation on the Internet.

Contributions: Our main contributions are the following:
• We uncover that the new mixed IPID assignment method

can still be exploited to hijack TCP connections.
• We uncover a new side channel in IPID assignment in the

latest Linux kernels. We demonstrate that the side channel
can be exploited to learn the presence of victim TCP
connections and infer the sequence and acknowledgment
numbers of the connections.

• We discover that more than 20% of Alexa top 100k websites
are vulnerable to our off-path attack. We also perform case
studies on a wide range of applications and confirm the
effectiveness of the attack.

• We analyze the root cause of the new attack and develop
countermeasures that use new IPID assignment methods
for TCP packets. Our prototype in Linux 4.18 validates its
effectiveness.

II. BACKGROUND

A. IPID Assignment in Linux

There are two basic IPID assignment policies in current
Linux, i.e., IPID based on 2048 hash counters or IPID
based on per-socket counters, where the latter is specific to
socket related protocols such as TCP. Figure 1 illustrates
the procedure of IPID assignment in Linux version 4.18 and
beyond. When a packet is generated, the IP protocol first
checks whether the packet is a TCP RST packet. If yes, then
the IPID of the packet is set to 0 directly. This assignment
is due to Geoffrey et al.’s disclosure of a side channel in
previous assignment methods, i.e., IPID of the RST packet
was assigned based on one of the 2048 hash counters before
version 4.18, which can be exploited to detect the presence of
TCP connections [21].

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: OFF-PATH TCP HIJACKING ATTACKS VIA SIDE CHANNEL OF DOWNGRADED IPID 411

Fig. 1. IPID assignment in Linux version 4.18 and beyond.

If the packet is not a TCP RST packet, IP protocol checks
the DF flag of the packet. IF the DF flag is set to FALSE,
the IPID will be assigned based on a hash counter. There are
totally 2048 hash counters in Linux. IP will select one from
these counters according to the hash value of 4 variables,
i.e., source IP address and destination IP address of the
packet, the protocol number of the packet, and a random value
generated on system boot. After the IPID value is copied from
the selected counter, the counter will increase by a uniform
distribution value between 1 and the number of system ticks
since the last packet transmission that used the same counter.
The system tick is usually measured in milliseconds.

When the DF flag is set to TRUE, except for the TCP
SYN/ACK (both the SYN flag and the ACK flag in TCP header
are set to TRUE) packet whose IPID is assigned to 0, IP assigns
IPID for other packets based on the second policy that is based
on a per-socket counter unique to each connection. The per-
socket counter is usually initialized to a random value. Then
each time after a packet is transmitted using this counter,
the counter increases by 1. The per-socket-based assignment
policy is considered to be more secure and can avoid being
observed from off-path attackers. Since the DF flag of TCP
packets is be default set to TRUE to enable the path MTU
discovery mechanism, TCP packets follow this per-socket
assignment policy. Through studying the IPID assignment in
Linux, we find that if the DF flag of TCP packets can be
cleared (i.e., set to FALSE), then the IPID assignment to TCP
packets will be downgraded from using the per-socket-based
policy to the hash-based policy.

B. Path MTU Discovery

To avoid IP fragmentation, RFC 1191 [23] and
RFC 1981 [24] propose a mechanism to discover path
MTU (PMTU) between two end hosts, i.e., the minimum
of all hops’ MTUs in the entire packet transmission path.
PMTUD relies on the DF flag. Before sending a packet,
the originator sets the DF flag of the packet to TRUE,
indicating that the packet is not allowed to be fragmented by
intermediate routers. If the packet exceeds a router’s next-hop
MTU, the intermediate router discards it and issues an ICMP
Destination Unreachable message (type 3) to the originator
with the code Fragmentation Needed and DF set (code 4) in
IPv4 or an ICMPv6 Packet Too Big message in IPv6, along
with the router’s next-hop MTU value carried in the ICMP
message. After receiving the ICMP message, if the embedded
packet in the message passes the originator’s check, then the
originator reduces the size of subsequent packets according

to the carried next-hop MTU value in the message. The
originator repeats the sending process until a packet with
certain size could be forwarded to the destination, and it then
sets the size as PMTU.

However, during this procedure, if an intermediate router’s
next-hop MTU is smaller than the originator’s acceptable min-
imum PMTU min_pmtu that is a system variable in PMTUD
implementations, the originator will resize the packet size to
min_pmtu, clear the DF flag of subsequent packets, and then
send them out. In RFC 1191 [23], min_pmtu is recommended
as 576 octets. However, it varies in different implementations,
e.g., 256 octets in FreeBSD, 296 octets in Mac OS, 552 octets
in Linux, and 596 octets in Windows.

In most PMTUD implementations, hosts do not validate
the source and transmission path of ICMP “Fragmentation
Needed” messages (e.g., Linux kernel version 3.9 and beyond).
Therefore, an off-path attacker can pretend to be a router and
forge such an ICMP message specified with an extremely
small next-hop MTU value. Actually the specified next-hop
MTU value can be even set to 68 octets, the minimum of
PMTU value on the Internet. After sending such a forged
ICMP message to the originator, if the embedded packet in
the forged ICMP message can pass the originator’s check,
the originator will be tricked into clearing the DF flag, thus
downgrading the IPID assignment for TCP packets. According
to RFC 792 [25], the forged ICMP message should embed at
least 28 octets data to pass the originator’s check. We will
show that an ICMP echo reply packet can be embedded in the
forged ICMP message to deceive the originator’s check.

C. Challenge ACK Mechanism

To defeat blind in-window attacks on TCP, the challenge
ACK mechanism was proposed as RFC 5961 [6]. In a nutshell,
the challenge ACK mechanism requires that the sender of
packets triggering the challenge conditions replies with the
exact sequence number, not just one within the receive win-
dow. Thus, it can prevent an off-path attacker’s blind injection
unless the attacker is extremely lucky to be able to guess
the exact sequence number with a probability of 1/232. The
challenge ACK mechanism is designed to enhance the security
of TCP; however, we show that it can be abused to infer the
state of a victim TCP connection.

Our attack exploits the challenge conditions in three aspects.
First, if a receiver1 sees an incoming SYN segment, regardless
of the sequence number in the segment, it sends back an
challenge ACK to the sender to confirm the loss of the previous
connection. Only the legitimate remote peer will send a RST
segment with the correct sequence number (derived from the
ACK field of the challenge ACK packet) to prove that the
previous connection is indeed terminated. Off-path attackers
cannot answer this challenge with correct sequence number.
We will show that this challenge condition can be abused to
detect victim TCP connections.

Second, when a receiver sees an incoming RST seg-
ment, if the carried sequence number is outside the receive
window, the receiver simply discards the segment. Instead,

1TCP is a full duplex protocol, hence the receiver may be the server peer
or the client peer of the connection. We use the receiver here to refer to the
peer that receives an incoming TCP segment.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

412 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 2. Threat model.

if the sequence number is in-window but does not exactly
match the expected next sequence number (i.e., RCV.NXT),
the receiver will send a challenge ACK to the sender to confirm
the reset action. We will show that this challenge condition can
be abused to judge the correctness of the guessed sequence
number.

Third, if a receiver sees an incoming ACK segment,
it validates the acknowledgment number of the seg-
ment (SEG.ACK) with a window of SND.UNA −
SND.MAX.WND <= SEG.ACK <= SND.NXT ,
where SND.UNA is the sequence number of the first
unacknowledged octet, SND.MAX.WND is the maximum
window size that the receiver has ever seen from its peer. The
receiver considers that the acknowledgment number is legal
and accepts it if the acknowledgment number is in this range.
If SEG.ACK is in the range of [SND.UNA − (231 − 1),
SND.UNA− SND.MAX.WND], i.e., the challenge ACK
window, the receiver responds with a challenge ACK packet.
We will show this challenge condition can be abused to judge
the correctness of a guessed acknowledgment number.

III. ATTACK OVERVIEW

A. Threat Model

Figure 2 illustrates the threat model of our off-path TCP
exploit. It involves three hosts, i.e., a victim client, a victim
server, and an off-path attacker. The server and the client
communicate based on a TCP connection, while the off-path
attacker aims to hijack the connection. The off-path attacker
cannot eavesdrop the traffic transferred between the server and
the client as the man-in-the-middle attacker does. However,
the attacker is capable of sending spoofed packets with the IP
addresses of the server and the client. This capability assump-
tion is practical, since at least a quarter of the Autonomous
Systems (ASes) on the Internet do not filter packets with
spoofed source addresses leaving their networks [28].

B. Attack Procedure

Our off-path TCP exploit consists of three main steps to
hijack a victim TCP connection.

Step 1: Detecting Victim Clients. The attacker downgrades
the server’s IPID assignment from the per-socket-based pol-
icy to the hash-based policy. Then, through hash collisions,
the attacker detects victim clients who share the same IPID
counter with the attacker on the server side, i.e., the server
uses the same hash-based IPID counter to assign IPID for TCP
packets to the victim client and for packets to the attacker.

Step 2: Detecting TCP Connections. Once a poten-
tial victim client is detected, the attacker impersonates the
victim client and sends spoofed SYN/ACK packets to the

server. Then, by observing the change of the shared IPID
counter, the attacker can determine the correctness of the
specified source port number in the spoofed SYN/ACK packets
and thus detect the presence of the TCP connection between
the server and the victim client.

Step 3: Inferring Sequence and Acknowledgment Num-
bers. After a victim TCP connection is identified, the attacker
sends spoofed RST packets and ACK packets to the connec-
tion, and triggers challenge ACK mechanism on the connec-
tion. By observing the changes of the shared IPID counter,
the attacker can determine the correctness of the specified
sequence number and acknowledgment number in the forged
packets.

After correctly identifying the sequence numbers and
acknowledgment numbers of the victim connection,
the attacker can forge malicious TCP segments with the
identified values and inject the segments into the victim
connection to either reset the connection or poison the data
stream. In the next three sections, we will detail the above
three steps.

IV. DETECTING VICTIM CLIENTS

A. Downgrading the IPID Assignment

Linux assigns IPID for packets based on the DF flag. If the
DF flag is set to TRUE, Linux will assign IPID for the packet
based on a per-socket IPID counter; otherwise, based on a
hash IPID counter. However, we observe that the DF flag can
be maliciously cleared by off-path attackers, thus downgrading
the IPID assignment. The attacker pretends to be a router and
sends a forged ICMP “Fragmentation Needed” message to the
victim server, indicating that a router between the server and
the client has a smaller next-hop MTU and the packet is not
allowed to be fragmented.

In order to trick the server into accepting the forged ICMP
“Fragmentation Needed” message and clearing the DF flag
of TCP packets sent to the client, the forged ICMP message
needs to satisfy two conditions. First, the server does not
validate the source of the ICMP message, i.e., the forged ICMP
message from off-path attackers will not be discarded by the
server. In practice, the validation requires extra functionality
support from hardware devices [29], since major OSes, e.g.,
Linux 3.9 and beyond, do not perform the validation but
directly accept the message. Second, the data embedded in
the forged ICMP message must be able to evade the server’s
checks. RFC 792 [25] states that ICMP error messages should
be embedded at least 28 octets (i.e., the IP header plus at least
the first 8 octets) of the triggering packet, which is used by
the server to match the message to the appropriate process.
Moreover, according to the newer standard RFC 1812 [30],
ICMP error messages should be embedded as much of the
triggering packet as possible, but not exceeding 576 octets.
Hence, the attacker has to craft and embed feasible data into
the forged ICMP error message to evade the server’s check.

To evade the server’s check, we can embed the ICMP echo
reply data into the forged ICMP “Fragmentation Needed”
message, as shown in Figure 3. When servers equipped with
Linux 3.9 and beyond receive such an ICMP “Fragmentation
Needed” message embedded with an echo reply, the server
does not check whether it sent the embedded echo reply data
earlier. Instead, it directly responds to the forged ICMP error

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: OFF-PATH TCP HIJACKING ATTACKS VIA SIDE CHANNEL OF DOWNGRADED IPID 413

Fig. 3. Structure of the forged ICMP error message.

message and clears the DF flag of subsequent packets sent to
the client whose IP address is specified in the embedded echo
reply. Even if the server checks on the embedded echo reply
data, it is easy for attackers to circumvent this checking. For
example, the attacker can impersonate the client and initiate
an ICMP echo request to the server, triggering the server
to send an echo reply message. Then, the attacker pretends
to be a router and sends an ICMP “Fragmentation Needed”
message embedded with the known echo reply data to the
server, tricking the server into accepting the forged message.
Note the next-hop MTU value specified in the forged ICMP
“Fragmentation Needed” message should be smaller than the
server’s acceptable minimum PMTU min_pmtu, as described
in Section II-B. Actually, the value can be set to 68 octets,
which is always smaller than the system variable of min_pmtu
in various IP implementations. Besides, we find that a forged
ICMP error message embedded with a GRE data [31] can also
be used to trick the server into clearing the DF flag.

In a nutshell, it is difficult to verify the legitimacy of ICMP
error messages on the Internet. Therefore, an attacker can forge
an ICMP message and trick the server into accepting it. The
forged ICMP error messages can force the server to clear the
DF flag of packets sent to the victim client. Thus, the IPID
assignment can be easily downgraded by attackers.

B. Constructing Hash Collisions

The server will assign IPID to the packets by using
one of 2048 hash counters once the TCP packet’s DF flag
is cleared. The counter is selected based on four factors,
i.e., source IP address, destination IP address, protocol num-
ber (e.g., 1 represents ICMP protocol, 6 represents TCP
protocol) of the packet, and a random value generated on
system boot. A hash index computed from the four factors is
used to select one counter from the 2048 hash IPID counters.
Hence, if the TCP packets sent to the victim client have the
same hash value as the packets sent to the attacker, the server
will use the same IPID counter to assign IPID for those
packets to different destinations. Therefore, by constructing
hash collisions using Equation 1, the attacker can detect the
victim clients who share the same IPID counter on the server
side. In other words, the shared IPID counter forms a side
channel, which can be exploited to infer TCP connections

between the server and the detected client. Our attack uses the
ICMP protocol to detect hash collisions due to its simplicity
and observability.

The procedure of detecting victim clients by constructing
hash collisions is shown in Figure 4. First, the attacker pre-
tends to be a router and sends a forged ICMP “Fragmentation
Needed” message to the server, who will be tricked into
clearing the DF flag and downgrading the IPID assignment
of packets to the client whose IP address is specified in the
forged ICMP message. Second, the attacker initiates ICMP
echo requests to the server and observes the IPID of the reply
packets. Then the attacker impersonates the client and sends
a spoofed SYN packet to the server’s listening port (e.g., 80).
Following the three-way handshake process of TCP, the server
will respond an SYN/ACK packet to the client. Here, the key
difference is that if the attacker’s IP address collides with the
client (i.e., the attacker and the client share the same hash-
based IPID counter at the server side), the IPID assignment for
the SYN/ACK packet will incur an additional increment to the
shared IPID counter, which can be observed by the attacker.2

Otherwise, if there is no collision, the IPID observed by the
attacker will be continuous distribution, i.e., without additional
increment. Using this method, the attacker can identify victim
clients who collide with its IP address and share the same
IPID counter.

hash(server_IP, client_IP, TCP, Boot_key)
= hash(server_IP, attacker_IP, ICMP, Boot_key) (1)

The hash-based IPID counter does not increase linearly.
Instead, the increment is a random value in a uniform distrib-
ution between 1 and the number of system ticks since the last
packet transmission that used the same counter. Hence, if the
attacker wants to force the counter to increase linearly and
facilitate the observation, it needs to restrict the increment of
system ticks related to the IPID counter. Usually, if more than
3 packets are sent to the server under 10 ms, the random value
added to the IPID counter will never be larger than one [21].
We send ICMP request packets to the server in parallel and
restrict the increment of system ticks. Our experiments show
that if the round-trip time (RTT) from the attacker to the server
is within 200 ms, the attacker only needs to send less than
300 packets per second to force the hash-based IPID counter
increasing linearly.

There are totally 2048 hash-based IPID counters in Linux,
and the probability of hash collisions between the attacker
and the client is a geometric distribution. When the protocol
is specified as ICMP (see Eq. 1), if the attacker has k IP
addresses, the probability of collisions between the attacker
and the target client is 1 − (1 − p)k, where p equals 1/2048.
To construct an attack in practice, the attacker has two strate-
gies to detect victim clients by leveraging hash collisions.

Attacking Potential Targets: If the attacker has only one or
a few IP addresses, the attacker can detect potential victim
clients who collide with the attacker. In theory, if the attacker
has only one IP address, on a target server, the number of

2A special case is that the source port in a spoofed SYN packet happens to
match the source port of a TCP connection from the client to the server. In this
case, the spoofed SYN packet will trigger a challenge ACK packet, instead of
a SYN/ACK packet. However, the attacker can still observe an additional
increment to the shared IPID counter.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

414 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 4. Detecting potential victim clients through hash collisions.

clients conflicting with the attacker is 232/2048 = 221. Since
the detection only depends on the server side, the attacker
can create a list of IP addresses and select one from the list
as the client’s IP address each time. Following the procedure
in Figure 4, the attacker can determine if the selected one is
a victim. In this way, the attacker can identify and enumerate
all the potential victim clients who are vulnerable to its
IP address. In our test, an attacker can detect more than
20 victim clients within 6 minutes using one IP address
(see Section VII-A).

Attacking Arbitrary Targets: If the attacker has enough
number of IP addresses, it can attack arbitrary TCP con-
nections by alternating its IP addresses to generate the hash
collision. According to the geometric probability distribution,
if the attacker has more than 2048 IP addresses, it can collide
with any clients with above 63.2% probability. Especially, for
servers running IPv4/IPv6 dual-stack, attackers can use ade-
quate IPv6 addresses to construct hash collisions with arbitrary
target clients, since both IPv4 and IPv6 addresses share the
same 2048 hash-based IPID counters (see Section VII-D for
implementations and evaluations of our attack in dual-stack
networks).

The detected hash-based IPID counter shared with the
victim client is stable. That is, if the server does not
restart (i.e., the Boot_key in Eq. 1 is not altered),
the client’s TCP connection will always share this IPID
counter with the attacker. In practice, servers (e.g., web
servers and BGP routers) do not restart frequently. Hence,
the attacker can detect shared IPID counters and victim
clients in advance, regardless of if TCP connections have been
established.

Note Linux assigned IPID to RST packets based on hash
counters before version 4.18, and thus an attacker can observe
its IPID distribution to determine if it shares the same counter
with the client by spoofing SYN/ACK packets [21]. This
vulnerability has been fixed since Linux 4.18 by always setting
the IPID of RST packets to 0, incurring no changes on any
IPID counters. However, we find that after the critical step of
downgrading the IPID assignment, an attacker can still detect
hash collisions through forging SYN packets and triggering the
server to respond SYN/ACK packets and then identify a victim
client. Moreover, we will show that the fix of assigning 0 to
RST packets introduces yet another vulnerability, which can
be exploited by a pure off-path attacker to detect the presence
of victim TCP connections (see Section V).

V. DETECTING TCP CONNECTIONS

Once a victim client is identified, the attacker can learn
the presence of TCP connections between the client and
the server. A TCP connection is identified by a four-tuple,
i.e., [source IP address, source port number, destination IP
address, destination port number]. Usually, the destination IP
address, and port number are public known, so an attacker
only needs to infer the source IP address and source port
number. In our attack, since the victim client can be detected
by using hash collisions, the only missing tuple is the source
port number.

Assuming that a TCP connection from source port y has
been established earlier by a legal user in the victim client,
an off-path attacker can identify this port number by sending
out probing packets. First, the attacker continuously sends
ICMP echo request packets to the server and observes the IPID
values of the reply packets from the server. Then, the attacker
impersonates the victim client and sends a forged SYN/ACK
packet with a guessed source port number to the server. If the
source port number specified in the SYN/ACK packet does not
equal y, according to the TCP specification [1], the server will
respond a RST packet to the client. Due to the patch fixing the
vulnerability identified by Alexander et al. [21], Linux kernel
versions 4.18 and beyond assign an IPID of 0 to the RST
packet, which will not incur an increment to the shared IPID
counter. Hence, the IPID values in the reply packets observed
by the attacker are continuous.

If the guessed source port number specified in the forged
SYN/ACK packet equals y, the challenge ACK mechanism [6]
makes the server send a challenge ACK packet to the victim
client for confirming the legitimacy of the SYN/ACK packet.
The IPID in the challenge ACK packet will be assigned based
on the shared IPID counter, which will incur an additional
increment to the counter. Thus, from the view of the attacker,
the IPID values in the reply packets from the server will not
be continuous.

The attacker repeats the above procedure, i.e., changing
the source port number specified in the forged SYN/ACK
packet and then observing the IPID of the reply packets,
until the correct port number y is identified. Finally, the TCP
connection running on the identified four-tuple is all known
to the attacker. In practice, the attacker can adopt a parallel
approach to facilitate the identification of the source port,
i.e., to search the source port number by sending multiple

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: OFF-PATH TCP HIJACKING ATTACKS VIA SIDE CHANNEL OF DOWNGRADED IPID 415

probing packets in a certain range during a period. If the
source port is in the range, the shared IPID counter will have
an additional increment, so the attacker can further narrow the
range. Otherwise, the attacker can detect another port range in
parallel. In addition, the attacker can use a binary-search-like
algorithm [8], [9] to further reduce the detection time cost.

VI. INFERRING SEQUENCE AND

ACKNOWLEDGMENT NUMBERS

A. Inferring Acceptable Sequence Number

To infer the acceptable sequence numbers on the server
side, the attacker continuously sends ICMP request packets to
the server and observes the IPID values of the reply packets.
Then, the attacker impersonates the victim client to send a
spoofed RST packet to the server. The RST packet is specified
with the guessed sequence number seq. We need to consider
two cases: (i) seq not in the server’s receive window and
(ii) seq in the server’s receive window. According to the
challenge ACK mechanism described in Section II-C, in the
first case, the server will discard the spoofed RST packet
directly, so it does not influence the shared IPID counter.
In the second case when the guessed seq is in the server’s
receive window, the server will respond to this RST packet and
send a challenge ACK packet to the victim client to confirm
the legitimacy of the packet. The IPID of this challenge ACK
packet is assigned based on the shared IPID counter, and it
will incur an additional increment to the counter. The attacker
can observe the increment and then determine that the guessed
seq is located in the server’s receive window.3

In practice, in order to reduce the time cost of sequence
number inference, the attacker can divide the sequence number
space into multiple blocks whose sizes are equal to the default
receive window size in Linux (87380 octets), probing only
once per block. Besides, the attacker can apply parallel search
methods similar to those used in connections detection to
further reduce the time cost.

B. Locating the Challenge ACK Window

According to RFC 5961, when a segment arrives at the
server, the server also checks the segment’s acknowledgment
number even if its sequence number is in the server’s receive
window. There are three cases in the whole acknowledgment
number space: (i) the acknowledgment number in challenge
ACK window, (ii) in the acceptable ACK range, and (iii) invalid
acknowledgment numbers. In the first case, the server will
issue a challenge ACK packet to confirm the legitimacy of
the triggering segment. In the second case, the server will
accept the segment directly. Otherwise, if the segment carries
an invalid acknowledgment number, the server will discard it
silently. The last two cases cannot be differentiated directly
because it cannot be observed from an off-path attacker.
However, the attacker can first identify the challenge ACK
window of the server and then infer the acceptable ACK
numbers.

When locating the challenge ACK window, the attacker
observes and records the shared IPID counter. Then the

3In a special case when seq exactly matches the server’s RCV.NXT ,
the server will reset the connection directly. However, the probability of this
case occurring is 1/232 , which is negligible.

attacker impersonates the victim client and sends a spoofed
ACK packet with a guessed acknowledgment number ack to
the server, the packet is also specified with an acceptable
sequence number detected previously. If ack is in the challenge
ACK window of the server, a challenge ACK packet will be
issued, incurring an additional increment to the shared IPID
counter. Instead, if ack is not in the challenge ACK window,
the observed IPID will be continuous from the view of the
attacker. In practice, the challenge ACK window size is always
between 1G and 2G [8], [9], [32], i.e., one quarter of the
entire acknowledgment number space. Hence, to facilitate the
detection, the attacker can divide the entire space into 4 blocks
and probe each block to check which block the challenge ACK
window falls in.

C. Detecting the Exact Sequence Number

Now we present the method of detecting the exact sequence
number (i.e., RCV.NXT , the lower boundary of the server’s
receive window) based on the previous inferred results. The
attacker can forge multiple ACK packets with a constant
acknowledgment number ack_challenge in the challenge ACK
window and the specified sequence number in each ACK
packet set to seq_acceptable − i, where seq_acceptable is
an acceptable sequence number inferred previously. Then the
attacker impersonates the victim client to send these forged
ACK packets to the server. In the beginning, the server will be
triggered to send challenge ACK packets at a rate of one packet
per 500 ms due to the rate limit of challenge ACK, so the
triggered challenge ACK packets will incur regular increments
to the shared IPID counter. However, once the specified
sequence number seq_acceptable−i reaches RCV.NXT (the
lower boundary of the server’s receive window), the server will
switch to send duplicate ACK packets, which is not enforced
by any rate limit. Thus, the shared IPID counter will have
a jitter,4 and the attacker can observe this jitter and then detect
the exact sequence number. The detecting procedure has no
side effects, e.g., resetting the connections, on the connections.

D. Detecting Acceptable ACK Number

Once an acknowledgment number ack_challenge in the
challenge ACK window is identified, the attacker can also
detect the boundary of the challenge ACK window by sending
multiple probing ACK packets and then observing the shared
IPID counter, similar to detecting the lower boundary of the
server’s receive window. The forged probing ACK packets are
specified with a constant sequence number seq_acceptable,
and the acknowledgment number of each ACK packet is set
to ack_challenge− i. In turn, the attacker sends these forged
ACK packets to the server. Challenge ACK packets will be
triggered until ack_challenge− i reaches the lower boundary
of the challenge ACK window. Once this boundary is detected,
then SND.UNA can be easily inferred, i.e., adding 2G to
the detected boundary. SND.UNA is in the acceptable ACK
range. When all the data sent earlier has been acknowledged,
SND.UNA equals SND.NXT . Instead, if the server has an
amount of data to be sent to the client, SND.NXT can also

4The increments to the shared IPID counter become 20 per 500 ms in our
experiments, instead of 1 per 500 ms.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

416 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

be inferred by adding the typical size of the send window to
SND.UNA, e.g., 16384 octets in Linux by default.

VII. IMPLEMENTATION AND EVALUATION

Ethical Considerations: In order to avoid causing real
damages or negative impacts on the Internet, we choose not to
directly attack real users and their hosts. All the hosts involved
in the experiments are our machines. We evaluate the impacts
of our off-path TCP attacks on the Internet, e.g., measuring
Alexa top 100k websites to identify potential victim servers
that are vulnerable to our attack. However, we do not exploit
the vulnerability of these web servers for real attacks.

A. Identifying Victim Clients

We show two scenarios of identifying victim clients via hash
collisions after downgrading the server’s IPID assignment.
First, we show how to detect potential victim clients using one
IP address. Second, we illustrate that the attacker can attack
arbitrary victim clients if having enough IP addresses.

Experimental Setup: Two types of hosts are used in this
experiment. A server listening on port 80 and waiting for TCP
connection requests is equipped with Ubuntu 18.04 (kernel
version 5.5) with a prefix of 152.136.0.0/16. Attack machines
locate in different positions with independent IP addresses.
We use these IP addresses to detect victim clients to the
server. The attack machines are equipped with Ubuntu 18.04
(kernel version 4.15) and are able to send packets to the server
with spoofed IP addresses.

Results With One Attacker IP Address: When having only
one IP address, an attacker can detect more than 2 million
victim clients to the server. In this scenario, we deploy
one attack machine and assign IP address from a target
IP list, which contains several prefixes owned by different
organizations. The attack machine clears the DF flag of the
server’s TCP packets to IP addresses in these prefixes via
forging ICMP “Fragmentation Needed” messages, and then
it scans the target prefixes to identify potential victim clients
that share the same hash-based IPID counter with the attack
machine on the server. The experimental results are shown
in Table I. By using only one attack machine (i.e., one attacker
IP address), the attacker can detect a considerable number of
potential victim clients in different organizations. For instance,
as shown in the last row of Table I, the number of victim
clients that collide with the attack machine are 179 in the
prefixes of 3.208.0.0/12 (owned by Amazon). The time costs
of identifying these victim clients are 30.0 minutes, i.e., it
takes 10.1 seconds on average to detect a victim client. The
average outbound traffic of the attack machine is 125.14 KB/s
(i.e., around 584 packets/s). Thus, it is difficult to detect
the malicious probing, e.g., by leveraging network traffic
monitoring systems.

Results With Multiple Attacker IP Addresses: When the
attacker has multiple IP addresses, it aims to attack an arbitrary
client to the server using these IP addresses. After selecting
the target client, the attacker clears the DF flag of the server’s
TCP packets to the client by forging an ICMP “Fragmentation
Needed” message. Then, the attacker detects addresses in
its address pool to find a correct one that collides with the
target client, i.e., sharing the same hash-based IPID counter.

TABLE I

DETECTING VICTIM CLIENTS USING ONE IP ADDRESS

In this experiment, we select different target clients and repeat
the detecting process 200 times. The empirical cumulative
distribution function (CDF) of the time cost and the number of
required attacker IP addresses are shown in Figure 5. For an
arbitrary target client, the average time cost to detect a correct
IP address in the attacker’s address pool is 15.4 seconds, and
the number of IP addresses needed is 1,837 on average. Fur-
thermore, after spending 24 seconds to check 3,000 addresses,
the attacker has a probability of 80.0% to identify a correct
IP address that can be used to attack an arbitrary client.
The measured probability is higher than the theoretical one,
i.e., 1 − (1 − 1/2048)3000 ≈ 76.9%.

To evaluate the threats of our off-path TCP attack on the
Internet, we measure Alexa top 100k websites to identify
how many websites suffer from the vulnerable IPID assign-
ment. We observe that 22,953 websites are vulnerable to
forged ICMP “Fragmentation Needed” messages from off-
path attackers and thus can be tricked into clearing the DF
flag of TCP packets and downgrading the IPID assignment.
These websites are vulnerable to our attack. We cannot
confirm the effectiveness of the attack against 22,803 websites
that are unreachable from our vantage point in California.
The unreachability of these websites is mainly caused by
censorship [33] and ISP filter rules [34]. Moreover, we suspect
that the rest resist to our attack due to two reasons, i.e., the OS
versions of the websites are invulnerable (e.g., old Linux ker-
nel versions or Windows), or the forged ICMP error messages
are blocked.

B. TCP DoS Attacks

Experimental Setup: This attack involves 3 hosts, namely,
an SSH server equipped with Ubuntu 18.04 (kernel version
4.18 or beyond), OpenSSH 7.6 and OpenSSL 1.0.2, a victim
client who accesses the server based on SSH connections, and
an attack machine equipped with Ubuntu 18.04 (kernel version
4.15) and a prefix of 152.136.0.0/16 that contains 2000 IP
addresses in this prefix. The attack machine can use these IP
addresses to detect hash collisions with the target client. The
attacker attempts to reset the connection via sending TCP RST
packets to the server.

Attack Procedure: In this attack, the 3-tuple [client IP
address, server IP address, server port] is known. First,
the attacker identifies an IP address in its prefix which collides
with the client IP address. Second, based on the identified
attacker IP address, the attacker infers the correct client port
number and the exact sequence number (RCV.NXT on the

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: OFF-PATH TCP HIJACKING ATTACKS VIA SIDE CHANNEL OF DOWNGRADED IPID 417

Fig. 5. Empirical CDF of time cost and the number of attacker IP addresses needed to detect a hash collision.

TABLE II

EXPERIMENTAL RESULTS OF SSH CONNECTION RESET

server side) of the victim SSH connection. Finally, a spoofed
RST packet specified with the inferred value is sent to the
server, and the server will be tricked into resetting the SSH
connection from the victim client. In this attack, the acceptable
acknowledgment numbers are not needed.

Experimental Results: On average, the time cost of iden-
tifying a correct attacker IP address is 15.4 seconds, and
the correct one will be identified after checking 1,837 IP
addresses on average. Table II illustrates our experimental
results. We test the attack against 4 servers that are equipped
with Linux kernel version 4.19, 4.20, 5.3, and 5.5, respec-
tively. The diversity of servers ensures the feasibility and
effectiveness of the attack. The average time cost of resetting
an SSH connection is 155 seconds, and the success rate is over
88%. TCP connections DoS attack is particularly applicable to
compromising applications secured by encrypted traffic, e.g.,
HTTPS and SSH.

C. TCP Manipulation Attacks

In this case, we perform two attacks to demonstrate that
the newly discovered IPID side channel can be exploit to
manipulate a TCP connection maliciously, thus causing serious
damage to the upper applications including HTTP and BGP.

(1) Manipulating Web Traffic: We demonstrate that under
the typical web application scenario, an off-path attacker can
detect a victim client connecting to the target web server and
then hijack the connection between the server and the client.

Experimental Setup: This attack involves 3 hosts. A web
server is equipped with Linux kernel version 5.5 and a
popular real-time communication web application called
Rocket.Chat [35]. An attack machine is equipped with Ubuntu
18.04 (kernel version 4.15), and it is able to send packets to
the server with a spoofed IP address. A client can access the
web server based on HTTP. Note the OS type or version of
the client is unrestricted in our attack. The attacker attempts
to identify the potential victim client and hijack the TCP
connection between the server and the client. For instance,
the attacker may impersonate the victim client to inject mali-
cious segments into the server and then inject fake messages

Fig. 6. Time/Bandwidth overheads of web manipulation.

into the chatting group. Here, the server IP address and server
port are publicly known.

Attack Procedure: The attacker first downgrades the server’s
IPID assignment and detects potential victim clients who share
the same hash-based IPID counter with the attacker. Next,
the attack can be constructed in the following four steps:
(1) detecting whether the client has a TCP connection to the
server, i.e., identifying correct source port number to obtain
the TCP 4-tuple information, (2) inferring the exact sequence
number, i.e., RCV.NXT on the server, which can slide the
server’s receive window, leading to that the segment can be
delivered to HTTP immediately, (3) inferring the acceptable
acknowledgment numbers, and (4) injecting forged segments
specified with the inferred values into the server and pushing
fake messages into the chatting group.

Experimental Results: It takes 14.0 seconds to detect a
potential victim client and 35.4 seconds to identify the cor-
rect source port number of the TCP connection. Figure 6
shows that the time cost in inferring the acceptable sequence
numbers, locating the challenge ACK window, detecting the
exact sequence number and an acceptable acknowledgment
number are 123.8 seconds, 0.7 seconds, 18.7 seconds and
14.0 seconds, respectively. On average, the overall time cost
of this attack is 206.6 seconds, including the time cost of
detecting the victim client that can be performed in advance.
64.3% of the overall time is spent on inferring the acceptable
sequence numbers. The reason is that the server’s receive
window is relatively narrow and the attacker must sample
a large number of sequence numbers. The average band-
width overhead of this attack is 23.55 KB/s. When detecting
acceptable ACK numbers, the probing packets are padded
with crafted application data, hence they consume a large
portion of the bandwidth. Finally, when the server accepts
the forged segment, the fake messages in the segment will

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

418 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 7. Snapshot of messages viewed by group members.

be stored on the server and advertised to group members,
as shown in Figure 7. Overall, the success rate of this attack is
over 90%.

(2) Manipulating BGP Routing Table: Customized security
mechanisms for BGP have not been widely deployed yet [36],
hence BGP messages undertaken by long-lived TCP connec-
tions may be poisoned by leveraging our attacks.

Experimental Setup: Due to ethical concerns, we do not
probe and attack BGP systems on the Internet. Instead,
we evaluate our attacks against BGP systems in our test-bed.
This attack involves 3 hosts. A BGP server is equipped with
Linux kernel version 5.5, listening on its port 179. A BGP
client is equipped with Ubuntu 18.04. Both the server and
the client run the BGP suite of Quagga [37] with version
1.2.0. After the client initiates a BGP connection, the two
peers advertise BGP messages to each other and update their
BGP route tables. An attack machine is equipped with Ubuntu
18.04, and it is able to send packets with a spoofed IP address.
The attacker aims to identify the potential victim client and
hijack the BGP connection. We show that the attacker can
impersonate the client and manipulate the server’s BGP route
table. We assume that the server IP address and server port
are publicly known.

Attack Procedure: Similar to the HTTP hijacking attack,
after downgrading the server’s IPID assignment and identify-
ing a victim client, the attacker first learn the presence of a
BGP connection between the server and the identified client.
Then, it infers the exact sequence number and an acceptable
acknowledgment number to the server. Finally, the attacker
sends forged BGP messages to the server based on the inferred
values to poison the routing table.

Experimental Results: Figure 8 presents a snapshot of
the poisoned BGP routing table. The Network Layer
Reachability Information (NLRI) of network “99.99.99.0/24”
and “88.88.88.0/24” is fake, which are not advertised by
router 172.21.0.70 but injected by the attacker. On aver-
age, the attacker can finish BGP routing table poisoning
in 214.3 seconds (including the time cost of identifying the
victim client), with a success rate over 90%.

D. Implementation and Evaluation in Dual-Stack Networks

As we presented in Section VII-A, if the attacker aims
to hijack the victim TCP connection between the vulnerable
server and an arbitrary client, the attacker needs 1,837 IP

Fig. 8. Snapshot of the poisoned BGP routing table.

addresses on average to construct the hash collision and
identify the shared IPID counter. In practice, it is not easy for
an attacker to hold such a number of IPv4 addresses, limiting
the effect of the proposed attack [38]. However, we discover
that if the vulnerable server enables IPv4/IPv6 dual-stack,
the attacker can easily use adequate IPv6 addresses to con-
struct hash collisions and identify the hash counter used in
the victim TCP connection.

On Linux systems running IPv4/IPv6 dual-stack,
the 2048 globally shared hash IPID counters are also
used by IPv6 addresses. Therefore, once the outgoing
IPv6 packets are fragmented (IPID is needed only when
IPv6 packets are fragmented at the originator), Linux will
assign IPID for the fragments by choosing one from the
2048 global counters. Hence, once the IPID assignment for
the target TCP connection between the vulnerable server
and the victim client undertaken by IPv4 is downgraded to
hash-based policy, the attacker can use its IPv6 addresses to
construct hash collisions and identify the target hash counter
used in the victim connection. Next, by observing the side
channel of the shared IPID counter, the attacker can hijack
the victim connection and overcome the lack of IP addresses.

It is worth noting that the attacker needs to force the
IPv6 echo reply packets (from the server to the attacker)
to be fragmented when observing and recording the server’s
IPID, since only fragmented IPv6 packets will contain an
IPv6 extension header where an IPID field is carried. The
attacker can impersonate intermediate routers to issue ICMPv6
“Packet Too Big” messages [39] to the vulnerable server and
trick the server into accepting the forged messages. After
the attacker fill the IPv6 echo request packets greater than
1500 octets (supposing the vulnerable server is connected to
Internet via Ethernet), the subsequent reply packets will be
fragmented and IPID will be assigned before being sent to
the attacker. As a result, the attacker can observe the server’s
IPID assignment using its IPv6 addresses, thus successfully
constructing hash collisions and identifying the target hash
IPID counter shared with the victim client on the server side
(via varying the source IPv6 address) to perform our off-path
TCP hijacking attack.

We first measure vulnerable IPv4/IPv6 dual-stack servers in
Alexa top 100k websites. We discover that 73,216 (more than
73.2%) of the top 100k websites enable IPv4/IPv6 dual-stack,
and 14,329 (more than 14%) of them are vulnerable to our
attacks. Considering the previous measurement result, i.e., a
total of 22,953 websites in Alexa top 100k are vulnerable,
we can see that 8,264 vulnerable websites only run IPv4.
Aiming at vulnerable IPv4/IPv6 dual-stack servers, we can
use 1,627 IPv6 addresses on average to identify the target hash
IPID counter shared between our attack machine and a victim
TCP connection to a IPv4 client under our control. In practice,
IPv6 users are usually assigned an IPv6 prefix of 64-bit, which

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: OFF-PATH TCP HIJACKING ATTACKS VIA SIDE CHANNEL OF DOWNGRADED IPID 419

Fig. 9. Geographical distribution of vulnerable dual-stack websites.

Fig. 10. CDF of the overall time costs in IPv4/IPv6 dual-stack and in IPv4.

can easily meet the requirement for adequate IPv6 addresses to
construct hash collisions. Figure 9 presents the geographical
distribution of the vulnerable IPv4/IPv6 dual-stack websites
we detected.

We also compare the costs of implementing our attack
in IPv4/IPv6 dual-stack with those in single IPv4 stack.
Figure 10 shows the CDF of the time costs when imple-
menting our attack in IPv4/IPv6 dual-stack and in single
IPv4 stack. The average time costs of implementing our
attack in IPv4/IPv6 dual-stack stack is about 585.9 seconds,
i.e., 380 seconds more than the average time costs in single
IPv4 stack, which is mainly due to the time-consuming packet
fragmentation and defragmentation we triggered on IPv6 echo
reply packets in order to observe the IPID in IPv6.

Figure 11 compares the attack traffic bandwidth in
IPv4/IPv6 dual-stack and in single IPv4 stack. The attack
traffic bandwidth in IPv4/IPv6 dual-stack is much higher than
that in single IPv4 stack, mainly because in IPv4/IPv6 dual-
stack, the echo request and reply packets that are used to
identify and observe the shared hash IPID counter in the
vulnerable server are always filled greater than 1500 octets
(under which IP fragmentation will happen and thus IPID is
enabled and assigned in the reply packets). In contrast, when
performing our attack in single IPv4 stack, the size of echo
request and reply packets can be less than 60 octets, since the
IPID field is always enabled and assigned in IPv4 networks.

VIII. DISCUSSION AND COUNTERMEASURE

A. Attack Robustness

(1) IPID Noises: Unlike the global IPID counter that is noisy
due to the sharing between all outgoing traffic, the downgraded

Fig. 11. Bandwidth of attack traffic in IPv4/IPv6 dual-stack and in IPv4.

hash-based IPID counter shared between the attacker and
the victim client on the TCP server side is reliable, and
hence our attack does not suffer the traditional noise
issue [16], [17], [26], [27].

Since the outgoing TCP traffic directed to irrelevant clients
uses per-socket-based IPID counters instead of the hash-based
IPID counters, irrelevant TCP traffic will not disturb our
attack. We measure and evaluate the disturbances from the
noises of non-TCP traffic in the real world and find that the
impact is also limited. We find that the hash-based IPID coun-
ters of more than 91% vulnerable websites in the Alexa top
100k websites list are not disturbed at all (within 5 minutes in
our experiment), which means the IPIDs are always contiguous
and there is no outgoing traffic sharing the same hash-based
IPID counter with the attacker at the server in this time win-
dow. Note that, less than 9% vulnerable websites are disturbed
by non-TCP traffic, e.g., the ICMP traffic generated by these
websites, that happens to share the same hash-based IPID
counter with the attack traffic during the period. Considering
that our attack can be finished within 215 seconds on average,
the real disturbance is negligible. Moreover, other types of
noises that specific to certain application/network scenarios,
e.g., packet loss, can be effectively mitigated by re-running the
attack multiple times. For example, in our experiments, when
we detect a potential victim, we usually conduct the detection
process again to enhance the confidence, which incurs around
6 seconds additional delay but can almost eliminate the false
positives. We confirm the results by generating random packet
loss in our experiments.

(2) More Victim Clients Under the NAT Scenario: Network
Address Translation (NAT) is a widely used technique to
overcome the shortage of IPv4 addresses [40]. Under this
scenario, multiple hosts share a public IP address. As a result,
if the attacker identifies a potential victim client who accesses
the Internet via NAT technique, it indicates that all hosts
behind the same NAT gateway are potential victims. Hence,
in practice, the actual number of victim clients is far greater
than the number of being identified, and the NAT technique
incurs a more wide attack surface.

(3) Shifting Sequence and Acknowledgment Numbers: A cir-
cumstance that may affect the success rate of our attack is the
shifting of the sequence and acknowledgment numbers, i.e., if

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

420 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

the victim TCP connection has ongoing traffic, the acceptable
sequence and acknowledgment numbers may shift as the attack
is in progress. This problem can be solved by the repeated
inference of the acceptable sequence and acknowledgment
numbers. We confirm that if the receive window does not
slide very quickly, e.g., under the scenarios of SSH and BGP,
the success rate of the attack will not be affected obviously.
Even if the receive window slides quickly enough to break
the attacker’s inference, the attacker can choose to exploit the
other side of the TCP connection where the receive window
slides more slowly.

B. Countermeasures

We have reported the newly discovered IPID side channel to
the Linux community. Meanwhile, we also propose to throttle
the exploit via eliminating the root cause.

(1) Assigning IPID Based on the Protocol Field: The
root cause of the attack is that Linux can be tricked into
choosing an incorrect IPID assignment policy for TCP packets.
When Linux assigns IPID to TCP packets, it decides which
policy to be chosen based on the DF flag in IP header, rather
than the Protocol field. Therefore, attackers can clear the
DF bit of the TCP packets by forging ICMP “Fragmentation
Needed” messages, which causes hash collisions and build a
side channel. To address this issue, we propose to assign IPID
by evaluating if a packet is originated from TCP based on
the field of Protocol in IP header, instead of the DF flag.
If the packet’s Protocol field is specified as TCP, we assign
IPID for the packet based on the per-socket assignment policy.
As a result, all TCP packets issued from the server will no
longer share IPID counters with the attacker and the side
channel can be eliminated, no matter the server enables the
IPv4/IPv6 dual-stack or only the IPv4 stack. We implement
the mechanism in Linux 4.18 and confirm its effectiveness
through real evaluation.

(2) Enhancing IPID Assignment for RST Packets: Another
countermeasure is to change the IPID assignment of RST
packets. Since Linux kernel version 4.18, Linux directly sets
the IPID of RST packets to 0. When an attacker learn the
presence of a TCP connection between the server and the
identified victim client, the attacker can forge SYN/ACK
packets. If there is no connection initiated from the specified
source port, the server responds with a RST packet, otherwise,
with a challenge ACK packet. The IPID of the RST packet is 0,
and hence it will not cause an increment to the shared IPID
counter. It will be different from the behavior of the challenge
ACK packet, which enables an indicator for the attacker to
judge the existence of the connection.

Thus, we propose to modify the IPID assignment for RST
packets. Note we cannot assign IPID for RST packets based
on a socket preserved counter, since the RST packets may
be generated and issued independently of a TCP connection.
Also, we cannot assign IPID for RST packets based on hash
IPID counters, since this assignment is vulnerable to previ-
ous TCP/IP connections detecting attacks [21]. An empirical
method is to assign IPID for RST packets based on the
destination of the packet. If there is a TCP connection to
the destination (the victim client in our scenario) and the
counter preserved in the socket will be selected, it can avoid
the differences on the counter.

IX. RELATED WORK

IPID Side Channels: IPID ensures the uniqueness of a
packet for packet fragmentation and reassembly [14], [15].
However, IPID has been widely abused to conduct off-path
attacks due to the vulnerable assignment methods. Ensafi et al.
performed idle port scan and network protocol analysis by
leveraging the side channel of global IPID counters [16].
They also suggested that the global IPID counters can be
used to detect intentional packet drops [17]. By leveraging the
side channel of global IPID counters, Pearce et al. measured
the reachability between any two Internet locations without
controlling a measurement vantage point [26], [27], and the
blind TCP hijacking attacks was demonstrated can be success-
fully performed against early OSes of Windows 2K, Windows
XP and FreeBSD 4 [41]. Jeffrey et al. showed that per-
destination IPID counters are also vulnerable, which can be
exploited to infer the number of packets between two machines
with UDP and ICMP and even learn the presence of a
TCP connection by launching off-path attacks [19]. Alexander
et al. detected TCP connections via IPID hash collisions.
They leveraged the IPID of the triggered RST packets to
determine the presence of a victim TCP connection [21]. Their
method can only detect TCP connections, but not hijacking
a TCP connection. Moreover, the vulnerabilities they used
have been fixed since Linux kernel version 4.18. In this
paper, we identified a new vulnerability of abusing IPID,
which can be exploited to perform an off-path TCP hijacking
attack.

TCP Hijacking Attacks: Cao et al. found that an off-
path attacker can infer whether two arbitrary hosts on
the Internet are communicating using a TCP connection
by utilizing a side channel in the challenge ACK mecha-
nism, identify the sequence and acknowledgment numbers
of the connection, and then hijack the connections [8],
[9]. The side channel vulnerability has been eliminated
by setting a random challenge ACK count limit. A timing
side channel has been uncovered in the half-duplex IEEE
802.11 or Wi-Fi technology, which can be exploited by an
off-path attacker to inject data into a TCP connection and force
the browser to cache malicious objects [10]. By exploiting
the global IPID counter which was adopted by the previous
Linux and Windows systems, Gilad et al. inferred if two
hosts have established a TCP connection identified by a
specific four-tuple and then launch off-path TCP injection
attacks [7], [42]–[44].

Besides, unprivileged applications (called puppets) con-
trolled by attackers running on victim hosts can also be
leveraged to perform off-path TCP attacks [12], [13], [45].
Qian et al. uncovered that the middlebox of firewall can
be abused to perform the TCP sequence number inference
attack [13], and conducted a collaborative TCP sequence
number inference attack by exploiting the packet counter
side channels [12]. Gilad et al. identified that attackers can
conduct web cache poisoning attacks by leveraging a restricted
script in the user’s browser sandbox [45]. Compared with
these attacks, our off-path TCP attack does not need any assis-
tance of puppets. Moreover, our attack leverages a new side
channel vulnerability appearing in the interactions among IP,
ICMP, and TCP, which cannot be unearthed by the principled
methods [11].

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

FENG et al.: OFF-PATH TCP HIJACKING ATTACKS VIA SIDE CHANNEL OF DOWNGRADED IPID 421

TCP DoS Attacks: TCP SYN flooding is a major threat
that is difficult to be identified due to the similarity to
the legitimate establishment of TCP connections [46]–[49].
Besides, more sophisticated and stealth DoS attacks have also
been proposed to cause resource decreases or exhaustion of the
target TCP connections, such as low-rate TCP-targeted DoS
attacks [50]–[53], congesting intermediate links attacks [54],
[55] and pulsing DoS attacks that manipulate the victim’s TCP
congestion window to decrease the performance [56].

X. CONCLUSION

In this paper, we uncover a new off-path TCP hijacking
attack that leverages a subtle side channel in the new mixed
IPID assignment method of Linux kernel version 4.18 and
beyond. We find that a pure off-path attacker can downgrade
the IPID assignment for TCP packets from the more secure
per-socket-based policy to hash-based policy, thus building a
shared IPID counter that can be exploited to infer the state
of a victim TCP connection. We evaluate the impacts of our
attack on the Internet and implement the exploit under different
scenarios. Our experiments show that off-path attackers can
perform various attacks by exploiting the newly discovered
IPID side channel, e.g., resetting SSH connections, manipu-
lating web traffic and poisoning BGP routing tables. We also
propose to eliminate the root cause of the exploit via repairing
the IPID assignment. We implement our countermeasure and
confirm its effectiveness in practice.

REFERENCES

[1] J. Postel, Transmission Control Protocol, Internet Requests for Com-
ments, Internet Engineering Task Force, document RFC 793, Sep. 1981.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc793.txt

[2] M. Duke, R. Braden, W. Eddy, E. Blanton, and A. Zimmermann,
A Roadmap for Transmission Control Protocol (TCP) Specification
Documents, Internet Requests for Comments, Internet Engineering
Task Force, document RFC 7414, Feb. 2015. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7414.txt

[3] J. Touch, Defending TCP Against Spoofing Attacks, Internet Requests
for Comments, Internet Engineering Task Force, document RFC 4953,
Jul. 2007. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4953.txt

[4] F. Gont and S. Bellovin, Defending Against Sequence Number Attacks,
Internet Requests for Comments, Internet Engineering Task Force,
document RFC 6528, Feb. 2012. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc6528.txt

[5] M. Larsen and F. Gont, Recommendations for Transport-Protocol Port
Randomization, Internet Requests for Comments, Internet Engineer-
ing Task Force, document RFC 6056, Jan. 2011. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6056.txt

[6] A. Ramaiah, R. Stewart, and M. Dalal, Improving TCP’s Robustness
to Blind In-Window Attacks, Internet Requests for Comments, Internet
Engineering Task Force, document RFC 5961, Aug. 2010. [Online].
Available: http://www.rfc-editor.org/rfc/rfc5961.txt

[7] Y. Gilad and A. Herzberg, “Off-path TCP injection attacks,” ACM Trans.
Inf. Syst. Secur., vol. 16, no. 4, p. 13, 2014.

[8] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and
L. M. Marvel, “Off-path TCP exploits of the challenge ACK global rate
limit,” IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 765–778, Apr. 2018.

[9] Y. Cao et al., “Off-path TCP exploits: Global rate limit considered
dangerous,” in Proc. 25th USENIX Secur. Symp. (USENIX Secur.), 2016,
pp. 209–225.

[10] W. Chen and Z. Qian, “Off-path TCP exploit: How wireless routers can
jeopardize your secrets,” in Proc. 27th USENIX Secur. Symp. (USENIX
Secur.), 2018, pp. 1581–1598.

[11] Y. Cao, Z. Wang, Z. Qian, C. Song, S. V. Krishnamurthy, and P. Yu,
“Principled unearthing of TCP side channel vulnerabilities,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 211–224.

[12] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative TCP sequence number
inference attack: how to crack sequence number under a second,” in
Proc. ACM Conf. Comput. Commun. Secur., 2012, pp. 593–604.

[13] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack-how firewall middleboxes reduce security,” in Proc. IEEE Symp.
Secur. Privacy, May 2012, pp. 347–361.

[14] J. Postel, Internet Protocol, Internet Requests for Comments, Internet
Engineering Task Force, document RFC 791, Sep. 1981. [Online].
Available: http://www.rfc-editor.org/rfc/rfc791.txt

[15] J. Touch, Updated Specification of the IPv4 ID Field, Internet Requests
for Comments, Internet Engineering Task Force, document RFC 6864,
Feb. 2013. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6864.txt

[16] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, “Idle port scanning
and non-interference analysis of network protocol stacks using model
checking,” in Proc. USENIX Secur. Symp., 2010, pp. 257–272.

[17] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall, “Detecting
intentional packet drops on the Internet via TCP/IP side channels,” in
Proc. Int. Conf. Passive Active Netw. Meas. Berlin, Germany: Springer,
2014, pp. 109–118.

[18] E. Dumazet. (2014). Inetpeer: Get RID of IP_ID_Count. [Online].
Available: https://lore.kernel.org/patchwork/patch/490770/

[19] J. Knockel and J. R. Crandall, “Counting packets sent between arbitrary
internet hosts,” in Proc. 4th USENIX Workshop Free Open Commun.
Internet (FOCI), 2014, pp. 1–14.

[20] Bootlin. (2020). IPID Assignment in Linux Kernel. [Online]. Available:
https://elixir.bootlin.com/linux/latest/source/include/net/ip.h

[21] G. Alexander, A. M. Espinoza, and J. R. Crandall, “Detecting TCP/IP
connections via IPID hash collisions,” Proc. Privacy Enhancing Tech-
nol., vol. 2019, no. 4, pp. 311–328, Oct. 2019.

[22] X. Zhang, J. Knockel, and J. R. Crandall, “ONIS: Inferring TCP/IP-
based trust relationships completely off-path,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 2069–2077.

[23] J. Mogul and S. Deering, Path MTU Discovery, Internet Requests
for Comments, Internet Engineering Task Force, document RFC 1191,
Nov. 1990. [Online]. Available: http://www.rfc-editor.org/rfc/rfc1191.txt

[24] J. McCann, S. Deering, and J. Mogul, Path MTU Discovery for
IP Version 6, Internet Requests for Comments, Internet Engineering
Task Force, document RFC 1981, Aug. 1996. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1981.txt

[25] J. Postel, Internet Control Message Protocol, Internet Requests for Com-
ments, Internet Engineering Task Force, document RFC 792, Sep. 1981.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc792.txt

[26] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson, “Augur: Internet-
wide detection of connectivity disruptions,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2017, pp. 427–443.

[27] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson, “Toward
continual measurement of global network-level censorship,” IEEE Secur.
Privacy, vol. 16, no. 1, pp. 24–33, Jan. 2018.

[28] M. Luckie, R. Beverly, R. Koga, K. Keys, J. A. Kroll, and K. claffy,
“Network hygiene, incentives, and regulation: Deployment of source
address validation in the internet,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2019, pp. 465–480.

[29] B. Wu et al., “Enabling efficient source and path verification via
probabilistic packet marking,” in Proc. IEEE/ACM 26th Int. Symp. Qual.
Service (IWQoS), Jun. 2018, pp. 1–10.

[30] F. Baker, Requirements for IP Version 4 Routers, Internet Requests
for Comments, Internet Engineering Task Force, document RFC 1812,
Jun. 1995. [Online]. Available: http://www.rfc-editor.org/rfc/rfc1812.txt

[31] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, Generic
Routing Encapsulation (GRE), Internet Requests for Comments, Internet
Engineering Task Force, document RFC 2784, Mar. 2000. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2784.txt

[32] D. Borman, B. Braden, and V. Jacobson, TCP Extensions for High
Performance, Internet Requests for Comments, Internet Engineering
Task Force, document RFC 7323, Sep. 2014. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7323.txt

[33] R. S. Raman, A. Stoll, J. Dalek, R. Ramesh, W. Scott, and
R. Ensafi, “Measuring the deployment of network censorship filters at
global scale,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2020,
pp. 1–16.

[34] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking hard-
ened against manipulation,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
San Diego, CA, USA, 2019, pp. 1–15.

[35] Rocket.Chat. (2020). Web Application. [Online]. Available: https://
rocket.chat/

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

422 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

[36] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and H. Shulman, “Are we
there yet? On RPKI’s deployment and security,” in Proc. NDSS, 2017,
pp. 1–15.

[37] K. Ishiguro. (2020). Quagga Routing Suite. [Online]. Available:
https://www.quagga.net/

[38] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path TCP exploits
of the mixed IPID assignment,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2020, pp. 1323–1335.

[39] A. Conta, S. Deering, and M. Gupta, Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,
Internet Requests for Comments, Internet Engineering Task Force,
document RFC 4443, Mar. 2006. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4443.txt

[40] P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT)
Terminology and Considerations, Internet Requests for Comments, Inter-
net Engineering Task Force, document RFC 2663, Aug. 1999. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2663.txt

[41] LKM. (2007). Blind TCP/IP Hijacking is Still Alive. [Online]. Available:
http://phrack.org/issues/64/13.html

[42] Y. Gilad and A. Herzberg, “Spying in the dark: TCP and Tor traffic
analysis,” in Proc. Int. Symp. Privacy Enhancing Technol. Symp. Berlin,
Germany: Springer, 2012, pp. 100–119.

[43] Y. Gilad, A. Herzberg, and H. Shulman, “Off-path hacking: The illusion
of challenge-response authentication,” IEEE Secur. Privacy, vol. 12,
no. 5, pp. 68–77, Sep. 2014.

[44] Y. Gilad and A. Herzberg, “Off-path attacking the web,” in Proc. WOOT,
2012, pp. 41–52.

[45] Y. Gilad and A. Herzberg, “When tolerance causes weakness: The case
of injection-friendly browsers,” in Proc. 22nd Int. Conf. World Wide
Web, 2013, pp. 435–446.

[46] W. Eddy, TCP SYN Flooding Attacks and Common Mitigations, Inter-
net Requests for Comments, Internet Engineering Task Force, doc-
ument RFC 4987, Aug. 2007. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4987.txt

[47] R. Bani-Hani and Z. Al-Ali, “SYN flooding attacks and counter-
measures: A survey,” in Proc. Int. Conf. Inf. Commun. Syst., 2013,
pp. 149–155.

[48] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN flooding attacks,”
in Proc. 21st Annu. Joint Conf. IEEE Comput. Commun. Societies, vol. 3,
Jun. 2002, pp. 1530–1539.

[49] A. Aborujilah, M. N. Ismail, and S. Musa, “Detecting TCP SYN based
flooding attacks by analyzing CPU and network resources performance,”
in Proc. 3rd Int. Conf. Adv. Comput. Sci. Appl. Technol., Dec. 2014,
pp. 157–161.

[50] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proc. Conf.
Appl., Technol., Archit., Protocols Comput. Commun., 2003, pp. 75–86.

[51] A. Shevtekar, K. Anantharam, and N. Ansari, “Low rate TCP denial-of-
service attack detection at edge routers,” IEEE Commun. Lett., vol. 9,
no. 4, pp. 363–365, Apr. 2005.

[52] A. Herzberg and H. Shulman, “Stealth DoS attacks on secure channels,”
in Proc. NDSS, 2010, pp. 1–19.

[53] S. Jero, M. E. Hoque, D. R. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in TCP congestion control using a model-
guided approach,” in Proc. NDSS, 2018, pp. 1–15.

[54] J. M. Smith and M. Schuchard, “Routing around congestion: Defeating
DDoS attacks and adverse network conditions via reactive BGP routing,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 599–617.

[55] M. Tran, M. S. Kang, H.-C. Hsiao, W.-H. Chiang, S.-P. Tung, and
Y.-S. Wang, “On the feasibility of rerouting-based DDoS defenses,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2019, pp. 798–813.

[56] X. Luo et al., “On a new class of pulsing denial-of-service attacks and
the defense,” in Proc. NDSS, 2005, pp. 1–19.

Xuewei Feng received the B.E. degree from the Department of Computer
Science and Technology, Xi’an Jiaotong University. He is currently pursuing
the Ph.D. degree with Tsinghua University. His research interests include
network security and software vulnerability detection.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University. He has worked with ETH Zurich and The University of Texas
at San Antonio. He is currently an Associate Professor with the Institute
for Network Sciences and Cyberspace, Tsinghua University. His research
interests include network and system security, particularly in internet and
cloud security, mobile security, and big data security. He is an Editorial
Board Member of the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING and ACM DTRAP.

Kun Sun (Member, IEEE) received the Ph.D. degree in computer science
from North Carolina State University. He has more than 15 years of working
experience in both industry and academia. He serves as the Director for
the Sun Security Laboratory (SunLab) and the Associate Director for the
Center for Secure Information Systems (CSIS). He has published more than
100 peer-reviewed conference papers and journal articles. His research focuses
on systems and network security.

Chuanpu Fu received the B.E. degree from the Department of Networking
Engineering, Dalian University of Technology, in 2020. He is currently
pursuing the Ph.D. degree with Tsinghua University. His research interests
include machine learning for security, and network and system security.

Ke Xu (Senior Member, IEEE) received the Ph.D. degree from the Department
of Computer Science and Technology, Tsinghua University, Beijing, China.
He serves as a Full Professor for the Department of Computer Science and
Technology, Tsinghua University. He has published more than 200 technical
papers and holds 11 U.S. patents in the research areas of next-generation
internet, blockchain systems, the Internet of Things, and network security.
He is a member of ACM. He served as the Steering Committee Chair for
IEEE/ACM IWQoS and has guest-edited several special issues in IEEE and
Springer journals. He is an Editor of IEEE INTERNET OF THINGS JOURNAL.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 18,2022 at 01:16:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

