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Abstract—There is a widespread belief that TCP is not vulner-
able to IP fragmentation attacks since TCP performs the Path
Maximum Transmission Unit Discovery (PMTUD) mechanism
by default, which can avoid IP fragmentation by dynamically
matching the maximum size of TCP segments with the maximum
transmission unit (MTU) of the path from the originator to
the destination. However, this paper reveals that TCP is in fact
vulnerable to IP fragmentation attacks, which is contrary to the
common belief.

We conduct a systematic study on the complex interactions
between IP fragmentation and TCP, and we discover two key
situations under which IP fragmentation can still be triggered
on TCP segments even if the originator performs PMTUD. First,
when the next-hop MTU of an intermediate router is smaller than
the originator’s acceptable minimum path MTU, TCP segments
from the originator will be fragmented by the router. Second,
when the originator’s path MTU values between the IP layer
and the TCP layer are desynchronized due to a maliciously
crafted ICMP error message, the originator could be tricked
into fragmenting TCP segments. Once IP fragmentation on TCP
segments could be falsely triggered, attackers can inject forged
fragments into the victim connection to poison the target TCP
traffic after successfully addressing practical issues of predicting
IPID and deceiving TCP checksum. Our case studies on both
HTTP and BGP demonstrate the feasibility and effectiveness of
poisoning TCP-based applications via IP fragmentation. We also
conduct a comprehensive evaluation to show that our attacks
can cause serious damages in the real world. Finally, we propose
countermeasures to mitigate malicious IP fragmentation on TCP
segments and defeat the attacks.

I. INTRODUCTION

As an Internet Protocol (IP) mechanism, IP fragmentation
splits large packets into multiple smaller fragments for them
to pass through a transmission link that enforces a maxi-
mum packet length limit called Maximum Transmission Unit
(MTU) [70]. When the fragments arrive at the destination,
they are reassembled into the original packets. Historically, IP

fragmentation has been widely abused by attackers to evade
intrusion detection system (IDS) [67], [5] and launch denial
of service (DoS) attacks [54], [61], [29], [31]. Moreover,
attackers can misuse IP fragmentation to attack UDP based
applications and services, e.g., poisoning DNS cache [41],
[11], [42], [86]. Since UDP is a transaction-oriented datagram
protocol [68] and is not tightly coupled with IP, it lacks the
ability to dynamically adjust the datagram size and thus avoid
IP fragmentation. Therefore, when the MTU of the host or the
transmission path is smaller than the datagram size given by
the application, IP fragmentation will happen on UDP based
applications1.

In contrast, TCP is an unstructured stream protocol tightly
coupled with IP, so that TCP can proactively avoid IP frag-
mentation by adjusting the maximum segment size (MSS),
a construct unique to TCP, according to the path MTU
value maintained in the IP layer. As a result, it has been
widely believed that TCP protocol is not vulnerable to IP
fragmentation attacks [41], [31], [64], [82], [46], [17], [30].
For instance, one study [84] explicitly states that the path
MTU discovery (PMTUD) mechanism [57], [59] is an effective
defense mechanism to prevent IP fragmentation attacks against
TCP. Another reason to believe that TCP is invulnerable is due
to the difficulty on disabling the TCP checksum mechanism
during the attacks, though UDP’s checksum mechanism can
be easily disabled by zeroing the field [31], [68].

In this paper, we systematically study the complex inter-
actions between IP fragmentation and TCP. Through exten-
sive real-world evaluations, we demonstrate that TCP is still
vulnerable to IP fragmentation attacks, which is contrary to
the common belief. Particularly, we show that even off-path
attackers can still trigger IP fragmentation on TCP and then
poison the original TCP segments by injecting malicious IP
fragments into the victim connection, which does not require
guessing the sequence and acknowledgment numbers that are
always carried in the first benign fragment.

Our study identifies two situations under which IP fragmen-
tation on TCP segments can be triggered by off-path attackers,

1RFC8899, which is released in September 2020, supports UDP based
applications with path MTU discovery; however, our measurement study
shows that rare applications implement those complicated functions yet.
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even if PMTUD has been enabled by the originator. First,
along the path from an originator to a destination, when the
next-hop MTU of an intermediate router is smaller than the
originator’s acceptable minimum path MTU, TCP segments
from the originator will be fragmented by this intermediate
router, though the originator may assemble the packets with the
size of its acceptable minimum path MTU permanently [76].
By analyzing datasets collected from routers in backbone
networks and conducting active measurements on the Internet,
we identify a considerable number of problematic routers
(i.e., with a small next-hop MTU size) in the real world that
fragment TCP segments. For example, by analyzing datasets
collected from a 10Gbps backbone IPv4 router on the Internet,
we find more than 600 problematic routers on the Internet
whose next-hop MTU values are less than 596 octets, the
acceptable minimum path MTUs of Windows systems2. Thus,
these routers will fragment TCP segments generated by the
originators running Windows systems.

Second, we discover that an off-path attacker can carefully
craft an ICMP error message with type=3 and code=4
(i.e., an ICMP “Fragmentation Needed” message) to trigger
desynchronization on the path MTU value between the IP
and TCP layers, thus incurring IP fragmentation on TCP. The
ICMP “Fragmentation Needed” message is used to indicate the
originator that the embedded packet in the message is oversized
and needs to be fragmented [59]. When an attacker pretends to
be a router and sends such a crafted message embedded with
an ICMP echo reply packet to the originator, the originator
defers the updated path MTU value from the originator’s IP
layer to TCP layer, so that TCP will write oversized segments
to IP using the old path MTU value. As a result, it causes
IP to fragment these oversized segments. This vulnerability is
found in Linux kernel version 3.8.1 and beyond. We evaluate
the prevalence of the false IP fragmentation on TCP due to
the crafted ICMP error message in the real world, and we
discover that more than 14% of the Alexa (www.alexa.com)
top 10k websites are vulnerable to fragmenting TCP segments
even if PMTUD is performed, and thus they may suffer from
off-path poisoning attacks.

Once IP fragmentation could be falsely triggered on TCP
segments, the off-path attacker is capable of injecting forged
fragments to poison the target TCP traffic after addressing
two remaining practical issues, i.e., predicting IPID and de-
ceiving TCP checksum. To trick the victim receiver into
mis-reassembling the forged fragments and the benign ones
together, the attacker needs to predict the Identification
field of IP (IPID) of the benign fragments and assign the same
value to the forged ones. Our comprehensive measurement
study shows that IPID is still predictable on a large number of
hosts due to the vulnerable IPID assignment. Besides, the TCP
checksum mechanism that checks transmission errors based on
the one’s complement sum can be easily evaded by crafting
equivalents.

We perform two case studies to demonstrate the effec-
tiveness of IP fragmentation attacks against TCP. First, we
show that off-path attackers can manipulate HTTP traffic via
IP fragmentation. Through injecting forged IP fragments into

2Our measurement shows the acceptable minimum path MTUs of Windows
7 Pro, Windows 10 Pro, Windows Server 2008 Standard, Windows Server 2012
Standard, and Windows Server 2016 Standard are all 596 octets.

the target HTTP traffic, attackers can replace the web data that
are cached by the victim client in the browser, i.e., poisoning
the client’s web cache. Moreover, when HTTP redirection
happens at web servers, attackers can use forged IP fragments
to replace the advertised legal URL with a malicious one,
thus intercepting HTTP redirection. Second, we show an off-
path attacker can manipulate BGP routing tables by forcing
BGP routers to fragment TCP segments and then using forged
fragments to poison the advertised BGP messages. We evaluate
the impacts of our attacks on the Internet and show that
our attacks can be performed to cause serious damages in
the real world with a high success rate. Finally, we propose
to eliminate the root cause of our attacks by enhancing the
PMTUD mechanism to avoid IP Fragmentation at intermediate
routers and at hosts.

Contributions. Our main contributions are as follows:

• We reveal that IP fragmentation attacks against TCP are still
feasible, and we identify two situations under which an off-
path attacker may trigger IP fragmentation on TCP.
• We discover that more than 14% of the Alexa top 10k web-

sites and a considerable number of routers on the Internet
suffer from incorrect IP fragmentation on TCP segments.
• We conduct experiments to demonstrate that IP fragmenta-

tion can be exploited to poison TCP-based applications, e.g.,
HTTP and BGP. Our comprehensive evaluation confirms the
seriousness of these attacks in the real world.
• We propose to eliminate the root cause of IP fragmentation

on TCP using an enhanced PMTUD mechanism.

II. BACKGROUND

A. IP Fragmentation Attacks

As shown in Table I, due to the fundamental differences
of MTUs in heterogeneous networks, IP fragmentation is de-
signed to solve the problem of packet discarding by networks
enforcing smaller MTUs. In recent years, IP fragmentation
has been widely abused by attackers to cause serious damages
in the real world, e.g., evading IDS [5], [67], launching DoS
attacks [54], [61], [29], [31], and poisoning DNS caches [41],
[11], [42], [86].

TABLE I. MTUS IN DIFFERENT NETWORKS.

No. Network MTU (octet)
1 16 Mbps Token Ring 17914
2 SONET/SDH 4470
3 FDDI 4352
4 Ethernet 1500
5 IEEE 802.11 1452
6 X.25 576
7 NETBIOS 512
8 ARCNET 508
9 IEEE 802/Source-Rt Bridge 508

10 Point-to-Point (low delay) 296

Since different OSes and IDSes may reassemble IP frag-
ments differently [79], attackers can craft fragments with the
same IPID and overlapping offsets to the benign fragments.
Due to the mis-reassemble by the IDSes, those attacks can
defeat the signature analysis and bypassing the detection. How-
ever, once the fragments arrive at the end host, the host may
handle the overlapped fragments differently and reassemble a
malicious packet [5], [67].
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By leveraging IP fragmentation, an attacker can also pre-
vent a victim host from receiving the original benign pack-
ets to launch DoS attacks. For example, when the attacker
sends crafted fragments to the victim host, since the crafted
fragments may be mis-reassembled with the legitimate ones
that have the same IPID, it can produce a corrupted packet.
The corrupted packet containing legitimate fragments will
be discarded by the victim host, and thus a DoS attack
is constructed [29], [31]. Besides, when IP fragments are
reassembled at a vulnerable host, they may overflow the host’s
buffer [54] or lead to a CPU saturation [61], resulting in host
crashes.

Moreover, IP fragmentation can be exploited to poison
DNS caches [41], [11], [42], [86]. The basic idea is straightfor-
ward. First, the attacker forces the DNS server to fragment its
reply packets destined to DNS clients, since DNS servers are
unable to learn the path MTU value due to lack of path MTU
discovery. Second, the attacker crafts malicious fragments with
fake DNS records and impersonates the server to send them
to the victim client. Finally, the legitimate fragments from the
DNS server and the malicious fragments from the attacker will
be reassembled incorrectly together at the client and evade the
UDP checksum. As a result, the DNS reply is poisoned and
cached at the DNS client.

B. Path MTU Discovery (PMTUD)

Since IP fragmentation introduces performance loss and
security weaknesses, the path MTU discovery (i.e., PMTUD)
mechanism is proposed as a standard to help determine the
MTU on the network path between two communication end
hosts (i.e., an originator and a destination) [59], [57]. When
the Path MTU (PMTU) size is set to the minimum of MTUs
of all hops along the entire packet transmission path, IP
fragmentation could be avoided.

To discover the PMTU size, the originator sets the DF
(Don’t Fragment) flag in the IP header as True, instructing
routers along the path not to fragment the packets. When
the packet size is larger than an intermediate router’s next-
hop MTU, the router will discard the packet and reflect
its next-hop MTU size to the originator by either issuing
an ICMP Destination Unreachable message with the code
Fragmentation Needed and DF set in IPv4 networks or an
ICMPv6 Packet Too Big message in IPv6 networks3. RFC 792
states that at least the first 8 octets besides the IP header of
the discarded packet should be embedded in the ICMP error
message, indicating the originator to match the message to
the appropriate process [69]. According to the newer standard
RFC 1812 [7], the ICMP error message may contain up to 576
octets of the discarded packet. After receiving the ICMP error
message, the originator reduces the size of subsequent packets
according to the router’s next-hop MTU. The originator repeats
the sending process until a packet with certain size can be
forwarded to the destination successfully, and this MTU size
will be set as PMTU and maintained at the IP layer.

Unlike UDP, TCP is tightly coupled with IP in the sense
that it is aware of the discovered path MTU (maintained in the
IP layer) at all times as it will adjust its MSS (a TCP layer

3In this paper, we do not differentiate ICMP error messages and ICMP
“Fragmentation Needed” messages and use them interchangeably.

construct) based on the path MTU value to actively avoid IP
fragmentation. Hence, TCP is widely considered to be immune
from IP fragmentation attacks. Instead, most recent attacks
against TCP mainly focus on side channel attacks guessing
the random ephemeral port numbers, sequence and acknowl-
edgment numbers of the target connection in order to inject
forged TCP segments [72], [12], [13], [16], [73]. Surprisingly,
in this paper, we show that TCP protocol does suffer from IP
fragmentation attacks, especially, an off-path attacker can use
malicious fragments to poison TCP traffic without guessing the
random sequence numbers and acknowledgment numbers.

III. THREAT MODEL

In this paper, we focus on studying the vulnerability of
IP fragmentation, which can be exploited to construct off-path
poisoning attacks against TCP. By leveraging IP fragmenta-
tion, an off-path attacker aims to poison TCP segment data
originated from a victim server to a victim client. The off-
path attacker is not located on the path between the server and
the client and thus cannot eavesdrop their established TCP
connections. Instead, the attacker can infer the presence of
the victim TCP connection via two typical approaches, i.e.,
by leveraging an unprivileged application called puppet [30],
[72], [16], [73], [32] or by leveraging side channels in TCP/IP
implementations [30], [14], [3], [34].

Puppet-Assisted Threat Model. The puppet (e.g., sandboxed
scripts at the victim client due to a spam) works at the
application layer, which can observe requests from the victim
client to the server and notify the attacker about the request
stealthily. As a result, the attacker can infer the presence of
a victim TCP connection and then perform the attack. Note
that the application-layer puppet does not have permissions
to access any information of the TCP layer such as sequence
numbers. In addition, due to the security mechanisms deployed
on the client, e.g., same-origin policy (SOP) [77], the puppet
cannot directly tamper with the data sent from the server, it can
only notify the attacker of the existence of a victim connection.
Puppet-assisted threat model has been widely used by off-
path TCP exploits [30], [72], [16], [73], [32], and we use this
approach in poisoning HTTP traffic (see Section VI-A).

Side Channel-Assisted Threat Model. The attacker can
also infer the presence of a victim TCP connection through
side channels discovered in TCP/IP implementations, e.g., by
probing SYN backlog buffer [14], by leveraging sequential
assignment of source ports [30], [34], or by leveraging IPID
hash collisions [3], [85]. We use this approach (i.e., IPID
hash collisions [3], [85]) to detect the presence of a victim
TCP connection when poisoning BGP routing tables (see
Section VI-B).

Once the target TCP connection is identified, our attack
still needs to fulfill the following requirements:

• IP Address Spoofing. The attacker is capable of sending
spoofed packets with the IP addresses of the server [24],
[12], [13], [55]. IP address spoofing can be easily con-
structed and is widely utilized in recent off-path attacks [24],
[12], [13]. Nowadays, at least a quarter of the Autonomous
Systems (ASes) on the Internet do not filter packets with
spoofed source IP addresses that leave their networks [53],
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Fig. 1. Three modes of handling an ICMP “Fragmentation Needed” message.

and in our experiments, we can easily rent such spoofable
attack machines in AS7497.

• Plaintext Communication. The communication content
originating from the server to the client is not encrypted, and
the content that the attacker expects to replace is known, so
the attacker can craft acceptable IP fragments to evade the
mechanism of TCP checksum. At present, a considerable
portion of traffic on the Internet is still not encrypted and
can be predicted, e.g., 30% of page loads by Firefox do
not use TLS [78]. Besides, network configuration messages
(e.g., BGP messages, DNS messages over TCP) are also not
full encrypted [56], [28], [36].

• Predictable IPID. The attacker can predict the server’s IPID
and assign the same value to the crafted fragments, thus
forcing the benign fragments to be mis-reassembled with
the crafted ones. Previous studies show that vulnerable IPID
assignment methods are widely used [31], [43], [48], [4],
even the mixed IPID assignment adopted by modern Linux
systems can also be predicted [3], [85], [24]. We conduct a
comprehensive measurement study on IPID prediction and
confirm the predictability of IPID in our attacks.

IV. RESIDUAL IP FRAGMENTATION ON TCP

First of all, in this section, we conduct a systematic study
on the handling modes of ICMP “Fragmentation Needed”
messages in current PMTUD implementations to discover and
measure residual IP fragmentation on TCP. According to PM-
TUD, after a TCP connection is established, the originator first
generates TCP segments based on the initialized MSS value
(e.g., 1460 octets in Ethernet), and sets the DF flag in IP header
as True. During being forwarded, if the packet size exceeds
the next-hop MTU of an intermediate router, the router will
discard the packet and issue an ICMP “Fragmentation Needed”
message to the originator. By performing measurement study
from a 10Gbps backbone IPv4 router on the Internet, we
identify three different modes for originators to handle the
ICMP “Fragmentation Needed” messages, and we discover
that two of the three modes may incur IP fragmentation on
TCP segments.

Mode 1: No IP Fragmentation. When an oversized packet
is discarded by an intermediate router, the router reflects an
ICMP “Fragmentation Needed” message to the originator, as
shown in Figure 1(a). According to the PMTUD specification,
the issued ICMP error message usually carries the intermediate
router’s next-hop MTU value Lmtu by default. After the
originator receives the ICMP error message, it first checks
whether the TCP sequence number embedded in the message
is located in its send window. If the ICMP error message
passes this check, the originator then compares Lmtu with
its min pmtu which is a system variable in the PMTUD

implementations to indicate the acceptable minimum PMTU
value for the system (e.g., 552 octets in Linux by default).
If Lmtu is greater than min pmtu, the originator resizes the
MSS of subsequent TCP segments to Lmtu - 40 and sets the
DF flag of the packets as True before sending them out. This
mode can effectively avoid IP fragmentation on TCP segments
and has been widely adopted on almost all major OSes,
including Linux kernel version 2.6.32 and beyond, FreeBSD
version 8.2∼12.1, Mac OS 10.11∼10.15, and Windows.

Mode 2: IP Fragmentation at Intermediate Routers. As
shown in Figure 1(b), different from the first mode, if the
intermediate router’s next-hop MTU value Lmtu is less than
or equal to the originator’s acceptable minimum PMTU value
min pmtu, the originator will resize the MSS of subsequent
TCP segments to min pmtu - 40, instead of Lmtu - 40.
Christopher [76] pointed out that originators equipped with
Linux systems resize subsequent packets in this way if an
intermediate router reflects such an ICMP error message, i.e.,
ignoring the router’s MTU value and always assembling IP
packets with the size of 552 octets.

By investigating the entire interactions between the origina-
tor and the intermediate router, we discover that the originator
will not only resize the MSS of subsequent TCP segments to
min pmtu - 40, but also set the DF flag as False. As a result,
if one intermediate router’s Lmtu is less than the originator’s
min pmtu, IP fragmentation will occur at the router though
the originator may assemble IP packets with the size of
min pmtu permanently [76]. Linux kernel version 2.6.32
and beyond, FreeBSD version 8.2∼12.1, Mac 10.11∼10.15,
and Windows all adopt this mode4. In RFC 1191 [59], the
min pmtu is recommended as 576 octets. However, we
observe that the detailed implementations may adopt different
values in the real world, e.g., 256 octets in FreeBSD version
8.2∼12.1, 296 octets in Mac OS 10.11∼10.15, 552 octets in
Linux 2.6.32 and beyond, and 596 octets in Windows.

This mode has been popularly employed on the Internet.
According to the study on 121 CAIDA datasets collected
from 2008 to 2016, Göhring et al. uncover 2.9 million ICMP
“Fragmentation Needed” messages with the values of next-
hop MTU ranging from 0 to 43205 octets [37]. It can be
found that the next-hop MTU of a large number of routers
on the Internet are very small, such as 576 octets, 296 octets,
100 octets, and even 68 octets. For instance, as exposed in
the datasets, there are more than 900 routers whose next-hop
MTU is 576 octets. These routers prefer to fragment TCP
segments, even if PMTUD is performed by the originator. For
example, routers with the next-hop MTU of 576 or smaller

4Windows and Mac OS clear the DF flag directly, and they do not resize
the MSS of subsequent TCP segments.
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octets will certainly fragment TCP segments originated from
systems whose acceptable minimum path MTU is greater than
576 octets, e.g., Windows whose min pmtu is 596 octets5.

We also conduct two types of measurement studies, i.e., a
passive measurement and an active measurement, to discover
problematic routers on the Internet. In the passive measurement
study, we filter ICMP “Fragmentation Needed” messages (i.e.,
with small next-hop MTU value of less than 596 octets) and
then identify problematic routers based on the flowing-through
IPv4 traffic of our 10 Gbps backbone IPv4 router6. From our
vantage point, we totally capture 8,365 ICMP “Fragmentation
Needed” messages with small next-hop MTU values between
December 16th, 2020 and January 20th, 2021, as shown in
Figure 2. These ICMP error messages are reflected by 602
problematic intermediate routers distributed in 80 ASes and
28 countries, which are prone to fragment the flowing-through
TCP segments due to the extremely small next-hop MTU value
(i.e., less than 596 octets). Our measurement results also show
that the mechanism of PMTUD has been well implemented
by intermediate routers on the Internet. When an oversized
packet with the DF flag setting to True is received, the router
will follow PMTUD and reflect an ICMP error message to
the originator, instead of simply ignoring the DF flag [84].
However, due to the router’s extremely small next-hop MTU,
the originator will clear the DF flag directly and allow TCP
segments to be fragmented by the router.
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Fig. 2. ICMP error messages with small next-hop MTU.

Table II illustrates the distribution of the identified prob-
lematic routers in the top 20 ASes, and Table III presents
the details of 30 problematic routers. Figure 3 shows the
cumulative distribution function (CDF) of the identified 602
problematic routers’ next-hop MTU value. Since the mea-
surement is only performed on one router on the Internet,
we believe that a larger number of problematic routers are
deployed and used in practice. Note that a problematic router
is harmful to all the flowing-through traffic, and TCP segments
may flow through many intermediate routers to the destination,
as long as one problematic router is on the path, TCP segments
will be fragmented.

5CAIDA declined our request on newer datasets due to non-technical
reasons; instead, we conduct our own measurement study on the Internet and
make similar observations.

6Due to anonymity and ethical considerations, we do not expose the
locations of our backbone router owned by a Tier-2 ISP.

TABLE II. NUMBER OF PROBLEMATIC ROUTERS IN THE TOP 20 ASES.

AS No. Organization Router AS No. Organization Router
AS56047 China Mobile 69 AS9808 China Mobile 16
AS4134 China Telecom 47 AS38197 Sun Network(HK) 15
AS1267 WIND TRE S.P.A. 41 AS8103 Florida Services 15
AS4760 HKT Limited 23 AS4847 China Networks 14
AS4837 China Unicom 22 AS4812 China Telecom 14
AS3462 Chunghwa Telecom 21 AS37963 Hangzhou Alibaba 14
AS8452 TE-AS 20 AS48503 Mobile Telecom 13
AS17816 China Unicom 19 AS18881 TELEFÔNICA 13
AS45090 Shenzhen Tencent 17 AS4538 CERNET 7
AS17621 China Unicom 16 AS132203 Tencent Building 5

Besides, we deploy five vantage points in California,
Singapore, Beijing, Hong Kong, and London to perform our
active measurement study. From these vantages, we send ICMP
request packets to Alexa top 1 million websites. To extend our
measurement scale, we also randomly generate 12 percent of
the entire IPv4 address space within 20 days as the destination
of our request packets. The length of the request packets is set
to 1500 octets and the DF flag in the packet header is set to
True. Hence, if the next-hop MTU of an intermediate router
is less than 1500 octets, an ICMP “Fragmentation Needed”
message carried with the MTU value will be reflected to
our vantage points. Within 20 days, we totally capture 2,721
ICMP “Fragmentation Needed” messages with the next-hop
MTU value less than 596 octets. Among the 2,721 ICMP
“Fragmentation Needed” messages, 167 are reflected during
probing Alexa top 1 million, and 2,554 are captured during
probing 12% of the Internet. Our active measurement study
demonstrates the feasibility of identifying problematic routers
from end hosts. Once a problematic router is identified, attack-
ers can launch our attacks to poison the TCP traffic traversing
the router.
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Fig. 3. CDF of the problematic routers’ next-hop MTU.

Mode 3: IP Fragmentation at Originators. As shown in
Figure 1(c), when an ICMP “Fragmentation Needed” message
is not triggered by TCP connections (instead, by UDP or
ICMP echo request/reply), even if the originator receives the
ICMP error message that carries a next-hop MTU value Lmtu

less than the originator’s min pmtu, the originator will not
notify its TCP layer to resize the MSS of subsequent segments
promptly due to the lack of TCP related information such as
source port, destination port, or sequence number. The IP layer
of the originator defers the feedback of the updated PMTU
until it receives segments from TCP and perceives the presence
of the TCP connection passively. The deferred response results
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TABLE III. PROBLEMATIC ROUTERS ON THE INTERNET PRONE TO FRAGMENT TCP SEGMENTS.

No. Problematic router Next-hop MTU
(Octet) AS No. Organization Location Victim originator

1 58.213.x.89 100 AS4143 China Telecom CN 1©, 2©, 3©, 4© 1

2 111.49.x.171 120 AS9808 China Mobile CN 1©, 2©, 3©, 4©
3 113.81.x.103 512 AS4134 China Telecom CN 3©, 4©
4 171.11.x.83 576 AS4134 China Telecom CN 4©
5 45.113.x.146 576 AS137697 China Telecom CN 4©
6 120.32.x.231 576 AS4134 China Telecom CN 4©
7 61.190.x.218 576 AS4134 China Telecom CN 4©
8 101.4.x.2 576 AS4538 CERNET CN 4©
9 123.204.x.83 68 AS4780 Digital United Inc. TW 1©, 2©, 3©, 4©
10 36.229.x.31 68 AS3462 Chunghwa Telecom Co., Ltd. TW 1©, 2©, 3©, 4©
11 210.71.x.67 296 AS3462 Chunghwa Telecom Co., Ltd. TW 3©, 4©
12 168.95.x.73 330 AS3462 Chunghwa Telecom Co., Ltd. TW 3©, 4©

13 177.132.x.159 576 AS18881 TELEFÔNICA BRASIL S.A BR 4©
14 177.133.x.153 576 AS18881 TELEFÔNICA BRASIL S.A BR 4©
15 177.11.x.83 576 AS262882 Prefeitura Municipal de Bauru BR 4©
16 69.83.x.197 296 AS6167 Cellco Partnership, Inc. US 3©, 4©
17 192.151.x.166 576 AS40065 CNSERVERS LLC US 4©
18 123.108.x.95 180 AS58895 Ebone Network Limited PK 1©, 2©, 3©, 4©
19 202.69.x.125 400 AS23750 GERRYS INFORMATION PK 3©, 4©
20 121.127.x.23 576 AS38197 Sun Network (Hong Kong) Limited HK 4©
21 117.18.x.220 576 AS38197 Sun Network (Hong Kong) Limited HK 4©
22 95.174.x.72 478 AS9009 M247 Ltd GB 3©, 4©
23 37.120.x.70 478 AS9009 M247 Ltd. GB 3©, 4©
24 102.134.x.55 512 AS36874 Cybersmart ZA 3©, 4©
25 103.146.x.150 512 AS139841 STAR COMMUNICATION BD 3©, 4©
26 149.255.x.21 576 AS50710 EarthLink Ltd. IQ 4©
27 60.253.x.86 576 AS9981 Saero Network Service LTD. KR 4©
28 190.121.x.82 576 AS27717 Corporacion Digitel C.A. VE 4©
29 88.87.x.109 576 AS34606 B.B.Bell SPA IT 4©
30 45.119.x.190 576 AS131386 Long Van System Solution JSC VN 4©
1 1© represents FreeBSD 8.2∼12.1, 2© represents Mac OS 10.11∼10.15, 3© represents Linux 2.6.32 and beyond, and 4© represents Windows.

in the desynchronization on the PMTU value between the IP
layer and the TCP layer for a short period of time, causing TCP
to write oversized segments to IP. Thereafter, IP will fragment
those oversized TCP segments using its min pmtu, and set the
DF flag of the fragments as False. This responding mode has
been implemented in Linux kernel version 3.8.1 and beyond.

Since current PMTUD implementations do not validate
the source and transmission path of ICMP error messages,
attackers may pretend to be a router and forge such an
ICMP error message to trick the originator into fragmenting
TCP segments, as long as the embedded data in the forged
message can evade the originator’s check and the next-hop
MTU specified in the message is smaller than the originator’s
min pmtu. We discover that a forged ICMP “Fragmentation
Needed” message embedded with an echo reply can evade the
originator’s check and trick the originator into fragmenting
TCP segments, which will be elaborated later in Section V-C.

To evaluate the impacts of this vulnerable handling mode
on the Internet, we measure and identify how many websites in
the list of the Alexa top 10k websites are vulnerable and suffer
from the incorrect IP fragmentation on TCP segments. We
observe that 1,407 websites among the Alexa top 10k websites
are vulnerable to the forged ICMP “Fragmentation Needed”
messages sent from our vantage point in California, which
can be tricked into fragmenting their TCP segments even if the
PMTUD mechanism is enabled. These vulnerable websites are
potential victims of our attacks. In addition, 661 websites in the
top 10k websites list cannot be reached from our vantage point,
hence the actual number of vulnerable websites may be more

than 1,407. Figure 4 presents the geographical distribution of
the vulnerable websites we detected7.

Greece: 3
Brazil: 9
Russia: 11

Japan: 79
Germany: 91
China: 267
United States: 374

Switzerland: 21
England: 56

Australia: 76
France: 63

Fig. 4. Geographical distribution of vulnerable websites.

To sum up, since the received ICMP error messages
may vary greatly (e.g., different MTUs and different triggers
carried in the messages), originators with different OS im-
plementations handle them in different ways for performance
considerations (see Figure 1(b)) or for exceptions handling
(see Figure 1(c)), rather than just decreasing the MSS of
TCP segments accordingly (see Figure 1(a)). However, the two
special handling modes incur undesired IP fragmentation on
TCP.

7We deploy five vantage points in different locations around the world,
each with different filtering policy enforced by the ISPs. California is the
most friendly vantage, from which we can reach 9,339 websites.
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V. TCP POISONING VIA IP FRAGMENTATION

After identifying the situations under which IP fragmenta-
tion on TCP segments can be triggered, we now present the
attacks that exploit IP fragmentation to poison TCP segments.

A. Attack Overview

Figure 5 shows the overview of our poisoning attack
against TCP via IP fragmentation. It consists of three main
steps. In the first step, the off-path attacker infers the presence
of a victim TCP connection between a server and a client.
For different cases, it can be achieved by using two classic
approaches, i.e., unprivileged applications or side channels.
In the second step, the attacker triggers IP fragmentation on
the server’s TCP segments by exploiting the two residual
IP fragmentation situations discovered in Section IV. In the
third step, the attacker impersonates the victim server and
forges malicious fragments to the victim client, these forged
fragments will be cached in the client8. Finally, the victim
client will mis-reassemble benign fragments (originated from
the server) and the forged ones that carry correct IPID value
together. Once the checksum mechanism of TCP can be
evaded, the original TCP segment will be poisoned, which
circumvents the guessing of sequence and acknowledgment
numbers that are always carried in the first benign fragment.
Next, we detail the three steps of our attack.

TCP connection
Inferring TCP connection

Triggering IP fragmentation

Victim serverAttacker Victim client

1

3
Forging IP fragment

TCPIP TCP

IP

Fragmented segment

Mis-reassembled
TCPIP TCP

2

Fig. 5. Overview of TCP poisoning via IP fragmentation.

B. Inferring TCP Connections

Since the off-path attacker does not sit on the communica-
tion path between the server and the client, it cannot eavesdrop
the established TCP connections. Instead, the attacker needs to
infer the presence of the TCP connection between the server
and the client before launching TCP poisoning attacks. A
large number of previous works have studied how to infer
the presence of TCP connections [30], [72], [16], [73], [15],
[32], [14], [3]. For different cases, the attacker can adopt two
classic approaches to infer the presence of TCP connections.

First, the attacker can induce the victim client to install
an unprivileged application or visit a web page to load sand-
boxed scripts (i.e., puppet) [73], [32]. The puppet observes

8Major OSes (i.e., MacOS, Linux and Windows) adopt the fragment
overlapping policy of ‘first’ or its variants [5], [79], [63], [6], which means
the victim client will cache and accept IP fragments that arrive first (see
Appendix Section D for more details about fragment overlapping policies).
Hence, attackers have adequate time to perform IP fragmentation attacks, they
can inject forged fragments in advance and then wait for legitimate ones to
arrive [11], [86].

requests from the victim client to the server, and notify the
attacker about the request stealthily. It is generally considered
a weak puppet without capabilities to launch other malicious
manipulations, and this approach has been widely used by off-
path TCP exploits [30], [72], [16], [73], [32]. We use this
approach to learn the presence of a victim HTTP connection
(see Section VI-A).

Secondly, side channels in TCP/IP implementations (e.g.,
shared SYN backlog buffer [14], sequential assignment of
source ports [30], [34] and IPID hash collisions [3], [85])
can also be used to infer the presence of a victim TCP
connection. We leverage IPID hash collisions [3], [85] to detect
the presence of a victim BGP connection on port 179 (see
Section VI-B).

C. Triggering IP Fragmentation

According to our measurement study in Section IV, the
attacker may trigger IP fragmentation on TCP segments by
either detecting IP fragmentation occurring at intermediate
routers or forcing IP fragmentation occurring at originators
(the server in our attack) of the TCP connections.

(1) Detecting IP Fragmentation at Routers. To detect an in-
termediate router whose next-hop MTU value Lmtu is less than
the server’s acceptable minimum PMTU value min pmtu, an
attacker can first create a large-sized IP packet and set the DF
flag of the packet to True, then send the packet to the client.
If an ICMP “Fragmentation Needed” message is reflected by
one intermediate router, the attacker records the next-hop MTU
value carried in the message, then resizes the packet according
to this value and sends a new packet to the client again.
This process repeats until no ICMP “Fragmentation Needed”
message is reflected.

If the ICMP error message sent from an intermediate router
satisfies two conditions, i.e., (i) the next-hop MTU of the
router is less than the server’s system variable min pmtu
and (ii) the router is on the path from the server to the
client, then TCP segments from the server to the client will
be fragmented and the TCP-based applications running on the
client could be poisoned. In order to check the first condition,
the attacker can probe the server’s OS type [62] and identify
its min pmtu in advance (since each type of OS has its own
fixed min pmtu), then compare the identified min pmtu
with the next-hop MTU value carried in the reflected ICMP
error message. Secondly, by tracing the path from the network
where the server is located to the network where the client is
located [1], [51], the attacker can identify if the problematic
router is on the traced path by locating the router’s IP address
that is carried in the reflected ICMP error message.

In practice, for a given TCP connection, it may not be
easy for off-path attackers to detect a problematic router on
the path. When this happens, the attacker needs to probe
problematic routers first (e.g., gateways of subnets) and then
identify potential victim TCP connections whose traffic may
traverse the router.

(2) Forcing IP Fragmentation at the Server. Attackers can
also force IP fragmentation occurring at vulnerable servers by
actively sending forged ICMP error messages to the server.
In our attack, the first step is to make the server accept the
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forged ICMP error messages. According to RFC 792 [69],
the forged ICMP error message should be embedded at least
28 octets (i.e., the IP header plus at least the first 8 octets)
of a triggering packet to pass the server’s check. More strict,
according to the newer standard RFC 1812 [7], ICMP error
messages should be embedded as much of a triggering packet
as possible, usually as long as it does not exceed 576 octets.
As a result, the attacker has to craft and embed feasible data
into the forged ICMP error message to evade the server’s
check. Early Linux kernels do not apply any checks on the
received ICMP error messages embedded with UDP headers,
so it is possible to forge an ICMP error message embedded
with a UDP data to evade the server’s check and trick it into
fragmenting TCP segments. Fortunately, these vulnerabilities
have been fixed since Linux kernel 4.18 by checking if the
server has a UDP session with the destination.

We discover that when an attacker sends a forged ICMP
“Fragmentation Needed” message embedded with an ICMP
echo reply data to the server equipped with Linux kernel ver-
sion 3.8.1 and beyond, the server will be tricked into accepting
the forged ICMP error message and then fragmenting TCP
segments incorrectly due to the triggered desynchronization on
PMTU value between the IP layer and the TCP layer. When a
Linux-based server receives an ICMP “Fragmentation Needed”
message embedded with an echo reply data, if the server
already has a TCP connection to the address (the victim client)
specified in the embedded echo reply data, the server’s IP layer
does not actively notify its TCP layer about the updated PMTU
value (usually reduced by the ICMP message), thus causing
desynchronization on the PMTU value between the two layers.
The IP layer defers the feedback of the updated PMTU value
to the TCP layer until it receives TCP segments.

After receiving the oversized TCP segments, the IP layer
of the server fragments these oversized segments using its
min pmtu, sets the DF flag to False, and then sends them
out (see Figure 1(c)). The number of fragments depends on
how many TCP segments are written into the IP layer by the
previous write action of the TCP socket, usually related to
the size of the socket’s congestion window SND.CWND.
After IP is informed of the presence of the TCP connection,
it then notifies the TCP layer about the updated PMTU value.
TCP will reduce the MSS of subsequent TCP segments to
min pmtu - 40, and IP sets the DF flag of the resized packets
to False before sending them out. This vulnerability impacts
most Linux systems (i.e., kernel version 3.8.1 and beyond).

Attackers can forge an ICMP “Fragmentation Needed”
message as shown in Figure 6 and send it to the server,
thus forcing the server to fragment TCP segments. By simply
padding ‘X’ to meet the length requirement, the attacker can
evade the checks from both RFC 792 and RFC 1812. A
next-hop MTU value Lmtu less than the server’s acceptable
minimum PMTU value min pmtu is specified in the ICMP
header. Since we observe that if Lmtu is equal to or greater
than min pmtu, the IP layer at the server will actively
identify the corresponding sockets at the TCP layer to force the
adjustment of MSS immediately (see Figure 1(a)) to avoid IP
fragmentation. In practice, Lmtu can be set to 68 octets, which
is the minimum of PMTU values on the Internet. The forged
ICMP message is embedded with an echo reply data, which
can be accepted by the server and cause the desynchronization

on PMTU value. The message will reduce the PMTU value of
the server’s IP protocol but defer the feedback of the reduced
PMTU to TCP, thus causing TCP to write oversized segments
to IP and incurring IP fragmentation on these TCP segments.
We see that it is easy for an attacker to forge such an ICMP
“Fragmentation Needed” message.
Offset
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Fig. 6. The forged ICMP error message.

D. Forging IP Fragment

Once IP fragmentation could be falsely triggered on TCP
segments, it is easy for off-path attackers to overcome the
remaining practical issues (i.e., predicting IPID and deceiv-
ing TCP checksum) and thus successfully perform poisoning
attacks against TCP.

(1) Predicting IPID. IPID indicates the uniqueness of a packet
during fragmentation and reassembly [70], [81], so attackers
need to predict IPID of the benign fragments and assign
the value to the forged ones. The success rate of predicting
IPID depends on the IPID generation algorithms, which can
be classified into five categories including global counter-
based IPID assignment, per-destination IPID assignment, per-
connection IPID assignment, random IPID assignment, and
hash-based IPID assignment [31], [3], [43], [50], [75].

Previous studies show that IPID generated by the
global counter-based IPID assignment algorithm and the per-
destination IPID assignment algorithm is predictable [31], [43],
[48], IPID noises (the increments during the short period
of attack window) will not significantly interfere with the
prediction [65], [66]. Though the hash-based IPID assignment
algorithm and the random IPID assignment algorithm are more
sophisticated and secure, their generated IPID may still be
predictable due to various implementation flaws [3], [85], [4].

New Linux releases (i.e., Linux kernel version 3.16 and
beyond) assign IPID to TCP packets using the per-connection
IPID assignment algorithm, which is considered to be more
secure. However, this algorithm uses the packet’s DF flag to
check if the packet contains a TCP segment and then enables
the per-connection IPID assignment algorithm [3], [24]. By
triggering the fragmentation on TCP segments, attackers can
clean the DF bit in the packet header and force a fallback
to use the 2048 global shared hash-based IPID counters [24],
[10], [86]. Each of the hash-based IPID counter is shared by
an array of destination IPv4 and IPv6 addresses. As a result,
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it is easy for attackers to predict the IPID by leveraging hash
collisions [3], [85], [24]9. On average, we can use adequate
IPv6 addresses to successfully identify a hash collision and
predict the IPID in 22 seconds, as shown in Figure 7. Note it is
not necessary to use IPv6 addresses for IPID predictions. Since
the 2048 global hash-based IPID counters are shared between
IPv4 and IPv6 addresses, if attackers own IPv6 addresses, it
may be easier (due to the large IPv6 address space) to construct
hash collisions and predict IPIDs.

0 10 20 30
Time cost of predicting IPID in Linux systems (second)
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Fig. 7. CDF of time cost when predicting IPID in modern Linux systems.

In practice, we do not need to accurately predict IPID when
performing our attacks. Instead, we can send as many forged
fragments (with different IPID) as the defragmentation cache
size (64 in Linux and 100 in Windows) in parallel, and the
attack will succeed once one fragment hits. To evaluate the
feasibility of predicting IPID, we survey the IPID generation
algorithms adopted in various TCP/IP stack implementations.
Table IV shows our survey results in different stack im-
plementations. When analyzing the predictability, we do not
consider software vulnerabilities. From Table IV, it can be
convinced that the IPID assigned by many prevailing OSes
still can be predicted. We also conduct a measurement study to
identify the distributions of IPID assignment on the Internet,
the measurement results show that a large number of hosts
on the Internet still adopt vulnerable IPID assignment (see
Appendix Section B for more details).

(2) Deceiving TCP Checksum. When all IP fragments arrive
at the destination and are reassembled into one TCP segment,
the TCP checksum field will be checked to detect transmission
errors. The checksum field is a 16-bit word, deriving from
the one’s complement sum of all 16-bit words in the header
and payload, where a 12-octet TCP pseudo header is also
covered [71]. To deceive the TCP checksum and overwrite
the original data areas in the segment via IP fragments, the
attacker needs to know the contents of the packet that it expects
to replace with the forged fragment.

We discover that by simply adjusting two octets, the TCP
checksum mechanism can be easily circumvented, similar
to deceiving the UDP checksum [11], [86]. Supposing the
attacker aims to replace the original k 16-bit words in the
TCP segment, it can forge arbitrary k − 1 16-bit words and
use the remaining one 16-bit word (i.e., two octets) to align

9Our measurements show that IPID assignment of modern Android systems
is also vulnerable due to the adoption of Linux kernels.

the original checksum, thus crafting an equivalent. Appendix
Section C presents more details and examples about how to
evade TCP checksum.

VI. CASE STUDY

In this section, we perform two case studies that use IP
fragmentation to manipulate HTTP traffic and BGP routing
tables. We can pick either fragmentation at intermediate routers
or at vulnerable hosts, and we have succeeded either way in
the two case studies.

Ethical considerations. Our experiments avoid causing real
damages on the Internet. When performing IP fragmentation
attacks against public websites, we exploit the vulnerability
of IP fragmentation occurring at intermediate routers instead
of hosts, i.e., we do not expose and exploit vulnerabilities of
the target websites. When performing IP fragmentation attacks
against BGP, we exploit the vulnerability of IP fragmentation
occurring at vulnerable hosts, where all the hosts involved in
this experiment are test-bed machines in our lab environment.
The exploits are not exclusive, e.g., fragmentation occurring
at vulnerable hosts can also be exploited to poison HTTP and
vice versa.

A. Manipulating HTTP Traffic

Attack Setup. This attack involves four hosts, including 1)
a web server on the Internet that provides online services,
e.g., advertising, or Internet Banking, 2) an attack machine
equipped with Ubuntu 14.10 performing the off-path poisoning
attack, 3) a victim client that accesses the web server based
on HTTP, and 4) a phishing website controlled by the attacker.
The phishing website tricks the client into downloading a
puppet, i.e., malicious JavaScript codes [26], [83] to help infer
the TCP connections to the server, which has been widely used
by previous off-path TCP exploits [30], [72], [16], [73], [32].
Due to the security policy of SOP [77], the puppet cannot
tamper with the web data on the client. Both the attack machine
and the victim client are located in our lab, and the off-path
attack machine aims to manipulate the HTTP traffic sent from
the server to the client. To measure the attack success rate on
different client OSes, we install Windows 10 Pro, Mac OS
10.14 and Ubuntu 20.10 on the client separately (Section VII
will evaluate the attack success rate).

Attack Procedure. As shown in Figure 8, 1a the off-
path attacker first conducts an early probing on the victim
server’s public web data, IPID assignment and the global
system variable of min pmtu. 1b Meanwhile, due to a
spam [44], the client downloads and installs a puppet. 2
In the victim client, the puppet observes HTTP requests to
the victim server and notifies the attacker stealthily, hence the
attacker can learn an HTTP session existing between the server
and the client. 3 The attacker triggers IP fragmentation on
the server’s TCP segments. In this case study, we pick the
situation of IP fragmentation occurring at routers. The attacker
generates packets (with the DF flag equal to True) according
to the MTU of typical network interfaces (e.g., 1500 octets
of Ethernet) and then sends the packets to the victim client.
When an ICMP “Fragmentation Needed” message is reflected,
if the next-hop MTU value carried in the message is less than
the previously probed min pmtu and the problematic router
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TABLE IV. IPID ASSIGNMENT IN DIFFERENT OS IMPLEMENTATIONS.

Operating
system Version IPID assignment Initial

value Increment Predictable

Kernel 3.0.10 per-destination 0 1 X
Kernel 4.4.20 per-connection Hash value Uniform distribution X
Kernel 4.10.6 per-connection Hash value Uniform distribution X
Kernel 4.16.10 per-connection Hash value Uniform distribution X

Linux Kernel 4.20.16 per-connection Hash value Uniform distribution X
Kernel 5.0.10 per-connection Hash value Uniform distribution X
Kernel 5.5.6 per-connection Hash value Uniform distribution X
Kernel 5.9.2 per-connection Hash value Uniform distribution X
Kernel 5.10.36 per-connection Hash value Uniform distribution X

XP Service Pack 3 global counter-based 0 1 X
7 Pro global counter-based 0 1 X
7 Service Pack 1 global counter-based 0 1 X

Windows 8.1 hash-based Hash value Hash value
10 Pro hash-based Hash value 1
Server 2008 Standard global counter-based 0 1 X
Server 2012 Standard hash-based Hash value Hash value
Android 4.1 per-destination 0 1 X
Android 7.0 per-connection Hash value Uniform distribution X
Android 9 per-connection Hash value Uniform distribution X
Android 10 per-connection Hash value Uniform distribution X
Android 11 per-connection Hash value Uniform distribution X

IOS & IoT devices Cisco IOS 15.3 global counter-based 0 1 X
VirtualBox NAT global counter-based 0 1 X
lwIP global counter-based 0 1 X
uIP global counter-based 0 1 X

Mac OS random – –
Mac & BSD FreeBSD random – –

OpenBSD random – –

issuing the message is located on the traced path between the
server and the client, the attacker detects IP fragmentation on
the server’s TCP segments10. 4 The attacker pretends to be
the server and forges malicious IP fragments to be cached at
the client. 5 Benign fragments from the server and the forged
ones with the same IPID are mis-reassembled at the client and
pushed to TCP. Once the reassembled segment evades TCP
checksum, the attack succeeds in poisoning the HTTP traffic
received by the client.

Victim serverAttacker Victim client Phishing website
(Attacker controlled)

Puppet

Probed:
 Web data
 IPID
 min _ pmtu

Triggering IP fragmentation

TCP connection
1a

Notifying attacker

…

1b

3

2

5

Forging fragments4

Fig. 8. Manipulating HTTP traffic via IP fragmentation.

In the following, we present two attack scenarios that can
successfully poison the web cache and intercept the HTTP
redirection by manipulating the HTTP traffic.

Attack Scenario 1: Web Cache Poisoning. Web caching is a
popular technique to reduce the bandwidth and the pressure of

10In practice, the detection of problematic routers on the path to victim
clients can be performed before the establishment of target TCP connections,
i.e., once the puppet is installed, the attacker can be notified to probe
problematic routers in advance.

back-end servers [8]. By temporarily storing network resources
requested by clients (e.g., HTML pages and images), subse-
quent client requests may be satisfied from the local cache.
By manipulating the HTTP traffic, attackers may launch web
cache poisoning attacks against the integrity of a web cache
repository, in which genuine content cached for an arbitrary
URL is replaced with spoofed content. Stealthy web cache
poisoning is a serious threat in the real world [30], [32]. A
problematic router that is the last hop on the path to the
client (i.e., the gateway of the client) is identified, the router
will fragment TCP segments originated from websites whose
min pmtu is greater than 296 octets.

Fig. 9. Snapshots of web cache poisoning.

After the victim client receives all fragments, a mis-
reassembled TCP segment is reconstructed and delivered to
the HTTP application. Figure 9 shows the snapshot of our
web cache poisoning attack against Agricultural Bank of China
(ABC). The original exchange rate of 646.11, 105.07, 75.04,
80.91 and 0.5580 are stealthily replaced by 349.11, 561.01,
31.48, 17.28 and 0.9540, respectively. These fake data will
be cached in the victim’s browser, when users access the same
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target website later, they will see the cached fake data, and not
aware of being attacked. In this attack, the security mechanism
of SOP [77] is circumvented. Appendix Section A presents
more experimental results about web cache poisoning, and we
evaluate the attack success rate in Section VII.

Attack Scenario 2: HTTP Redirection Intercepting. HTTP
redirection is a popular technique to direct a request to a new
domain or URL in various scenarios, e.g., switching a request
of HTTP to HTTPS, forwarding a request of an abandoned
domain name to the new one. In this attack scenario, we
implement and evaluate the attack that intercept HTTP redirec-
tion via IP fragmentation. In our experiment, the web server
enables the HTTP redirection mechanism. If the client requests
resources hosting on the web server through an HTTP request,
the server sends the client an HTTP redirection message with
HTTP status code 301 and automatically redirects the request
to a more secure one, i.e., a new website secured by TLS. In
practice, the redirection depends on the new URL carried in
the redirection message from the server. After receiving the
redirection message, the client automatically requests this new
URL and then finish the redirection. We show that the URL
can be replaced by attackers via malicious IP fragments, so that
the client’s requests are hijacked to a fake website controlled
by the attacker.

We use the site of Bank of America as the target web
server. Figure 10 shows that when the client accesses the server
with the URL of “http://www.bankofamerica.com/”, the new
advertised URL to the client is replaced by the attacker via IP
fragmentation, and the redirection is hijacked to the attacker’s
fake website.

(a) The legal URL of “https://www.bankofamerica.com” carried in the
HTTP redirection message is replaced by a malicious one.

(b) The HTTP request from the victim client is hijacked to a malicious
site.

Fig. 10. Snapshots of HTTP redirection intercepting.

B. Manipulating BGP Routing Table

This case study shows that IP fragmentation on TCP can be
exploited to manipulate BGP routing tables. Though the TCP
MD5 option is available in some commercial BGP routers [40],
BGP session protection with MD5 is not enabled by de-
fault [19]. We communicate with network operators of several

big ISPs and confirm that the security mechanisms, e.g., BGP
MD5 and GTSM [35], are not normally enabled in practice
due to the issues of management complexity and performance
loss11. Moreover, since the MD5 option is implemented at
the TCP layer, OSes releases may not support it by default.
For example, Linux systems do not support MD5 option by
default and do not allow manually turning on this option by
configuration. Instead, users have to reconfigure and recompile
the kernel to enable MD5. Hence, BGP routing systems built
on those OSes, e.g., the widely deployed open-source Quagga
routing suite [45], will be vulnerable to our attacks.

Attack Setup. Three hosts are involved in this attack, an attack
machine equipped with Ubuntu 14.10, and two BGP routers
termed as Routeri and Routerj . We use two software BGP
routers that are equipped with Linux kernel version 4.16.10 and
the BGP suite of Quagga with version 1.2.2. Routeri receives
BGP routing information generated from other ASes and then
advertises the routing information to its peer Routerj , which is
connected by a persistent TCP connection. The attacker aims
to overwrite the advertisements announced from Routeri to
Routerj by leveraging IP fragmentation and thus inject fake
BGP routing information to manipulate the BGP routing table
of Routerj .

Attack Procedure. Figure 11 presents the steps to manipulate
the BGP routing table of Routerj . 1 The attacker first detects
a TCP connection between Routeri and Routerj on port
179 via side channels identified in Linux implementations [3],
[85]. Thus, the attacker can infer a BGP connection between
Routeri and Routerj . 2 The attacker detects BGP messages
that Routeri may send to Routerj by probing periodical
advertisements of BGP routers and utilizing prediction based
methods [27], [23], [25]. 3 In this case study, we pick the sit-
uation of IP fragmentation occurring at vulnerable Linux hosts,
hence the attacker forges an ICMP “Fragmentation Needed”
message embedded with an echo reply data to trick Routeri
into fragmenting its TCP segments. 4 The attacker pretends
to be Routeri and sends forged fragments to Routerj , the
forged fragments will be cached. 5 Original TCP segments
from Routeri are fragmented, and the benign fragments are
sent to Routerj . Finally, all fragments with the same IPID will
be mis-reassembled, and a poisoned BGP message is pushed
to the BGP process in Routerj .

Victim Routeri
Attacker

Probing BGP messages
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BGP connection
Inferring the connection

Triggering IP fragmentation ICMP

1

5

2

3

Forging fragments4

Fig. 11. Manipulating BGP routing table.

Attack Scenario 3: Poisoning BGP Updates. In our ex-
periment, Routeri (whose IP address is 10.1.0.50) advertises

11In our investigation, TCP MD5 between two BGP routers is enabled only
when the routers connect with each other across layer-two networks.
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BGP update messages embedded with NLRI (Network Layer
Reachability Information) periodically to Routerj (whose IP
address is 10.3.0.50) and other peers. A network of 10.2.2.0/24
that can be reached via Routeri is advertised in the update
message. The attacker can replace 10.2.2.0/24 in the message
with some other false networks via IP fragmentation, e.g.,
12.2.0.0/24, thus poisoning the routing table of Routerj .
Figure 12 illustrates the fake routing information received
by Routerj , which is different from the original routing
information received by other un-poisoned BGP peers. The
value of Lmtu in the forged ICMP error message is set to 68.

(a) The original legal routing information

(b) The fake routing information received by Routerj

Fig. 12. Manipulating results on BGP routing table.

To accelerate the prediction of IPID generated by Routeri,
we send 64 fragments to Routerj all at once12, each with a
different IPID value. If one of the malicious fragments matches
the original IPID generated from Routeri, the fragment will be
mis-reassembled with the benign ones and the original BGP
message will be poisoned. In this attack, most of the delay
is incurred due to the detection of the BGP connection (55.4
seconds on average). Fortunately, BGP always runs over long
TCP connections, so an attacker has enough time to analyze the
connection. Section VII presents the evaluation results about
the attack success rate. Compared with previous BGP hijacking
attacks [9], [47], our attack is more stealthy, since the attacker
does not need to initiate suspicious false BGP announcements.

VII. ATTACK EVALUATION AND DISCUSSION

A. Attack Effectiveness

Table V presents the evaluation results of our attacks
on the Internet. First, we evaluate the attacks against 14
public websites, where IP fragmentation occurs at intermediate
routers on the path from the victim server to the victim client.
In order to evaluate the impact of different path MTUs on
the attack success rate, we deploy three types of problematic
routers with three next-hop MTU values, i.e., 68 octets, 296
octets and 512 octets, as the gateway of the victim clients in

12The size of defragmentation cache in recent Linux versions is 64.
However, older versions allow thousands of fragments to be cached, so
attackers can send more fragments to improve the success rate of guessing
IPID.

our testbed13. These routers will fragment TCP segments from
the public servers whose acceptable minimum path MTU is
greater than the router’s next-hop MTU. We also deploy three
types of victim clients with Ubuntu 20.10, Windows 10 Pro,
and Mac OS 10.14, respectively, to evaluate the impacts of
client OSes.

We show that if the target websites only enable HTTP, the
attack achieves high success rates to poison the client’s web
cache by leveraging IP fragmentation. For example, in the first
row of Table V, when the next-hop MTU of the router is 68
octets, 296 octets, and 512 octets, the success rates are 42

50 , 40
50 ,

and 41
50 , respectively, which are mainly affected by IPID noises

at the server sides [65], [24].

Particularly, if the websites are enabled with redirection
from HTTP to HTTPS, the attacker can intercept the redirec-
tion by leveraging IP fragmentation. Besides being affected by
IPID noises at the server side, the success rates of these attacks
are affected by the difference between the size of the server’s
redirection packets and the router’s next-hop MTU value. If
the size of the redirection packet is less than the router’s next-
hop MTU value, the packet will not be fragmented, and thus
the attacker will not be able to intercept the redirection by
leveraging IP fragmentation.

Second, we evaluate the effectiveness of the attacks against
vulnerable servers where IP fragmentation occurs. As shown
in Table V, we deploy 8 vulnerable Linux servers, i.e., vir-
tual machines (VM), with different kernel versions in clouds
of Tencent, Alibaba, and ClientVPS. When TCP segments
generated by a Linux server are fragmented to 552 octets
due to a forged ICMP “Fragmentation Needed” message, IP
fragmentation can be exploited to poison the client’s web
cache, intercept the redirection from HTTP to HTTPS, or
poison BGP messages that the victim client received. The
average success rate of the attacks is higher than 78%. Note
that since the mis-resembling of the benign fragments with the
forged ones can be finished instantly in the kernel of the victim
client, it is difficult for users of poisoned clients to perceive
our attacks.

B. Discussion

(1) The Impact of Encryption. It is difficult for attackers to
craft equivalents with the same checksum to deceive TCP when
the payload of the TCP segments is secured by encryption
mechanisms (e.g., TLS [22]). However, a considerable portion
of traffic on the Internet is not protected by these encryption
mechanisms (e.g., 30% of page loads by Firefox do not use
TLS [78]), and our evaluation in table V shows that even
some financial websites are still not encrypted. Besides, even
if encryption mechanisms are enabled to protect the traffic,
attackers can still inject malicious fragments into the target
traffic, which forces a mis-reassembling between the benign
fragments and the malicious ones. Although the malformed
segment cannot pass the checksum of TCP, they will interfere
with the reception of benign segments, which may lead to
DoS attacks. Similarly, it is not easy to poison the emerging

13To avoid ethical issues, we do not attack users attached to the identified
problematic routers (e.g., routers with the next-hop MTU of 68 octets in
AS4780 and AS3462). Instead, we validate the attacks based on problematic
routers in our testbed.
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TABLE V. EVALUATION OF IP FRAGMENTATION ATTACKS AGAINST TCP.

Victim server Organization Fragmentation
MTUs

OS version of
victim client Attack result Success rate

with different MTU
112.65.*.149
(HTTP only) Agricultural Bank of China Router

68, 296, 512 Windows 10 Pro web cache poisoning 42
50

, 40
50

, 41
50

122.119.*.139
(HTTP only) ceair.com Router

68, 296, 512 Windows 10 Pro web cache poisoning 41
50

, 41
50

, 39
50

118.228.x.78
(HTTP only) www.ccb.com Router

68, 296, 512 Mac OS 10.14 web cache poisoning 43
50

, 44
50

, 42
50

61.159.x.11
(HTTP only) www.gov.cn Router

68, 296, 512 Mac OS 10.14 web cache poisoning 44
50

, 39
50

, 41
50

14.139.x.44
(HTTP only) ignou.ac.in Router

68, 296, 512 Mac OS 10.14 web cache poisoning 42
50

, 40
50

, 39
50

104.18.x.88
(HTTP only) www.fao.org Router

68, 296, 512 Ubuntu 20.10 web cache poisoning 43
50

, 41
50

, 41
50

195.7.x.12
(HTTP only) www.finfacts.ie Router

68, 296, 512 Ubuntu 20.10 web cache poisoning 42
50

, 39
50

, 39
50

42.81.*.70
(HTTP only) china.com.cn Router

68, 296, 512 Ubuntu 20.10 web cache poisoning 44
50

, 43
50

, 40
50

151.101.x.67
(HTTP redirection enabled) CNN Router

68, 296, 512 Windows 10 Pro redirection intercepting 44
50

, 41
50

, 42
50

202.165.*.50
(HTTP redirection enabled) Yahoo Router

68, 296, 512 Windows 10 Pro redirection intercepting 43
50

, 39
50

, 37
50

162.14.x.217
(HTTP redirection enabled) SOHU Router

68, 296, 512 Mac OS 10.14 redirection intercepting 42
50

, 40
50

, ×
13.224.x.113

(HTTP redirection enabled) ESPN Router
68, 296, 512 Mac OS 10.14 redirection intercepting 39

50
, 42

50
, 38

50

54.192.x.199
(HTTP redirection enabled) IMDB Router

68, 296, 512 Ubuntu 20.10 redirection intercepting 42
50

, 37
50

, 37
50

171.161.*.100
(HTTP redirection enabled) Bank of America Router

68, 296, 512 Ubuntu 20.10 redirection intercepting 44
50

, ×, ×
170.106.*.100

(Linux 3.9.10, HTTP only) VM in Tencent cloud Server
552 Windows 10 Pro web cache poisoning 41

50

162.62.*.44
(Linux 4.16.10, HTTP only) VM in Tencent cloud Server

552 Ubuntu 20.10 web cache poisoning 39
50

147.139.*.126
(Linux 4.20.6, HTTP only) VM in Alibaba cloud Server

552 Ubuntu 20.10 web cache poisoning 42
50

45.147.x.234
(Linux 5.0, HTTP only) VM in ClientVPS Server

552 Mac OS 10.14 web cache poisoning 42
50

43.129.*.233
(Linux 4.20.15, HTTP redirection enabled) VM in Tencent cloud Server

552 Windows 10 Pro redirection intercepting 43
50

8.208.*.114
(Linux 5.1.20, HTTP redirection enabled) VM in Alibaba cloud Server

552 Ubuntu 20.10 redirection intercepting 39
50

183.173.*.12
(Linux 4.16.10, Quagga 1.2.2) VM in Alibaba cloud Server

552 Ubuntu 20.10 poisoning BGP updates 41
50

124.156.*.135
(Linux 4.15.10, Quagga 1.2.2) VM in Tencent cloud Server

552 Ubuntu 20.10 poisoning BGP updates 44
50

Internet transport protocol, i.e., QUIC [39], via IP fragmenta-
tion because the QUIC communications are always secured.
Nevertheless, it may still suffer from the IP fragmentation
based DoS attack once the underlying UDP datagrams are
fragmented. Thus, our attack can still interfere with secure
connections though the attacker cannot poison the connections.

(2) Comparisons of Two IP Fragmentation Situations.

In this paper, we identify two situations under which IP
fragmentation on TCP can be triggered, i.e., IP fragmentation
happening at problematic routers or happening at vulnerable
Linux hosts. We now compare the two situations with respect
to the placement of the vantage points and their impacts.
First, the placement of the vantage points used for sending
forged ICMP “Fragmentation Needed” messages (that force IP
fragmentation at vulnerable hosts) is not limited by locations,
since the originator and path of ICMP error messages cannot be
verified currently on the Internet [24]. In contrast, exploiting
IP fragmentation at problematic routers may be constrained
by the locations of the vantage points, since off-path attackers
may not be able to identify a problematic router on the path
for a given TCP connection. In practice, off-path attackers can
probe problematic routers first (e.g., gateways of subnets) and

then identify and poison potential victim TCP connections
whose traffic may traverse the router. These two situations
are not exclusive, and attackers can exploit either of them
to attack TCP. Second, when considering the impacts of the
two situations, a problematic router may be harmful to all the
TCP traffic that traverses the router. No matter where the TCP
segments are originated, as long as the originator’s acceptable
minimum path MTU is greater than the router’s next-hop
MTU, IP fragmentation will happen at the router. In contrast,
the impact of the undesired IP fragmentation at vulnerable
Linux hosts is limited to the established TCP connections at
the host.

VIII. COUNTERMEASURES

Responsible Disclosure. We report the vulnerability of IP
fragmentation in Linux to the Linux community and Bugzilla
and submit our PoC to the Linux community. With respect to
IP fragmentation occurring at problematic routers, we contact
the affected ISPs to disclose the vulnerability. Besides, we
report the vulnerability to Microsoft, since the acceptable min-
imum PMTU of Windows systems (i.e., 596 octets) is greater
than the recommendation in RFC 1191 (i.e., 576 octets). We
also propose to enhance the PMTUD mechanism to throttle the
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identified attacks via addressing the root causes, i.e., avoiding
IP fragmentation over TCP happening at intermediate routers
or at hosts.

A. Avoiding IP Fragmentation at Routers

The root cause of IP fragmentation at intermediate routers
is that the originator’s acceptable minimum path MTU (i.e.,
the system variable of min pmtu) is greater than the next-
hop MTU of the routers. It is difficult to remove or fix all
those problematic routers from the Internet in the near future,
hence one alternative solution is to change the originator’s
acceptable minimum PMTU value (i.e., min pmtu) being less
than the intermediate router’s next-hop MTU value. As a result,
the originator will handle ICMP “Fragmentation Needed”
messages as shown in Figure 1(a) to avoid IP fragmentation
at intermediate routers.

In Linux, FreeBSD, and Mac systems, users can reset the
host’s acceptable minimum path MTU value (i.e., min pmtu)
to the minimum of 68 octets using the sysctl command,
e.g., resetting the value in Linux systems via executing the
command of “sysctl net.ipv4.min pmtu = 68”. Since each
router on the Internet can forward a packet of 68 octets without
IP fragmentation [70], IP fragmentation will be avoided at
intermediate routers once the originator’s min pmtu is set
to 68 octets. Note it is difficult for users to reset the value of
min pmtu in Windows systems manually, which may require
the help of the vendor.

B. Avoiding IP Fragmentation at Hosts

In order to trick vulnerable servers equipped with Linux
kernel version 3.8.1 and beyond into fragmenting TCP seg-
ments, an attacker impersonates a router and forges an ICMP
“Fragmentation Needed” message embedded with an ICMP
echo reply to the server. The forged ICMP error message will
result in the desynchronization on the path MTU value between
the server’s TCP layer and the IP layer, thus causing IP to
fragment oversized TCP segments. Existing specifications such
as RFC 5927 [38] only consider direct ICMP attacks against
TCP, which requires that the forged ICMP error message
(embedded with a TCP packet) should carry the correct random
sequence number. However, the indirect attack cases where
non-TCP packets are embedded into ICMP error messages to
affect TCP are not considered in any specifications. We can fix
the identified vulnerability of the incorrect IP fragmentation on
TCP segments (due to a forged ICMP “Fragmentation Needed”
message embedded with a non-TCP packet of ICMP echo
reply) by using two solutions.

First, when an ICMP “Fragmentation Needed” message
embedded with a packet that does not perform PMTUD
(e.g., an ICMP echo reply packet) arrives, one straightforward
solution for the server is to discard the received ICMP error
message directly, since correct packets originated from pro-
tocols that do not perform PMTUD (e.g, ICMP echo reply)
will not trigger ICMP “Fragmentation Needed” messages at
all. Once the size of these packets exceeds the next-hop
MTU of intermediate routers, they will be fragmented by the
router, instead of reflecting an ICMP “Fragmentation Needed”
message. As a result, if such an ICMP error message is
detected on the Internet, it must be forged by attackers and
should be discarded by the server to prevent IP fragmentation.

Second, it is worth noting that if attackers forge ICMP
“Fragmentation Needed” messages embedded with protocol
data that performs PMTUD, it is still challenging for the
server to judge the legitimacy of the message unless the server
records the sent data and then check the embedded data, which
is impractical for connectionless protocols. As a result, in
order to avoid erroneous discarding of ICMP “Fragmentation
Needed” messages and the potential performance issues, as
well as avoiding IP fragmentation at vulnerable Linux servers,
the fundamental solution is to fix the desynchronization on
the path MTU value caused by the ICMP error messages.
Once such a message is received and its legitimacy cannot
be judged accurately, the IP layer should actively update the
MTU information carried in the message to the TCP layer, i.e.,
actively identifying related sockets at the TCP layer to notify
TCP to adjust the MSS immediately. Thus, the TCP layer can
achieve a strict synchronization on the path MTU value with
IP to avoid writing oversized segments to IP and prevent IP
fragmentation.

IX. RELATED WORK

IP Fragmentation. Since the IDS devices and the OSes may
reassemble the fragmented IP packets in different ways, it
leaves spaces for attackers to evade the security validation by
carefully crafting malicious fragments [67], [5]. IP fragmen-
tation has been widely abused to conduct denial of service
attacks [54], [61], DNS cache poisoning attacks [41], [11],
[42], [86], and traffic interception attacks [29], [31]. Moreover,
the complex and inefficient process of IP fragmentation re-
assembly may have negative impacts on network performance,
sometimes even communication failure [49], [37], [60].

Considering that the IP fragmentation technique has been
widely exploited, it is a common sense for the security
community to regard the IP fragmentation as a vulnerable
process. For example, RFC 1858 [87] and RFC 3128 [58]
comprehensively presented the threat models inspired by IP
fragmentation, e.g., bypassing the packet filter rules of security
products. Therefore, it is one best practice to discover PMTU
to avoid the IP fragmentation whenever possible [59], [57].
However, in this paper, we demonstrate that the reality is not
always as expected, IP fragmentation can still be abused to
attack TCP, which is contrary to the common belief [41], [31],
[64], [82], [46], [17], [30].

TCP Injection. TCP always randomize the 32-bit sequence
and acknowledgment numbers [71], [80], [74], and most imple-
mentations also randomize the 16-bit client port number [52].
Therefore, how to infer these randomness and then inject an
acceptable TCP segment is the main challenge for previous off-
path TCP attacks. By exploiting the global IPID counter pre-
viously adopted by Linux and Windows systems, Gilad et al.
concluded that an off-path attacker can infer if two end hosts
have established a TCP connection by a specific four-tuple and
then perform an off-path TCP injection attacks [30], [34], [33].
Qian et al. discovered that the middlebox of firewalls can be
abused to infer the sequence numbers of TCP connections [72]
and proposed to conduct a collaborative TCP sequence number
inference attack by leveraging unprivileged applications [73].
By exploiting the side channel vulnerability of global rate
limit presenting in the challenge ACK mechanism, an off-
path attacker can infer the TCP sequence and acknowledge
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numbers of an established TCP connection, then hijack the
connection [12], [13]. TCP timing side channel in the half-
duplex IEEE 802.11 networks can also be exploited to inject
malicious segments into a TCP connection [16]. Feng et al.
proposed to build a side channel in the mixed IPID assignment
of modern Linux systems to infer the randomness and hijack
a victim TCP connection [24]. In contrast, we propose to
evade PMTUD and then poison TCP via IP fragmentation,
i.e., circumventing the guessing of these randomness. Most
of the previous vulnerabilities have been fixed by eliminating
the observability or introducing randomness to the shared
resources [72], [12], [13], [73], [33], [21], [20], [2]. We report
new vulnerabilities arising during the interactions between IP,
ICMP and TCP, which can be exploited to poison TCP.

X. CONCLUSION

In this paper, we reveal that the widely deployed mech-
anism of PMTUD that protects TCP from IP fragmentation
can be evaded, thus enabling fragmentation-based poisoning
attacks against TCP. By exploiting IP fragmentation, we show
that an off-path attacker can poison TCP traffic without
guessing the random sequence numbers and acknowledgment
numbers of a victim TCP connection. We detail the two
situations of IP fragmentation involved and implement TCP
poisoning attacks in different scenarios. Through compre-
hensive evaluation on the Internet, we demonstrate that our
attacks can be performed to cause serious damages in the real
world. To mitigate this threat, we propose countermeasures that
enhance PMTUD to eliminate the vulnerability of triggering
IP fragmentation on TCP segments.
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APPENDIX

A. Snapshots of web cache poisoning

Figure 13 shows the experimental result of web cache
poisoning against MIT, where the original correct value of
1861 and 1464 are replaced by 1960 and 5064, respectively.
Figure 14 shows the experimental result against Bank of China
(BOC). The original exchange rate of 195.48, 454.99 and
743.96 are stealthily replaced by 991.08, 167.98 and 228.98,
respectively (after our disclosure, the website of BOC is now
protected by TLS).

B. Measurement of IPID

To ascertain the distributions of IPID assignment on the In-
ternet, we conduct a measurement study based on the network
scanner ZMap [88]. As shown in Figure 15, we detect more
than 270 million hosts in 15 days and observe that about 68%
hosts linearly increase their IPID, i.e., selecting the algorithms
of global counter-based IPID assignment or per-destination
IPID assignment, whose IPID is predictable. About 17% hosts

Fig. 13. Fake college news cached in the victim client.

Fig. 14. Fake financial news cached in the victim client.

select a constant as the packets ID because the IPID algorithm
in these hosts enables RFC 6864 [81]. In this case, when no IP
fragmentation occurs, IPID is purposeless and set to a constant
(e.g., 0). Instead, if IP fragmentation occurs, the IPID is usually
assigned randomly. About 9% hosts in our measurement assign
IPID using the random IPID assignment or hash-based IPID
assignment algorithms. We cannot determine the algorithms of
the rest 6% hosts due to the error responses to our requests.
Based on our measurement results, we conclude that IPID is
still predictable on a large number of hosts on the Internet.

C. Deceiving TCP Checksum

The checksum mechanism of TCP works based on the
one’s complement sum of all 16-bit words in the header
and payload, where a 12-octet TCP pseudo header is also
covered. By simply adjusting two octets, attackers can easily
craft equivalents that have the same complement sum with
the original segment, thus circumventing the TCP checksum
mechanism.

We assume that the string of “Bob loves HanMeiMei for
5555 years” is the original payload in a TCP segment, the one’s
complement sum of the string is 38135. Table VI illustrates
10 alternative strings that have the same checksum as the
original string. Attackers can construct a dictionary in advance
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Fig. 15. Distribution of IPID on the Internet.

to preserve the alternative strings of sensitive objects and then
query the dictionary to avoid expensive real-time computing.

TABLE VI. EQUIVALENT STRINGS WITH THE SAME CHECKSUM.

No. Equivalent string Checksum

Bob loves HanMeiMei for 5555 years 38135

1 Bob loves HanMeiMei for 1595 years

38135

2 Bob loves HanMeiMei for 2585 years
3 Bob loves HanMeiMei for 5258 years
4 Bob loves HanMeiMei for 5357 years
5 Bob hates HenrraFRi for 3674 years
6 Bob hates HenrraFRi for 2585 years
7 Malee misses BeGyAi for 4268 years
8 Malee misses BeGyAi for 6149 years
9 H-r-y lives 1#1-xGi for 7238 years
10 H-r-y lives 1#1-xGi for 8327 years

D. Fragment Overlapping Policies

Existing reassembly algorithms do not discuss how to
deal with fragments overlapping and the retransmission of
fragments [70], [18]. Particularly, it is ambiguous on whether
the client should favor overlapping fragments with the low-
est offset or the highest offset. Moreover, it is not clearly
defined on if the first “retransmitted” fragment, the second
“retransmitted” fragment, or the last one should be favored
by the destination. As a result, various fragment reassembly
implementations handle the problem of overlapping fragments
differently. In total, there are seven fragment overlapping
policies used in different OS releases, i.e., First and its four
variants including Linux, Windows, Solaris and BSD, Last and
its variant BSD-right [5], [79], [63], [6].

First and the Four Variants. First favors the original fragment
with a given offset. HP-UX and Mac OS adopt this policy.
Linux favors an original fragment with an offset that is less than
a subsequent fragment. Besides Linux, OpenBSD also adopts
this policy. Windows favors the original fragment except if
the offset of a subsequent fragment begins before the original
fragment and ends after the original fragment. In this case,
it favors the subsequent fragment. Solaris favors the original
fragment except if the offset of a subsequent fragment begins
before the original fragment and ends at an offset equal to or
greater than the original fragment. In this case, it favors the
subsequent fragment. BSD favors an original fragment with an
offset that is less than or equal to a subsequent fragment. AIX
and FreeBSD adopt this policy.

Last and the Variant. Last favors the subsequent fragment
with a given offset. Cisco adopts this policy. BSD-right favors
a subsequent fragment when the original fragment has an offset
that is less than or equal to the subsequent one except when
the original fragment ends at the same or greater offset than
the subsequent fragment. In this case, BSD-right favors the
original fragment. HP JetDirect printers adopt this policy.
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