
CRATES: A Cache Replacement Algorithm for Low
Access Frequency Period in Edge Server

Pengmiao Li†, Yuchao Zhang†*, Huahai Zhang†, Wendong Wang†, Ke Xu§, Zhili Zhang‡,
†State key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing, China

Email:{pengmiaoli, yczhang, zhanghuahai, wdwang}@bupt.edu.cn
§Tsinghua University, Beijing, China. Email:xuke@tsinghua.edu.cn

‡ University of Minnesota, Minneapolis, US. Email:zhzhang@cs.umn.edu

Abstract—In recent years, with the maturity of 5G and Internet
of Things technologies, the traffic in mobile network is growing
explosively. To reduce the burden of cloud data centers and CDN
network, edge servers that are closer to users are widely deployed,
caching hot contents and providing higher Quality of Service
(QoS) by shortening access latency. Storage resources on edge
servers are much limited compared with CDN servers, so the
research on cache replacement strategy of edge servers is critical
to edge computing and storage area. Many efforts have been
made to improve caching performance on edge servers. Existing
caching strategies only focus on the high access frequency period
to solve the caching problem, they ignore low access frequency
period with two characteristics, including that hot contents are
difficult to predict and hot topics usually change unstably, which
makes it inefficient to improve the hit rate on edge servers.

In this paper, we deeply analyzed the real traces from Chuang-
Cache and found some specific user groups are playing more
important roles than general users during low access frequency
period, and the contents accessed by these specific user groups
have a much higher possibility to become hot contents. Therefore,
we firstly classify such users to core users, and treat others as
common users. Then we adopt the principal component analysis
algorithm to analyze the relationship between hot contents and
core users. On this basis, we finally propose a hot contents pre-
cache protection mechanism, which is a significant part of our
cache replacement algorithm CRATES. To improve CRATES’s
efficiency, we extract key part of historical data by designing a
sliding window method. Through a series of experiments using
real application data, we demonstrate that CRATES reaches
about 98% in caching hit rate and outperforms the state-of-
the-art algorithm LRB by 1.4X.

Index Terms—Edge caching, hot contents, core user, and hit
rate.

I. INTRODUCTION

In recent years, with the maturity of 5G and Internet of

Things technologies, the traffic in mobile network is growing

explosively. According to the report [1], the number of world-

wide phone users was 5.22 billion in 2020, which introduces

high requirements on content storage. To reduce the burden

of cloud data centers and CDN networks, edge servers that

are closer to users are widely deployed, caching hot contents

and providing higher Quality of Service (QoS) by shortening

access latency. However, storage resources on edge servers are

* Yuchao Zhang (yczhang@bupt.edu.cn) is the corresponding author.

much limited compared with CDN servers, so the research on

cache replacement strategy of edge servers is critical to edge

computing and storage area.

Many efforts have been made to improve caching perfor-

mance on edge servers. LeCaR [2] uses the machine learning

technology based on content popularity for caching content.

LRB [3] is a new method for caching in CDNs that adopts

machine learning to approximate the Belady MIN (oracle)

algorithm. Although these works increase the hitting rate on

edge servers during busy hours with high access frequency,

they fail in low access frequency period, which has the fol-

lowing two characteristics. Hot topics usually change unstably,

and are difficult to predict. Existing caching strategies only

focus on the high access frequency period to solve the caching

problem, but they ignore the low access frequency periodwith

two characteristics above, making them inefficient to improve

hit rate on edge servers.

To improve caching hit rate during low access frequency

period, we deeply analyzed the real traces from ChuangCache

[4] and found an essential observation (see Sec. III). That is,

some specific user groups are playing more important roles

than general users during these periods, and the contents

accessed by these specific user groups have a much higher

possibility to become hot contents. This observation provides

us a new perspective to review the above caching problem,

from the perspective of particular user groups. However,

distinguishing hot contents from these user groups is not easy,

there are two challenges as follows.

• How to capture the relationship between hot contents and

special user groups using historical data?

• How to design a strategy with the above relationship to

improve hit rate on edge server?

In this paper, we firstly classified the users with high access

frequency and broader distribution on the time dimension to

core users, and treated others as common users. Then we

adopt the principal component analysis algorithm to analyze

the relationship between hot contents and core users. On this

basis, we finally propose a hot contents pre-cache protection

mechanism, which can easily gain hot contents from history

in static cache area, and cache & evict contents with real-time

by the relationship between hot contents and core users in the

128

2021 17th International Conference on Mobility, Sensing and Networking (MSN)

978-1-6654-0668-0/21/$31.00 ©2021 IEEE
DOI 10.1109/MSN53354.2021.00033

20
21

 1
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ob

ili
ty

, S
en

si
ng

 a
nd

 N
et

w
or

ki
ng

 (M
SN

) |
 9

78
-1

-6
65

4-
06

68
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
SN

53
35

4.
20

21
.0

00
33

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

surplus area. It is a significant part of our cache replacement

algorithm CRATES. To improve CRATES efficiency, we extract

key part of historical data by design a sliding window method.

Through a series of experiments using real application data,

we demonstrate that CRATES reaches about 98% in caching

hit rate and outperforms the state-of-the-art algorithm LRB

by 1.4X. The main contributions of this paper are listed as

follows:

• We disclose the relationship between content popularity

and user groups during low access frequency period in

edge servers.

• We propose a caching algorithm called CRATES by

capturing the above relationship and designing an item

pre-cache protection mechanism.

• We conduct a series of experiments using real industry

data and demonstrate the efficiency of CRATES.

The remainder of the paper is organized as follows. In the

next section, we introduce the related work about replacement

strategy. In section III, we deeply analysis the real traces

and find an essential observation. In section IV, the design

of architecture is presented. Section V conducts experiments

by detailed introduction and analysis of the results. And our

conclusions are presented in Section VII.

II. RELATED WORK

A. Base Strategy

1) Traditonal replacement: Many traditional replacement

algorithms have been proposed in different scenarios, such

as First Input First Output (FIFO), Least Recently Used

(LRU), Least Frequently Used (LFU) and Greedy-Dual-Size-

Frequency (GDSF) [5]–[8]. These traditional caching algo-

rithms with low complexity are easy to be implement and

have been widely used. The most commonly deployed caching

replacement algorithms by some CDN providers, such as

LRU, LFU, or their simple variants [9], are simple but do

not explicitly consider the future popularity of content when

making caching decisions.

2) popularity prediction: Significant efforts have been de-

voted to exploring item popularity prediction due to the

potential business value [10]. [11] proposed a novel popularity

prediction method SABER for online popularity prediction of

video segments, which classified video segments into head

segments and tail segments according to their positions in

videos and proposed each class of segments as a specific

offline predictor. [12] proposed a dynamic popularity pre-

diction model that includes topic migration popularity for

news comments and extended the reinforced Poisson process

model by introducing the weak tie theory and the competitive

matrix. [13] proposed a multi-head attention-based popularity

prediction model to predict the content popularity, whose

input includes historical popularity, social relationships, and

geographic features, to better extract the multivariate features

of popularity and reduce the prediction error. [14] proposed

a graph convolution neural-based video popularity prediction

algorithm called GraphInf, which clusters the countless short

videos by region and formulates the problem in a graph-based

way, thus addressing the explosive quantity problem.

The forecasting popularity of online content has been ex-

tensively studied that can provide support for caching.

B. Recent Strategy

On the studies of cache replacement strategy, researchers

have proposed many solutions in different perspectives, such

as location, size, and new scenarios, et.al, which are mainly

designed by content popularity. Li et al. [15] proposed a pop-

Caching strategy for social networks. Instead of predicting the

individual popularity of each content, the algorithm assumes

that the content popularity is similar when the context features

are similar, and uses four historical hits as the current context

features. To solve the underlying 0-1 Knapsack problem, size-

weighted popularity (SWP)-based caching framework [16] was

proposed, where both content popularity and content size are

taken into account when determining the contents to be cached.

Yang et al. [17] used the location features of edge nodes to

represent the user preferences of that location and proposed

an online prediction algorithm. Instead of trying to find a

single dominating caching policy for all the caching scenarios,

Zong et al. [18] employed an ensemble of constituent caching

policies and adaptively selected the best-performing policy to

control the cache. [2] used the machine learning technology of

regret minimization combines LFU and LRU based on content

popularity to improve on existing cache replacement strategies

in small storage sources.

The explosive growth of Internet data and the emergence of

new networks, such as edge computing, IoT, and 5G network,

have put forward higher requirements for cache strategies.

Therefore, the research work in recent years mainly proposes

corresponding cache optimization algorithms for new network

scenarios, especially in the social network. [3] focused on

caching in CDNs and proposed a new approach called LRB

that uses machine learning to approximate the Belady MIN

(oracle) algorithm. For better adaptation to the time-varying

popularity patterns, Forecast-Based cache replacement policies

had been proposed for mobile video streaming [19]. In recent

years there has been a rapid increase of short video traffic

in CDN, [20] presented AutoSight, a distributed edge caching

system for short video network, which consists of two main

components including the CoStore predictor and a caching

engine Viewfinder that adjust automatically future horizon

according to video life span.

These solutions increased the hitting rate on edge servers

during busy hours with high access frequency. They only focus

on the high access frequency period to solve the caching

problem, but they ignore low access frequency periodwith two

characteristics that will be introduced detailedly in section III,

making them inefficient to improve hit rate on edge servers.

III. MOTIVATION

A. Characteristics of hot contents

• Hot topics usually change unstably.
It is widely believed that hot content varies with the

number of requests and contents, but this is inaccurate

at some periods, as can be seen in in Figure 1 and line

different 1 of Figure 2. Figure 1 illustrates the number

129

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

� � � � � �� �� �� �� �� �� �� ��

�

�

�

�

�

��	
�����

�

�

�

�

�

�

�

�

Figure 1: The number of requests and contents in every hour.

of requests & contents, and that line different 1 is the

different proportions of hot contents in two continuous

unit times. Hour 1-8 are set to low access frequency

period when the request number is significantly reduced

than others. In hour 6, the number of requests & contents

is the lowest one and the different proportions of different
1 is higher than other hours of low access frequency

period. However, hot content varies with the number of

requests and content in other periods.

Therefore, in low access frequency period, the change

of hot topics is often more unstable than that in other

periods.

• Hot contents are difficult to predict.
It is not difficult to understand that the greater the dif-

ferences between the frequency of requests for different

contents, the easier it is to select content as hot content.

The special is the differences between the frequency of

requests for different contents are practically indistin-

guishable in some periods. In Figure 3, the T1 (see red

line) and T2 (see black line) are the request number

from the top 400 content in low access frequency period

and other time respectively. We can find that the request

number is 2 for nearly 50 contents after Id 50 in T1, so it

is difficult to select content as future hot contents in the

same access frequency. However, the differences between

the frequency of different content requested are greater

in T2 than T1, which means hot contents are difficult to

predict in low access frequency period than the other one.

Due to the above characteristics, the existing strategies are

inefficient enough to improve the hit rate on edge servers.

To improve hit rate during low access frequency period, we

deeply analysis the real traces from ChuangCache and find

an essential observation about users who is mainly reason to

generate the access traces for any period and any applications.

Therefore, the next subsection taps the potential to tackle the

above problems by analyzing the users’ features in real traces.

B. Potential of users-based attribution.

In some applications, the number of requests is not only

high, but the number of users is also high. Table I is the

Figure 2: The difference of future hot contents with hot

contents from history and special users groups. (a) Different 1
is the different proportions of hot contents in two continuous

unit times. (b) Different 2 is the percentage of hot contents

for special user groups that are different from the overall hot

contents.

��

Figure 3: The access number of contents in different period

time.

information about users from real trace, where the user number

is reach 277524, the maximum number of user requested is

425976 and the minimum one is 1 that means the request

number by different users is uneven. More specially, the

number of specific user groups are tiny but with a high request

frequency, such as the request number range [100000,425976]

with 759 users, where the user ratio is 0.27%, and the request

ratio is as high as 34.33%. We assume that these users play

an important role in cache replacement for improving hit

rates. Therefore, we capture the characteristics of specific user

groups by analyzing the real traces are as follows.

• More important.
Specific user groups are throughout the application’s life

cycle usually. Taking one day of the trace as an example,

we plotted the request information about special user

groups and content shown in Figure 4. The red line is

the percentage of the user number of special user groups

among all users, and the black line is the average number

130

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

Table I: Information about users.

request number range user number user ratio request ratio
[1,10) 86352 35.25 % 0.90%

[10,100) 136502 46.24 9.34 %
[100,1000) 48571 16.45 29.18 %

[1000,10000) 5304 1.80 % 26.25 %
[100000,425976] 795 0.27% 34.33%

[1,425976] 277524 100% 100%

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������

Figure 4: The request information of Special user groups and

content.

of content requested by all users. As seen in red and

black line, specific user groups are distributed differently

throughout the day, and their requests to contents are

more concentrated than other user groups during low

access frequency period, which is attributed to their

higher average number of content requests than in other

periods. Therefore, it’s obvious that specific user groups

are playing a more important role than general users

during low access frequency period.

• Much higher possibility to become hot contents.

Content requested by a large number of users will become

hot content, so specific user groups also have their hot

ones with high request frequency. The hot contents of

specific user groups are more similar in low access

frequency period than other’s periods by comparing the

differences of hot contents from specific user groups and

whole user that shown in different 2 of Figure 2. For

example, the different 2 value of hour 4 and hour 18 are

nearly 0.3 and 0.85 respectively, and the latter different

value (in other periods) is far higher than the former one

(in low access frequency period). This means that specific

user groups’ hot contents at low access frequency period

are more similar to the overall hot content than at other

periods. So, the contents accessed by these specific user

groups have a much higher possibility to become hot

content during low access frequency period.

Based on the above findings, we can provide a new per-

spective to examine the above caching problem for specific

user groups. However, it is not easy to distinguish the popular

content through specific user groups during low access fre-

quency period, and there are two challenges: a) How to capture

the relationship between hot contents and special user groups
using historical data, b) How to design strategies with the
above relationship to improve hit rate on edge server. That

based on users characteristics of corresponding solutions to

address these challenges above will be introduced in the next

section.

IV. SYSTEM MODELS AND DESIGN

In this section, we firstly classify the users to core users,

and treat others as common users. Then we adopt the princi-

pal component analysis algorithm to analyze the relationship

between hot contents and core users in IV-A. On this basis,

we propose a hot contents pre-cache protection mechanism

in IV-A. Finally, we describe the overview of replacement

strategy of CRATES in IV-C.

A. Principal component analysis

Through analysis above in subsection III-B, special user

groups with many features are an important role in this paper.

To describe special user groups clearly, we firstly classify the

users (whole users) with high access frequency and broader

distribution on the time dimension to core users U , and treat

others as common users.

It is well-known that hot content is generated by a large

number of user requests. Whether the content is a hot one

is measured by the number of requests. On this basis, the

relationship between hot contents and core users can transform

into the relationship between the request content number

of core users and whole users’ respectively. Therefore, we

measure the relationship between hot content and core users

by the content request number Xt = [xt
1, x

t
2] , where xt

1 is

a vector of length m as a sliding window from core users in

time t, is presented as

xt
i = [rt−m∗Δt

1 , r
t−(m−1)∗Δt
2 , ..., rt−Δt

m], (1)

, each term represents the total number of user requests in per

unit time Δt. xt
2 is the same structure as xt

1, and represents

the request number of whole users. We obtain the relationship

between the request content number of core users and whole

users’ by

cov(xt
1, x

t
2) =

∑n
i=1 (x

t
1i − x̄t

1)(x
t
2i − x̄t

2)

n
, (2)

where x̄t
1 and x̄t

2 are computed by

x̄i =

∑n
i=1 xi

n
. (3)

The eigenvector with the largest eigenvalue in cov(xt
1, x

t
2), is

the relationship value about contents of core users and whole

users’. The larger an element in eigenvector Et is the closer

the relationship between hot content of core users and whole

users’. We choose the larger value in the eigenvector Et as

the relationship between hot contents and core users in time

t.

131

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

Figure 5: The framework overview.

B. Pre-cache protection mechanism

Although there are enormous differences in hot content sets

between two continuous unit times, the existing intersection is

valuable for hit rate improvement, so we propose a hot con-

tents pre-cache protection mechanism to store the intersection

contents effectively.

The main idea of the mechanism is to divide cache resources

into dynamic and static cache areas dynamically. The dynamic

cache area stores the requested contents in real-time, and the

static cache area stores contents for that intersection of hot

contents without storage replacement. Since the intersection

changes over time, we dynamically adjust the size of the static

cache St
s by

St
s =

∑kt

i=1
size(qti), (4)

where kt is the number of pre-cache hot contents in time t−1
and is calculated by equation (5). qti presents the ith pre-cache

hot content in time t−1 that is one of the pre-cache hot content

set qt can be obtain in equation (6).

kt = num(Ht−1 ∩Ht−2) ∗ at (5)

qt = Topkt(Request(Ht−1 ∩Ht−2)) (6)

Ht−1 and Ht−2 are hot contents sets from two continuous unit

times.

To dynamically implement the division of dynamic and

static cache areas, the coefficient at is generated automatically

in time t and is based on hit rates rt−1
s and rt−1

d that from

dynamic and static cache area in time t − 1. The coefficient

at is calculated by

at =
at−1 ∗ rt−1

s

at−1 ∗ rts + (1− at−1) ∗ rt−1
d

. (7)

In other words, when a cache region has a higher hit rate, more

areas are allocated to that region in the next update time. This

approach can dynamically provide an appropriate static cache

size Ss between two continuous unit times. Dynamic cache

size Sd is equal to the total size of cache subtract the static

cache size Ss.

C. Overall design
In the introduction above, we can gain a metric to measure

the content’s value by the relationship between hot contents

and core users and propose a protection mechanism to ensure

hit rate from changeless hot contents between two continuous

unit times, which provide the basis for the overall architecture

design. The framework overview is shown in Figure 5, which

mainly includes network infrastructures, the flow of users

access contents, and a cache replacement strategy.

The network infrastructures is made up of four units that are

clients, edge servers, CDNs, and Cloud. In this architecture,

content statuses of users’ requests include: hit, CDN hit, and

miss. When users request content, it is searched in edge

servers, firstly. If the content exists, we called it hit and

transmit it to the user (1© 2© 3©). If not, the content is found

in CDNs as CDN hit (1© 2© 4© 7© 8© 3©). Else, the requested

content is only stored in the remote cloud and the statue is

miss (1© 2© 4© 5© 6© 7© 8© 3©).

132

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

The replacement strategy for caching hot contents in edge

servers mainly includes 4 phases: initialization, the pre-cache

of hot contents, the selection of evicting content, and the

update of information.

• Initialization. In the initial stage, the cache replacement

algorithm is LRU when the length of request content

information is inconsistent with the sliding window size.

(Line 1-2 in algorithm 1)

• The pre-cache of hot contents. When that size is match-

ing, we divided storage resources into dynamic and static

cache areas, and cached the intersection hot contents

between two continuous unit times in the static cache

area based on the protection mechanism above. (Line 4-

7 in algorithm 1)

• The selection of evicting contents. With the uninterrupted

request, content statuses are different. When the status is

miss, the strategy chooses an evicting content vt that is

the lowest one of E in the dynamic cache area. If the total

size of evicting contents and the free area is smaller than

request one, we choose the smallest one in the remaining

contents until the total cache size of evicts is bigger than

that request content size, and then pop these contents

finally. (Line 9-18 in algorithm 1)

vt = f(min(E)) (8)

• The update of informations. Request information is up-

dated as well as the contents and cache size of the static

cache area through the sliding window periodically. (Line

19-29 in algorithm 1)

The pseudocode of the algorithm CRATESis shown in

algorithm 1.

V. EVALUATION

In this section, we evaluate our approach CRATES by real

traces from ChuangCache and show the results of applying

CRATES on them versus the existing representative policies,

and analyze the results.

A. Experiment setting.
Algorithms: We compare with four algorithms including

FIFO, LRU, LRB, and LeCaR.

• FIFO: Removing the first requested content in the cache.

• LRU: Removing the least requested content in the cache.

• LeCaR: Using the machine learning technology of regret

minimization combines LFU and LRU based on content

popularity to improve on existing cache replacement

strategies.

• LRB: Adopting machine learning to approximate the

Belady MIN algorithm.

DateSet: The traces are from ChuangCache in China with

49,433,164 accesses to 1,158,513 contents in one day. Each

trace item contains the timestamps, anonymized user ID,

content ID, server ID, request size, URL, and et.al. We then

deploy and evaluate CRATES by comparing with representative

algorithms.

Parameter Settings: The sliding window size was set to 1

minute, and δt was 1 second. Each request content size was 1.

Algorithm 1 The pesudo code of CRATES

input: A new content cnew is requested, with size snew,

user id unew and time tnew; C contents c1 ,··· ,c2 are

already stored in the cache area, each size is si; Core

users requests numbers sequence x1 and wholes’ x2 are

cache; rs is the surplus area in dynamic cache.

1: if Size(history traces)<Size(sliding window) then
2: caching replacement by LFU.

3: else
4: if Size(history traces)=Size(sliding window) then
5: Calculate the static cache size by equation(4)

6: Calculate the intersection qt by equation(6)

7: cache qt
8: else
9: if cnew NOT in C then

10: gain rs
11: while rs < snew do
12: Calculate cov(xt

1, x
t
2) by equation (2) and obtain

E
13: Get ci by value vt from E by equation (8)

14: rs = rs + si
15: remove ci
16: end while
17: Storage cnew in dynamic cache.

18: end if
19: xt−δt

2 = xt−δt
2 + 1

20: if unew in U then
21: xt−δt

1 = xt−δt
1 + 1

22: end if
23: if told + δt = tnew then
24: remove xt−m∗δt

1

25: remove xt−m∗δt
2

26: end if
27: Calculate the static cache size by equation(4)

28: Calculate the intersection qt by equation(6)

29: Remove c1 ,··· ,c2 and cache qt
30: end if
31: end if

The core users were obtained from the previous day’s traces

in the same application.

B. Performance comparison.

We conduct a series of experiments with different cache

sizes to show the overall hit rate performance in Figure 6.

Figure 6a, 6b, 6c, and 6d show that hit rates of every hour

with cache size 100, 300, 500 and 800 in low access frequency

period. When cache size is small, the hit rate of our algorithm

has a similar performance in high access time (such as 1 and

8) but is superior to other times compared to the baselines.

With the enlargement of the cache size, the performance of our

algorithm becomes more prominent because more content can

be cached in edge servers, so the hit rate increase as expected.

Especially in figure 7 with cache size 1000, the performance

improvement is nearly 0.25 than cache size 100 in hour 1 and

the hit rate reaches about 98% in hour 5. From these figures,

133

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

(a) Cache size 100.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

(b) Cache size 300.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

(c) Cache size 500.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

(d) Cache size 800.

Figure 6: [Performance comparison] The hit ratio in different

cache size.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

Figure 7: [Performance comparison] The hit rate in 1000 cache

size from 8 hours.

we can see that CRATES exceeds the other four methods

in every hour. The advantage is even remarkable when the

percentage of core users is high (such as hour 4-6).

C. Result Analysis.
• Core user’s hit rate.

Figure 8 illustrates the hit rate from core users with cache

size 1000. To compare that with the hit rate of total users,

we also draw some figures (figure 9) that with the same

size as it. Intuitively, the hit rate from core users is higher

than from total users in the same cache size. But the

hit rate of core users from LRB is lower than the hit

rate of total users that leads to lower hit rate than other

algorithms. Thus, it proves the importance of core users.

No exception at all, as the cache size increases, the hit

rate of core users also is improved as show in figure 9.

• Replacement hot contents ratio.
Figure 10 describes the ratio of evicting contents with

historical hot contents in cache size 1000, where hot

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

Figure 8: [Result Analysis] The hit rate from core users in

1000 cache size from 8 hours.

� � � � � � � � 	

���

���

���

���

���

���

��	

��

���

��������	

(a) Cache size 100.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

(b) Cache size 300.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

(c) Cache size 500.

� � � � � � � � 	

���

���

���

���

���

��	

��

���

��������	

(d) Cache size 800.

Figure 9: [Result Analysis] The hit rate from core users in

different cache size.

contents are the top k (cache size) by request number. In

hour 3-6, LeCaR, LRB, and LRU replacement ratio are

nearly zero, but their hit rates are lower than CRATES
which with a higher replacement ratio. That means the

content is hot in history, but maybe not in the future.

It also reflects that hot contents are difficult to predict.

Therefore, the appropriate historical hot contents need to

evict for improving the hit rate in low access frequency

period for storage replacement.

To summarize, it is a good perspective of considering core

users to improve the hit rate during the period. Because it’s

more possible that contents accessed by core users become

hot, core users play a more important role than general users

VI. FUTURE WORK

Data storage equipment (such as data centers) to satisfy

the demand for storing the data volume with explosive growth

needs massive energy consumption, and then the economic and

environmental sustainability of the earth is severely affected.

134

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

� � � � � � � � 	

����

���

���

���

���

���

���

���

���

��	

��

���

��������	

Figure 10: [Result Analysis] The ratio of replacement hot

contents from history.

The power grids burn brown energy resources like coal and

petroleum to meet the ever surging power demands of the data

centers, thereby producing tons of CO2 and causing global

pollution [21] [22]. To make global green development, the

improvement of QoS isn’t the only requirement for application

service providers and others right now. How to reduce waste

of resources (such as edge data centers) under the premise

of ensuring the QoS is a hot topic. Although this paper is to

optimize the QoS for one time period, it may be a perspective

to implement a green-energy-aware VM or server manager

[23], [24] without affecting the QoS by the detailed research

for optimum performance in different periods. This way is not

only can protect the environment but also can reduce the cost

of service providers.

VII. CONCLUSION

In this paper, we firstly classify the users with high access

frequency and broader distribution on the time dimension to

core users. Then we adopt the principal component analysis

algorithm to analyze the relationship between hot contents and

core users. On this basis, we propose a hot contents pre-cache

protection mechanism, which caches the hot contents from

history in static cache area, and cache & evict contents with

real-time by the relationship between hot contents and core

users in the surplus area. To improve CRATES’s efficiency,

we extract key part of historical data by designing a sliding

window method. Through a series of experiments using real

application trace data, we demonstrate that CRATES reaches

about 98% in caching hit rate and outperforms the state-of-

the-art algorithm LRB by 1.4X.

ACKNOWLEDGMENT

The work was supported in part by the National Natural Sci-

ence Foundation of China (NSFC) Youth Science Foundation

under Grant 61802024, BUPT-Chuangcache Joint Laboratory

under B2020009, the Key Project of Beijing Natural Science

Foundation under M21030, the Fundamental Research Funds

for the Central Universities under Grant 2482020RC36, the

NSFC under Grant 62072047, and the NSFC under Grant

62072048. The work of Pengmiao Li was supported in part

by the BUPT Excellent Ph.D. Students Foundation under

CX2019134.

REFERENCES

[1] We Are Social&Hootsuite. https://wearesocial.cn.2021.
[2] Vietri G., Rodriguez L. V., and Martinez W. A., et al., ”Driving cache

replacement with ML-based LeCaR,” The 10th USENIX Conference on
Hot Topics in Storage and File Systems (HotStorage’18), 2018.

[3] Song, Z., Berger, D. S. and Li, K., et al., ”Learning Relaxed Belady for
Content Distribution Network Caching,” 2020 USENIX NSDI, 2020.

[4] ChuangCache.https://www.chuangcache.com/.2020.
[5] N. C. Fofack, P. Nain, and G. Neglia, et al., ”Analysis of ttl-based

cache networks,” the 6th International ICST Conference on Performance
Evaluation Methodologies and Tools(VALUETOOLS), 2012.

[6] N. B. Melazzi, G. Bianchi, and A. Caponi, et al., ”A general,
tractable and accurate model for a cascade of lru caches,” IEEE
Communications Letters, vol. 18, no. 5, pp. 877–880, 2014, doi:
10.1109/LCOMM.2014.031414.132727.

[7] Chia-Tai Chan, Shuo-Cheng Hu, and Pi-Chung Wang, et al., ”A fifo-
based buffer management approach for the atm gfr services,” IEEE
Communications Letters, vol. 4, no. 6, pp. 205–207, 2000.

[8] L. Cherkasova, Improving WWW proxies performance with greedy-
dual-size-frequency caching policy. Hewlett-Packard Laboratories, 1998.

[9] M. Young, The Technical Writer’s Handbook. Mill Valley, CA: Univer-
sity Science, 1989.

[10] Vasconcelos, M., J. M. Almeida, and Marcos André Gonalves, ”Pre-
dicting the popularity of micro-reviews: A Foursquare case study.”
Information Sciences 325.C(2015):355-374.

[11] Z. Tan, W. Hu, and Y. Zhang, et al., ”Online Popularity Prediction of
Video Segments: Towards More Efficient Content Delivery Networks,”
IEEE Global Communications Conference (GLOBECOM), 2019.

[12] X. Wang, B. Fang and H. Zhang, ”Using a Dynamic Model to Predict
Popularity of News,” IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2019.

[13] Liang J., Zhu D., and Liu H., et al., ”Multi-Head Attention Based
Popularity Prediction Caching in Social Content-Centric Networking
With Mobile Edge Computing,” IEEE Communications Letters, vol. 25,
no. 2, pp. 508-512, Feb. 2021, doi: 10.1109/LCOMM.2020.3030329.

[14] Zhang Y., Li P., and Zhang Z., et al.. ”GraphInf: A GCN-based
Popularity Prediction System for Short Video Networks,” International
Conference on Web Services (ICWS), 2020.

[15] Li S., Jie X., and Schaar M., et al., ”Popularity-driven content caching,”
IEEE Conference on Computer Communications (INFOCOM), 2016.

[16] Li, Q., Shi W., and Xiao Y., et al., ”Content Size-Aware Edge Caching:
A Size-Weighted Popularity-Based Approach,” IEEE Global Communi-
cations Conference (GLOBECOM), 2018.

[17] Yang, P., Zhang N., and Zhang S., et al., ”Content Popular-
ity Prediction Towards Location-Aware Mobile Edge Caching.”
IEEE Transactions on Multimedia (TMM) 21.4(2019):915-929, doi:
10.1109/TMM.2018.2870521.

[18] Zong, T. , Li C., and Lei Y., et al., ”Cocktail Edge Caching: Ride
Dynamic Trends of Content Popularity with Ensemble Learning,” IEEE
Conference on Computer Communications (INFOCOM), 2021.

[19] G. Ma, Z. Wang, and M. Zhang, et al., ”Understanding performance
of edge content caching for mobile video streaming,” IEEE Journal
on Selected Areas in Communications(JSAC), vol. 35, no. 5, pp.
1076–1089, 2017.

[20] Zhang Y., Li P., Zhang Z., et al., ”AutoSight: Distributed Edge Caching
in Short Video Network,” IEEE Network, vol. 34, no. 3, pp. 194-199,
2020.

[21] T. Bhattacharya and X. Qin, ”Modeling Energy Efficiency of Future
Green Data centers,” the 11th International Green and Sustainable
Computing Workshops (IGSC), 2020.

[22] Q. Lin and S. Yu, ”A Distributed Green Networking Approach for Data
Center Networks,” IEEE Communications Letters, vol. 21, no. 4, pp.
797-800, 2017.

[23] G. Madi Wamba, Y. Li, and A. Orgerie, et al., ”Green Energy Aware
Scheduling Problem in Virtualized Datacenters,” 2017 IEEE 23rd In-
ternational Conference on Parallel and Distributed Systems (ICPADS),
2017, pp. 648-655.

[24] E. Baccour, S. Foufou, R. Hamila and A. Erbad, ”Green data center
networks: a holistic survey and design guidelines,” 15th International
Wireless Communications & Mobile Computing Conference (IWCMC),
2019, pp. 1108-1114.

135

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:03:00 UTC from IEEE Xplore. Restrictions apply.

