Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
s Latest updates: https://dl.acm.org/doi/10.1145/3719027.3744888

RESEARCH-ARTICLE
Off-Path TCP Exploits: PMTUD Breaks TCP Connection Isolation in IP
Address Sharing Scenarios

XUEWEI FENG, Tsinghua University, Beijing, China

ZHAOXI LI, Tsinghua University, Beijing, China

QI LI, Tsinghua University, Beijing, China

ZIQIANG WANG, Southeast University, Nanjing, Jiangsu, China
KUN SUN, George Mason University, Fairfax, VA, United States
KE XU, Tsinghua University, Beijing, China

Open Access Support provided by:
Tsinghua University
Southeast University

George Mason University

I PDF Download
};3 3719027.3744888.pdf
< 23 December 2025
Total Citations: 0
Total Downloads: 756

Published: 19 November 2025

Citation in BibTeX format

CCS '25: ACM SIGSAC Conference on
Computer and Communications Security
October 13 - 17, 2025

Taipei, Taiwan

Conference Sponsors:
SIGSAC

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)

https://doi.org/10.1145/3719027.3744888
ISBN: 9798400715259

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3744888
https://dl.acm.org/doi/10.1145/3719027.3744888
https://dl.acm.org/doi/10.1145/contrib-99659650722
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661765198
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661064038
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99660643934
https://dl.acm.org/doi/10.1145/institution-60005244
https://dl.acm.org/doi/10.1145/contrib-81496675432
https://dl.acm.org/doi/10.1145/institution-60018319
https://dl.acm.org/doi/10.1145/contrib-81384607628
https://dl.acm.org/doi/10.1145/institution-60025278
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60005244
https://dl.acm.org/doi/10.1145/institution-60018319
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3744888&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3744888&domain=pdf&date_stamp=2025-11-22

Off-Path TCP Exploits: PMTUD Breaks TCP Connection
Isolation in IP Address Sharing Scenarios

Xuewei Feng
Tsinghua University

Zhaoxi Li

Tsinghua University

QiLi

Tsinghua University

Beijing, China Beijing, China Beijing, China
fengxw06@126.com li-zx24@mails.tsinghua.edu.cn qli01 @tsinghua.edu.cn
Zigiang Wang Kun Sun Ke Xu”
Southeast University George Mason University Tsinghua University

Nanjing, China
zigiangwang@seu.edu.cn

Abstract

Path MTU Discovery (PMTUD) and IP address sharing are integral
aspects of modern Internet infrastructure. In this paper, we inves-
tigate the security vulnerabilities associated with PMTUD within
the context of prevalent IP address sharing practices. We reveal
that PMTUD is inadequately designed to handle IP address shar-
ing, creating vulnerabilities that attackers can exploit to perform
off-path TCP hijacking attacks. We demonstrate that by observing
the path MTU value determined by a server for a public IP address
(shared among multiple devices), an off-path attacker on the Inter-
net, in collaboration with a malicious device, can infer the sequence
numbers of TCP connections established by other legitimate de-
vices sharing the same IP address. This vulnerability enables the
attacker to perform off-path TCP hijacking attacks, significantly
compromising the security of the affected TCP connections. Our
attack involves first identifying a target TCP connection originat-
ing from the shared IP address, followed by inferring the sequence
numbers of the identified connection. We thoroughly assess the
impacts of our attack under various network configurations. Ex-
perimental results reveal that the attack can be executed within
an average time of 220 seconds, achieving a success rate of 70%.
Case studies, including SSH DoS, FTP traffic poisoning, and HTTP
injection, highlight the threat it poses to various applications. Addi-
tionally, we evaluate our attack across 50 real-world networks with
IP address sharing—including public Wi-Fi, VPNs, and 5G—and find
38 vulnerable. Finally, we responsibly disclose the vulnerabilities,
receive recognition from organizations such as IETF, Linux, and
Cisco, and propose our countermeasures.

CCS Concepts

« Security and privacy — Security protocols.

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’25, Taipei.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3744888

Fairfax, Virginia, USA
ksun3@gmu.edu

4574

Beijing, China
xuke@tsinghua.edu.cn

Keywords
side-channel; off-path exploit; IP address sharing; path MTU

ACM Reference Format:

Xuewei Feng, Zhaoxi Li, Qi Li, Zigiang Wang, Kun Sun, and Ke Xu. 2025.
Off-Path TCP Exploits: PMTUD Breaks TCP Connection Isolation in IP
Ad-dress Sharing Scenarios. In Proceedings of the 2025 ACM SIGSAC
Conference on Computer and Communications Security (CCS’25), October
13-17, 2025, Taipei. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/ 3719027.3744888

1 Introduction

PMTUD, defined in RFC 1191 and RFC 8201, is a crucial mecha-
nism on the Internet designed to determine the maximum packet
size that can traverse a network path without requiring IP frag-
mentation [35, 36, 38]. PMTUD is widely implemented by modern
operating systems (OSes) to optimize data transmission, enhance
performance, and reduce the overhead associated with packet frag-
mentation [32]. By ensuring packets are appropriately sized for the
entire network path, PMTUD improves efficiency and reliability
across various applications.

In this paper, we uncover a side channel vulnerability in the
PMTUD mechanism stemming from its inability to ensure isola-
tion of TCP connections in scenarios involving IP address sharing,
which are commonly observed in various network practices, in-
cluding NAT (Network Address Translation), VPNs (Virtual Private
Networks), load balancing, CDNs (Content Delivery Networks),
Anycast, and shared hosting. This side channel vulnerability can
be exploited to facilitate off-path TCP hijacking attacks.

Specifically, according to the specifications, the PMTUD mecha-
nism (e.g., when enabled on a server) operates on a per-IP address
basis to discover and maintain the path MTU for a remote client’s
IP address destination. As a result, it does not ensure isolation on a
per-connection basis, especially when multiple connections share
the same IP address. We demonstrate that by monitoring the path
MTU value determined by the server for a public IP address shared
among multiple devices, a malicious device (referred to as a puppet
in our context) can collaborate with an off-path attacker on the
Internet. This collaboration enables the off-path attacker to infer se-
quence numbers of TCP connections belonging to other legitimate
devices sharing the same IP address. As a result, the attacker can
inject out-of-band fake TCP packets into the victim’s connection,
thereby manipulating the traffic.

https://doi.org/10.1145/3719027.3744888
https://doi.org/10.1145/3719027.3744888
https://doi.org/10.1145/3719027.3744888

CCS’25, October 13-17, 2025, Taipei.

To construct our attack, we first identify the target TCP connec-
tion by inferring the ephemeral source port associated with the
shared IP address. We find that Port Preservation and Per-Destination
Sequential Allocation are two commonly used methods for ephemeral
source port allocation in IP address sharing scenarios!. We demon-
strate that these two methods are vulnerable. We identify a timing
side channel in the Port Preservation method. If the source port of
a TCP connection from the attacker-controlled malicious device
(i.e., the puppet) conflicts with an established victim connection,
the gateway holding the shared public IP address will look up its
ephemeral source port pool to select a new one, causing a time de-
lay (or even a connection failure if no available port is found). This
observable delay or failure reveals the presence of a victim TCP
connection on that port. Regarding the Per-Destination Sequential
Allocation method, the off-path attacker can impersonate the server
and send forged TCP packets with guessed port numbers to the
gateway holding the public IP address. If the guessed port is correct,
the packet is routed to the puppet. By analyzing the packet, the
puppet determines the baseline ephemeral source port value. Since
the gateway assigns ephemeral ports sequentially, if a port beyond
this baseline is already in use when the puppet establishes a new
connection, a victim TCP connection on that port is identified.

| size=pmitu | size=pmtu
IP packet Server
L Gatewa; :
& 1P packet Y = =3
C 1\ T\ 1234 IP packet 7 =]
size=pmtu /7 _)~L‘_ — e
TP packet A i
Holding the public IP packets to 1.2.3.4
I@ IP address are limited by pmtu
i size=pmtu

Different devices sharing the
same public IP address

Figure 1: All devices sharing the same IP address are con-
strained by the server’s path MTU for that address.

Secondly, we proceed to infer the sequence numbers of the identi-
fied TCP connection to enable its off-path compromise. In networks
enabling IP address sharing (as shown in Figure 1), all devices share
the same IP address and thus the same path MTU value established
by the server for this IP address. This creates a side channel that
can be exploited to infer the sequence numbers of TCP connec-
tions from victim devices. Specifically, an off-path attacker on the
Internet sends crafted ICMP error messages to the server. If the
sequence number specified in the ICMP error message for the iden-
tified TCP connection is correct, the puppet observes a change in
its own TCP packet length from the server. This occurs because
the PMTUD mechanism operates on a per-IP address basis and
cannot achieve per-connection isolation. Once the source port and
sequence number of the target TCP connection are identified, the
attacker can inject fake TCP packets to compromise the connection.
For example, the attacker could send crafted TCP RST packets to
terminate the connection or poison the connection in scenarios
!In the Port Preservation method, the original source port generated by the device is pre-
served. In the Per-Destination Sequential Allocation method, a random ephemeral port

is initially assigned, followed by sequential assignments for subsequent connections
to the same server; refer to §2.2 for details.

4575

Xuewei Feng et al.

where the acknowledgment number does not need to be precisely
specified [40], e.g., in the TCP implementations of operating sys-
tems such as macOS, Windows, and OpenBSD (refer to §6.2.3 for
detailed evaluations).

We conduct comprehensive evaluations of our attack, beginning
with end-to-end tests to assess its effectiveness. Experimental re-
sults indicate that, with a puppet present in a targeted network
where IP address sharing is enabled among multiple devices, an off-
path attacker can identify a victim’s TCP connection and determine
its sequence numbers with an average time of 194 seconds. Addi-
tionally, we identify that victim devices running macOS, Windows,
OpenBSD, and Linux have lenient checks on acknowledgment num-
bers, with an acceptable range larger than 21°. Therefore, attackers
can send up to 2?2 crafted TCP packets with different acknowledg-
ment numbers simultaneously to evade the inference of the correct
acknowledgment number [40]. If one packet’s acknowledgment
number is within the acceptable range, it will be accepted. We show
that with attack traffic bandwidth up to 23.95 Mbps, the attacker
can terminate or poison the victim’s connection using crafted TCP
packets, achieving a success rate of 70%. Case studies, including
SSH DoS, FTP traffic poisoning, and HTTP injection, demonstrate
the threat our attack poses to real-world applications. Additionally,
we assess the impact on 50 real-world networks enabling IP address
sharing, including NAT-enabled public Wi-Fi networks in coffee
shops, hotels, and other locations, 5G cellular networks in different
locations, as well as VPN Networks. Our measurements show that
38 of the 50 tested networks (over 75%) are vulnerable.

Finally, we recommend countermeasures. We reported our at-
tack to the IETF, which reviewed our report and discussed poten-
tial mitigations with us. We recommend that PMTUD operate on
a per-connection basis (instead of a per-IP address basis) to pre-
vent information leakage between TCP connections. In practice,
different connections from a server may take different network
paths to the same destination. Therefore, the path MTU of one
connection should not limit all connections to that destination.
Following IETF’s suggestions, we will present our findings at an
IETF working group meeting and propose standardization to ad-
dress this vulnerability. Additionally, we recommend that gateways
implementing IP address sharing adopt a randomized method for al-
locating ephemeral source ports for TCP connection requests. This
would prevent attackers from predicting port distributions, thereby
thwarting attempts to identify victim TCP connections. We have re-
sponsibly disclosed the vulnerable ephemeral source port allocation
methods to the identified vendors, which have been recognized by
Linux, Cisco, and H3C. In particular, Cisco issued a public statement
(https://bst.cisco.com/bugsearch/bug/CSCwm63019) thanking us
for enhancing the security of their devices.

Contributions. Our main contributions are the following:

o We reveal that PMTUD is inadequately designed to handle the
prevalent practice of IP address sharing, leading to a fundamental
side channel vulnerability that can be exploited to infer TCP
sequence numbers.

e We develop a novel off-path TCP hijacking attack that executes
within an average time of 220 seconds, achieving a 70% success
rate and compromising critical applications such as SSH DoS,
FTP traffic manipulation, and HT TP injection.

https://bst.cisco.com/bugsearch/bug/CSCwm63019

Off-Path TCP Exploits: PMTUD Breaks TCP Connection
Isolation in IP Address Sharing Scenarios

o We responsibly disclosed the vulnerabilities, and propose coun-
termeasures to mitigate the identified attack.

Ethics Statement: In our evaluations of the identified attack, we
conducted a measurement study on 50 real-world networks that
enable IP address sharing, such as public Wi-Fi networks and 5G
cellular networks in various locations, to validate the effectiveness
and impact of our attack. Ethical considerations were our top pri-
ority throughout the study. Specifically, we implemented several
measures to ensure that our real-world tests did not impact other
users or adversely affect the networks being tested. First, when
testing target networks that use public IP address sharing, we trans-
parently communicated our experimental details to the network
administrators and proceeded only after obtaining their approval.
Second, we ensured that all TCP connections under examination
were exclusively ours, thus avoiding any interference with other
connections. Our deployed devices established TCP connections
with our VPS server, allowing us to perform inferences and analy-
sis without disrupting regular users. Finally, upon concluding our
experiments, we reported our findings to the network administra-
tors and reset our VPS server, restoring its path MTU value to the
original setting for the public IP address used by the target network.

2 Background
2.1 Path MTU Discovery

PMTUD is a networking mechanism used to dynamically determine
the Maximum Transmission Unit (MTU) for a specific Internet path
from an IP originator to an IP destination [35, 38]. The path MTU
represents the largest packet size that can be transmitted from the
originator to the destination without requiring IP fragmentation.
PMTUD is essential for optimizing network performance by pre-
venting packet fragmentation and reassembly, which can introduce
inefficiencies and increase the risk of data loss.

Figure 2 illustrates how PMTUD operates in the context of com-
munication between an IP originator (e.g., a server on the Internet),
an intermediate router, and an IP destination (e.g., a client or gate-
way holding a publicly routable IP address). Initially, the originator
sends TCP packets to the destination based on the previously es-
tablished TCP connection. The size of the packets is limited to the
originator’s default next-hop MTU (e.g., 1500 octets), and the DF
(Don’t Fragment) flag in the packets’ IP header is set to True. The
packet travels through several intermediate routers on its way to
the destination. Each router along the path has its own next-hop
MTU limit, which is the maximum packet size it can handle with-
out fragmenting it. If the packet size exceeds the next-hop MTU
of a router along the path, that router will discard the packet and
issue an ICMP “Packet Too Big” message (ICMP error message with
Type=3 and Code=4) to the originator. The ICMP message will carry
the discarded TCP packet, as well as the router’s next-hop MTU
value (e.g., 552 octets) in the low-order 16 bits of the ICMP header
field labeled “unused”.

According to the ICMP specifications [3, 7, 28, 41], upon receiv-
ing the ICMP “Packet Too Big” message, the originator will conduct
a legitimacy check against the received message. This involves
verifying at least 28 octets (i.e., 20 octets of the IP header plus at
least the first 8 octets) of the original TCP packet that triggered the
message. Specifically, the originator verifies whether the sequence

4576

CCS’25, October 13-17, 2025, Taipei.

number of the TCP packet in the message falls within its sending
window (e.g., in Linux systems, as shown in line 13 of Figure 3).
Upon passing this legitimacy check, the originator updates the path
MTU value stored at the IP layer for the destination, using the next-
hop MTU value provided in the ICMP error message. Meanwhile,
the originator resizes its Maximum Segment Size (MSS) value based
on the updated path MTU and reduces the size of subsequent TCP
packets to the destination. Finally, the router forwards the resized
TCP packets to the next hop without IP fragmentation. The process
of adjusting the MSS and resending packets continues until the
originator determines the optimal packet size that can traverse the
entire network path. Once the originator successfully communi-
cates with the destination using an MTU size that is compatible
with the entire path, the PMTUD process concludes.

IP-Destination

@

Intermediate router IP-Originator

=

[alaTa] =)
gsg" .
Size = 1500

L P | TCP

Size>Router’s Next-Hop

Discarding the packet

ICMPy,rsst0p TU=552

ICMP “Packet Too Big”

Legitimacy check

MSS Resizing
Size = 552

Size = 552
E,|

Figure 2: Workflow of PMTUD to avoid IP fragmentation.

In summary, by listening to feedback from intermediate routers
and adjusting packet sizes accordingly, PMTUD ensures efficient
data transmission from an IP originator to an IP destination without
causing IP fragmentation. However, in this paper, we reveal that
PMTUD can be exploited by off-path attackers to infer the sequence
numbers of TCP connections. In network scenarios where multiple
devices share the same public IP address, any adjustments to the
path MTU value made by the originator due to one device’s TCP
connection will affect the packet sizes of other devices’ TCP con-
nections. This alteration creates a side channel, potentially leaking
confidential information from victim TCP connections.

2.2 IP Address Sharing and Port Allocation

IP address sharing is a widely adopted networking technique that
addresses IPv4 address exhaustion and enables scalable, efficient
Internet access for multiple devices and services. Technologies such
as NAT, VPN, load balancing, CDNs, and shared hosting rely heav-
ily on IP address sharing. NAT allows home or business networks
to connect multiple devices to the Internet using a single public IP
address. This technique is also used in ISP mobile cellular networks
to manage large numbers of users with limited IP resources. VPNs
and proxy servers enable users to share a public IP, enhancing
privacy and anonymity. In cloud services and large websites, load
balancing distributes traffic across multiple servers using a single
IP to ensure optimal performance. Similarly, CDNs use shared IPs
to deliver content rapidly from geographically distributed servers.
In shared hosting, multiple websites on the same server use one

CCS’25, October 13-17, 2025, Taipei.

IP, differentiated by domain names, to provide cost-effective host-
ing solutions. These technologies are integral to various scenarios
within Internet infrastructure.

1.int tep_va_err(struct sk_buff *skb, u32 info){

2 /*extract the type and code fields from the ICMP message*/

3 const int type = icmp_hdr(skb)->type;

4. const int code = icmp_hdr(skb)->code;

5. /*confirm the existence of the TCP socket in the ICMP message*/
6 struct sock *sk = __inet_lookup_established(skb);

7 if (isk) {

8. return 0;

9. }

/* Read the sequence number from the embedded TCP packet*/
seq = skb->seq;
/*check if the sequence number is within the socket's window*/
if (!between(seq, sk->snd_una, sk->snd_nxt)) {

return 0;

15. }
/*update the socket's path MTU*/
switch (type) {

case ICMP_DEST_UNREACH:
if (code == ICMP_FRAG_NEEDED) {
if (!sock_owned_by_user(sk)) {
tcp_v4_mtu_reduced(sk);
} else {

25. }

27.}

Figure 3: Verify the legitimacy of the received ICMP “Packet
Too Big” message within Linux kernel 6.8.

Figure 4 illustrates a typical scenario (e.g., a NATed network
or a VPN network) in which multiple devices within a private
realm share a single public IP address held by the gateway (i.e.,
a NAT router or a VPN proxy server) to access a server on the
Internet. When a device initiates a connection to the remote server,
the gateway translates the device’s private IP address and source
port into its public IP address and a unique ephemeral port. This
mapping is recorded in the gateway’s session table to ensure that
incoming responses from the server are correctly forwarded to the
original device.

Particularly, ephemeral port allocation by the gateway signif-
icantly influences the behavior of IP address sharing, as it de-
termines how the gateway rewrites the devices’ original source
ports and assigns new unique ephemeral source ports for outgo-
ing TCP connection requests, allowing multiple devices to share
a single public IP address. Three primary methods are commonly
employed [2, 5, 29, 37], as shown in Table 1.

Table 1: Port allocation in IP address sharing scenarios.

No. Port Allocation Employed Systems

Linux and the derivatives

HUAWEI Versatile Routing Platform
H3C router firmware
Cisco 10S

FreeBSD
OpenBSD

1 Port Preservation

2 Per-Destination Sequential Allocation

3 Random Allocation

Port Preservation prioritizes maintaining the original source port
of TCP connections, as illustrated in Figure 4. However, conflicts
can occur when multiple devices attempt to use the same source
port to connect to the same server. In such cases, the gateway

4577

Xuewei Feng et al.

typically assigns another available port for the new connection.
We observe that this method is predominantly employed by Linux-
based gateways and their derivatives.

Per-Destination Sequential Allocation assigns a random ephemeral
port to the initial connection for each remote server, with subse-
quent connections to the same server being assigned sequentially in-
cremented ports. Our tests show that this method is widely adopted
by ISP routers (e.g., HUAWEI Versatile Routing Platform, Cisco IOS,
and H3C router firmware) and is thus common in ISP networks
that enable IP address sharing (e.g., CGNAT-enabled 5G cellular
networks), where many devices may be accessing the gateway to
connect to the same remote server simultaneously. This approach
effectively avoids performance loss due to port conflicts.

Conversely, Random Allocation indiscriminately translates origi-
nal source ports to randomly selected available ports. We test that
FreeBSD and OpenBSD systems commonly use this method.

192.168.1.4 Holding the public
IPof1.2.3.4
— 192.168.1.4:6666->5.5.5.5:80 /T\‘ 1.2.3.4:6666->5.5.5.5:80
(=«
192.168.1.5:7777>5.5.5.5:80 \ ¥/ 1.2.3.4:7777->5.5.5.5:80
Gateway Server
192.168.1.5 (e.., NAT Router/VPN Proxy) 5.5.5.5

Figure 4: Multiple devices share the same public IP address
to access a remote server on the Internet.

We observe that the Port Preservation and Per-Destination Se-
quential Allocation methods are widely adopted by real-world gate-
ways that enable IP address sharing. This is particularly evident
since many gateway implementations are based on Linux sys-
tems?. Besides, ISP networks that enable IP address sharing and use
ephemeral port sequential allocation provide convenient Internet
access. In this paper, we uncover that TCP ephemeral source ports
using these methods in such networks can be easily inferred.

3 Threat Model

As shown in Figure 5, our attack involves five types of devices, i.e.,
a victim server, a gateway holding the shared public IP address, a
victim device, an off-path attacker, and a puppet (i.e., a malicious
device controlled by the attacker within the IP address sharing
realm).

The victim server on the Internet provides various TCP-based
services, such as SSH, web, and FTP. In this paper, we assume
the server’s IP address is 5.5.5.5, with known open TCP ports for
requests, such as port 22 for SSH, port 20 for FTP downloads, or
port 80 for the web.

The gateway holds the public IP address (e.g., 1.2.3.4 in our exam-
ple) and is responsible for sharing this IP address among multiple
devices connected to it. It assigns a unique ephemeral port to each
outgoing TCP connection, ensuring that the TCP connections from

2A large number of VPN proxy servers (e.g., the popular WireGuard, PPTP, L2TP, and
OpenVPN) and load balancing systems that enable IP address sharing are developed
based on Linux systems. Moreover, Linux is widely used in embedded firmware en-
abling IP address sharing. For instance, OpenWrt, a Linux-based operating system
designed for embedded devices, has spawned more than 20 derivative projects and
provides core firmware for over 2,000 types of NAT devices that enable IP address
sharing (https://openwrt.org/toh/start).

https://openwrt.org/toh/start

Off-Path TCP Exploits: PMTUD Breaks TCP Connection
Isolation in IP Address Sharing Scenarios

different devices using the same public IP address can be distin-
guished and maintain seamless communication with the victim
server. In practice, the gateway may be a NAT-enabled router, a
VPN proxy server, or a load balancing scheduler that facilitates
public IP address sharing among multiple devices.

The victim device, such as a mobile phone or a laptop connected
to a NAT-enabled network or a VPN proxy server, is located behind
the gateway. The victim device accesses services on the victim
server through a TCP connection, and the source IP address and
source port of the connection are rewritten by the gateway to the
shared publicly routable IP address and a unique ephemeral port.

The puppet, a malicious device controlled by the off-path at-
tacker, connects to the same gateway as the victim device and
shares the same public IP address. In practice, the puppet could
be implemented as a cellphone deployed by the attacker within a
target NAT-enabled public Wi-Fi network or 5G cellular network,
or as a malicious VPN client connected to a VPN proxy server.
The puppet establishes its own TCP connections with the victim
server. The puppet-based threat model is widely used in off-path
attacks [12, 18, 29, 48].

The off-path attacker on the Internet, with the assistance of the
puppet, aims to identify the TCP connection between the victim
device and the victim server and then infer the sequence numbers
of the connection. Subsequently, the attacker can terminate the
victim’s TCP connection using crafted TCP RST packets or inject
crafted TCP data packets into the connection to manipulate the
traffic. The attacker is capable of IP address spoofing [9, 31, 34].

== vies
= Victim server

Holding the public IP
address of 1.2.3.4

"I" Gateway

Victim device Puppet

Figure 5: Threat model of hijacking TCP via side channels in
the PMTUD mechanism.

Off-path attacker

Internet

e

It is worth noting that our attack differs from prior LAN (Lo-
cal Area Network) attacks, such as ARP poisoning [50], malicious
ICMP redirects [19], TCP hijacking in Wi-Fi networks [53], or port
exhaustion leading to DoS in NAT networks [39], which can be pre-
vented by existing security measures (e.g., MAC-IP bindings [45],
AP isolation [52], and reverse path validation [4, 49]). These secu-
rity measures are less effective against our attack, as our attack
does not require the puppet (which may not be located on the same
LAN as the victim device, e.g., a malicious VPN client distributed
remotely) to interact directly with the victim device or rely on IP
address spoofing. Instead, the puppet only needs to maintain its
own TCP connections with the victim server.

In practice, a TCP connection is identified by a four-tuple: [source
IP address, source port number, destination IP address, destination
port number]. In the off-path threat model, the destination IP ad-
dress (i.e., the victim server) and destination port number are usually

4578

CCS’25, October 13-17, 2025, Taipei.

publicly known (e.g., port 80 of a popular HTTP server or port 22
of an SSH server) [9, 10, 12, 15, 16]. Moreover, in network scenarios
involving IP address sharing, the source IP address is the public IP
address held by the gateway, which can be easily obtained with the
assistance of the puppet. Therefore, for the attacker, the ephemeral
source port number in the four-tuple is the only value that needs to
be inferred to identify a victim TCP connection. Once a victim TCP
connection is identified, the attacker also needs to infer the random
sequence and acknowledgment numbers to inject a TCP packet
into the connection, as modern TCP implementations typically use
randomization mechanisms to mitigate blind out-of-band injection
attacks. However, we observe that weak checks on acknowledg-
ment numbers are enforced in the TCP implementations of popular
operating systems, allowing the attacker to bypass the need to infer
acknowledgment numbers (refer to §6.2.3 for detailed evaluations),
as also evidenced by existing work [40]. Consequently, in our attack,
the attacker first infers a victim TCP connection by determining
the ephemeral source port in the TCP four-tuple and then infers
the sequence numbers to craft a disruptive TCP packet. In the next
two sections, we elaborate on these two steps and show that vulner-
abilities arising from interactions between PMTUD and IP address
sharing can assist the attacker in achieving these objectives.

4 TCP Connections Inference

In this section, we propose methods to enable the off-path attacker
to infer the ephemeral source port number assigned by the gate-
way, using two common allocation methods: Port Preservation and
Per-Destination Sequential Allocation, for the victim device’s TCP
connections.

4.1 Inferring Ports in Preserved Allocation

The Port Preservation method, widely used by Linux-based gate-
ways (e.g., OpenWrt routers and ExpressVPN servers), allocates
ephemeral source ports for outgoing TCP connections by preserv-
ing the original source ports. We discover a timing side channel in
this method that can be exploited to identify a victim’s TCP con-
nection. As shown in Figure 6, our exploit consists of two phases:
the Reservation Phase and the Testing Phase. At the beginning, the
attacker deploys the puppet within the target IP address-sharing
network. In the Reservation Phase, the puppet initiates multiple TCP
connections to the server, occupying a continuous range of source
ports on the gateway (e.g., from 1024 to 40,000 3). The gateway
inserts entries into its session table to preserve the source ports of
the puppet’s TCP connections and manage these connections. After
this phase, the attacker and the puppet wait for a period for a victim
device to establish its TCP connection with the server. Since the
puppet has occupied the source ports on the gateway from 1024 to
40,000, the gateway will allocate an ephemeral source port beyond
this range (e.g., 40,000+x) to the victim connection.

In the Testing Phase, the attacker sends TCP SYN packets with
source ports one by one outside the reservation phase range, tar-
geting the server’s open port. Given Linux’s method of reserving
source ports, the gateway attempts to preserve the SYN packets’
original source port as the ephemeral source port. If the source port

3Ports below 1024 are reserved by Linux-based systems and are not used for ephemeral
connections.

CCS’25, October 13-17, 2025, Taipei.

(e.g., 40,001) does not conflict with the victim TCP connection’s
ephemeral source port (e.g., 40,000+x and x>1), the source port will
be preserved, and the TCP SYN/ACK packet from the server will
be quickly received by the puppet, allowing the puppet to test the
time delay as At. However, during the testing phase, if one of the
TCP SYN’s source ports (i.e., 40,000+x) conflicts with the established
victim connection, the gateway will randomly look up an idle port
and allocate it for this TCP SYN packet, which is handled by the
Netfilter framework in Linux-based systems.

Victim device ~ Puppet Gateway Attacker Victim server
< s L
H SRC:192.168.1.4,5, SRC:1.2.3.4,04 TCP connection DST:5.5.5.5,,
£
H SRC:192.168.1.4,95 SRC:1.2.3.4,0s TCP connection DST:5.5.5.5,,
g :
2 SRC:192.168.1.4,45999 SRC:1.2.3.440p9 TCP connection DST:5.5.5.5,
& I)
SRC:1.2.3.4,y0., TCP connection DST:5.5.5.5,
A SRC:192.168.1. 440901 SRC:1.2.34 49001 SYN
t I
DST:192.168.1.4990 DST:1.2.3 4,00
g :
= . :
a
Fi SRCH192.168.1.4.,-. INE 2% Conflict
!'_3 At + timeout Port searching &
Failing

Figure 6: Identify the victim TCP connection on port preser-
vation gateway.

Before Linux kernel version 5.0, the random allocation process
exhaustively tried all ports within the available range (i.e., from
1024 to 65,535). Unless all ports were occupied, a connection could
always be successfully allocated. However, because the port allo-
cation algorithm operated within a software interrupt, too many
attempts could lead to soft lockups, impacting other router func-
tions. To address this issue, the Linux kernel updated the random
allocation algorithm in version 5.0 and beyond, implemented in
the file nf_nat_core. c. In the new algorithm, if two devices un-
der a Linux gateway initiate connections to the same server’s
port, specifying the same source port, the Linux kernel calls the
nf_nat_l4proto_get_unique_tuple function to resolve the con-
flict. This function employs a window-halving (starting with a
window size of 128) search algorithm to look up available ports
within the entire source port range (i.e., 1024 to 65,535).

Once a collision occurs (for example, if the gateway has already
allocated ports 40,000+x to the victim device’s TCP connection
and the puppet also requests to establish a new connection on this
port), the function will first randomly select a port from the entire
ephemeral source port range. Then, it checks if there is an idle port
among the next 64 (i.e., half of the current window size of 128)
consecutive ports that can be assigned to this new connection. If
there are no idle ports, the window is halved (i.e., the window size
becomes 32), and the process is repeated: randomly select a port
from the entire ephemeral source port range and then check if there
is an idle port among the next 32 consecutive ports. If there is still
no port available, the function halves the current window size and
repeats the process until an idle port is identified or the window
size becomes smaller than 8. Consequently, after searching up to 5

4579

Xuewei Feng et al.

rounds, if an available port is still not found, the Linux kernel will
discard the SYN packet of the new connection.

Due to the puppet’s port reservation in the prior phase, most
ports of the gateway are continuously occupied, significantly reduc-
ing the success rate of random port allocation at this moment. This
may even result in the new TCP connection’s (i.e., the puppet’s
new initiated TCP connection on port 40,000+x in our example)
SYN packet being dropped due to the failure of more than 5 rounds
of searches. The delay or loss of the TCP SYN will result in the
corresponding SYN/ACK packet being delayed or not being received
by the puppet. From the puppet’s perspective, after the SYN packet
is sent, the time for receiving the corresponding SYN/ACK packet
is significantly delayed, i.e., greater than the previously tested At,
and may even last until the corresponding entry in the gateway’s
session table for the SYN packet times out (typically 10 seconds
in Linux systems). This delay allows the attacker to infer that the
specified source port has been occupied by a victim TCP connection.

4.2 Inferring Ports in Sequential Allocation

Regarding the other widely used method, Per-Destination Sequential
Allocation, adopted by modern gateways for IP address sharing
and ephemeral port allocation, Figure 7 illustrates our approach
for identifying a victim TCP connection on a specific port of the
gateway. Initially, the puppet establishes a TCP connection with
the remote server on the Internet (e.g., on port 80 with the IP
address 5.5.5.5). Assuming the gateway (with the public IP address
of 1.2.3.4) assigns an ephemeral source port number, denoted as p, to
this TCP connection, this p remains unknown to both the off-path
attacker and the puppet. After the connection is established, the
attacker impersonates the server (via source IP address spoofing)
and sends crafted TCP packets to the gateway’s public IP address
of 1.2.3.4. The destination port of each crafted TCP packet falls
within the range of random ephemeral ports usually selected by
TCP (e.g., 1024 ~ 65,535). Notably, the data section of each crafted
TCP packet includes the destination port information of that packet.
For instance, if the attacker designates port x as the destination port
for the current crafted TCP packet, it will embed the information
“TCPy” in the packet’s data section. This information will assist the
attacker in deducing the ephemeral source port assigned by the
gateway for TCP connections to the server.

If the attacker crafts a TCP packet with the correct destination
port (i.e., port p), the packet will ultimately reach the puppet af-
ter translation and routing by the gateway. Despite the gateway
rewriting the address information in the packet (e.g., changing the
destination port number from p to k and the destination IP from
1.2.3.4 to 192.168.1.4), the puppet can still extract the ephemeral
source port number p assigned to this connection from the packet’s
data section. By contrast, crafted TCP packets with incorrectly des-
tination port numbers will either be discarded by the gateway or
routed to other devices and then discarded.

Once the puppet identifies the ephemeral source port number
and informs the attacker, the attacker can establish a baseline value
for source ports assigned by the gateway for connections to the
victim server. Subsequently, after a certain time interval, the puppet
initiates a new TCP connection to the server. The ephemeral source
port assigned by the gateway for this new TCP connection will vary

Off-Path TCP Exploits: PMTUD Breaks TCP Connection
Isolation in IP Address Sharing Scenarios

based on whether the victim device has attempted to establish a
TCP connection with the victim server within the mentioned time
interval. According to the Per-Destination Sequential Allocation
method, if the victim device did not initiate any TCP conn

with the victim server during this interval, the gateway alloca
ephemeral source port p+1 for the new TCP connection cre:

the puppet. Consequently, if the attacker impersonates the

and sends crafted TCP packets to the gateway port p+1, the |

will receive the crafted packet. Instead, if the victim device ir

a TCP connection with the victim server during this intery
gateway would have already assigned the source port numb

for that victim TCP connection. In such a case, when the {
establishes a new TCP connection with the server, the ge

will assign the ephemeral source port number p+2 for the pt

new TCP connection (instead of p+1). Consequently, if the a
impersonates the server and sends crafted TCP packets to g:

port p+1, the puppet cannot receive the crafted packet becat
routed to the victim device.

Victim device Puppet Gateway Attacker Vict
SRC:1234, TCP connection DST:5.5.
v
7%, 234, SRC:5.5.5.5,
ey
££){DST:192.163.1.4, IR0 SRC:5.5.5.55
=g :
=
@K psT1234. | SRC:5.5.5.5,
=
2
2
2 SRC:1234,., TCP connection DST:5.5.5.5,
S
£ 3 {DSTO2TGE 1.4 m SRC:5.5.5.55
=
=
z
B SRC:1234 _, Victim TCP connection DST:5.5.5.54,
R
3
gt SRC:1.2.34,, TCP connection DST:5.5.5.5,
Es
2° DST:192.168.1.5 J0d w Kl src:ssss,,

Figure 7: Identify victim TCP connection on port sequential
allocation gateway.

Essentially, the off-path attacker detects the presence of a victim
TCP connection on port p+1 of the gateway (holding the shared
public IP address) by sending crafted TCP packets to that port. If the
puppet receives the packet, it indicates the absence of a victim TCP
connection. Conversely, if the puppet does not receive the packet,
it implies that the port is already occupied, allowing the attacker to
infer a victim TCP connection on port p+1 of the gateway.

5 Sequence Numbers Inference

In this section, we proceed to infer the sequence numbers of the
identified TCP connection. Figure 8 illustrates the procedure of how
to infer the sequence numbers of the victim connection. Initially,
both the puppet and the victim device independently maintain
their own TCP connections to the server, with the gateway assign-
ing ephemeral source ports to these connections (e.g., m and n,
representing general cases including port preservation allocation
method). The off-path attacker’s goal is to infer the sequence num-
bers of the identified victim TCP connection on port n. The attacker

4580

CCS’25, October 13-17, 2025, Taipei.

exploits a side channel tied to the path MTU value set by the server
for the public IP address (e.g., 1.2.3.4), which is shared by both the
puppet and the victim device.

Victim device Puppet Gateway Attacker Victim server
=3
0 £ =
; =
K SRC:1.2.3.4, TCP connection DST:5.5.5.54,
SRC:1.2.3.4, Victim TCP connection DST:5.5.5.5,
%, :
0"/, ICMP,, carrying “wrong seq 12.3.4, €=5.5.5.50
%,
‘"n,,pﬁ seq & [snd.una, snd.nxt) <
size=1500
%, :
"o,' « »
%, ICMP,,, | carrying “correct seq 1.2.3.4, ¢ 5.5.5.5,
e,
% o] Q
TCP size=552
=
lﬁ]] RST (seq, ack=rand) _|1.2.3.4,€5.5.5.5y| i) DoS attack via crafied RST packets
(seq, ack=0%215)
=\ :
@] o I Geg, ack=i*25) [1.2.3.4,€5.5.5.5,|ii) Traffic g via crafied data packets
(seq, ack=217%215)

Figure 8: Infer sequence numbers of the victim TCP connec-
tion via the side channel in the PMTUD mechanism.

At first, the attacker impersonates an intermediate router and
sends a crafted ICMP “Packet Too Big” message (ICMP error mes-
sage with Type=3 and Code=4), as shown in Figure 9, to the server.
This message tricks the server into believing that the TCP packet it
transmitted to the victim device was discarded by this intermediate
router due to its excessive size. The crafted ICMP error message
includes the inferred TCP packet header of the victim connection,
which encompasses the server’s sequence number, as well as IP
addresses and port information. Because ICMP error messages can
be generated by any intermediate router along the transmission
path [8, 15, 17], the attacker can craft these messages without re-
sorting to IP spoofing. Additionally, in accordance with the ICMP
specifications [3, 41], ICMP error messages must carry at least the
first 28 octets of the triggering packet, conveniently including the
TCP port and sequence number information used by the server to
associate the message with the appropriate process.

As shown in Figure 8, if the attacker specifies an incorrect se-
quence number in the TCP header embedded within the spoofed
ICMP error message—i.e., a value outside the server’s sending win-
dow ([snd.una, snd.nxt], where snd.una is the oldest unacknowl-
edged sequence number and snd.nxt is the next sequence number
to be sent)—the server will discard the message as it fails the legiti-
macy checks of the PMTUD mechanism (see §2.1). Consequently,
the server will not update the path MTU value associated with the
gateway’s public IP address (e.g., 1.2.3.4) based on the MTU indi-
cated in the ICMP message (e.g., “Next-hop MTU=552" in Figure 9).
From the puppet’s perspective, the size of TCP packets received
from the server through its own connection remains unchanged
(e.g., 1500 octets, as before).

In contrast, if the attacker specifies the correct sequence number
in the ICMP message, that is, the sequence number happens to fall
within the server’s sending window ([snd.una, snd.nxt]) for the
victim TCP connection, then the message will pass the legitimacy
checks of the server’s PMTUD mechanism. Furthermore, the server

CCS’25, October 13-17, 2025, Taipei.

will update the path MTU value preserved for the corresponding
IP address (i.e., the public IP address 1.2.3.4 of the gateway) based
on this message, and adjust the size of all subsequent packets sent
to that IP destination to not exceed this path MTU value. From
the puppet’s perspective, it will observe a change in the size of
the received TCP packets from the server (e.g., from the original
1500 octets decreased to the attacker-specified 552 octets). By ob-
serving this change, the attacker can identify that it have correctly
deduced the sequence number of the victim TCP connection. Once
the attacker identifies the sequence number of the victim TCP con-
nection, it can terminate the connection by sending a forged RST
packet with the guessed sequence number embedded, initiating a
DoS attack. According to the TCP specifications [14, 46], such RST
packets only need to carry the correct sequence number and do not
necessarily require an acknowledgment number. Alternatively, the
attacker can engage in traffic poisoning attacks by brute-forcing
acknowledgment numbers to construct TCP data packets with the

PSR SO S A] [|
- V4 ‘ IHL ‘ Type of Service Total Length
-ﬁ; IP Identification XIDFIMF‘ Frag Offset
ﬁ TTL ‘ Protocol = ICMP IP Header Checksum
& Source address = Router (fake)
Destination address = 5.5.5.5 a
Type =3 ‘ Code =4 ICMP Checksum E
0 Next-hop MTU = 552 =
§ va | IHL | Type of Service Total Length %
:E‘? IP Identification X|DF|MF Frag Offset =
a TTL Protocol = TCP IP Header Checksum
8 Source address =5.,5.5.5
E Destination address = 1.2.3.4
E Source port = 80 ‘ Destination port = n
r§ specified sequence number: seq

Figure 9: The crafted ICMP “Packet Too Big” message sent to
the victim server by the attacker.

In practice, the attacker can speed up sequence number infer-
ence via an iterative probing strategy: partitioning the sequence
number space, embedding selected values into spoofed ICMP mes-
sages, and sending them at a high rate (e.g., around 10,000 packets
per second in our experiments) to the victim server. If the server
responds with smaller TCP segments that reflect the reduced MTU,
the attacker narrows the candidate sequence number range and
further lowers the MTU value in subsequent probes. This process
can eventually identify the server’s sending window and reveal the
sequence number.

6 End-to-End Evaluations

In this section, we conduct a comprehensive end-to-end evaluation
of our attacks. This involves evaluating the time and attack traffic
bandwidth required to identify the ephemeral source port of a
victim TCP connection, inferring the sequence numbers of the
identified victim TCP connection, and examining the acceptable
TCP acknowledgment numbers across different operating systems.

Moreover, we present three case studies (SSH DoS, FTP poison-
ing, and HTTP injection) to demonstrate the broad applicability and
severity of our off-path attack against widely-used protocols. SSH
and FTP remain prevalent in modern networks, with over 7 million
active FTP servers currently deployed on the Internet according

4581

Xuewei Feng et al.

to SHODAN. We systematically analyze the success rates, time
costs, and bandwidth costs associated with conducting these three
attacks end-to-end. Experimental results reveal that our attacks
can be executed within an average time of 220 seconds, achieving
a success rate of 70%.

6.1 Experimental Setup & Workflow

Our end-to-end experimental evaluations involve five devices: a
victim device, a puppet, an attacker, a NAT gateway that allocates
ephemeral ports and holds a shared public IP, and a victim server.
The puppet is equipped with Ubuntu 22.04 and Linux kernel version
5.15. We configure the victim device with various OSes, including
Linux, OpenBSD, macOS, and Windows (see §6.2.3 for details) to test
the range of acceptable acknowledgment numbers and evaluate the
effectiveness of SSH DoS and FTP/HTTP injection attacks against
them. Both the puppet and the victim device are connected to the
gateway. The gateway employs one of two typical ephemeral source
port allocation methods: Port Preservation or Per-Destination Sequen-
tial Allocation. For the Port Preservation method, we use a gateway
running OpenWrt 22.03 firmware, while for the Per-Destination Se-
quential Allocation method, we use a gateway equipped with either
HUAWEI USG6000, Cisco IOS 17.03.08 firmware, or H3C VSR1000
firmware. The gateway manages the translation and handling of
external access requests from both the puppet and the victim de-
vice, including assigning the public IP address and allocating the
ephemeral source port. A VPS server running Ubuntu 22.04 and
Linux kernel version 5.15 is in AS132203 of California, USA. The
puppet and victim device access services from the server, such as
SSH (port 22), FTP (port 20), and web surfing (port 80). An attack
machine with Kali 2022.2 and source IP address spoofing capabili-
ties attempts to identify the TCP connection between the victim
device and server, infer the connection’s sequence numbers, and
hijack the victim’s connection with the puppet’s assistance.

In our end-to-end evaluations, we first infer the ephemeral source
port assigned by the gateway to the victim device when it initiates
a TCP connection to the server, and evaluate the time cost and
attack traffic bandwidth needed for the attacker to infer this port
under two allocation methods. Subsequently, the attacker infers
the sequence numbers of the identified victim TCP connection, and
we analyze the time and bandwidth required for this step. Once
the correct sequence number is identified, the off-path attacker can
send crafted TCP RST packets to launch an off-path DoS attack,
terminating the victim TCP connection. Next, we investigate the
range of acceptable acknowledgment numbers for different OSes,
providing the window sizes needed to craft TCP data packets to
poison the target traffic. Finally, we validate and test the end-to-end
attack cost and success rate through three case studies: terminating
SSH with crafted TCP RST packets carrying the inferred sequence
number, and poisoning FTP/HTTP traffic with crafted TCP data
packets carrying both the inferred sequence number and brute-
forced acknowledgment number.

6.2 Experimental Results

6.2.1 Inferring Source Ports & Identifying Connections. We test the
time and bandwidth required for the attacker to infer the ephemeral

Off-Path TCP Exploits: PMTUD Breaks TCP Connection
Isolation in IP Address Sharing Scenarios

source port assigned by the gateway under two common port alloca-
tion methods, allowing identification of the victim TCP connection.

i) Cost for Inferring Source Port in Preserved Allocation. Figure 10
shows the CDF (Cumulative Distribution Function) of the time cost
and attack traffic bandwidth required to identify the ephemeral
source port assigned by the NAT gateway running OpenWrt 22.03
to the victim device’s TCP connection. We conduct 50 experiments,
and the attacker, assisted by the puppet, typically requires an aver-
age of 21.82 seconds (Figure 10(a)) and 0.318 Mbps of bandwidth
(Figure 10(b)) to identify the ephemeral source port assigned by the
gateway to the victim device’s TCP connection.

1 TR

21.82
0.38

25 30
Time (s)

10 T cor

0.8f ---- Mean

A

030 032 034 036
Bandwidth (Mbps)

(b) Bandwidth cost.

— CDF
0.81 === Mean

w06
8

0.4

0.2

0.0
20

w 0.6
8
04

0.2

0.0
0.28

(a) Time cost.

Figure 10: CDF of attack cost for inferring the source port of
victim TCP connections in the preserved allocation.

ii) Cost for Inferring Source Port in Sequential Allocation. Figure 11
shows the CDF of the time cost and attack traffic bandwidth needed
to identify a target TCP connection initiated by the victim device
connected to the gateway running Cisco IOS 17.03.08 or HUAWEI
USG6000 firmware. In our 50 experiments, the off-path attacker on
the Internet, collaborating with the puppet, needs an average of 3.80
seconds (Figure 11(a)) and 1.84 Mbps of bandwidth (Figure 11(b))
to determine the baseline ephemeral source port assigned by the
gateway for the victim device’s TCP connections to the server.
This enables the attacker to exploit the gateway’s sequential port
allocation method to identify the victim’s TCP connection.

—— —
4’—/—1—/—/1 84

0.0
075 1.00 125 150 175 2.00 2.25 2.50 2.75
Bandwidth (Mbps)

(b) Bandwidth cost.

10 L0 oF

0.8f ---= Mean

— CDF
0.8f ---- Mean

u 0.6
8
04

4 0.6
8
0.4

0.2 0.2

3.80

3 4 5 6 7 8
Times (s)

0.0

(a) Time cost.

Figure 11: CDF of attack cost for inferring the source port of
victim TCP connections in the sequential allocation.

6.2.2 Inferring Sequence Numbers. After identifying the victim
TCP connection, the attacker sends crafted ICMP “Packet Too Big”
messages to the server, embedding a guessed sequence number
of the victim TCP connection. If the sequence number is correct,
the path MTU value established by the server for the public IP
address will be updated, i.e., decreasing from 1500 octets to 552
octets. This update affects the TCP packet size received by the
puppet from the server. By observing these changes in packet sizes,
the puppet and attacker can jointly infer the sequence number of
the victim TCP connection. Figure 12 shows the CDF of time cost
and attack traffic bandwidth for inferring the sequence number
of the victim TCP connection. In our 50 experiments, the attacker
needs an average of 194.21 seconds (Figure 12(a)) and 11.63 Mbps
of bandwidth (Figure 12(b)) to identify the sequence number.

4582

CCS’25, October 13-17, 2025, Taipei.

6.2.3 Identifying the Range of Acceptable Acknowledgment Num-
bers. Once the sequence number of the victim TCP connection is
identified, the attacker can send a crafted RST packet to terminate
the victim TCP connection, constructing a DoS attack. However, for
the attack to poison the target TCP traffic, the attacker must also
guess the acceptable acknowledgment number of the target TCP
connection to construct a valid TCP data packet. We investigate
the acknowledgment number validation mechanisms of popular
OSes and find that attackers can easily perform brute-force attacks
on 32-bit acknowledgment numbers, mainly due to the lenient vali-
dation of ACKs allowed by current TCP implementations (such as
uw 0.6

the “Ghost ACKs” [40]).

1.0 1.0

— CDF
0.87 ---- Mean

— CDF

L 06
5
Coa

0.2

0
100 200 300 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25

Times (s) Bandwidth (Mbps)

(b) Bandwidth cost.

0.0

(a) Time cost.

Figure 12: CDF of time cost and bandwidth cost for inferring
sequence numbers of the victim connection.

Figure 13 shows the window sizes of acceptable acknowledgment
numbers for the different OSes we identified. For macOS systems
(macOS kernel version 14.2 in our test), the window size of the
acceptable acknowledgment numbers is 21°. Therefore, the attacker
can divide the entire acknowledgment number space into g% =27
windows and select one acknowledgment number within each
window. This way, the attacker only needs to craft 217 = 131,072
TCP data packets, each carrying the guessed sequence number and
one selected acknowledgment number, and send them to the victim
TCP connection. One of these packets will be accepted by the victim
client, ultimately resulting in traffic poisoning.

Unacceptable ACKs

Figure 13: Acceptable acknowledgment number window sizes
across different operating systems.

For Windows systems (Windows 11 Pro 23H2 in our test), the
window size of the acceptable acknowledgment numbers is 2'4. For
OpenBSD systems (kernel version 7.3), the window size is 213, For
Linux systems (kernel version 5.15), the window size is 21°. By using
this method, attackers can brute-force the acknowledgment number,
eventually achieving a traffic poisoning attack. In the subsequent
case studies of FTP poisoning and HTTP injection, we provide
detailed information on the attack bandwidth and success rate for
traffic poisoning against different OSes.

CCS’25, October 13-17, 2025, Taipei.

6.3 Case Study

We assess the end-to-end attack success rate through three case
studies: terminating encrypted SSH connections with crafted TCP
RST packets carrying only the inferred sequence number, and poi-
soning FTP and HTTP sessions with crafted TCP data packets
carrying both the inferred sequence number and the brute-forced
acknowledgment number.

6.3.1 DoS against SSH. According to TCP specifications [42, 46],
RST-based DoS attacks require the TCP RST packet to carry the
exact sequence number (i.e., the next sequence number expected by
the victim device, rcv.nxt). We conduct 50 experiments, of which
38 are successful, with the attacker successfully terminating the
identified SSH connection between the victim device and the server.
The failure of the attack is primarily due to the sliding of the server’s
sending window (e.g., caused by TCP keep-alive packets), which
creates a discrepancy between the exact sequence number of the
target connection and the attacker’s guessed value.

In practice, the attacker can send multiple TCP RST packets in
parallel, covering a range of sequence numbers near the inferred
sequence number, thereby increasing the attack’s success rate. Fig-
ure 14 illustrates the attack traffic bandwidth used to send TCP RST
packets. In summary, considering the time required to identify the
victim TCP connection (i.e., 3.80 seconds for the sequential alloca-
tion method or 21.82 seconds for the preserved allocation method)
and to infer the sequence numbers of the victim TCP connection
(194.21 seconds), as well as the maximum attack traffic bandwidth
needed for the attack (either 11.63 Mbps for inferring the sequence
numbers or 4.96 Mbps for sending crafted RST packets), the DoS
attack can be successfully performed with 211 seconds on average,
achieving a success rate of 70%.

R f— CDF
0.81 ----- Mean
L 0.6
a
o4
0.2
0.0 4.96
4.2 4.4 4.6 4.8 5.0 5.2 5.4

Bandwidth (Mbps)

Figure 14: Attack traffic used to send crafted TCP RST packets
to achieve a DoS attack success rate of 70% on average.

6.3.2 Poisoning FTP. The attacker injects crafted TCP data packets
into the identified FTP session. These forged data packets carry
an inferred acceptable sequence number that falls within the vic-
tim device’s receive window (i.e., within the range of [rcv.nxt,
rcv.nxt+rcv.wnd]), along with a brute-forced acknowledgment num-
ber. Once the acknowledgment number specified in the packet falls
within the victim device’s acceptable acknowledgment number
range, the victim accepts and processes the crafted TCP packet,
ultimately poisoning the received FTP file.

Figure 15 shows the snapshot of the poisoned FTP file received by
the victim device. Figure 16 illustrates the attack traffic bandwidth
used to brute-force the acknowledgment numbers, thus successfully
achieving FTP file poisoning against the victim device across dif-
ferent OSes. For instance, on Linux 5.15 system, the average attack
bandwidth for FTP poisoning is 23.95 Mbps, whereas for OpenBSD

4583

Xuewei Feng et al.

7.3, Windows 11 Pro 23H2, and macOS 14.2, the needed bandwidth
is 4.97 Mbps, 4.21 Mbps, and 3.25 Mbps, respectively. We conduct
50 experiments, and with the attack bandwidth shown in Figure 16.

 Er]]

1 Name, BTC address

2 Randy, 1Q0CJisy75xJuNgD7NFiX2KFwV3V2C9Lgok

3 Thomas, 17JxMZaThz78RbgQghopzgWeWK5cHOBSrU

4 Christian, 1CUY40H29STgZmrQ5Hz8EeEVPJICCIQAShr

5 Jack, 1QFt7QXAVzaNG8JTgC2CEhjRANLju5Dot

6 Richard, 1HnNtkxFo6nshk5ZxnfgcvQ4TtUk8Y91abD

7 Larry, 1LJERjWbV5t1lsuszG6ALEQEtMoorzv3i5P

8 Matthew, hackhackhackhackhackhackhackhack!!]

9 James, 1DAXVac2ysXkv2q4 fL9g2VCVanKPVAeMve .

Poisoned data

Figure 15: The poisoned FTP file received by the victim device.

In total, accounting for the time required to identify the victim
TCP connection and infer its sequence numbers, as well as the
maximum attack traffic bandwidth needed (i.e., the greater of the
bandwidth for inferring sequence numbers or for brute-forcing the
acknowledgment number across different OSes), the FTP poisoning
attack can be successfully executed with 217 seconds on average us-
ing an attack traffic bandwidth of 23.95 Mbps?, achieving a success

rate of 72% (36 out of 50).

1.0 1.0

—— CDF
0.87 ---- Mean

0 10 20 30 40 50 60
Bandwidth (Mbps)

— CDF
0.81 ---- Mean

u 0.6
8

Co.4

y 0.6
o4
02
0.0

0.2

0.0
80 2

4.97

70 6 8
Bandwidth (Mbps)

(b) Traffic cost for OpenBSD.

3.25

6

(a) Traffic cost for Linux.

———

T cor

0.81 ---= Mean

— CDF
-~ Mean

T

16 1 2

0.6

&

Coa4
0.2

0.0 4.21

o 2 4

12 14

6 8 10 3 a 5
Bandwidth (Mbps) Bandwidth (Mbps)

(c) Traffic cost for Windows. (d) Traffic cost for macOS.

Figure 16: CDF of attack traffic costs for poisoning the re-
ceived FTP file under different victim device OSes.

6.3.3 HTTP Injection. Similarly, the attacker can craft TCP data
packets to poison HTTP. For instance, the attacker can detect a TCP
connection from a specific source port of the gateway to the server’s
port 80, then inject a fake HTTP message into this connection,
thereby poisoning the victim device’s browser content. We evaluate
this attack by injecting fake HT TP messages into a Windows victim
device. In 50 experiments, the results show that with the time cost
of 212 seconds on average, using approximately 11.63 Mbps of
bandwidth, the attacker successfully injects fake HT TP messages
into the Windows device in 37 out of 50 attempts, achieving a
success rate of 74%. Figure 17 shows a snapshot of the poisoned
HTTP message received by the victim device, where the attacker
manipulated the Bitcoin price.

4The bandwidth of 23.95 Mbps required for brute-forcing the acknowledgment number
during an attack on a Linux system represents the maximum needed for conduct-
ing an FTP poisoning attack. For other OSes, the required bandwidth is 11.63 Mbps
for inferring the victim TCP connection’s sequence numbers, as brute-forcing their
acknowledgment numbers requires less bandwidth.

Off-Path TCP Exploits: PMTUD Breaks TCP Connection
Isolation in IP Address Sharing Scenarios

7 Real-World Measurements

In this section, we measure 50 real-world networks with IP address
sharing enabled, covering a diverse range of scenarios, including
public Wi-Fi networks in coffee shops, hotels, and other locations,
as well as 5G cellular and VPN networks. Our study reveals that 38
out of the 50 tested networks (76%) are vulnerable.

© SEIISEEEIEEEES <
Bitcoin (BTC) Real-Time Price Chart

m v

Current Price 24h High 24h Low

$64894.00

24h Change

$44444.00 $44444.00 -21.96%

s

Figure 17: Poisoned HTTP message received by the victim.

7.1 Experimental Setup & Workflow

In our real-world measurement study on the Internet, we deploy
two devices: a victim device (Samsung Galaxy S22) and a puppet
(Ubuntu 22.04 with Linux kernel 5.15) within target networks that
enable IP address sharing. For public Wi-Fi networks with NAT
enabled, both devices connect to the NAT gateway (typically the
wireless router holding the shared public IP address), following
approval from the network manager. For 5G networks, we deploy
a Customer Premises Equipment (CPE) device within the target
network, with both the victim device and the puppet connected to
this CPE. This ensures our experiments are fully controlled and do
not affect regular mobile users (i.e., posing no ethical issues). The
NAT-enabled User Plane Function (UPF) in the 5G core network
(5GC) assigns a shared public IP address and ephemeral source
ports for TCP connections initiated by the victim device and the
puppet. In the VPN scenario, the victim device and the puppet
connect to a VPN proxy server (e.g., WireGuard deployed on the
Internet under our control). The VPN proxy server assigns a shared
public IP address and associated ephemeral source ports for their
TCP connections. The victim device and the puppet establish their
respective TCP connections with a remote server, a VPS we control
running Linux 5.15 in California, USA. An attacker on the Internet,
capable of source IP address spoofing and running Kali 2022.2,
attempts to hijack the TCP connection between the victim device
and the server. The attacker may launch either a DoS attack against
SSH or a poisoning attack against FTP traffic. If these attacks can be
successfully executed, we consider the target network as vulnerable.

7.2 Experimental Results

Table 2 presents the experimental results of our attacks on 50 real-
world networks enabling IP address sharing. Overall, 38 of the 50
tested networks are found to be vulnerable, while the 12 invul-
nerable networks are protected by the Random Allocation strategy
adopted by the gateway to assign ephemeral TCP source ports to
connected devices. As depicted in the first row of the table, we

4584

CCS’25, October 13-17, 2025, Taipei.

discover that a NAT-enabled public Wi-Fi network with a shared
public IP address of “******.22.43” can be accessed from a coffee
shop. It has a CIDR of /24. The gateway of this Wi-Fi network
employs the preserved method to assign ephemeral source ports
for outgoing TCP connection requests, making it vulnerable to our
attack. The time required to execute our attack to compromise TCP
connections initiated from this network is 243.72 seconds to termi-
nate the SSH connection and 202.53 seconds to poison the FTP files
on average. The success rates is 6 out of 10 for terminating the SSH
connection and 5 out of 10 for FTP poisoning. Attack failures can
be attributed to network noise and potential interception of crafted
packets by firewalls deployed within the network infrastructure.

Regarding the 20 NAT-enabled 5G networks with public IP ad-
dress sharing we tested, all of them use a sequential-based method
(i.e., the Per-Destination Sequential Allocation) to assign ephemeral
source ports for outgoing TCP connection requests. As a result, all
30 tested 5G networks are vulnerable to our attack. Specifically,
5G networks typically have a large number of concurrent users,
and the sequential-based method effectively avoids port collisions,
which is crucial for both network performance and user experience.
Moreover, our attack can also compromise VPNs. Testing 10 VPN
proxy servers with shared public IPs, we find 6 vulnerable due to
flawed ephemeral port allocation. These findings demonstrate the
severity of our attack on Internet security.

8 Discussion and Countermeasure

8.1 Attack Limitations

i) ICMP Error Messages Blocking. In our attack, the attacker
needs to send crafted ICMP “Packet Too Big” messages to the server
to infer the sequence numbers of the identified TCP connection.
In practice, firewalls on real-world servers may block the received
ICMP “Packet Too Big” messages, resulting in failed sequence num-
ber inference. We ethically test whether web servers in the Tranco
Top 10K sites list accept ICMP “Packet Too Big” messages. We estab-
lish a TCP connection between our controlled client and the server,
and then send an ICMP “Packet Too Big” message to the server. If
the server reduces the TCP packet size for our client accordingly,
it indicates that the server does not block the ICMP message. The
experimental findings reveal that among the Tranco Top 10K sites,
471 sites (4.71%) block ICMP “Packet Too Big” messages to pre-
vent our attack, even though the blocking of the ICMP messages
potentially introduces connection failures in practice.

ii) Specific to Newly Established TCP Connections. Another
limitation of our attack is its specificity to newly established TCP
connections initiated by the victim device. As shown in Figure 6
and Figure 7, our attack relies on occupying a continuous range of
ephemeral source ports on the gateway or identifying the baseline
of sequential port allocation first. Then, the attacker waits for the
victim client to initiate a new TCP connection to the target server,
allowing the identification of the ephemeral source port allocated by
the gateway for this newly established TCP connection. This identi-
fication can be achieved either by measuring the time delay caused
by port collisions or by testing the occupation of the subsequent
port next to the baseline of sequential port allocation. In practice,

SFor ethical reasons, we anonymize the first two segments of the public IP address for
the accessed networks.

CCS’25, October 13-17, 2025, Taipei.

Xuewei Feng et al.

Table 2: Evaluations of off-path TCP connection hijacking on 50 real-world networks enabling IP address sharing,.

The Shared IP Address of Port Time Cost Success Rate
No. the Accessed Network CIDR Network Access Method Assignment Vulnerable SSH DoS (s) FTP Poisoning (s) SSHDoS FTP Poisoning
1 ORI 22.43 /24 Wi-Fi at coffee shop preserved v 243.72 202.53 6/10 5/10
2 11313 /18 Wi-Fi at coffee shop preserved 4 180.08 166.19 8/10 6/10
3 I 10.160 /18 Wi-Fi at hotel preserved v 197.15 208.78 7/10 6/10
4 T 188.126 /18 Wi-Fi at hotel preserved v 169.37 203.32 8/10 6/10
5 HHEF185.110 /18 Wi-Fi at restaurants preserved 4 176.16 194.21 6/10 7/10
6 13117 /24 Wi-Fi at restaurants preserved v 217.30 179.62 6/10 6/10
7 I 230.45 /18 Wi-Fi at restaurants preserved v 186.70 197.36 7/10 6/10
8 R 87,142 /18 Wi-Fi at Shopping Mall preserved v 183.29 206.16 8/10 6/10
9 121,148 /18 Wi-Fi at Shopping Mall preserved v 208.26 185.90 7/10 8/10
10 I 239.211 /18 Wi-Fi at campus sequential v 191.64 195.25 8/10 5/10
11 68,231 /18 Wi-Fi at campus sequential 4 197.64 207.63 8/10 6/10
12 118,14 /23 Wi-Fi at Company sequential v 200.67 212.13 7/10 7/10
13 FE105.29 /18 Wi-Fi at campus random X N/A N/A N/A N/A
14 R 46.163 /18 Wi-Fi at coffee shop random X N/A N/A N/A N/A
15 11541 /18 Wi-Fi at hotel random X N/A N/A N/A N/A
16 120,129 /18 Wi-Fi at hotel random X N/A N/A N/A N/A
17 I 186.95 /18 Wi-Fi at restaurants random X N/A N/A N/A N/A
18 1 15.200 /22 ‘Wi-Fi at restaurants random X N/A N/A N/A N/A
19 35,107 /18 Wi-Fi at Shopping Mall random X N/A N/A N/A N/A
20 I 64.96 /22 Wi-Fi at Shopping Mall random X N/A N/A N/A N/A
21 40,67 /22 5G at Airport sequential 4 223.89 211.34 8/10 7/10
22 4173 /22 5G at Airport sequential v 211.79 197.75 8/10 8/10
23 R 237.90 /18 5G at Airport sequential v 182.81 230.14 9/10 8/10
24 AR 239.175 /18 5G at Airport sequential v 203.93 184.36 7/10 8/10
25 FEEE91.199 /17 5G at Airport sequential v 176.39 198.50 7/10 7/10
26 1170 /24 5G at Airport sequential v 210.69 206.04 10/10 4/10
27 R 237.118 /18 5G at Train Station sequential 4 212.58 314.99 8/10 7/10
28 FEEITE40.218 /22 5G at Train Station sequential v 210.85 199.27 7/10 8/10
29 0,247 /24 5G at Train Station sequential v 176.98 198.71 8/10 7/10
30 HHERE 41,207 /22 5G at Train Station sequential v 200.93 218.27 8/10 6/10
31 e 237.190 /18 5G at Train Station sequential v 206.91 203.20 7/10 5/10
32 2,74 /24 5G at Office Building sequential v 265.58 266.09 9/10 7/10
33 116,83 /24 5G at Office Building sequential 4 162.13 192.67 9/10 7/10
34 eI 2.35 /24 5G at Office Building sequential v 205.98 256.79 10/10 4/10
35 ORI 22,220 /24 5G at Office Building sequential v 140.73 289.70 7/10 6/10
36 R 237.202 /18 5G at Office Building sequential 4 220.53 190.50 8/10 9/10
37 e 236.121 /18 5G at Office Building sequential v 197.67 286.00 8/10 7/10
38 40,171 122 5G at Office Building sequential v 186.75 228.64 6/10 4/10
39 R 41.177 /22 5G at Campus sequential v 162.47 245.61 7/10 8/10
40 I 238.188 /18 5G at Campus sequential v 213.58 264.87 7/10 7/10
41 I 239.144 /15 VPN proxy of WireGuard preserved v 172.35 285.48 7/10 5/10
42 R 41.227 /18 VPN proxy of PPTP preserved 4 256.89 241.59 9/10 9/10
43 I 236.119 /18 VPN proxy of L2TP preserved v 183.84 283.66 7/10 9/10
44 3,228 /15 VPN proxy of OpenVPN 2.6.9 preserved v 248.13 213.94 10/10 7/10
45 FEEEE0.245 /15 VPN proxy of OpenConnect 1.5.3 preserved 4 258.83 292.06 4/10 7/10
46 I 237.68 /18 VPN proxy of OpenConnect 1.6.2 preserved 4 247.82 245.63 7/10 8/10
47 TR 40.122 /15 VPN proxy of Trojan random X N/A N/A N/A N/A
48 R 40.122 /15 VPN proxy of ShadowSocks random X N/A N/A N/A N/A
49 R 2.166 /15 VPN proxy of Vmess random X N/A N/A N/A N/A
50 I 116.180 /24 VPN proxy of EtherVPN random X N/A N/A N/A N/A

attackers can periodically probe the gateway after waiting for a
specified time window to determine whether an ephemeral source
port for the victim server is occupied, enabling them to identify a
victim TCP connection. This approach mitigates the limitation.
iii) Attack Impact on IPv6 Networks. IPv6 mitigates our attack
since IP address sharing is less common in IPv6 networks. How-
ever, NAT46 and even IPv6-only environments (e.g., VPN proxies
where multiple IPv6 clients share the same IPv6 address) are still
vulnerable to our attack. We test that IPv6 servers’ TCP sequence
numbers can be inferred via the PMTUD side channel when IPv6
address sharing is enabled.

8.2 Countermeasure

PMTUD operates on IP address pairs, thus making it impossible to
achieve information isolation between different TCP connections to
the same IP address (e.g., to a NAT network or to a VPN proxy server
that uses a shared public IP address for multiple devices). Therefore,

4585

off-path attackers on the Internet can forge ICMP “Packet Too Big”
messages to infer the sequence numbers of victim TCP connections.
We propose that PMTUD should operate on a per-connection basis
rather than a per-IP basis. This approach would effectively prevent
information leakage between different TCP connections sharing
the same IP address in various real-world network scenarios. In
practice, IP packets belonging to different connections may traverse
different network paths to the same destination. Therefore, the path
MTU of one connection should not dictate the path MTU for all
connections to the same destination IP. We have reported this
vulnerability and our countermeasure to the IETF. Following the
IETF’s suggestions, we will present our findings at a working group
meeting and propose standardization to address this vulnerability.

Additionally, ISPs can adopt a randomized method for assigning
ephemeral source ports to TCP connections at gateways with IP ad-
dress sharing, instead of the Port Preservation or Per-Destination Se-
quential Allocation methods. However, randomization may increase

Off-Path TCP Exploits: PMTUD Breaks TCP Connection
Isolation in IP Address Sharing Scenarios

port collisions, which could reduce network performance, particu-
larly in environments with many concurrent users. Nevertheless,
this approach prevents off-path attackers from predicting the distri-
bution of ephemeral source ports of TCP connections originating
from the same gateway, thereby thwarting the attacker’s ability to
identify TCP connections. We have disclosed the vulnerable source
port allocation methods to the identified vendors—HUAWEI, H3C,
Cisco (through their Bug Bounty Program), and the Linux commu-
nity—which have been recognized by Linux, Cisco, and H3C. In
particular, Cisco has taken steps to mitigate the vulnerability in
its products, for example, by introducing randomized ephemeral
source port allocation in firmware versions 16.12.85 and 17.03.08.

9 Related Work

Off-Path TCP Exploits. Off-path TCP exploits pose a significant
threat to Internet security. By exploiting the global IPID (IP Iden-
tification) counter used by earlier OSes, Gilad et al. were able to
determine whether two hosts had established a TCP connection.
Subsequently, they initiated off-path TCP injection attacks aimed
at poisoning the upper HTTP or Tor traffic [21, 22, 26]. Feng et al.
demonstrated the vulnerability of mixed IPID assignment in mod-
ern Linux systems, which can be exploited by off-path attackers
to hijack TCP connections [15]. This vulnerability persists even
under the IPv4/IPv6 dual-stack [16]. Cao et al. demonstrated that an
off-path attacker could exploit a side channel in the challenge ACK
mechanism to hijack TCP connections, which was mitigated by a
random challenge ACK count limit [9, 10]. A timing side channel
in Wi-Fi was also identified, enabling data injection into a TCP con-
nection to cache malicious objects [12]. Yang et al. discovered that
session mappings in certain NAT implementations are vulnerable
to manipulation by fake TCP RST packets, allowing attackers to
intercept a victim client’s TCP packets and hijack the connection
by stealing sequence numbers [53]. However, this attack relies on
vulnerabilities in specific NAT implementations, which have been
patched in versions like OpenWrt 23.05 and FreeBSD 14.0 and later.
Attackers can also exploit unprivileged scripts running on com-
promised hosts to carry out off-path TCP attacks [24, 43, 44]. Gilad
et al. demonstrated that attackers can execute web cache poison-
ing by exploiting restricted scripts within the sandbox of a user’s
browser [24]. Qian et al. revealed that firewalls, acting as middle-
boxes, can be exploited to infer TCP sequence numbers based on
how they differently handle packets with in-window and out-of-
window sequence numbers [43] Additionally, assisted by malicious
applications, they conducted a collaborative attack on TCP sequence
number inference by exploiting side channels related to packet coun-
ters [44]. Tolley et al. demonstrated that on-path/in-path attackers
in VPN scenarios can infer TCP sequence numbers [51].
Port De-Randomization. De-randomizing the UDP source port of
DNS requests has been well studied in prior works [1, 13, 29, 33, 34].
For example, attackers may identify a UDP source port for DNS
using a “reserve-and-trap” method, where a malicious NATed device
issues multiple UDP sessions to occupy the NAT gateway’s source
ports (e.g., up to 65,534 ports, leaving only one predictable port
available) [1, 29]. However, we identify that this method fails on
modern NAT implementations (e.g., Linux 5.0 and later) due to
multiple source port collisions, preventing the victim device from

4586

CCS’25, October 13-17, 2025, Taipei.

acquiring the intended port. For NAT gateways using Linux 5.0
and later, if port collisions exceed 240, ephemeral port allocation
fails. An attacker can use malicious JavaScript to de-randomize
the Simple Hash-Based Port Selection (SHPS) algorithm in older
Linux versions and identify a TCP source port to compromise the
connection [25]. Our method can identify the ephemeral source
ports of gateways, even when the victim device uses the newer
Double-Hash Port Selection (DHPS) algorithm—without relying on
JavaScript or spoofing.
PMTUD Issues. PMTUD is designed to protect TCP from IP frag-
mentation [21, 23, 30]. Gohring et al. showed that attackers could
exploit PMTUD to induce performance degradation in TCP [27].
RFC 6269 highlights IP address sharing issues, including path MTU
cache inconsistencies and DoS risks from a malicious subscriber (i.e.,
the puppet in our context) reducing the MTU below 68 octets [6].
Feng et al. demonstrated that an off-path attacker can bypass
PMTUD due to ambiguities in the cross-layer interactions among
IP, ICMP, and TCP. This allows the attacker to trigger IP fragmen-
tation on TCP and poison the target TCP traffic with malicious IP
fragments [18]. They also demonstrated that a vantage point (i.e., a
malicious server) on the Internet can determine whether a client
accessing it is a NATed host by issuing an ICMP message contain-
ing known information about the connection between the server
and the client [20]. This message induces a desynchronization of
the path MTU value between the NAT gateway and the NATed
host. Distinctively, our attack leverages a new side channel to infer
unknown TCP sequence numbers in the off-path threat model. Our
attack evades detection by existing techniques [11, 47].

10 Conclusion

In this paper, we investigate the security implications arising from
the interactions between PMTUD and IP address sharing, two fun-
damental components of Internet infrastructure. We uncover that
PMTUD is not well-suited for networks with IP address sharing,
leading to vulnerabilities that off-path attackers can exploit to infer
sequence numbers of victim TCP connections. The root cause is
PMTUD’s inability to maintain per-connection information iso-
lation, enabling attackers to send forged ICMP “Packet Too Big”
messages and observe changes in the TCP packet sizes sent by the
server. Through extensive experiments, we demonstrate that this
vulnerability can be exploited to orchestrate off-path TCP hijacking
attacks, compromising various applications by maliciously termi-
nating SSH connections or poisoning FTP and HT TP traffic, which
can cause significant real-world damage. To address this attack, we
propose effective countermeasures.

Acknowledgments

We thank the anonymous reviewers for their insightful comments.
This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFB3102303, the
National Science Foundation for Distinguished Young Scholars of
China under No. 62425201, the Science Fund for Creative Research
Groups of the National Natural Science Foundation of China under
No. 62221003, the Key Program of the National Natural Science
Foundation of China under No. 61932016 and No. 62132011, and
the State Key Laboratory of Internet Architecture.

CCS’25, October 13-17, 2025, Taipei.

References

(1]

[2

[

(3]

[10]

[11

[12

[13]

[14

[15]

[16

[17]

(18]

[19]

[20

[21

[22

[23

[24

[25

[26]

Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian, Zhiyun Qian, and Nael
Abu-Ghazaleh. 2019. Collaborative client-side dns cache poisoning attack. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 1153-1161.
Francois Audet and Cullen Jennings. 2007. Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP. RFC 4787. Internet Engineering Task
Force. 1-29 pages. http://www.rfc-editor.org/rfc/rfc4787.txt

Fred Baker. 1995. Requirements for IP Version 4 Routers. RFC 1812. Internet
Engineering Task Force. 1-175 pages. http://www.rfc-editor.org/rfc/rfc1812.txt
Fred Baker and Pekka Savola. 2004. Ingress Filtering for Multihomed Networks.
Technical Report 3704. Internet Engineering Task Force. https://doi.org/10.
17487/RFC3704

K Biswas, B Ford, S Sivakumar, and P Srisuresh. 2008. NAT Behavioral Re-
quirements for TCP. RFC 5382. Internet Engineering Task Force. 1-21 pages.
http://www.rfc-editor.org/rfc/rfc5382.txt

M Boucadair, A Durand, P Levis, and P Roberts. 2011. Issues with IP Address
Sharing. RFC 6269. Internet Engineering Task Force. 1-29 pages. http://www.rfc-
editor.org/rfc/rfc6269.txt

Robert Braden. 1989. Requirements for Internet Hosts - Communication Layers.
RFC 1122. Internet Engineering Task Force. 1-116 pages. https://doi.org/{10.
17487/RFC1122}

Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waidner.
2018. Domain Validation++ For MitM-Resilient PKI. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2060—
2076.

Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V Krishnamurthy,
and Lisa M Marvel. 2016. Off-Path TCP Exploits: Global Rate Limit Considered
Dangerous. In 25th USENIX Security Symposium (USENIX Security 16). 209-225.
Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V Krishnamurthy,
and Lisa M Marvel. 2018. Off-Path TCP Exploits of the Challenge ACK Global
Rate Limit. IEEE/ACM Transactions on Networking 26, 2 (2018), 765-778.

Yue Cao, Zhongjie Wang, Zhiyun Qian, Chengyu Song, Srikanth V Krishna-
murthy, and Paul Yu. 2019. Principled Unearthing of TCP Side Channel Vulner-
abilities. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 211-224.

Weiteng Chen and Zhiyun Qian. 2018. Off-Path TCP Exploit: How Wireless
Routers Can Jeopardize Your Secrets. In 27th USENIX Security Symposium (USENIX
Security 18). 1581-1598.

Tom Cross. 2008. DNS cache poisoning and network address translation. Post at
IBM’s Frequency X blog (http://blogs.iss.net/archive/dnsnat.html) (2008).

Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293. Internet
Engineering Task Force. 1-98 pages. http://www.rfc-editor.org/rfc/rfc9293.txt
Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu. 2020. Off-Path TCP
Exploits of the Mixed IPID Assignment. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 1323-1335.

Xuewei Feng, Qi Li, Kun Sun, Chuanpu Fu, and Ke Xu. 2021. Off-Path TCP Hijack-
ing Attacks via the Side Channel of Downgraded IPID. IEEE/ACM Transactions
on Networking 30, 1 (2021), 409-422.

Xuewei Feng, Qi Li, Kun Sun, Zhiyun Qian, Gang Zhao, Xiaohui Kuang, Chuanpu
Fu, and Ke Xu. 2022. Off-Path Network Traffic Manipulation via Revitalized
ICMP Redirect Attacks. In 31st USENIX Security Symposium (USENIX Security 22).
2619-2636.

Xuewei Feng, Qi Li, Kun Sun, Ke Xu, Baojun Liu, Xiaofeng Zheng, Qiushi Yang,
Haixin Duan, and Zhiyun Qian. 2022. PMTUD is not Panacea: Revisiting IP
Fragmentation Attacks against TCP. In Network and Distributed System Security
Symposium (NDSS).

Xuewei Feng, Qi Li, Kun Sun, Yuxiang Yang, and Ke Xu. 2022. Man-in-the-Middle
Attacks without Rogue AP: When WPAs Meet ICMP Redirects. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 694-709.
Xuewei Feng, Yuxiang Yang, Qi Li, Xingxiang Zhan, Kun Sun, Ziqiang Wang,
Ao Wang, Ganqiu Du, and Ke Xu. 2025. ReDAN: An Empirical Study on Remote
DoS Attacks against NAT Networks. In Network and Distributed System Security
Symposium (NDSS). https://arxiv.org/pdf/2410.21984

Yossi Gilad and Amir Herzberg. 2012. Off-Path Attacking the Web. In WOOT.
41-52.

Yossi Gilad and Amir Herzberg. 2012. Spying in the dark: TCP and Tor traffic
analysis. In International symposium on privacy enhancing technologies symposium.
Springer, 100-119.

Yossi Gilad and Amir Herzberg. 2013. Fragmentation Considered Vulnerable.
ACM Transactions on Information and System Security (TISSEC) 15, 4 (2013), 16.
Yossi Gilad and Amir Herzberg. 2013. When Tolerance Causes Weakness: The
Case of Injection-Friendly Browsers. In Proceedings of the 22nd international
conference on World Wide Web. ACM, 435-446.

Yossi Gilad and Amir Herzberg. 2014. Off-path TCP Injection Attacks. ACM
Transactions on Information and System Security (TISSEC) 16, 4 (2014), 13.

Yossi Gilad, Amir Herzberg, and Haya Shulman. 2013. Off-path hacking: The
illusion of challenge-response authentication. IEEE Security & Privacy 12, 5 (2013),

Xuewei Feng et al.

68-77.

Matthias Gohring, Haya Shulman, and Michael Waidner. 2018. Path mtu discovery
considered harmful. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 866-874.

Fernando Gont. 2010. ICMP Attacks against TCP. RFC 5927. Internet Engineering
Task Force. 1-36 pages. http://www.rfc-editor.org/rfc/rfc5927.txt

Amir Herzberg and Haya Shulman. 2012. Security of patched DNS. In Com-
puter Security—ESORICS 2012: 17th European Symposium on Research in Computer
Security, Pisa, Italy, September 10-12, 2012. Proceedings 17. Springer, 271-288.
Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous,
or: One-Domain-to-Rule-Them-All. ORG. In 2013 IEEE Conference on Communi-
cations and Network Security (CNS). IEEE, 224-232.

Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys, Joshua A Kroll, and
k clafty. 2019. Network Hygiene, Incentives, and Regulation: Deployment of
Source Address Validation in the Internet. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 465-480.

Matthew Luckie and Ben Stasiewicz. 2010. Measuring path MTU discovery
behaviour. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement. 102-108.

Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and
Haixin Duan. 2020. Dns cache poisoning attack reloaded: Revolutions with side
channels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1337-1350.

Keyu Man, Xin’an Zhou, and Zhiyun Qian. 2021. DNS cache poisoning attack: Res-
urrections with side channels. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. 3400-3414.

Jack McCann, Steve Deering, and Jeffrey Mogul. 1996. Path MTU Discovery
for IP version 6. RFC 1981. Internet Engineering Task Force. 1-15 pages.
http://www.rfc-editor.org/rfc/rfc1981.txt

J McCann, S Deering, and] Mogul. 2017. Path MTU Discovery for IP version
6. RFC 8201. Internet Engineering Task Force. 1-19 pages. http://www.rfc-
editor.org/rfc/rfc8201.txt

Benjamin Mixon-Baca, Jeffrey Knockel, Diwen Xue, Tarun Ayyagari, Deepak
Kapur, Roya Ensafi, and Jedidiah R Crandall. 2024. Attacking connection tracking
frameworks as used by virtual private networks. Proceedings on Privacy Enhancing
Technologies (PETS) 1 (2024), 18.

Jeffrey Mogul and Steve Deering. 1990. Path MTU Discovery. RFC 1191. Internet
Engineering Task Force. http://www.rfc-editor.org/rfc/rfc1191.txt

Son Duc Nguyen, Mamoru Mimura, and Hidema Tanaka. 2018. Slow-port-
exhaustion DoS Attack on Virtual Network Using Port Address Translation.
In 2018 International Symposium on Computing and Networking. IEEE, 126-132.
Yepeng Pan and Christian Rossow. 2024. TCP Spoofing: Reliable Payload Trans-
mission Past the Spoofed TCP Handshake. In Proceedings of the 2024 IEEE Sym-
posium on Security and Privacy.

Jon Postel. 1981. Internet Control Message Protocol. RFC 792. Internet Engineering
Task Force. 1-21 pages. http://www.rfc-editor.org/rfc/rfc792.txt

Jon Postel. 1981. Transmission Control Protocol. RFC 793. Internet Engineering
Task Force. 1-85 pages. http://www.rfc-editor.org/rfc/rfc793.txt

Zhiyun Qian and Z Morley Mao. 2012. Off-Path TCP Sequence Number Inference
Attack How Firewall Middleboxes Reduce Security. In 2012 IEEE Symposium on
Security and Privacy. IEEE, 347-361.

Zhiyun Qian, Z Morley Mao, and Yinglian Xie. 2012. Collaborative TCP Sequence
Number Inference Attack: How to Crack Sequence Number under a Second. In
Proceedings of the 2012 ACM conference on Computer and communications security.
ACM, 593-604.

Md F Abdur Rahman and Parves Kamal. 2014. Holistic Approach to ARP Poison-
ing and Countermeasures by Using Practical Examples and Paradigm. Interna-
tional Journal of Advancements in Technology 5, 2 (2014), 82-95.

Anantha Ramaiah, R Stewart, and Mitesh Dalal. 2010. Improving TCP’s Robustness
to Blind In-Window Attacks. RFC 5961. Internet Engineering Task Force. 1-19
pages. http://www.rfc-editor.org/rfc/rfc5961.txt

Kaiqi Ru, Yaning Zheng, Xuewei Feng, and Dongxia Wang. 2021. The side-channel
vulnerability in network protocol. In Proceedings of the 2021 11th International
Conference on Communication and Network Security. 1-8.

Teemu Rytilahti and Thorsten Holz. 2020. On Using Application-Layer Middlebox
Protocols for Peeking Behind NAT Gateways.. In NDSS.

Daniel Senie and Paul Ferguson. 2000. Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing. Technical Report
2827. Internet Engineering Task Force. https://doi.org/10.17487/RFC2827
Samuel Sotillo. 2006. Ipv6 security issues. Scanning (2006), 1-6.

William J Tolley, Beau Kujath, Mohammad Taha Khan, Narseo Vallina-Rodriguez,
and Jedidiah R Crandall. 2021. Blind In/On-Path attacks and applications to VPNs.
In 30th USENIX Security Symposium (USENIX Security 21). 3129-3146.

TP-Link. Accessed December 2023. Brief Introduction of AP Isolation. https:
//www.tp-link.com/us/support/faq/2089/.

Yuxiang Yang, Xuewei Feng, Qi Li, Kun Sun, Zigiang Wang, and Ke Xu. 2024.
Exploiting Sequence Number Leakage: TCP Hijacking in NAT-Enabled Wi-Fi
Networks. In NDSS.

http://www.rfc-editor.org/rfc/rfc4787.txt
http://www.rfc-editor.org/rfc/rfc1812.txt
https://doi.org/10.17487/RFC3704
https://doi.org/10.17487/RFC3704
http://www.rfc-editor.org/rfc/rfc5382.txt
http://www.rfc-editor.org/rfc/rfc5382.txt
http://www.rfc-editor.org/rfc/rfc6269.txt
http://www.rfc-editor.org/rfc/rfc6269.txt
https://doi.org/{10.17487/RFC1122}
https://doi.org/{10.17487/RFC1122}
http://www.rfc-editor.org/rfc/rfc9293.txt
https://arxiv.org/pdf/2410.21984
http://www.rfc-editor.org/rfc/rfc5927.txt
http://www.rfc-editor.org/rfc/rfc1981.txt
http://www.rfc-editor.org/rfc/rfc1981.txt
http://www.rfc-editor.org/rfc/rfc8201.txt
http://www.rfc-editor.org/rfc/rfc8201.txt
http://www.rfc-editor.org/rfc/rfc1191.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc5961.txt
https://doi.org/10.17487/RFC2827
https://www.tp-link.com/us/support/faq/2089/
https://www.tp-link.com/us/support/faq/2089/

	Abstract
	1 Introduction
	2 Background
	2.1 Path MTU Discovery
	2.2 IP Address Sharing and Port Allocation

	3 Threat Model
	4 TCP Connections Inference
	4.1 Inferring Ports in Preserved Allocation
	4.2 Inferring Ports in Sequential Allocation

	5 Sequence Numbers Inference
	6 End-to-End Evaluations
	6.1 Experimental Setup & Workflow
	6.2 Experimental Results
	6.3 Case Study

	7 Real-World Measurements
	7.1 Experimental Setup & Workflow
	7.2 Experimental Results

	8 Discussion and Countermeasure
	8.1 Attack Limitations
	8.2 Countermeasure

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

