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Abstract
Website Fingerprinting (WF) attacks can effectively identify the
websites visited by Tor clients via analyzing encrypted traffic pat-
terns. Existing attacks focus on identifying different websites, but
their accuracy dramatically decreases when applied to identify fine-
grained webpages, especially when distinguishing among different
subpages of the same website. WebPage Fingerprinting (WPF) at-
tacks face the challenges of highly similar traffic patterns and a
much larger scale of webpages. Furthermore, clients often visit mul-
tiple webpages concurrently, increasing the difficulty of extracting
the traffic patterns of each webpage from the obfuscated traffic. In
this paper, we propose Oscar, a WPF attack based on multi-label
metric learning that identifies different webpages from obfuscated
traffic by transforming the feature space. Oscar can extract the
subtle differences among various webpages, even those with simi-
lar traffic patterns. In particular, Oscar combines proxy-based and
sample-based metric learning losses to extract webpage features
from obfuscated traffic and identify multiple webpages. We proto-
typeOscar and evaluate its performance using traffic collected from
1,000 monitored webpages and over 9,000 unmonitored webpages
in the real world. Oscar demonstrates an 88.6% improvement in
the multi-label metric Recall@5 compared to the state-of-the-art
attacks.
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1 Introduction
The Onion Routing (Tor) has millions of daily active clients and
protects their online privacy through multi-layer encryption with
multiple randomly selected relays [12]. However, it is vulnera-
ble to Website Fingerprinting (WF) attacks, which can effectively
deanonymize the communication. WF attacks identify the websites
visited by Tor clients through analyzing the unique traffic patterns
of the websites, e.g., packet sizes, timestamps, and directions.

Prior WF attacks [11, 17, 22, 44, 45, 50] develop complex model
structures to extract features of various websites from traffic. How-
ever, these attacks focus on identifying websites rather than fine-
grained webpages. Since a single website often hosts multiple web-
pages, accurately identifying fine-grained webpages can provide
additional valuable information. The performance of existing WF
attacks significantly declines when tasked with webpage identifica-
tion, as models trained with cross-entropy loss struggle to capture
the subtle differences in webpage traffic.

To identify different webpages, a series of fine-grained WF at-
tacks have been studied, i.e., WebPage Fingerprinting (WPF) at-
tacks [30, 46, 48, 49, 63], which leverage both coarse-grained and
fine-grained traffic attributes. However, Tor clients often visit mul-
tiple webpages consecutively, a common behavior that significantly
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complicates webpage fingerprinting and makes it challenging for
existing attacks to extract the unique patterns of each webpage
from the obfuscated traffic under the multi-tab setting [11]. Fur-
thermore, evaluations of previous WF and WPF attacks generally
involve a limited number of webpages. As the scale of webpages
expands, these attacks experience degrading performance [7].

To fully relax the assumption of existing attacks on the browsing
behaviors of Tor clients, the goal of this paper is to develop a fine-
grained webpage fingerprinting attack that is capable of identifying
multiple webpages concurrently visited. Generally, there are three
main challenges in webpage fingerprinting. First, webpage traffic
patterns share higher similarity [30, 56] due to analogous layouts,
increasing the difficulty of distinguishing different webpages in the
original feature space. Second, clients typically browse multiple
webpages concurrently. This will generate obfuscated traffic from
multiple webpages, resulting in irrelevant packets that can inter-
fere with the identification of individual webpages. Additionally,
multi-tab traffic patterns exhibit higher diversity due to the various
combinations of webpages and the dynamic packet order. Third,
the scale of webpages is approximately 50 times larger than that of
websites [36], posing significant challenges to the performance of
existing methods that primarily focus on website fingerprinting.

In this paper, we develop a multi-tab WPF attack framework
calledOscar, which is capable of identifying webpages based on the
subtle differences in their traffic patterns. The design of Oscar is
based on the key observation that even though webpages within the
samewebsite share similar layouts, their contents and resources still
exhibit differences, leading to subtle variations in their local traffic
patterns. We utilize metric learning to transform the feature space,
clustering traffic of the same webpages and distancing traffic of
different webpages to extract the subtle differences among webpage
traffic in the new feature space.

It is challenging to develop the metric-learning-based WPF at-
tack under the multi-tab setting due to the class collapse problem,
where the traffic of all webpages clusters to a single point [26].
To address this issue, Oscar utilizes multi-label metric learning to
construct the WPF attack. First, it employs two data augmenta-
tion mechanisms based on the characteristics of multi-tab traffic
to enhance the sample diversity. Second, it utilizes metric learn-
ing to transform the feature space to separate different webpages
based on a multi-label loss, which includes a proxy-based loss and
a sample-based loss. Specifically, to address the class collapse is-
sue, Oscar clusters relevant webpage traffic by setting proxies for
each webpage and separates irrelevant webpage traffic by isolating
samples with low label correlation. Finally, Oscar achieves efficient
and accurate multi-tab webpage identification on a large scale of
monitored webpages by leveraging proxy-based and sample-based
combined k-NN classifiers. The webpage identification relies on the
distribution characteristics of different webpages in the transformed
feature space.

We evaluateOscar using datasets collected under both the closed-
world and open-world settings, including 1,000 monitored web-
pages and more than 9,000 unmonitored webpages. To the best
of our knowledge, these are the first multi-tab webpage traffic
datasets regarding each webpage as a distinct class, with the num-
ber of concurrently accessed webpages being dynamic. We release

the datasets and source code of Oscar1. Compared to state-of-the-
art attacks, Oscar achieves an average improvement of 88.6% and
76.7% in Recall@5 under the closed-world and open-world settings,
respectively. Moreover, Oscar significantly outperforms previous
attacks under various scales of monitored webpages.

In summary, the contributions of this paper are four-fold:
• We develop a fine-grained WPF attack, Oscar, to identify web-
pages from obfuscated traffic under the multi-tab setting. To
the best of our knowledge, Oscar is the first multi-tab attack to
accurately identify fine-grained webpages at scale.
• We utilize data augmentation techniques both within and be-
tween traffic samples, leveraging the characteristics of multi-tab
traffic. The data augmentation designed for multi-tab traffic en-
hances the generalization of Oscar in real-world WPF attacks.
• We develop a multi-label metric learning method for traffic sam-
ples to transform the feature space. The feature transformation
combines the proxy-based loss and sample-based loss, effectively
separating different webpages from multi-tab obfuscated traffic.
• We collect the first multi-tab webpage traffic datasets with 1,000
monitored webpages and over 9,000 unmonitored webpages, and
validate the performance of Oscar under both the closed-world
and open-world settings.

2 Background
2.1 WF and WPF Attacks
WF Attacks. Recently, encrypted traffic analysis has been exten-
sively studied [27, 42]. WF attacks, a specific approach within the
broader field of encrypted traffic analysis, aim to identify the unique
traffic patterns of websites, including packet time intervals, sizes,
and directions. WF attacks compromise the privacy of Tor clients
by extracting the traffic patterns of different websites from packet
sequences. ML-based WF attacks [19, 39, 57] utilize expert knowl-
edge to construct features specific to websites for identification.
With advanced deep learning (DL) algorithms, DL-based WF at-
tacks [2, 50] enable automatic feature extraction and robust attacks.
To apply WF attacks in the real world, existing works develop WF
attacks for various real-world scenarios, such as under the multi-tab
setting [11, 17, 22], limited training data [37, 51], dynamic network
conditions [1], and various defenses [44, 47]. However, existing WF
attacks focus on identifying different websites, and have mostly
been evaluated on index pages. Despite certain attacks gathering
subpage traffic samples [11, 37, 41], their identification targets re-
main restricted to websites. When applied to fine-grained webpage
identification, these attacks become ineffective due to performance
deterioration caused by the high similarity of webpage traffic pat-
terns.
WPFAttacks. Existing ML-basedWPF attacks [48, 49, 63] leverage
global and local features to differentiate webpages. Existing DL-
based WPF attacks [30, 46] apply powerful Convolutional Neural
Networks (CNN) or Graph Neural Networks (GNN) to extract fea-
tures from webpage traffic. However, these methods either consider
distinguishing webpages within the same website or suffer from
the limitation of small-scale webpages. Additionally, none of the
above works address the challenge of multi-tab identification.

1https://zenodo.org/records/13383332
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Table 1: Summary of Existing Attacks.

Attacks
Identification

target1 Multi-tab2 Large scale3

k-FP [19] Website
DF [50] Website

Tik-Tok [44] Website
TF [51] Website

MWF [60, 61] Website
BAPM [17] Website
NetCLR [1] Website
TMWF [22] Website
ARES [11] Website

FineWP [48, 49] Webpage
BurNet [46] Webpage
GAP-WF [30] Webpage

Oscar Webpage
1 Identification target refers to if the attacks target on websites or webpages.
2 Multi-tab refers to whether the attacks consider the setting where clients can visit
multiple webpages and traffic from various webpages mixes.

3 Large scale refers to whether the attacks are evaluated under the
datasets with thousands of monitored webpages.

The existing attacks are summarized in Table 1. Different from
existing attacks, Oscar implements multi-tab identification target-
ing specific webpages from various websites. Furthermore, Oscar
expands the scale of monitored webpages to realize a real-world
WPF attack.

2.2 Metric Learning
Metric learning aims to develop a new data representation to es-
tablish the similarity of samples, enhancing the ability to distin-
guish among samples from different classes [24]. This technique
is widely applied in the image recognition domain to improve
the prediction accuracy in both classification and clustering prob-
lems [14, 18, 21, 25, 33, 38, 52–54, 59]. The core concept of metric
learning involves comparing anchor samples with positive sam-
ples or/and negative samples during the learning process, thereby
pulling samples from the same classes closer together and pushing
samples from different classes farther apart.

TF [51] and NetCLR [1] utilize metric learning and contrastive
learning to identify the differences among website traffic. Metric
learning is usually based on labeled data, while contrastive learning
does not require samples to be labeled. However, these attacks de-
pend on clean traffic under the single-tab setting to transform the
feature space. In particular, the performance of TF is significantly
impacted by the class collapse issue [26] when the traffic is ob-
fuscated under the multi-tab setting. Moreover, NetCLR augments
traces by analyzing single-tab traffic to pre-train a model using self-
supervised learning. However, there is a significant gap between
single-tab and multi-tab traffic patterns. Therefore, we design a
multi-label metric learning method to distinguish webpages from
obfuscated traffic.

3 Threat Model
The threat model of Oscar is illustrated in Figure 1. In our threat
model, the clients are free to explore various webpages, moving
beyond just the index pages. They are redirected to other webpages
by clicking on links displayed on the current webpage. Clients are

Tor Network

Attacker

…
…

×-

Client
…

Figure 1: The threat model of Oscar, where clients can access
both the index pages and other webpages under themulti-tab
setting.

often interested in multiple webpages, therefore they may open
multiple webpages concurrently, and the number of visited web-
pages is dynamic and unknown to the attacker a prior. Furthermore,
a website typically hosts multiple webpages. Therefore, the scale of
webpage monitoring is far larger than that of website monitoring.
We broaden the scope of our monitoring to include more monitored
webpages, accommodating the size of real-world webpages.

To identify the webpages visited by the client, the attacker has
the ability to eavesdrop on the communication link between the
client and the guard node of the Tor network to analyze the patterns
of bidirectional communication packets [11, 22, 50, 51]. Though the
connections between the client and the guard node are protected
by encryption, the attacker can gather traffic metadata such as
the direction, size, and time sequences of traffic packets to extract
unique fingerprint features that can be used to identify the web-
pages visited by the client. In addition, the attacker does not require
the ability to actively modify, delay, or decrypt these packets.

Similar to existing WF attacks [2, 11, 22, 44, 45, 50], we consider
both the closed-world and open-world settings. Under the closed-
world setting, Tor clients can only browse a limited number of
webpages, i.e., the monitored webpages. The attacker can collect
traffic from all monitored webpages to train the model. Under the
open-world setting, Tor clients can freely access a large number of
webpages unknown to the attacker, i.e., the unmonitored webpages.
Given the vast number of webpages in reality, obtaining training
samples for all of them is impractical, highlighting the realism of
open-world identification. Note that Tor clients under the open-
world setting still use multiple tabs to access both the monitored
and unmonitored webpages.

4 System Overview
Oscar is a robust WPF attack that leverages the differences in web-
page traffic to identify the webpages visited by Tor clients. Since
different webpages from the same website are not identical, it leads
to variations in local traffic patterns. Although it is difficult to di-
rectly distinguish webpage traffic in the original feature space, by
extracting the differences in webpage traffic through metric learn-
ing, we can separate different webpages in the transformed feature
space. Figure 2 shows the feature transformation of webpage traffic
through metric learning, where traffic from different webpages is
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Figure 2: Feature transformation based on multi-label met-
ric learning. Each color represents samples from a distinct
webpage.

isolated. Specifically, in our study of 1,000 webpages, the similarity
of traffic features across different webpages decreases by an average
of 52.92% after feature transformation. This reduction in similarity
highlights the effectiveness of Oscar in distinguishing webpage
traffic and accurately identifying the visited webpages.

Formally, considering W monitored webpages, the problem is
defined as follows: the sample set X={𝑥1,..., 𝑥𝑁 } contains N samples,
where each sample holds the dimension of 𝑑𝑖 ∗ 2, comprising both
the direction sequences 𝑑𝑠𝑖 and time sequences 𝑡𝑠𝑖 extracted from
the original packet sequences. The direction sequences are distin-
guished by +1 and -1 for outgoing and incoming packets, and the
time sequences are calculated as the interval relative to the first
packet. The label set is defined as Y={𝑦1,... , 𝑦𝑁 }, where each label
𝑦𝑖 is a W-dimensional 0/1 vector. 𝑦𝑖 𝑗 = 1 shows that the ith sample
comprises the traffic from the jth webpage. Under our attack setting,
the clients can visit multiple webpages, i.e., |𝑦𝑖 | ≥ 1. Consequently,
our problem is characterized as a multi-label classification, where
each sample may be associated with one or more labels. The ob-
jective is to precisely determine if each label is present in samples.
This is more challenging than the multi-class classification, as the
latter only considers the label with the highest probability.

Figure 3 shows the three modules in Oscar to achieve a robust
WPF attack. First, the Data Augmentation module enhances the
generalization of Oscar through inter-sample and intra-sample com-
bined data augmentation operations based on the characteristics
of multi-tab traffic in the real world. The inter-sample augmenta-
tion combines the traffic of two samples in chronological order to
enhance the traffic diversity from different webpage combinations.
The intra-sample augmentation exchanges packets within a single
sample to accommodate variations in packet order. Second, the Fea-
ture Transformation module leverages both the original samples
and augmented samples to train the DF-based feature transforma-
tion model based on two losses. The proxy-based loss clusters rele-
vant samples, and the sample-based loss isolates irrelevant samples.
Combining these two losses, this module obtains a feature transfor-
mation model responsible for transforming the feature space. Third,
the Webpage Identification module achieves efficient multi-label
webpage classification based on the distribution features of web-
page traffic in the transformed feature space. It is composed of two
k-NN classifiers, incorporating both the proxy-sample distance and

the sample-sample distance, to enhance accurate webpage identifi-
cation. The predicted webpages are determined based on the scores
calculated from the two classifiers.

5 System Design
In this section, we present the design details of Oscar, including the
Data Augmentation module, the Feature Transformation module,
and the Webpage Identification module.

5.1 Data Augmentation
The Data Augmentation module employs inter-sample and intra-
sample operations to generate simulated traffic based on the original
traffic, thereby enhancing the generalization to diverse multi-tab
traffic. To achieve the data augmentation,Oscar operates on the raw
traffic samples and labels based on traffic characteristics. However,
clients typically browse multiple webpages concurrently. Existing
data augmentation operations [1, 5, 62] cannot be applied to multi-
tab traffic, as they ignore the diversity introduced by traffic mixing
under the multi-tab setting. To address this issue, we design two
data augmentation operations specifically for multi-tab traffic.

Multi-tab traffic exhibits greater diversity compared to single-tab
traffic as the clients may browse multi-tab webpages with different
webpage combinations, resulting in various mixed traffic. Even
when the same combination of webpages is accessed, packets from
different webpages within a session are transmitted through dif-
ferent circuits, leading to a dynamic packet order [55]. Therefore,
multi-tab traffic is more diverse, both for different webpage combi-
nations and the same webpage combinations. To enrich the sample
diversity under the multi-tab setting, we incorporate two data aug-
mentation operations, as shown in Figure 4. First, we design an
inter-sample data augmentation that combines traffic of different
samples to adapt to the diversity arising from various webpage
combinations. Second, we implement an intra-sample data augmen-
tation that exchanges packets within a single sample to handle the
variations in packet order, addressing the diversity within the same
webpage combinations. We detail these two operations as follows.
Inter-Sample Augmentation. We design an inter-sample data
augmentation based on traffic combining to enhance the variety
of traffic from different webpage combinations. Under the multi-
tab setting, traffic from various webpages is mixed, making traffic
from the same webpage display completely different patterns when
mixed with different webpages. Figure 5(a) illustrates the corre-
lation between the edit distance of samples and the quantity of
browsed webpages, where the edit distance reflects the similarity
of two vectors by measuring the minimum operations required to
transform one vector to another. Specifically, we select 500 samples
from different webpage combinations. These samples are grouped
based on the number of labels, ranging from 1 to 5, with 100 samples
in each group. We then calculate the edit distance among samples
within each group, where all samples share the same number of
webpage labels. The results show that disparity in samples from
different webpage combinations increases as the number of concur-
rently accessed webpages rises. Therefore, Oscar adopts an inter-
sample augmentation to adapt to the diversity of various webpage
combinations.
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Figure 5: Analysis of multi-tab obfuscated traffic collected
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Different from the intra-sample augmentation, the inter-sample
augmentation involves two samples and operates on both the traffic
samples and labels. Specifically, Oscar combines the original two
traffic based on the time sequence of packets. Algorithm 1 details the
inter-sample augmentation.Oscar first sets two pointers to indicate
the packet indexes of the two samples respectively (line 1). Oscar
then compares the times of the indexed packets in the two samples,
and adds the packet with the earlier time to the newly generated
packet sequence, with the index moving one step backward (line
2-8). In this way, Oscar integrates the packets of the two samples
in a time-ordered manner. To generate the new label, Oscar unions
the labels of the two samples since the newly generated traffic

Algorithm 1: Inter-Sample Data Augmentation.
input :original sample1: 𝑑𝑠𝑖 (direction sequence),

𝑡𝑠𝑖 (time sequence);
original label1: 𝑦𝑖 ;
original sample2: 𝑑𝑠 𝑗 (direction sequence),

𝑡𝑠 𝑗 (time sequence);
original label2: 𝑦 𝑗 ;
input dimension: 𝑑𝑖 ;

output :generated sample: 𝑑𝑠𝑔(direction sequence);
generated label: 𝑦𝑔 ;

1 𝑖𝑛𝑑𝑒𝑥1 ← 0 𝑖𝑛𝑑𝑒𝑥2 ← 0 // set two pointers

2 for 𝑘 ← 0 to 𝑑𝑖 do
3 if 𝑡𝑠𝑖 [𝑖𝑛𝑑𝑒𝑥1 ] ≤ 𝑡𝑠 𝑗 [𝑖𝑛𝑑𝑒𝑥2 ] then // compare the times of the two

indexed packets

4 𝑑𝑠𝑔 [𝑘 ] ← 𝑑𝑠𝑖 [𝑖𝑛𝑑𝑒𝑥1 ] // add packet to the new sequence

5 𝑖𝑛𝑑𝑒𝑥1 ← 𝑖𝑛𝑑𝑒𝑥1 + 1
6 else
7 𝑑𝑠𝑔 [𝑘 ] ← 𝑑𝑠 𝑗 [𝑖𝑛𝑑𝑒𝑥2 ] // add packet to the new sequence

8 𝑖𝑛𝑑𝑒𝑥2 ← 𝑖𝑛𝑑𝑒𝑥2 + 1

9 𝑦𝑔 ← 𝑦𝑖 ∪ 𝑦 𝑗 // union the labels of two original samples

10 return 𝑑𝑠𝑔 , 𝑦𝑔

includes the packets of both the original samples (line 9). Following
this operation, Oscar generates a new sample that contains traffic
from a webpage combination that is not present during training.
With the inter-sample augmentation, Oscar enriches the variety
of webpage combinations, enhancing the generalization of Oscar
when applied to multi-tab webpage identification.
Intra-Sample Augmentation. In addition to the inter-sample
augmentation, we design an intra-sample data augmentation to
adapt to the traffic diversity of the same webpage combinations
under the multi-tab setting. Web browsing on various tabs is based
on distinct Tor circuits, resulting in dynamic packet ordering when
traffic mixes [55]. Figure 5(b) demonstrates the burst patterns of
traffic when browsing the same webpages twice. It is evident that
there is a distinct discrepancy between the burst patterns of the two
samples. To accommodate this sequential diversity when multiple
webpages are loaded concurrently, Oscar employs an intra-sample
augmentation strategy based on packet exchanging.
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Algorithm 2: Intra-Sample Data Augmentation.
input :original sample: 𝑑𝑠𝑖 (direction sequence);

exchanging ratio:𝑚𝑒 ;
output :generated sample: 𝑑𝑠𝑔(direction sequence);

1 𝑏𝑢𝑟𝑠𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑏𝑢𝑟𝑠𝑡𝑠 (𝑑𝑠𝑖 )
2 𝑑𝑠𝑔 ← 𝑑𝑠𝑖

3 𝑒𝑥_𝑛𝑢𝑚 ← 𝑙𝑒𝑛 (𝑏𝑢𝑟𝑠𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ) ∗𝑚𝑒 // calculate the number of bursts

to be exchanged based on the total burst number

4 𝑒𝑥_𝑏𝑢𝑟𝑠𝑡𝑠 ← 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑏𝑢𝑟𝑠𝑡_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠, 𝑒𝑥_𝑛𝑢𝑚) // sample

𝑒𝑥_𝑛𝑢𝑚 bursts from the burst sequence

5 for 𝑏𝑢𝑟𝑠𝑡 𝑖𝑛 𝑒𝑥_𝑏𝑢𝑟𝑠𝑡𝑠 do
6 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒_𝑏𝑢𝑟𝑠𝑡𝑠 (𝑑𝑠𝑔 [𝑏𝑢𝑟𝑠𝑡 ], 𝑑𝑠𝑔 [𝑏𝑢𝑟𝑠𝑡 + 1] ) // exchange the

selected bursts with their subsequent bursts

7 return 𝑑𝑠𝑔

The intra-sample augmentation modifies traffic within a single
sample without altering its label. Specifically, Oscar adopts an ex-
changing operation based on bursts. Bursts are consecutive packets
of the same direction, often containing resources like texts and im-
ages [1]. Algorithm 2 details the exchanging operation.Oscar begins
with identifying the bursts in the original direction sequence (line
1). Oscar then determines the number of bursts to be exchanged
𝑒𝑥_𝑛𝑢𝑚 based on the total burst number of the sample with a ratio
of𝑚𝑒 , and samples 𝑒𝑥_𝑛𝑢𝑚 bursts in the original traffic (line 3-4).
Finally, for each selected burst, Oscar exchanges it with the fol-
lowing burst, while leaving the remaining bursts unchanged (line
5-6). By setting the exchanging ratio advisedly, Oscar dynamically
adjusts the number of exchanges according to the total burst num-
ber of different samples, thus ensuring that the modification of
each sample is controlled within a manageable range. In summary,
this operation improves the ability to cope with the dynamic and
unpredictable patterns of packet order in multi-tab traffic.

Notably, our data augmentation is grounded in the analysis of
multi-tab traffic characteristics. By combining inter-sample and
intra-sample augmentation techniques,Oscar significantly enhances
sample diversity, ensuring the generalization of the WPF attack
under the multi-tab setting. After generating augmented samples,
we blend them with the original samples for feature transformation.

5.2 Feature Transformation
The Feature Transformation module transforms traffic features to
cluster traffic of the same webpages and separate traffic from differ-
ent webpages. To realize the above feature transformation, Oscar
needs to contrast the traffic of different webpages based on metric
learning, so as to extract the subtle differences in the traffic patterns
of different webpages. However, existing website fingerprinting
attacks based on metric learning [51] cannot be applied to web-
page identification. The reason is that Tor clients usually browse
multiple webpages under the multi-tab setting, with each traffic
having multiple labels. Traditional metric learning methods select
positive and negative samples based on the single label, leading
to a dramatic increase in the number of positive samples under
the multi-tab setting, which causes the class collapse issue [26]
(i.e., traffic from all different webpages clusters together in the new
feature space).

To address the above issue, we design a multi-label metric learn-
ing method to achieve feature transformation. The details of the
feature transformation are shown in Figure 6. To effectively identify
webpages corresponding to multi-tab obfuscated traffic, our feature
transformation contains a feature transformation model to embed
features to a lower-dimensional feature space and a multi-label
metric learning loss function to aggregate traffic of the same web-
pages and separate traffic of different webpages in the transformed
feature space.

The feature transformation model takes the original direction
sequences of traffic as input, and outputs the transformed lower-
dimensional vectors. We select DF as the feature transformation
model for the following reasons: (i) DF has demonstrated effective-
ness in WF attacks, achieving 98% accuracy in identifying different
websites [50]; (ii) DF is built upon CNN, which can effectively
extract the features regardless of the part in which the feature
fragments appear. The shift-invariance characteristic of CNN can
extract specific features with dynamic locations, which is particu-
larly important under the multi-tab setting. DF contains four basic
convolutional blocks and two fully connected layers. Each block
contains two one-dimensional convolutional layers and one max
pooling layer. We retain the original four convolutional blocks and
replace the fully connected layers with a linear layer to embed
the features to a low-dimensional feature space, enabling DF to
function as a feature extractor.

Beyond the feature transformation model, the loss function is
crucial for the effectiveness of feature transformation.Oscar utilizes
a multi-label metric learning loss to aggregate traffic from the same
webpages and separate traffic from different webpages. The loss
function comprises two parts: a proxy-based loss and a sample-
based loss.
Proxy-Based Loss. As discussed above, existing metric learning
approaches calculate loss based on positive samples, which leads
to class collapse under the multi-tab setting. Therefore, we develop
a proxy-based loss to aggregate traffic from the same webpages
under the multi-tab setting. The left part of Figure 6 illustrates
the proxy-based loss. We first set up proxies as representatives
for each webpage. Instead of pulling samples with the same labels
closer together, the proxy-based loss directs samples to the cor-
related proxies, therefore effectively aggregating samples of the
same webpages. Specifically, the positions of the proxies are dy-
namic and optimized together with the model’s parameters in each
epoch of model training. Such adaptability of proxies is crucial as
it contributes to learning more accurate distributions of different
webpages along with the model progressing through training.

To calculate the proxy-based loss, we first initialize the W prox-
ies in the proxy set P = {𝑝1, ..., 𝑝𝑊 }, where W is the number of
webpages. Proxies hold the dimension of 𝑑𝑜 , consistent with the
embedded vector dimension after the feature transformation model.
After proxy initialization, we excavate the proxy-sample relation-
ship to cluster relevant samples.

The proxy-sample relationship can be divided into two types:
positive proxy-sample pair and negative proxy-sample pair. In the
case where the sample contains traffic from the webpage associated
with the proxy, they are identified as a positive proxy-sample pair,
otherwise, they are a negative proxy-sample pair, i.e., if 𝑦𝑖 𝑗 = 1,
sample 𝑥𝑖 and proxy 𝑝 𝑗 constitute a positive proxy-sample pair.
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Figure 6: Details of the Feature Transformation module,
which comprises a DF-based model and a multi-label metric
learning loss function. We display the samples and their cor-
related proxies in the same color.

For positive proxy-sample pairs, the anticipated similarity between
them should approach 1, indicating that the samples are close to
the relevant proxies in the feature space. The positive loss is then
defined as the difference between the cosine similarity and 1:

𝐿𝑝𝑜𝑠_𝑝𝑟𝑜𝑥𝑦 ⟨𝑥𝑖 , 𝑝 𝑗 ⟩ = 1 − 𝑐𝑜𝑠_𝑠𝑖𝑚⟨𝑥𝑖 , 𝑝 𝑗 ⟩, (1)

where 𝑐𝑜𝑠_𝑠𝑖𝑚 refers to the cosine similarity shown as follows:

𝑐𝑜𝑠_𝑠𝑖𝑚⟨𝑥𝑖 , 𝑝 𝑗 ⟩ =
𝑥𝑖 · 𝑝 𝑗

∥𝑥𝑖 ∥ × ∥𝑝 𝑗 ∥
. (2)

On the other hand, negative proxy-sample pairs are anticipated
to exhibit low similarity, indicating their separation in the trans-
formed feature space. To prevent overfitting, Oscar sets a margin
for the expected similarity. If the similarity is below this margin,
indicating effective separation from unrelated proxies, the loss is
set to 0. The negative loss is then defined as the maximum of the
two terms:

𝐿𝑛𝑒𝑔_𝑝𝑟𝑜𝑥𝑦 ⟨𝑥𝑖 , 𝑝 𝑗 ⟩ =𝑚𝑎𝑥 (𝑐𝑜𝑠_𝑠𝑖𝑚⟨𝑥𝑖 , 𝑝 𝑗 ⟩ −𝑚𝑎𝑟𝑔𝑖𝑛, 0), (3)

where the margin is a hyperparameter preset.
We calculate the sumof all positive proxy-sample loss𝐿𝑎𝑙𝑙_𝑝𝑜𝑠_𝑝𝑟𝑜𝑥𝑦

and negative proxy-sample loss 𝐿𝑎𝑙𝑙_𝑛𝑒𝑔_𝑝𝑟𝑜𝑥𝑦 , and combine them
for the total proxy-based loss 𝐿𝑝𝑟𝑜𝑥𝑦 :

𝐿𝑝𝑟𝑜𝑥𝑦 =
𝐿𝑎𝑙𝑙_𝑝𝑜𝑠_𝑝𝑟𝑜𝑥𝑦

Θ𝑝𝑜𝑠_𝑝𝑟𝑜𝑥𝑦
+
𝐿𝑎𝑙𝑙_𝑛𝑒𝑔_𝑝𝑟𝑜𝑥𝑦

Θ𝑛𝑒𝑔_𝑝𝑟𝑜𝑥𝑦
, (4)

where Θ𝑝𝑜𝑠_𝑝𝑟𝑜𝑥𝑦 and Θ𝑛𝑒𝑔_𝑝𝑟𝑜𝑥𝑦 refer to the total number of
positive proxy-sample pairs and negative proxy-sample pairs. Note
that we divide by the number of positive pairs and negative pairs
to avoid quantity imbalance. The multi-label proxy loss effectively
enhances the accuracy of webpage identification by ensuring that
samples are tightly distributed around the relevant proxies. As a
result, the patterns of different webpages can be extracted.
Sample-Based Loss. Different from the proxy-based loss, Oscar
utilizes a sample-based loss to separate irrelevant webpage traffic
in the transformed feature space. Specifically, under the multi-tab

setting, the proxy-based loss might inadvertently bring traffic from
unrelated webpages closer together. The right part of Figure 6 illus-
trates this conflict. The left sample, comprising traffic fromwebpage
1 and webpage 3, is expected to be approximately positioned be-
tween proxy 1 and proxy 3. Similarly, the right sample, containing
traffic from webpage 2 and webpage 4, is likely to be located be-
tween proxy 2 and proxy 4. Despite that these two samples share
no common labels, their positions in the transformed feature space
can be notably close. Therefore, we design a sample-based loss to
effectively identify and separate irrelevant webpage traffic by evalu-
ating the similarity between samples in the feature space, ensuring
that traffic from distinct webpages is separated.

The sample-based loss takes advantage of the relationship be-
tween samples. Due to large-scale monitored webpages, the num-
ber of sample pairs with different labels is very large. Therefore,
we design sample mining based on the label coincidence degree
to selectively separate samples with low correlation, i.e., samples
without identical labels. To mine irrelevant sample pairs, we first
sift out the samples with at least two labels and build a new set
𝑋 ′ = {𝑥𝑖 |𝑥𝑖 ∈ 𝑋 ∧ |𝑦𝑖 | > 1}, where the total number of the filtered
samples is N’. Then we find samples with no overlapping labels in
X’, i.e., 𝑦𝑖 ∗𝑦 𝑗 = 0, and form the sample pairs. For irrelevant sample
pairs, the cosine similarity between them is defined as:

𝑐𝑜𝑠_𝑠𝑖𝑚⟨𝑥𝑖 , 𝑥 𝑗 ⟩ =
𝑥𝑖 · 𝑥 𝑗

∥𝑥𝑖 ∥ × ∥𝑥 𝑗 ∥
. (5)

We expect irrelevant sample pairs to show a lower degree of cosine
similarity. Similar to the calculation of the negative proxy-sample
loss, the margin is applied, and when the similarity is below the
margin, the loss is set to 0:

𝐿𝑖𝑟_𝑠𝑎𝑚𝑝𝑙𝑒 ⟨𝑥𝑖 , 𝑥 𝑗 ⟩ =𝑚𝑎𝑥 (𝑐𝑜𝑠_𝑠𝑖𝑚⟨𝑥𝑖 , 𝑥 𝑗 ⟩ −𝑚𝑎𝑟𝑔𝑖𝑛, 0) . (6)

In each epoch, we collect all the irrelevant sample pairs in the
batch and compute their sum 𝐿𝑎𝑙𝑙_𝑖𝑟_𝑠𝑎𝑚𝑝𝑙𝑒 . The total sample loss
is calculated as follows:

𝐿𝑠𝑎𝑚𝑝𝑙𝑒 =
𝐿𝑎𝑙𝑙_𝑖𝑟_𝑠𝑎𝑚𝑝𝑙𝑒

Θ𝑖𝑟_𝑠𝑎𝑚𝑝𝑙𝑒

, (7)

where Θ𝑖𝑟_𝑠𝑎𝑚𝑝𝑙𝑒 refers to the total number of irrelevant sample
pairs. Compared with the vanilla sample-based metric learning
methods, our approach focuses on samples with low label corre-
lation, thus significantly reducing the pair number. Overall, the
sample-based loss enhances the effectiveness of the feature trans-
formation by isolating irrelevant samples.

After calculating the two parts of losses, we combine them for
the total loss:

𝐿𝑜𝑠𝑠 = 𝐿𝑝𝑟𝑜𝑥𝑦 + 𝛽 × 𝐿𝑠𝑎𝑚𝑝𝑙𝑒 , (8)
where 𝛽 is a hyperparameter that adjusts the weights of these two
losses. When 𝛽 = 0, the above loss simplifies to the multi-label
proxy-based loss.

Note that the proxies are added to the parameters and updated
with the model’s parameters using the same optimizer. This dy-
namic adjustment refines the distributions of proxies, leading to
more precise boundaries for each webpage. Following the feature
transformationmodule, we strategically transform the feature space
to distinctly separate different webpages. This separation is vital
for effective webpage classification, as it ensures that each webpage
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is represented in a unique and distinguishable manner within the
feature space.

5.3 Webpage Identification
The Webpage Identification module integrates two k-NN classifiers
to achieve robust multi-tab webpage identification. Traditional k-
NN classifiers typically rely on the labels of the nearest samples for
classification. However, the diversity of multi-tab traffic can lead to
sample drift and performance degradation. Therefore, we integrate
a proxy-based k-NN and a sample-based k-NN, as illustrated in
Figure 7, to achieve robust webpage identification. The proxy-based
k-NN benefits from constantly updated and precise representa-
tions of webpages, focusing on the uniform features of webpages.
Meanwhile, the sample-based k-NN accounts for the diversity of
multi-tab webpage traffic across various webpage combinations.
Finally, we combine the results of these two classifiers to calculate
the label scores, leveraging the strengths of both to improve the
robustness of webpage identification under the multi-tab setting.

The proxy-based k-NN achieves classification based on the proxy-
sample distance. Specifically, it retrieves the nearest 𝑏 proxies and
calculates the scores using the distances of the retrieved proxies
with the target sample. Given that our transformed feature space is
built upon cosine similarity, our k-NN classifiers adopt the cosine
distance for score calculation:

𝑐𝑜𝑠_𝑑𝑖𝑠 ⟨𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑝 𝑗 ⟩ = 1 − 𝑐𝑜𝑠_𝑠𝑖𝑚⟨𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑝 𝑗 ⟩, (9)

where cos_sim is defined as above. 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 is the sample to be
identified and 𝑝 𝑗 is the retrieved proxy. Then the label scores based
on proxies 𝑠𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑥𝑦 are calculated as:

𝑠𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑥𝑦 𝑗 =

{ 1
𝑐𝑜𝑠_𝑑𝑖𝑠 ⟨𝑥𝑡𝑎𝑟𝑔𝑒𝑡 ,𝑝 𝑗 ⟩ 𝑝 𝑗 ∈ 𝑅𝑝𝑟𝑜𝑥𝑦
0 𝑝 𝑗 ∉ 𝑅𝑝𝑟𝑜𝑥𝑦

, (10)

where 𝑅𝑝𝑟𝑜𝑥𝑦 is the set of retrieved proxies. Proxies closer to the
target sample contribute higher scores, while proxies outside the
retrieved set contribute a score of 0.

Similarly, the sample-based k-NN retrieves the nearest 𝑏 samples
and calculates the sample-sample distance:

𝑐𝑜𝑠_𝑑𝑖𝑠 ⟨𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑥𝑖 ⟩ = 1 − 𝑐𝑜𝑠_𝑠𝑖𝑚⟨𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑥𝑖 ⟩, (11)

where 𝑥𝑖 is the retrieved sample. The samples are associated with
multiple labels, and each retrieved sample contributes the same
score for the corresponding labels. Then the label scores based on
samples 𝑠𝑐𝑜𝑟𝑒_𝑠𝑎𝑚𝑝𝑙𝑒 can be calculated by summing the contribu-
tions from all retrieved samples:

𝑠𝑐𝑜𝑟𝑒_𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 =
∑︁

𝑥𝑖 ∈𝑅𝑠𝑎𝑚𝑝𝑙𝑒∧𝑦𝑖 𝑗=1

1
𝑐𝑜𝑠_𝑑𝑖𝑠 ⟨𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑥𝑖 ⟩

, (12)

where 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 is the set of retrieved samples.
At last, we combine the results of these two classifiers, i.e., for

label j, the total score is the weighted sum of these two terms:

𝑠𝑐𝑜𝑟𝑒 𝑗 = 𝑠𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑥𝑦 𝑗 + 𝜃 × 𝑠𝑐𝑜𝑟𝑒_𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 , (13)

where 𝜃 is a hyperparameter that adjusts the weights of these
two scores. By combining the results of these two classifiers, our
webpage identification considers both the uniform characteristics
of different webpages and the variability of multi-tab traffic samples.
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Figure 7: Details of theWebpage Identificationmodule, which
consists of two k-NNs to calculate label scores.

Table 2: Hyperparameter settings in our evaluation.

Module Hyperparameters Value

Data Augmentation Input Dimension 𝑑𝑖 10,000
Exchanging Ratio𝑚𝑒 5%

Feature Transformation
Margin 0.1

Loss Weight 𝛽 4.5
Transformed Dimension 𝑑𝑜 512

Webpage Identification
Neighbor Number 𝑏 40
Score Weight 𝜃 2
Threshold 𝜏 0.3

The scores for different webpages are aggregated and ranked, with
the identified webpages being output based on a preset threshold 𝜏 .

6 Evaluation
In this section, we evaluate Oscar with datasets collected in the
real world. We compare the performance of Oscar with the state-
of-the-art WF attacks.

6.1 Experimental Setup
Implementation.WeprototypeOscar using Torch 1.9.0 and Python
3.8. We perform a random search of hyperparameters and set the
optimal hyperparameters to default values as shown in Table 2. For
the data augmentation module, we set the exchanging ratio𝑚𝑒 to
5% to sufficiently augment the original traffic without corrupting
the critical traffic patterns. For the feature transformation module,
we use the weight of the sample-based loss to a larger value (i.e.,
𝛽 = 4.5) to enhance the quality of the transformed feature space
under the multi-tab setting. For the webpage identification module,
we set the value of the threshold 𝜏 to achieve the best F1-score.
Further analysis of the impact of hyperparameters can be found in
Section 6.6.
Dataset. Existing datasets [11, 45, 50] regard each website as a
distinct class. To evaluate the performance of Oscar on realistic
WPF attacks, we collect multi-tab webpage traffic datasets. To the
best of our knowledge, these are the first datasets of real-world
traffic from multi-tab webpages, where each webpage is regarded
as a distinct class. To be specific, we collect two multi-tab datasets:
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Table 3: Details of our datasets.

Dataset
Webpage
Number

Label /
Sample1

Sample /
Comb.2

Sample
Number

𝑪𝑾 1,000 1-5 10 81,284
𝑶𝑾 9,236 2-5 1 9,236

1 Label / Sample represents the number of labels per sample.
2 Sample / Comb. represents the number of samples per webpage
combination.

closed-world dataset and unmonitored webpage dataset under the
open-world setting, as shown in Table 3.

• Closed-World Dataset 𝑪𝑾 : We first build our monitored web-
page set. Specifically, we select 115 websites from Alexa-top
20,000, visit the homepage of these websites and obtain 10 sub-
pages by crawling the links on each website. Then we record the
screenshots of these webpages during data collection, and filter
out the invalid webpages by checking whether the screenshots
exist and whether the webpage contents are successfully loaded.
In this way, we acquire 1,000 webpages in total, and regard them
as monitored webpages. We then collect samples of browsing
the above 1,000 monitored webpages. The number of webpages
visited in a session ranges from 1 to 5, with intervals between
webpages randomly set between 3 and 10 seconds. 10 samples
are collected for each webpage combination. We filter out sam-
ples with less than 1,000 packets and consider them as invalid
accesses.
• Unmonitored Webpage Dataset under the Open-World Set-
ting 𝑶𝑾 : For the unmonitored webpage set, we remove the
websites that have been used by the closed world in Alexa-top
20,000 and keep the homepage of the rest websites. After filtering
out invalid webpages, we get 9,236 webpages from distinctive
websites and regard them as unmonitored webpages. We then
collect samples of browsing a mixture of monitored webpages
and unmonitored webpages. The number of webpages visited in
a session is in the range of 2-5, with one from unmonitored web-
pages and the rest from monitored webpages. Each combination
within this dataset consists of different unmonitored webpages
and one sample is collected for each combination. In this way,
we ensure that the open-world traffic in the training set, valida-
tion set, and testing set originates from different unmonitored
websites.

The differences between our datasets and previous datasets
are as follows: (i) We separate the traffic of different subpages
from the same website and treat each webpage as a distinct class,
which is different from existing works that merely collect traffic
of index pages [45, 50] or utilize subpage traffic to identify web-
sites [11, 31, 37, 41]. (ii)We expand the scale of monitored webpages.
Most previous works only collect and monitor around 100 web-
sites [11, 17, 50, 51, 61], whereas wemonitor 1,000 webpages in total.
Specifically, our datasets are the largest multi-tab webpage datasets
in the wild. (iii) In the real world, the number of webpages visited
by clients in a session is dynamic, which is not fully considered by
existing works [17]. To adapt to this dynamism, the label number
of samples in our datasets is not fixed.

Baselines.We compare Oscar with six state-of-the-art WF attacks,
divided into two categories.
• Single-Tab Attacks. We select one machine-learning-based
method k-FP [19] and three deep-learning-basedmethodsDF [50],
Tik-Tok [44] and NetCLR [1]. k-FP extracts 175 features from time
and direction sequences and applies the Random Forest classi-
fier for website classification. The original k-FP attack uses 1,000
trees, which cannot be realized due to the high resource overhead
under the large-scale multi-tab setting. Therefore, we have to
reduce the tree number to 100. DF and Tik-Tok adopt CNN-based
architecture to achieve automatic feature extraction. NetCLR ap-
plies self-supervised learning to pre-train a DF model based on
augmented traces and finetunes the model with labeled traces.
Since the original cross-entropy loss adopted by the above three
methods is suitable for multi-class classification, we follow [11]
and change their loss function to the binary cross-entropy loss
to achieve multi-label classification.
• Multi-Tab Attacks. We select two multi-tab attacks BAPM [17]
and TMWF [22]. BAPM applies multi-head attention for multi-
tab identification and each head predicts an individual website.
TMWF applies the DETR algorithm in object detection and each
query predicts a website. Since BAPM can only identify a fixed
number of webpages, we follow [22] and set a "no-tab" class for
these two methods. We set N attention heads for BAPM and N
tab queries for TMWF where 𝑁 = 5 since the maximum number
of concurrently accessed webpages in our datasets is 5.
Due to various practical limitations, we do not compare Oscar

with all previous attacks. Specifically, TF [51] mines samples based
on single-label samples, leading to the problem of class collapse un-
der the multi-label setting. MWF [60, 61] can only identify the first
webpage under the multi-tab setting. ARES [11] builds a separate,
complex Transformer-based classifier for each website, making it
impractical for large-scale webpage fingerprinting due to its high
overhead. Therefore, these attacks are excluded from our experi-
ments.
Evaluation Metrics. We use two multi-label classification metrics
for evaluation: Recall@k and AP@k [6, 28]. Rather than assess the
result with the highest predicted probability, Recall@k evaluates
the recall rate of the top k predicted webpages with the highest
probabilities. Specifically, for sample 𝑖 , assuming the real set of
visited webpages is 𝑦𝑖 , and the set of top-𝑘 predicted webpages is
𝑦𝑖 , Recall@k is calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =
∥𝑦𝑖 ∩ 𝑦𝑖 ∥
∥𝑦𝑖 ∥

. (14)

AP@k is the average of Precision@k, which measures the pro-
portion of correctly predicted webpages among the top-𝑘 results.
Since the number of visited webpages in our datasets varies, AP@k
can reflect the performance more precisely. Specifically, for sample
𝑖 , assuming the real set of visited webpages is 𝑦𝑖 , AP@k can be
calculated as:

𝐴𝑃@𝑘 =

∑𝑘
𝑡=1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑡

𝑚𝑖𝑛(𝑘, ∥𝑦𝑖 ∥)
. (15)

To compute Precision@t, we get the top-𝑡 predicted webpages with
the highest probabilities 𝑦𝑖 . Precision@t is then defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑡 =
∥𝑦𝑖 ∩ 𝑦𝑖 ∥

𝑡
. (16)
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Table 4: Recall@5 of different attacks under the closed-world
setting.

Attacks k-FP NetCLR DF Tik-Tok BAPM TMWF Oscar

Recall@5 0.2331 0.1809 0.3354 0.3313 0.2106 0.3951 0.4899

Note that we do not calculate averaged Recall@k because the
denominator of Recall@k is the number of the ground truth label of
the sample, which is the same under different 𝑘 values. We calculate
Recall@k and AP@k for each sample in the dataset, and report the
average as the final results.

6.2 WPF Attacks in the Closed World
We first evaluate the performance of Oscar under the closed-world
setting, where clients only visit monitored webpages and the at-
tacker can collect traffic samples of all the webpages to train the
model. We use our closed-world dataset 𝑪𝑾 for evaluation. We
divide the dataset into the training, validation and testing sets with
the ratio of 8:1:1. Specifically, we utilize the augmented training set
to train the feature transformation model and finetune parameters
on the validation set. Then we use the trained model to trans-
form samples in the testing set and achieve webpage identification
based on the updated proxies and transformed training samples.
For NetCLR, we use the training set to pre-train the model and the
validation set to finetune. We calculate the multi-label classifica-
tion metrics Recall@k and AP@k with the 𝑘 values of Recall@k
in {5, 10, 15, 20, 25, 30}, and AP@k in {1, 2, 3, 4, 5}. Since BAPM and
TMWF predict webpages based on each attention head or tab query
and are unable to determine the probability of all the webpages
visited in a session, we can only compare with them on Recall@5.

We present the Recall@k and AP@k of five attacks in Figure 8
and Recall@5 of all methods in Table 4. Results show that Recall@k
and AP@k increase as the k value increases and Oscar achieves
the best performance in all metrics. Specifically, Recall@30 and
AP@5 of Oscar are both over 0.73, while the best results of other
methods remain around 0.52. Compared with k-FP, NetCLR, DF,
Tik-Tok, BAPM and TMWF, Oscar improves by 110.2%, 170.8%,
46.1%, 47.9%, 132.6% and 24.0% on Recall@5. The performance su-
periority demonstrates that Oscar can identify the webpages both
comprehensively and accurately. Although existing attacks achieve
good performance in terms of website identification, their effec-
tiveness significantly declines when applied to multi-tab webpage
identification. This performance reduction is primarily due to their
incapability of capturing the subtle distinctions hidden within the
high-dimensional feature vectors of similar webpages. In contrast,
Oscar concentrates on analyzing the differences among various
webpages through webpage comparison. The proxy-based metric
learning loss effectively clusters traffic from the same webpages
and the sample-based metric learning loss isolates traffic from ir-
relevant webpages. In this way, we separate different webpages
and extract their distinct characteristics in the transformed feature
space. In addition, the improved multi-label webpage identification
comprehensively takes into account the uniform characteristics of
webpages and the diversity of multi-tab traffic, therefore achieving
more accurate results under the multi-tab setting.
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Figure 8: Results of the closed-world experiment. We report
the Recall@k and AP@k with different 𝑘 values.

Remark. In a nutshell, Oscar achieves the best performance in
identifyingmultiple webpages from obfuscated traffic, which is cred-
ited to the effectively transformed features based on our method.
Besides, the proxy-based and sample-based combined webpage
identification can classify webpages more accurately.

6.3 WPF Attacks in the Open World
Under the open-world setting, the attacker can only collect samples
from a subset of webpages, which does not cover all the webpages
in the testing set. Typically, sensitive webpages constitute only
a fraction of the entire webpages, and our primary objective is
to precisely identify the particular monitored sensitive webpages
despite the interference of unmonitored webpages. Under the open-
world setting, following existing works[11, 50], we mix the closed-
world dataset 𝑪𝑾 and the unmonitored webpage dataset in the
open world𝑶𝑾 to ensure that the sample number of monitored and
unmonitored webpages is balanced. All the unmonitored webpages
are treated as a single class, while each monitored webpage is still
regarded as a distinct class. Note that samples under the open-world
setting are still multi-labeled and the number of sample labels is
also dynamic.

Figure 9 shows the performance under the open-world setting.
Since BAPM and TMWF cannot distinguish between the unmon-
itored and the padding webpages under the open-world setting,
we do not compare with them. Results show that Recall@30 of
Oscar remains around 0.7 and AP@5 remains over 0.67. Specifically,
Oscar improves by an average of 63.5% and 72.0% on Recall@30 and
AP@5 respectively. Therefore, Oscar can still identify webpages
more accurately than existing attacks in the presence of a large
number of unmonitored webpages. This is mainly due to our feature
transformation design. The proxy-based loss can individually clus-
ter traffic from monitored webpages and unmonitored webpages,
and the sample-based loss can further isolate irrelevant traffic.

Note that there is a slight performance drop compared to the
closed-world setting. We believe this is mainly because traffic pat-
terns of different unmonitored webpages exhibit obvious variations.
When they are regarded as the same class in the training phase, it
is challenging to extract the common feature pattern of all these
webpages. In addition, the traffic of unmonitored webpages in the
testing phase does not necessarily share similar patterns with the
unmonitored webpages in the training phase, and may even resem-
ble monitored webpages more closely, which brings confusion to
the model. In spite of this, Oscar still outperforms previous works
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Figure 9: Results of the open-world experiment. We report
the Recall@k and AP@k with different 𝑘 values.

Table 5: Details of the datasets for the evaluation on different
scales of monitored webpages.

Webpage Number Sample Number

700 70,889
800 74,683
900 77,387
1,000 81,284

under the open-world setting by separating traffic from various
monitored webpages and unmonitored webpages.
Remark. Overall, Oscar achieves the best performance under the
open-world setting, where traffic of monitored webpages is mixed
with that of unmonitored webpages. This demonstrates the supe-
riority of Oscar in handling real-world attacks with a substantial
number of webpages.

6.4 WPF Attacks on Various Scales of Webpages
We further evaluate the performance of Oscar on various scales of
monitored webpages.We consider the large-scale evaluation and set
the size of webpages as 700, 800, 900, 1,000. We use the closed-world
dataset 𝑪𝑾 for this experiment and the details of datasets with
different webpage numbers are shown in Table 5. The datasets are
constructed as follows: we first randomly sample different numbers
of webpages from the full set of monitored webpages, and then
filter traffic samples from the original dataset. We keep the samples
whose labels overlap with the selected webpages, and leave out the
others. For those selected samples, the labels corresponding to the
selected webpages are retained, and other labels are ignored. We
use Recall@5 and AP@5 as metrics to evaluate the performance of
different attacks.

The results are presented in Figure 10. As mentioned above,
BAPM and TMWF cannot calculate AP@5, so we do not compare
with them on this metric. Results demonstrate that Oscar consis-
tently delivers superior performance across various scales of web-
pages. Specifically, AP@5 of Oscar is maintained over 0.72, while
the best result of existing attacks is less than 0.58. Furthermore,
Recall@5 of Oscar declines by only 2.76% and AP@5 declines by
4.41% as the webpage number increases from 700 to 1,000. This
demonstrates the potential of Oscar to maintain effective across
different scales of monitored webpages. As the number of webpages
grows, the challenge to distinguish them in the original feature
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Figure 10: Results of the experiment on various scales of
webpages, where the webpage number ranges from 700 to
1,000.

Table 6: Ablation study results.

Method Closed-World Open-World

Recall@5 AP@5 Recall@5 AP@5

WI1 0.0155 0.0189 0.0238 0.0234
FT3 (combined) +WI1 0.4511 0.6749 0.4206 0.6272

DA2+FT3 (proxy-based) +WI1 0.3066 0.4450 0.2996 0.4340
DA2+FT3 (sample-based) +WI1 0.0063 0.0070 0.0413 0.0826
DA2+FT3 (combined) +WI1 0.4899 0.7344 0.4527 0.6766

1 WI represents the webpage identification module.
2 DA represents the data augmentation module.
3 FT represents the feature transformation module.

space increases. ButOscar focuses on contrasting webpages against
each other to extract the subtle differences among them. As a result,
Oscar can separate different webpages even if they are hard to
distinguish in the original feature space. Furthermore, the multi-
label classification based on k-NN is efficient and effective, allowing
realistic large-scale attacks in the wild.
Remark. Oscar outperforms existing attacks in classifying various
scales of webpages with the performance fluctuation kept within a
manageable range. When the scale of monitored webpages further
rises, Oscar is expected to sustain efficient and accurate attacks due
to its ability to extract the differences among webpages.

6.5 Ablation Study
Next, we conduct the ablation study to analyze the impact of each
module and the two loss functions on the attack performance. The
experiment is conducted under both the closed-world and open-
world settings and we report Recall@5 and AP@5. We consider the
following five settings: (i) k-NN classifiers with the raw features;
(ii) k-NN classifiers with proxy-based and sample-based combined
feature transformation; (iii) k-NN classifiers with data augmentation
and proxy-based feature transformation; (iv) k-NN classifiers with
data augmentation and sample-based feature transformation; (v) k-
NN classifiers with data augmentation and proxy-based and sample-
based combined feature transformation.

The experiment results are detailed in Table 6. When identifying
webpages based on the original feature space, it achieves a poor
performance in distinguishing different webpages. This is due to the
stochastic distributions of webpage traffic in the original feature
space. The incorporation of the feature transformation module
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Figure 11: Impacts of two critical hyperparameters on the
performance: loss weight 𝛽 in the Feature Transformation
module andneighbor number𝑏 in theWebpage Identification
module.

greatly improves the performance of Oscar, as it transforms the
feature space to cluster samples of the same webpages and separate
samples of different webpages. Additionally, the data augmentation
module generates more samples and enhances the sample diversity,
bringing further performance improvement.

Regarding the metric learning loss functions, the vanilla proxy-
based loss underperforms the combined loss as it ignores the rela-
tionship among webpages under the multi-label setting. Besides,
the vanilla sample-based loss aims at isolating irrelevant webpage
traffic but cannot cluster relevant webpage traffic, making it inef-
fective when used alone. Nevertheless, it can significantly improve
the performance when combined with the proxy-based loss, as it
contributes to the optimization of webpage distributions in the
feature space by isolating irrelevant webpage traffic.
Remark. To summarize, the feature transformation module plays a
vital role in webpage identification by effectively separating traffic
of different webpages in the transformed feature space. The data
augmentation module boosts the performance by generating more
samples and enhancing the sample diversity. The proxy-based loss
contributes to aggregate traffic from the same webpages, and the
sample-based loss is pivotal in separating irrelevant traffic. There-
fore, combining these two losses results in the best performance.

6.6 Analysis of Hyperparameters
In this section, we analyze the impacts of critical hyperparameters
on the performance of Oscar. We select two hyperparameters: loss
weight 𝛽 in the Feature Transformation module and neighbor num-
ber 𝑏 in the Webpage Identification module. 𝛽 adjusts the weights
of the proxy-based and sample-based losses, and 𝑏 decides the num-
ber of the retrieved neighbor proxies and samples. We evaluate
the above two hyperparameters in the closed world, and all other
hyperparameters are set to the default setting when evaluating each
hyperparameter.

Figure 11(a) shows the performance with different 𝛽 values. The
fluctuations in Recall@30 and AP@5 are maintained within 0.015,
demonstrating a stable performance with different settings. We
note that Oscar achieves better performance when assigning a
greater weight to the sample-based loss, demonstrating the impor-
tance of separating irrelevant traffic under the multi-tab setting.

Through this separation, the sample-based loss contributes to ex-
tracting the relationship among webpages, therefore optimizing
the distributions of different webpages in the transformed feature
space.

Figure 11(b) demonstrates the impact of 𝑏 values on the per-
formance. When retrieving more proxies and samples, Recall@30
exhibits a slight increase while AP@5 shows a slight decrease. But
both metrics stay within a narrow range from 0.71 to 0.77. Con-
sidering both the results of Recall and AP, we set the number of
neighbor proxies and samples as 40.
Remark. Overall, the variation in hyperparameter settings for
Oscar demonstrates only a modest impact on its performance, un-
derscoring that its superior performance is due to the robust design
instead of hyperparameter settings. This stability across different
settings highlights the model’s adaptability and reliability, making
it well-suited for real-world applications.

7 Discussion
Larger-Scale of Monitored Webpages. We assess the perfor-
mance of Oscar using 1,000 monitored webpages in the experi-
ments, which is still quite limited compared to the number of web-
pages in the real world. The substantial size of webpages leads to a
larger number of potential webpage combinations, which makes it
impossible to achieve a comprehensive analysis that matches the
number of real-world webpages. However, existing experiments
still demonstrate the superiority of Oscar on various scales of web-
pages and the potential to maintain effective on a even larger scale
of webpages. This effectiveness is largely attributed to our feature
transformation design. Despite that the increase in the webpage
number naturally reduces the disparities in the original feature
space, Oscar employs comparisons among different webpages, en-
abling it to effectively discern and capture these subtle distinctions.
Therefore, it is capable of separating webpages in the transformed
feature space even when the scale is further up.
Deploying Complex Webpage Fingerprinting Defenses. Re-
cently, an increasing number of works on webpage fingerprinting
defenses have been proposed. Existing defenses can be divided
into the following five categories: molding traffic into fixed pat-
terns [3, 4, 13, 29], adding dummy packets [15, 23], creating colli-
sions among webpages [35, 57, 58], splitting traffic into multiple
streams [9, 20] and introducing adversarial noise [16, 34, 43]. How-
ever, many existing defenses incur high latency and bandwidth
overhead, making them impractical for real-world deployment [31].
We will focus on improving the robustness of WPF attacks under
complex defenses in future work.
Robustness under Concept Drift. Concept drift is incurred by
the discrepancy between training data and testing data as the web-
page properties change over time [11]. In reality, the contents of
webpages are constantly changing, leading to variations in traffic
patterns. Therefore, the trained model may not be well adapted to
identify traffic a few years later, leading to a decrease in the iden-
tification accuracy. However, Oscar learns the differences among
webpages through metric learning instead of mapping features to
specific labels. Thus, the framework based on feature transforma-
tion remains effective in discerning the differences among web-
pages, even amidst content changes. In addition, we can finetune
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the feature transformation model and update the proxies by col-
lecting a modest amount of new samples to enhance the accuracy
under concept drift.

8 Related Work
Single-Tab WF Attacks.WF attacks compromise the online pri-
vacy of Tor clients by extracting website fingerprints from Tor
traffic. Early attacks [19, 39, 40, 57] extract website fingerprints
based on expert knowledge and utilize ML models for website
identification. Recently, DL has been widely applied to enhance
the performance of WF attacks. AWF [45] utilizes DL models for
automatic feature extraction and analysis. DF [50] develops an
improved CNN model capable of robust WF attacks against the
WTF-PAD defense [23]. Tik-Tok [44] and RF [47] improve traffic
feature representations, further enhancing the robustness of WF
attacks. However, the excellent performance of DL-based WF at-
tacks depends on a large amount of training data. Var-CNN [2],
TF [51] and GANDaLF [37] improve the model architecture and
the training method to achieve effective WF attacks with a small
number of training samples. NetCLR [1] augments traces and ap-
plies self-supervised and semi-supervised learning to enhance the
robustness across different network conditions. Holmes [10] imple-
ments an early-stage WF attack by analyzing the spatio-temporal
distribution features of traffic. Mitseva et al. [32] analyze traffic
from multiple subpages of the same website to enhance website
identification. Different from existing WF attacks that target on
website identification, Oscar effectively achieves a fine-grained
webpage fingerprinting attack.
WPF Attacks. Fine-grained WPF attacks present significant chal-
lenges because multiple subpages of a website often share similar
templates and layouts, resulting in more similar traffic patterns [49,
56]. Existing WPF attacks mainly identify webpages by extracting
packet-level features and flow-level features [30, 46, 48, 49, 63]. For
example, BurNet [46] extracts features from unidirectional burst
sequences based on CNN, and GAP-WF [30] utilizes GNN to extract
flow-level features. However, existing WPF attacks assume that Tor
clients only open a single tab to access webpages. Oscar relaxes
the assumption of existing WPF attacks, achieving more realistic
multi-tab WPF attacks. Even with the interference of noise packets
from other webpages, Oscar still achieves a robust WPF attack.
Multi-tab WF Attacks. The obfuscated traffic under the multi-tab
setting imposes challenges of extracting the pure traffic patterns of
each website [8, 61]. Existing multi-tab WF attacks identify obfus-
cated traffic under the multi-tab setting by applying the attention
mechanism [11, 17, 22]. For instance, BAPM [17] and ARES [11] use
the multi-head attention mechanism, and TMWF [22] integrates
powerful Transformer models for feature extraction. However, ex-
isting multi-tab attacks aim at differentiating websites rather than
fine-grained webpages and are only applicable to a small scale of
monitored websites. Oscar achieves a large-scale WPF attack under
the multi-tab setting.

9 Conclusion
In this work, we propose Oscar, a fine-grained WPF attack de-
signed for multi-tab webpage identification from obfuscated traffic.
Constructing WPF attacks is more challenging than the existing

WF attacks because the analyzed webpage traffic patterns exhibit
a higher degree of similarity than website traffic patterns. Oscar
utilizes metric learning to extract the differences among webpages,
which combines proxy-based and sample-based losses to transform
the feature space so that samples from the same webpages are clus-
tered and samples from different webpages are separated. Moreover,
we develop data augmentation mechanisms for Oscar, which al-
low Oscar to adapt to the diversity of multi-tab traffic in the real
world. We prototype Oscar, and evaluate the performance on the
collected datasets of multi-tab webpage traffic. The experiment
results demonstrate that Oscar achieves 88.6% and 76.7% improve-
ments of Recall@5 over the state-of-art attacks under both the
closed-world and open-world settings, while maintaining a stable
performance with various scales of monitored webpages.
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