
526 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

R-AQM: Reverse ACK Active Queue Management
in Multitenant Data Centers

Xinle Du , Ke Xu , Senior Member, IEEE, Member, ACM, Lei Xu, Kai Zheng, Senior Member, IEEE,

Meng Shen , Member, IEEE, Bo Wu , and Tong Li , Member, IEEE

Abstract— TCP incast has become a practical problem for
high-bandwidth, low-latency transmissions, resulting in through-
put degradation of up to 90% and delays of hundreds of mil-
liseconds, severely impacting application performance. However,
in virtualized multi-tenant data centers, host-based advancements
in the TCP stack are hard to deploy from the operators’
perspective. Operators only provide infrastructure in the form
of virtual machines, in which only tenants can directly modify
the end-host TCP stack. In this paper, we present R-AQM,
a switch-powered reverse ACK active queue management
(R-AQM) mechanism for enhancing ACK-clocking effects
through assisting legacy TCP. Specifically, R-AQM proactively
intercepts ACKs and paces the ACK-clocked in-flight data pack-
ets, preventing TCP from suffering incast collapse. We implement
and evaluate R-AQM in NS-3 simulation and NetFPGA-based
hardware switch. Both simulation and testbed results show that
R-AQM greatly improves TCP performance under heavy incast
workloads by significantly lowering packet loss rate, reducing
retransmission timeouts, and supporting 16 times (i.e., 60 to 1000)
more senders. Meanwhile, the forward queuing delays are also
reduced by 4.6 times.

Index Terms— Data center, multi-tenant, ACK, AQM.

I. INTRODUCTION

DATA centers have evolved rapidly over the last few years,
providing a wide variety of cloud services [5], [50] using

TCP as the dominant transport layer protocol. However, the
TCP incast problem causes drastic performance degradation
when multiple senders synchronously send data to one receiver

Manuscript received 24 September 2021; revised 7 March 2022;
accepted 14 July 2022; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor C. Peng. Date of publication 23 August 2022; date of current
version 18 April 2023. This work was supported in part by the China National
Funds for Distinguished Young Scientists under Grant 61825204, in part
by NSFC Project under Grant 61932016, and in part by the Beijing Out-
standing Young Scientist Program under Grant BJJWZYJH01201910003011.
(Corresponding author: Tong Li.)

Xinle Du and Lei Xu are with BNRist, Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing 100084, China (e-mail:
dxl18@mails.tsinghua.edu.cn; thuxl07@gmail.com).

Ke Xu is with BNRist, Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and also with PCL, Shenzhen
518066, China (e-mail: xuke@tsinghua.edu.cn).

Kai Zheng is with Huawei, Shenzhen 518129, China (e-mail:
kai.zheng@huawei.com).

Meng Shen is with the Beijing Institute of Technology, Beijing 100081,
China (e-mail: shenmeng@bit.edu.cn).

Bo Wu was with BNRist, Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing 100084, China. He is now with Tencent
Technologies, Shenzhen 518054, China (e-mail: wub14@tsinghua.org.cn).

Tong Li is with the Key Laboratory of Data Engineering and Knowl-
edge Engineering, Information School, Renmin University of China, Beijing
100872, China (e-mail: tong.li@ruc.edu.cn).

Digital Object Identifier 10.1109/TNET.2022.3197973

(i.e., many-to-one communication) with high-bandwidth and
low-latency links [12], [62]. As the number of senders
increases, bottleneck switches can quickly become overfilled.
Inevitable packet drops would impose TCP retransmission
timeout (RTO) for hundreds of milliseconds, resulting in
goodput (the application-level throughput [39]) reduction of
up to 90% [55], which affects the performance of applications.

Recently, a large number of improvements of TCP have
been proposed [5], [18], [45], [55], [61], [63]. Some work
identifies the cause of performance degradation and sug-
gests adjusting existing congestion control (CC) parameters
to match the data center network. For instance, Reducing-
RTO [55] reduces the minimum retransmission timeout
(RTOmin) value and reduces unnecessary waiting after packet
drops. Others have suggested redesigning CC, using a new
lossless RDMA (Remote Direct Memory Access) based net-
work stack, or even designing entirely new data center
transmission protocols. For example, DCTCP [5] accurately
controls the total throughput through the explicit congestion
notification (ECN) identifier provided by the switch to avoid
overloading the switch buffer and packet loss. DCQCN [63] is
a CC for the lossless network protocol RoCEv2 (RDMA over
Converged Ethernet version 2) [8], which uses Priority-based
Flow Control (PFC) [32] to avoid buffer overflow by forcing
the immediate upstream entity to pause data transmission.
NDP [45] redesigns the entire data center transport protocol,
including routing and CC, to provide low latency and high
throughput.

Although many of the above proposals have proven to
be commercially available, they face a great challenge on
real-world deployment in public and multi-tenant data cen-
ters [37]. This is because the common physical infrastructures
such as switches and network interface cards (NIC) are shared
by multiple tenants in the form of virtual machines (VMs).
It is the tenants who are able to deploy applications in
the VMs, select the corresponding transport layer protocols,
and decide end-system protocol stack parameters such as
ECN support and RTOmin value. Consequently, from the
perspective of operators of multi-tenant data centers, when
the tenants have already run the VMs, it requires more
effort to modify the network protocol stack than to mod-
ify the common physical infrastructures (see Section II-B).
In this case, simply changing the controllable physical
infrastructure without any modifications to the legacy transport
protocol stack in order to improve transmission performance
transparently would be a contribution for data center operators.

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8918-9580
https://orcid.org/0000-0002-6805-9565
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0002-1867-0972
https://orcid.org/0000-0002-3914-2415

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 527

Fig. 1. The general idea of R-AQM – an illustrative example.

A basic idea of transparently enhancing the transport proto-
col stack is an intrusive modification to the headers of packets
forwarded by switches. For example, HSCC [2] rewrites the
value of the receive window (denoted by rwnd) to one
MSS (Maximum Segment Size) in the ACK headers for all
congested flows. These approaches, however, are limited by an
artifact of the current window-based transport protocol design
(e.g., NewReno [25], CUBIC [49], and DCTCP [5]), in which
the window indicates the number of full-sized packets. In other
words, rwnd can not be rewritten to a proper fraction
(i.e., rwnd /∈ (0, 1)). This coarse granularity significantly
limits the scale of concurrency.

In this paper, we present a new mechanism called R-AQM
(Reverse Active Queue Management), which is transparent to
end-systems and fine-grained. Figure 1 illustrates the general
idea of R-AQM. The fundamental premise of R-AQM is
ACK-clocking [34], i.e., ACKs not only acknowledge receipts
of data packets but also trigger new packet sending. Unlike
existing AQM schemes [9], [21] that intrusively modify the
content of packets, R-AQM proactively intercepts ACKs to
prevent the source from sending the next packet too fast, which
also slows down the increase of the sending window. In this
way, R-AQM is able to deploy active queue management for
ACKs in the reverse path to adjust the in-flight traffic without
overwhelming the switch in the case of incast congestion.

The rest of the paper is organized as follows. We introduce
the background of the TCP incast problem, the deployment
challenges for multi-tenant data centers, and the degradation
of goodput by RTO in Section II. Section III illustrates
the design rationale of our solution. The detailed design
of R-AQM is demonstrated in Section IV. In Section V,
we address the implementation of R-AQM on NetFPGA
and P4. In Section VI, Section VII and Section VIII, we eval-
uate R-AQM in NS-3 and a small-scale testbed. Section IX
surveys the related work. Finally, Section X concludes this
paper.

II. BACKGROUND AND MOTIVATION

A. TCP Incast Problem Hurts Performance

TCP incast is a catastrophic goodput collapse that occurs
as the number of servers sending data to a client increases
beyond the ability of an Ethernet switch to buffer packets.

This scenario often happens intra data center communica-
tion when requesting data for file systems [52], during the
shuffle phase of cloud computing systems [16], and in the
partition/aggregate pattern of large-scale web applications [5].
The synchronous request workload causes packets to exceed
the buffer on the bottleneck link, resulting in severe packet
losses. Packet loss further causes costly timeout, which lasts
for hundreds of milliseconds (varies in different scenarios).
As a result, the goodput of the link drops due to wasting oppor-
tunities for sending data during the retransmission timeouts.
We also give a quantitative analysis on the TCP incast problem
below.

Assume that N incast flows with the same RTT are sharing
a bottleneck link with the capacity of C. Each flow needs to
send X bits, let n be the number of RTTs it takes to complete
the transfer of one flow and m be the average RTO times.
As illustrated in [2], the average goodput of the link is given
by:

Goodput =
X

n · RTT + m · RTO + X·N
C

In the case that RTT = 100μs and RTO = 100ms (the lower
bound in the Linux implementations), since RTO is usually
three orders of magnitude larger than RTT, it is easy to see
that a single time of RTO can lead to a sharp drop in goodput.

B. Deployment Challenges for Multitenant Operators

To control the TCP incast, data center operators need to
upgrade their hardware and (or) software. In private data
centers, administrators can change the physical infrastructure
such as switches and network interface cards (NIC), and also
modify the transport protocol stack at end-systems. There-
fore, improvements (e.g., Reducing-RTO [55], DCTCP [5],
NDP [45]) are possible to be deployed by systematically
upgrading infrastructures and systems.

However, in public and multi-tenant data centers, it requires
more effort for operators to modify the network protocol
stack than to modify the common physical infrastructures. In
virtualized multi-tenant data centers [37], [59], the common
physical infrastructures are shared by multiple tenants in the
form of virtual machines (VMs). Generally, the data center
operators deploy a default transport protocol stack in the
system image of each VM. It is the tenants who are able to
deploy applications or systems in the VMs, select the cor-
responding transport layer protocols, and decide end-system
protocol stacks (e.g., Use BBR [11] between the user and
the data center, use DCTCP [5] or NewReno [25] with ECN
within the data center) and parameters (e.g., ECN support and
RTOmin value).

Consequently, from the operators’ perspective, it requires
extra effort to modify the network protocol stack after tenants
have already run the VMs. For example, enabling virtual
CC in the hypervisor as specified in prior works such as
AC/DC TCP [27] and vCC [15]. Both of which provide
congestion agents in the hypervisor that transparently place
efficient CCs for tenant VMs. However, these methods require
full TCP state tracking and full TCP finite-state machines in

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

528 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

the hypervisor, which may overload the hypervisor and slow
it down considerably. In addition, since incast usually happens
on the last-hop switch, the end-to-end hypervisor-based way
may still suffer from incast problems. In other words, simply
applying the hypervisor-based solution only solves part of the
problems [45].

Based on the above observations, we seek a solution that
not only works on the incast problems but also transparent to
the TCP stack at end hosts.

C. Fine Granularity Requirement of Window Control

HSCC is a switch-based congestion controller [2] that
rewrites the value of receive window (denoted by rwnd) to
one MSS (Maximum Segment Size) in the ACK headers for
all congested flows without modifying TCP itself. However,
HSCC cannot cooperate with legacy TCP CCs very well in
data centers. Legacy TCP CCs in the Linux Kernel are almost
window-based (NewReno [25], CUBIC [49], BBR [11], and
DCTCP [5]). These window-based CCs have fundamental
flaws in small RTT networks, because they cannot reduce the
sending window infinitely (i.e., not less than 1 MSS). Since
the bandwidth-delay product (BDP) in a data center network
is usually small due to the small RTT, it is very easy for
the in-flight packets to become larger than the BDP+buffer.
In this case, the extra packets can only be dropped or be
resent by retransmission. However, when incast occurs, flows
may fail to build large enough in-flight packets to recover via
fast retransmission (e.g., 3-duplicate ACKs). As a result, this
coarse granularity significantly limits the scale of concurrency
and we need fine-grained window control.

To motivate the requirement of fine-grained window control,
we give a modeling analysis as below. Assume that the window
size of flow i at time t is wi(t), the switch buffer and the link
capacity are B and C, respectively. The queue size q(t) in the
switch at time t in the case of N incast flows is given by:

q(t) =
N∑

i=1

wi(t) − C·RTT

In the case of a large number of concurrent flows when
N ·MSS − C·RTT ≥ B, a considerable proportion of
flows may fall back to the stop-and-wait paradigm to avoid
packet loss and RTO. That is, there must be some flows
stopping sending data and setting the window to zero. This
coarse granularity significantly limits the scale of concur-
rency. Particularly, the number of concurrent flows is limited
to 40–60 in most modern switches [5], [10], [57]. However,
this is not nearly enough to sustain real data center commu-
nications. For example, a cluster running data mining tasks
have more than 80 concurrent flows per node [23], [60]; In
Facebook’s Memcached cluster [47], a single Web server may
access over 100 Memcached servers. Worse, a production data
center with 6000 servers supporting Web search applications
has over 1000 concurrent traffic on work nodes [5]. It is
obvious that even 1 MSS of sending window per flow is
enough to overwhelm the switch buffer on a burst.

To better understand how does the granularity of window
control impacts the scale of concurrency, we further conduct

Fig. 2. The experiment to show the incast problem.

a simulation. Each sender sends a 320KB message to a fixed
receiver. Three common CCs (NewReno with ECN, NewReno
without ECN, DCTCP) and one particular CC that always sets
the congestion window to 1 MSS (similar to HSCC [2]) are
investigated. Figure 2 shows the goodput and RTO times with
different scales of concurrency. Some insights are listed below:

(1) Even one RTO occurs, the loss of goodput is enormous.
(2) NewReno does not work well. Even with ECN, the

number of senders cannot exceed 10.
(3) DCTCP can alleviate the occurrence of incast collapse,

but the concurrency can only be maintained around 60.
(4) Even if the sending window is always 1 MSS, only about

80 concurrent flows can be maintained.
In summary, a more fine-grained window control is needed

to solve the incast problem. Meanwhile, switch-based mech-
anisms have the potential to overcome the deployment chal-
lenges for multi-tenant data centers. These greatly motivate
the design ideas and principles of R-AQM.

III. DESIGN RATIONALE

Our goal is to design an incast control mechanism in
the multi-tenant data center to handle as many concurrent
connections as possible effectively. We came up with a new
active ACK control approach called R-AQM. The critical
factor that inspires the new ACK control approach is that if a
sender does not receive an ACK, the sender cannot send the
next data packet. If the ACK can be intentionally delayed,
the senders’ following sending action will also be delayed
accordingly. The protocol that relies on the arrival of ACK
packets to infer that the network can accept more packets is
called the window-based ACK-clocking protocol [33], [34].

R-AQM enables the sources to alternate between two oper-
ation modes: one is the standard protocol mode (e.g., TCP
additive-increase/multiplicative-decrease (AIMD)), where the
source sends data according to its sending window in a
legacy way. Another is the R-AQM mode, where the ACK
delayed by the switch delays each source sending action.
The alternation between the two modes happens in response
to switch signals, based on the congestion level observed
in the switch buffer. When the queue in the switch buffer
builds up, the switch triggers the R-AQM mode. The switch
can proactively intercept the ACK packet in the backward
direction. When the queue recedes, the senders resume the
sending window.

An implicit consequence of this scheme is that short-lived
incast traffic is positively discriminated when it is most likely

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 529

Fig. 3. Window size and queue size process.

to experience nonrecoverable losses immediately after the
connection is set up. That is, when many synchronized flows
surge, the buffer content builds up fast, and our scheme
switches all ongoing flows to R-AQM mode. These flows
react, typically 1/2 RTT later, by delaying their next sending
action while the incast traffic flows are still within their
three-way handshake (or sending their first few packets).
The switch implicitly inhibits the sending window by proac-
tively intercepting the ACK packet transparent to TCP in the
end-systems.

Therefore, R-AQM naturally meets our requirements. When
incast occurs, the switch can proactively intercept the ACK
packet in the backward direction and send ACKs at a rate that
does not make the ACK-triggered data packet overwhelming
the switch. In this way, we can leverage active ACK control
to adjust in-flight traffic without being constrained by the
minimum window size shared by window-based solutions.
We only need to adjust the ACK rhythm appropriately in the
switch. Consequently, it is ideal for multi-tenant cloud data
center networks. Moreover, because the bottleneck switch can
capture the instantaneous queue length, it can sense incast
more quickly and thus make decisions more quickly to prevent
further congestion.

The rationale of R-AQM is to lower the nontrivial forward
data queuing delay by introducing a trivial backward ACK
queuing delay. In the incast traffic pattern applications, the for-
ward packet is usually the service request packet (e.g., Reduce
in MapReduce [16]), while the reverse packet is usually only
the ACK without piggybacked data. Compared with the ACK’s
backward queuing delay, applications pay more attention to
the forward queuing delay of the data packets. Forward delay
refers to the time taken by a packet departing from the sender
to the receiver, which is very important for the application’s
QoE. Backward delay in the reverse direction only delays the
confirmation of a data packet [40], [41], which does not greatly
impact QoE.

Figure 3 shows the window size and queue size with
R-AQM and ECN. We now analyze the steady-state behav-
ior of the R-AQM control loop in a simplified setting to
understand how to convert the forward queuing delay to
the backward queuing delay. We assume that the N flows
are synchronized for convenience of understanding; i.e., their
“sawtooth” window dynamics are in-phase. At time t0, output
queue length (Qout) exceeds Kr−aqm, and the switch starts
to buffer ACKs actively. From time t0 to t1, the senders

Fig. 4. R-AQM design.

need time to react to the ACK buffer action on the switch.
From time t1 to t2, the senders do not receive ACKs, so the
window remains unchanged. Meanwhile, the sending window
does not change, the total number of packets in the network
also does not change, so Qin+Qout remains unchanged. But
the input queue length (Qin) begins to grow, and the output
queue length (Qout) begins to decline. At time t2, the source
begins to receive ACKs again. R-AQM will repeat the same
action to keep Qout at a low level while the extra inflight
ACK packets are stored in Qin. Through the above steps, the
data queue transforms into the ACK queue, and the forward
queuing delay transforms into the backward queuing delay.
R-AQM alleviates the excessive window growth rate of
DCTCP (Figure 3(b)) without loss of throughput (Qout>0).

With these benefits, the next questions are how to properly
hold and send back ACKs in the switch, what problems active
ACK interception can cause, how to fix it, and so on. In the
next section, we introduce how we solve these problems by
proposing R-AQM.

IV. R-AQM

R-AQM is an incast control mechanism that aims to mitigate
buffer overflow problems by shaping ACKs in the switch
through assisting legacy TCP. Figure 4(b) presents our design
framework, which contains three main functional components:
the Virtual Input Queue, the Token Bucket, and the State
Machine. As shown in Figure 4, packets sent by the sender
are queued on the bottleneck port as usual, and each packet a
sender sends will be acknowledged by the receiver. (1) When
the returned ACK enters the bottleneck port, the VIQ (virtual
input queue) located in the switch input port recognizes
ACKs, intercepts them and stores them; (2) The Token Bucket
monitors the immediate egress sending packets and generates
tokens to the bucket to trigger the VIQ dequeue action;
(3) The State Machine parses queue length information, calcu-
lates the draining rate according to the congestion state. After
the sender receives the ACK, the sender adjusts the sending
rate and sends the next packet.

In this section, we propose our design by answering the
following four questions:

• How to intercept and buffer ACKs?
• What is the ACK dequeue policy in the switch?
• How to determine the draining rate of ACKs?
• What are the side effects, and how to compensate?

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

530 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

A. How to Intercept and Buffer ACKs?

The first step is to distinguish between different ACKs,
based on which the piggybacked ACKs (which can affect
the application QoE) and ACKs with the FIN flag (which
can not trigger a new data packet either) are excluded. In
this paper, we define pure ACKs as ACKs without FIN and
ACKs that are not piggybacked, which are determined by the
combination of the packet size and the header tag. With the
input arbiter, pure ACKs are queued in VIQ, and others are
queueing in the original input queue. VIQ is located between
the switch input port and the forward core. To better control
the pure ACK draining rate, we need to separate the ACKs
from other packets, setting up a virtual input queue for pure
ACKs. To avoid reverse-path congestion causing packet loss
or affecting RTT measurements, VIQ sets the highest priority
of each ACK. Even if the ACK packet size is small, VIQ
still needs some memory to store ACKs, so the design needs
to consider how to drop packets. When the ACK is dropped,
the sender will assume that the data was not received, which
wastes forward throughput and might cause RTO.

There are two reasons why we choose to set up a VIQ
instead of an ACK output queue. First, ACKs of con-
gested flows should be proactively intercepted. As shown
in Figure 4(a), port C’s output queue is the congestion point.
If the output queues of A and B are proactively intercepted,
then the wrong ACKs from other ports may be buffered,
affecting non-congested traffic. Second, deploying on an input
queue is relatively easier. The input queue can directly obtain
the output queue length within the same port, and the changes
in operation logic are minimized, which does not affect the
top design of the switch.

B. What Is the ACK Dequeue Policy in the Switch?

A proper switch implementation requires a hardware input
queue, and its dequeue action needs to be controlled by
a data plane. R-AQM uses the token bucket to trigger the
dequeue action. The token bucket is an algorithm for traffic
shaping in packet-switched networks. It can be used to check
whether data transmission at the packet granularity conforms
to the defined limits of bandwidth and burst, which mea-
sures the unevenness or variability of traffic. As shown in
Figure 4(b), the token bucket controls the token input rate
by monitoring the average value of Rsending . Each increment
of a token triggers an enqueue action (not necessarily sending,
see Section IV-C). Using the token bucket, on the one hand,
we can regulate the sending rhythm of ACKs. On the other
hand, the draining rate Rack can be adjusted by controlling
the proportion of the ACK consumption token.

C. How to Determine the Draining Rate of ACKs?

Having figured out how to buffer ACKs proactively, we need
to figure out when to drain ACKs. We use the State Machine to
judge the congestion state and adjust the ACK draining rate.
A simple idea is mapping the output queue length directly
to the ACK draining rate. The longer the queue, the more
severe the congestion and the slower the ACK should be sent.

Algorithm 1 VIQ Send Algorithm. state Is the R-AQM State
of One Port. α and n Are the Number of Tokens Consumed
and the Number of ACKs Emitted at Each Time. α and n
Control the ACK Draining Rate
1: function viq_send()
2: if state is NS and token ≥ α1 then
3: token -= α1; VIQ.pop(n1) // Normal State
4: else if state is DS and token ≥ α2 then
5: token -= α2; VIQ.pop(n2) // Draining State
6: else if state is CS and token ≥ α3 then
7: token -= α3; VIQ.pop(n3) // Congest State
8: end if
9: end function

Fig. 5. R-AQM state transition diagram.

The shorter the queue, the less severe the congestion, and the
faster the ACK should be sent. However, such a naive idea
suffers from some issues.

First, mapping functions are costly for hardware [39]. The
mapping of a linear function is difficult to implement in ASIC
or FPGA hardware due to the requirement of the division
operation. In general, the linear function is approximated
by a step function [43], [48]. Second, the feedback latency
causes oscillation. Since the network is a pipelined model,
when R-AQM buffers ACKs, it does not immediately reduce
congestion. Frequent changes in the ACK rate can cause
oscillations. Third, queue length does not identify a burst.
If a large amount of Incast traffic reaches the switch in a
burst, the forwarding rate will be less than the queue input
rate, and the queue length will continue to grow without any
fluctuation [51], [53]. In such cases, R-AQM requires active
buffering at the beginning of the burst, rather than waiting for
the queue length to reach a specific threshold. This is because
a low threshold is too sensitive to identify the burst, and a
high threshold makes it difficult to identify a burst.

In R-AQM, we use queue length and its gradient to judge
the congestion state comprehensively, and only three corre-
sponding states are set. Figure 5 shows the state transition
diagram, which is the most critical part of R-AQM. First,
it calculates whether the queue length continues to grow or
decline in time T . If the queue continues to grow, there will be
a burst, so no matter how long the current queue is, it should
trigger an active buffer to accommodate burst (left part of
Figure 5). If the queue length continues to decrease, it means
that the burst has ended. The ACK can be returned at this point,
rather than waiting for the queue to decrease to a certain value
(right part of Figure 5). When the network state is stable, just
like the traditional AQM, it can be determined by the threshold
(middle part of Figure 5).

Algorithm 1 illustrates the process of the ACK send action
in the switch. Generating a token in the token bucket triggers

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 531

the procedure viq_send() at Line 1. There are three states
to represent the different actions, namely Congest State (CS),
Draining State (DS), and Normal State (NS). We use α to
represent the number of tokens consumed and n to repre-
sent the number of ACKs emitted at each time. NS is the
steady-state of the switch and requires only a uniform ACK
response. In NS, α1

n1
= 1 (Line 2-3). DS indicates that the

forward queue is about to empty, so we need to speed up
emptying the reverse ACK queue. In DS, α2

n2
< 1 (Line 4-5).

CS means extreme congestion. In CS, α3
n3

� 1 (Line 6-7).
R-AQM needs to ensure that the ACK is sent at a low rate,
but not stopped. First, it avoids RTO caused by senders that do
not receive any ACKs for a long time. Second, it prevents some
of the flows from starvation in the case of burst congestion.

D. What Are the Side Effects, and How to Compensate?

Interaction with TCP RTO:
One concern of R-AQM is its interaction with TCP RTO.

R-AQM limits the rate of ACK in order to prevent RTO caused
by packet loss, so it is inevitable to increase RTT. It is not sure
whether this will cause RTT to be prolonged beyond RTOmin,
leading to TCP timeouts and spurious retransmissions. For this
reason, we specifically measure the RTTs in our experiments.
We find that our ACK control does not adversely prolong the
RTTs (for example, with 200 connections, the 99th percentile
RTT is less than 0.3ms). And we do not observe any spurious
retransmission.

Even though this phenomenon is rare, we still take into
account the possibility and design counter-measures. As each
pure ACK enters the switch, R-AQM records the time stamp
in the auxiliary packet header. When each pure ACK exits the
switch, R-AQM makes a judgment that if there are more than
5ms (which is recommended as the smallest RTOmin in [55]),
it is considered as an old ACK (which may be caused by TCP
timeout and retransmission), and will be dropped. The reason
is that by dropping the out-of-order ACKs, R-AQM avoids
disturbing the TCP at the sender for subsequent unnecessary
retransmissions.

Interaction with TCP CC:
Another concern of R-AQM is its interaction with TCP

CC. R-AQM takes effect before packet loss and ECN trigger.
Therefore, when R-AQM senses congestion, it not only needs
to delay the ACK transmission, but also needs to prevent the
sender from increasing the sending window.

Two mechanisms are recommended to compensate. The
first is a BECN-like mechanism [20] that directly marks the
ECN-Echo in the TCP packet header of the ACK in the
switch when there exists congestion. The senders therefore can
use ECN to reduce the sending window, avoiding congestion
quickly. Second, by considering packet loss as the congestion
signal [38], it is recommended to adopt a mechanism similar to
HSCC [2] that directly sets the ACK header’s rwnd to 1 in the
switch when incast congestion occurs. In R-AQM, when the
output queue length + VIQ length exceeds the ECN threshold
or HSCC threshold, the switch will be triggered to mark the
ECN-echo flag on the ACK or set the rwnd of the ACK to 1.

TABLE I

VARIABLES OF FLUID MODEL

With these two mechanisms, R-AQM works well with
existing CCs in the Linux kernel (NewReno [25], CUBIC [49],
and DCTCP [5]). It can also coexist with different CCs and
TCP settings, because R-AQM limits the sending window
(rwnd by HSCC) to 1 MSS, therefore treating each sender
fairly.

E. Stability Analysis

This section will use a flow model to demonstrate that
R-AQM does not affect the original system’s stability.
We assume that the source uses DCTCP. The main symbols
are summarized in Table I.

We now develop a fluid model by considering N long-lived
flows traversing a single bottleneck link with capacity C. The
following non-linear, delay-differential equations describe the
dynamics of w(t), α(t), and the queue size q(t), qin(t), qout(t)
in the switch:

dw

dt
=

(
1

R(t)
−w(t)α(t)

2R(t)
p(t − R∗)

)
(1 − r(t − R∗))

(1)
dα

dt
=

g

R(t)
(p(t − R∗) − α(t))(1 − r(t − R∗)) (2)

dq

dt
= (N

w(t)
R(t)

− C)(1 − r(t − R∗)) (3)

dqin

dt
= C − C(1 − r(t − R∗)) (4)

dqout

dt
= N

w(t)
R(t)

(1 − r(t − R∗)) − C (5)

Here p(t) indicates the ECN marking process at the switch
and is given by:

p(t) = 1{q(t)>Kecn} (6)

r(t) indicates the R-AQM delaying process at the switch.
To simplify the analysis model, we omit the Draining State
and set the Congest State draining rate to 0, thus:

r(t) = 1{q(t)>Kr−aqm} (7)

and R(t) = τ +q(t)/C is the RTT, where τ is the propagation
delay (assumed to be equal for all flows), and q(t)/C is the
queueing delay.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

532 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

Equations (1) and (2) describe the DCTCP source,
while (3)-(7) describe the queuing process at the switch and
all AQM schemes. The source equations are coupled with the
switch equations through the ECN marking process p(t) and
the R-AQM delaying process r(t) which get feed back to
the source with some delay. This feedback delay is approxi-
mately a fixed value R∗ = τ + Kecn/C. The approximation
aligns well with DCTCP’s attempt to hold the queue size at
around Kecn.

Equation (1) models the window evolution and consists of
the standard additive increase term, 1/R(t), and a multiplica-
tive decrease term, −w(t)α(t)/2R(t). The latter term models
the source’s reduction of window size by a factor α(t)/2 when
packets are marked with ECN (i.e., p(t−R∗) = 1). The term
(1−r(t−R∗)) models the R-AQM process, which means that
any behavior at the source side will be paused when R-AQM
is in effect (i.e., (1−r(t−R∗)) = 0). Equation (2) is a contin-
uous approximation of DCTCP’s estimated congestion degree.
Equation (3)-(5) models the queue evolution: Nw(t)/R(t) is
the network input rate and C is the service rate. Equation (4)
models the input queue evolution: The first term C is the
service rate and also the input queue’s input rate. The last
term C(1 − r(t − R∗) is the ACK draining rate controlled
by R-AQM.

By setting the LHS (left hand side) of Equations (1)-(5)
to zero, we see that the fluid model has a unique fixed point
when N ≥ (Cτ +Kecn)/2. Therefore, we have the following
two operating regimes:

(i) N ≥ (Cτ + Kecn)/2: In this regime, the model has a
unique fixed point, namely:

(w, α, q, qin, qout)
= (2, 1, 2N − Cτ, 2N − Cτ − Kr−aqm, Kr−aqm) (8)

This regime corresponds to the large N cases, where the sys-
tem has a specific steady-state behavior: each source transmits
two packets per RTT, of which Cτ fills the link capacity, and
the remaining 2N − Cτ build up a queue. All packets are
marked as the queue constantly remains larger than Kecn.
There are (2N − Cτ − Kr−aqm) ACK packets in Qin and
Kr−aqm data packets in Qout.

(ii) N < (Cτ + Kecn)/2: In this regime, the system does
not have a fixed point. Instead, it has a periodic solution or
limit cycle, characterized by a closed trajectory in state space.
Figure 6 shows a sample phase diagram of the limit cycle
projected onto the Window-Queue. As shown, all trajectories
evolve towards the orbit of the limit cycle. The whole process
is shown in Figure 2(a). This loop is similar to the pure
DCTCP system loop [6], so we omit the proof for brevity.

DCTCP with R-AQM can guarantee the stability of the
whole nonlinear system. Especially in the case of large N ,
R-AQM can store (2N−Cτ −Kr−aqm) ACK packets in Qin,
thus saving a large amount of storage space (ACK packet
size: data packet = 64B:1460B). R-AQM ensures Kr−aqm

data packets stored in the output queue, making the forward
throughput not drop and the forward latency be small, so as to
have a low completion time for mice flows. When N is small,
the whole system is basically controlled by the DCTCP source.

Fig. 6. Phase diagram showing occurrence of limit cycle.

R-AQM only ensures that the DCTCP window growth is not
too aggressive, and at the same time, does not cause excessive
throughput loss. In a word, R-AQM will not affect the stability
of the original system. While easing the incast problem, it can
also reduce the forward queue length and reduce the forward
delay.

F. Discussions

Parameters Guidance: According to Algorithm 1, nine
parameters of R-AQM need to be set. Kmax and Kmin rep-
resent the maximum and minimum values in the steady state,
respectively, and T stands for burst duration. α1, α2, α3 and
n1, n2, n3 control the ACK draining rate in different state. The
setting of these parameters is a trade-off. A small value of
K indicates that R-AQM will be triggered when the forward
queue is small, which will lead to low end-to-end latency
but also low throughput. In order to keep high throughput,
we need to make sure there are always packets in the forward
queue. A small T means that R-AQM is very sensitive to
burst and will slowdown active buffering, thus affecting queue
length and packet loss rate. Therefore, Kmin can be set
to 0.5-1.0 times BDP, Kmax can be set to 2 times BDP, and T
can be set to 0.2-0.6 times RTT. As discussed in section IV-C,
α1
n1

= 1, α2
n2

< 1 and α3
n3

� 1, this paper suggests
α2
n2

= 0.5 and α3
n3

= 10. The recommended setting is also
verified through simulations in Section VI-B.

Different ACK Mechanism: Piggybacked ACK and
delayed ACK affect the use of R-AQM. First of all, typical
inter-data center applications are MapReduce [16], GFS [22],
etc., and piggybacked ACKs are rare. When the flows using
pure ACKs coexist with flows using piggybacked ACKs, the
flows using pure ACKs will respond to congestion more
quickly and proactively. In this case, R-AQM can also support
more senders, but it cannot guarantee the fairness of the two
kinds of flows. Second, R-AQM assumes that the tenants
are using per-packet ACK (one incoming packet triggers one
ACK), which provides more precise control [14], [43]. Some
tenants may need to modify their ACK mechanism, such
as enabling Delayed ACK [42] so that an ACK can trigger
more than one data packet at a time. Delayed ACK will not
affect R-AQM’s ability to resolve incast problem, only tenant
performance. Hence data center operators should encourage
tenants to use the default TCP stack to get better performance.
In the worst case, this phenomenon can still be alleviated by
adjusting Kmax and Kmin.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 533

Symmetric Routing Dependency: R-AQM by design
requires the ACKs to return on the same backward path as
the data flow. This requirement can be easily met given the
common deployment of ECMP routing in data centers [2],
[14], [23]. At the same time, data center congestion often
occurs on the last hop (Top of Rack (ToR) switches) [46],
so we can also deploy R-AQM on last-hop switches to solve
the Incast problems. Section VI-D and VII-D also show that
R-AQM deployed on ToR switches only can also alleviate
incast problems. However, using ECMP to ensure symmetric
paths will limit the deployment of other flexible load balancing
mechanisms [4], [17].

Non-ACK-clocking Cases: In a multi-tenant data center,
the primary traffic is TCP/IP traffic [15], [27]. There is also
RDMA traffic depending on business requirements [29]. Since
R-AQM assumes ACK-clocking, it is hard work with non-TCP
transport protocols. Currently, in real-world scenarios, RDMA
traffic uses a separate priority. Therefore, R-AQM can be
applied to priority queues using TCP, avoiding the influence
of RDMA traffic and R-AQM. If the RDMA system uses the
ACK-clocking version, R-AQM can also alleviate the Incast
problem of RDMA. The experimental results of DCQCN+
win +R-AQM are also shown in Section VII. In addition,
if the tenant uses rate-based or RTT-based CC, R-AQM will
not make the congestion signal misjudged. Since ACK has the
highest priority, R-AQM does not affect RTT measurement.
Our experiment in Section VI-B also proved that R-AQM
would also reduce RTT, which helps rate-based congestion
control to judge congestion.

Elephant Flow and Mice Flow: R-AQM’s motive is to
address the TCP incast problem. Thus, like CC, R-AQM only
controls elephant flows and has little control over mice flows,
with only a few ACKs. However, R-AQM can reduce the FCT
of mice flows. Most mice flows can end up in a single sending
window, and R-AQM makes the forward queue length very
small, so mice flows can pass quickly.

Maximum support senders and Memory usage: There is
an upper limit to the number of R-AQM concurrency, which
depends on the use of two pieces of memory (VIQ and the
regular output queue). R-AQM controls the senders’ sending
action by shaping the ACKs, so it cannot reduce packet loss
during the first control loop only by increasing the output
queue memory. When traffic is stable, the number of senders
depends on the VIQ size. Because the ACK is smaller than
the data packet (60B v.s. 1460B), R-AQM can support more
senders than traditional methods.

Malicious tenants: A malicious tenant can easily attack
R-AQM in the following ways: a. Use an extremely large TCP
initial window to cause packet drops; b. Send excessive ACK
packets to impact other tenants. R-AQM does not focus on
these security issues because these attacks can also impact data
centers that are not using R-AQM. Generally, such problems
can be alleviated by anomaly detection.

V. IMPLEMENTATION

R-AQM enabled Hardware Switch:
Ideally, the R-AQM’s Token Bucket and the State Machine

would be implemented in switch ASICs. We build a prototype

Fig. 7. R-AQM switch architecture on NetFPGA-SUME.

of such a solution using the NetFPGA-SUME platform [64],
a programmable hardware platform. It has four 10Gb/s Ether-
net interfaces and a Xilinx Virtex-7 FPGA with QDRII+ and
DDR3 memory resources.

Figure 7 shows the top design of the R-AQM switch in
NetPFGA. Packets enter one of the 10Gb/s interfaces and
are stored in a regular input queue or VIQ. VIQ is allocated
36KB of SRAM, which separates from the regular input queue.
ACKs are recognized while entering the input port. Pure ACKs
enter VIQ, and others enter the regular input queue. The input
arbiter takes packets from the input queues using a round-robin
(RR) scheduling policy and feeds them to the L2 switching
logic via a 256bit-wide 200MHz bus, which is fast enough to
support more than 40Gb/s. The token bucket is used to trigger
the VIQ sending action. The state machine determines the
network congestion and adjusts the ACK draining rate through
the queue length and its gradient. Pure ACK requires tokens
and enters the input arbiter. Other packets can directly go to
the input arbiter. After a conventional L2 forwarding decision
is made, the packet reaches output queues.

Clearly, R-AQM implementation is quite simple, and the
processing delay at the switch is very small. R-AQM does not
operate normally for every packet, because it is only triggered
to avoid packet dropping. Therefore, the additional processing
delay at the switch is not introduced frequently. In addition,
R-AQM introduces only a little resource consumption on
switches. The R-AQM switch uses 58,610 LUTs (14% of the
Virtex7’s capacity), 29,370 FlipFlops (10%), and 1,470 blocks
of RAM (45%). In comparison, the ECN-version FPGA switch
uses 12%, 9%, and 40% respectively, so the complexity added
by R-AQM is quite small.

We conclude that the implementation complexity, process-
ing delay, and resource consumption of R-AQM are accept-
able; thus, R-AQM can be built into commercial switches.

R-AQM Switch implementation in P4:
Figure 8 shows the implementation of R-AQM in P4.

First, the token bucket is triggered based on events. Each
packet triggers the accumulation calculation within the dura-
tion between the current packet and the previous successfully
sent packet [28]. Second, the state decision machine needs to
record the length of the queue and the change value of the
length which is stored in two registers. We use an additional
table (StateTokenRead table) and to read the state and the
number of tokens from the register and save it as packet

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

534 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

Fig. 8. R-AQM switch implementation on P4.

metadata [26]. Finally, VIQ is almost impossible to implement
in P4, because the P4 operation primitive has nothing to do
with buffer [28]. Here we use a slightly more complicated
implementation. Each time an ACK enters the switch, we store
the five-tuple of the ACK and the ACK Sequence Number into
a FIFO which is made up of registers and drop the ACK packet
(WriteVIQ table). If an ACK needs to be emitted, a data packet
is cloned using the clone primitive (Action table). The cloned
packet re-enters the switch via the recircle primitive (Clone
table). The P4 switch will get an ACK information from VIQ
and fill it into the cloned packet, using the truncate primitive
to drop the payload, turns it into a real ‘ACK’.

We have implemented R-AQM on BMv2,1 however existing
switches do not provide as much hardware resources and are
not yet implemented on real P4 switches. In the future, we will
be able to deploy R-AQM in a real environment when the
relevant hardware resources are sufficient.

VI. SIMULATIONS OF TCP

In this section, we conduct a simulation analysis of R-AQM
performance with TCP using NS-3 [1]. Specifically, we eval-
uate three critical aspects of R-AQM as follows: (1) The flow
scalability of R-AQM in terms of goodput, drop times, RTO
times, latency and queuing. (2) The incast reaction details
of R-AQM, concurrency, sensitivity and fairness analysis
of R-AQM. (3) The effectiveness of R-AQM under all to all
traffic.

A. Settings

The topology in the NS-3 simulations is a FatTree [3]. There
are 16 Core switches, 20 Aggregation switches, 20 ToRs (Top-
of-Rack switches) and 320 servers (16 in each rack), and each
server has a single 10Gbps NIC connected to a single ToR. The
capacity of each link between Core and Aggregation switches,
Aggregation switches and ToRs are all 40Gbps. All links
have a 1μs propagation delay, which gives a 12μs maximum
base RTT. The switch per port’s buffer is 300 packets (or about
400KB) derived from real device configurations.

1https://github.com/p4lang/behavioral-model

Fig. 9. Goodput, drop times, RTO times, latency, RTT and queue length
with many concurrent flows.

We use two standard AQMs as baselines, ECN and droptail.
We list the terminologies below:

• ECN: The corresponding senders’ CC for ECN uses
DCTCP.

• R-AQM (ECN): The corresponding senders’ CC for
ECN uses DCTCP and the switch deploys R-AQM.

• DropTail: The corresponding senders’ CC uses TCP
NewReno.

• R-AQM (DropTail/DropT): The corresponding senders’
CC uses TCP NewReno and the switch deploys R-AQM.

The relevant parameters are set as follows: For R-AQM,
we set Kmin to 20 packets, Kmax to 40 packets, T to 3μs,
α1
n1

= 1, α2
n2

= 0.5 and α3
n3

= 10 in Algorithm 1. The switch

VIQ is 500 packets, about 23KB. TCP is set to the default
TCP RTOmin of 100 ms. For the ECN threshold, we scale
the ECN threshold proportional to the link bandwidth. We set
ECNKmin = ECNKmax = 65 packets according to [5].

B. Incast

In incast, N hosts send a 3.2MB flow to a host. We vary the
number of flows from 1 to 200. Figure 9 shows the results.

Goodput: First, we measured the goodput. In general,
R-AQM can easily handle 200 concurrent connections without
seeing any trend in performance degradation, while Droptail
and ECN begin to downgrade when the numbers of con-
nections exceed 5 and 60, respectively. When the number
of connections is small, DCTCP with R-AQM shows little
advantage over TCP with R-AQM in goodput (a few Gbps).
For TCP, R-AQM only limits the sending window by limiting
rwnd, so utilization decreases when the number of senders
is small. However, R-AQM can continue to achieve near
9.8 Gbps goodput with an increasing number of connections.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 535

Fig. 10. Reaction details and sensitivity analysis of R-AQM.

Packet Drops and RTO: Second, we measured the drop
times and RTO times. As shown in Figure 9(b) and 9(c),
when the concurrency value is less than 200, R-AQM does
not lose packets and trigger RTO. This also explains why
R-AQM has no goodput loss. However, in the case of ultra-
high concurrency, it still causes packet loss and RTO, which
will be analyzed later.

Latency and RTT: Third, we measured forward one way
latency and RTT. It can be seen that the latency can be
significantly reduced with R-AQM. R-AQM achieves from
4.6× to 7.5× lower 99th latency compared to ECN. Droptail’s
latency is very low because its goodput is low, and the switch
cannot be utilized effectively. As the number of concurrent
connections increases, the 99th RTT increases but the 99th
latency almost remains unchanged, indicating that R-AQM can
keep the forward delay at a low value regardless of the number
of concurrent flows. We also find that R-AQM delivers little
impact on RTT. For example, when there are 200 concurrent
connections, 99% of them are less than 0.3ms. Currently,
many production data centers have reduced RTOmin to a
low value (e.g., 10ms [5]). In Linux, the lowest possible RTO
value is 5 jiffies (5ms) [55]. This suggests that R-AQM can
work smoothly and will not result in issues like spurious
timeouts and retransmissions in production datacenters with
low RTOmin.

Queue Length: Fourth, we measure the buffer use of
R-AQM in the last hop switch. Figure 9(f) shows that the
buffer occupation of R-AQM is much lower than that of ECN.
Moreover, as the number of senders increases, the buffer grows
less significantly, while the ECN fills up when the sender
is 70. In combination with Figure 9(d) and 9(e), with the
sender number increasing, latency is unchanged while RTT
is increasing, indicating that the reverse latency is increasing.
This proves that the forward queue length is unchanged while
the reverse VIQ is increasing all the time. The increase of
ACK numbers makes little use of the buffer, so the utilization
of the buffer can be reduced. For Droptail, a large number of
packets are queued or lost in the first or middle hop, so the
queue length is not the maximum one in the last hop.

Response Details of R-AQM: Fifth, we analyzed R-AQM
response details and found why it could alleviate incast
and reduce latency. Figure 10(a) shows the change in the
queue length of the bottleneck switch overtime where N=36.
R-AQM’s queue starts to drop as it grows to 50 packets, while
the ECN needs to grow to 250 before it can be adjusted.
Fast adjustment of queue length can avoid more packet loss

Fig. 11. Fairness of different CCs.

and reduce more RTO times. Moreover, R-AQM converges
fast, which converges before 1000μs while ECN converges
after 2000μs. Also, R-AQM negative feedback regulates queue
length, maintaining a short queue length.

Concurrency and Sensitivity Analysis of R-AQM: To
explore the maximum number of connections that R-AQM
can handle, we fix the total traffic volume and gradually
increase the number of senders. We also repeat the simulation
experiment using different parameters to assess the sensitivity
of R-AQM to the setting of parameters. The results show
that goodput is affected by the choice of the parameter VIQ
length. Other parameters are not very sensitive to goodput.
From Figure 10(b), we find that R-AQM can easily support
more than 500 concurrent connections and sustain near 9Gbps
goodput when facing 1000 senders. The goodput loss of 400p
in R-AQM with 512 senders was due to VIQ dropping the
ACK. After an ACK packet is lost, the sender cannot sense it
and can only wait for RTO to resume sending. When there is
more traffic, it will saturate more bandwidth, so the throughput
will be higher. As shown in Figure 10(c) and 10(d), parameter
T is sensitive to the reaction of the burst and K is sensitive to
latency. We tested different T and K responses to burst, the
results verify our analysis results in Section IV-F.

Fairness: Multi-tenant data centers might provide different
CCs in use at the same time, so we also explore the fairness of
hosts using different CCs. We observed the FCT distribution
of different CCs’ flow in the incast scenario. We discuss two
scenarios, 10-to-1 incast and 100-to-1 incast, in which 50%
of hosts use DCTCP, and the other 50% of hosts use TCP.
In the 100-to-1 incast, the flow size is 3.2MB. In the 10-to-1
incast, to keep the time scale the same, we use 32MB flows.
Figure 11 shows the results. In the 100-to-1 incast, R-AQM
can reduce the gap between the two CCs. In the 10-to-1 incast,
R-AQM can reduced the gap in 99th FCT. We believe this is
because that R-AQM avoids RTO (abnormal state) effectively

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

536 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

Fig. 12. Shuffle workload.

and different CCs behave similarly in normal state. We also
calculated Jane’s Fairness Index (JFI) [35] for 10-to-1 incast
and 100-to-1 incast, respectively. When the concurrency is 10,
the index of R-AQM is 0.911, while that of ECN is 0.926.
When the concurrency is 100, R-AQM is 0.981, and ECN
is 0.982. From JFI value, R-AQM does not affect the fairness
between TCP.

C. All to All

The all-to-all traffic patterns commonly happen in the shuf-
fle step of MapReduce [16], which generates incast towards
each host running a task. We simulate an all-to-all workload
using NS-3. We select three machines on each rack, a total of
3 × 20.60 machines. Each machine sends a 500KB elephant
flow and 50 5KB mice flows to the other 59 machines. So each
machine sends and receives 3,540 (60 × 59) elephant flows
and 177,000 (60 × 59 × 50) mice flows.

Figure 12 shows the CDF of the flow completion time under
different loads. Because Droptail results are unsatisfactory,
which causes many RTO, it is omitted here.

At the load of 40% scenarios, with R-AQM, the completion
time of the mice flows is reduced. The 50th percentile FCTs
are reduced from 208μs to 128μs and the 99th percentile FCTs
are reduced from 768μs to 466μs in R-AQM. In ECN, 20%
of the flow timeout, while in R-AQM there is no flow timeout.
ECNs require queues long enough to trigger, so there is a lot
of traffic resulting in RTOs due to packet loss, resulting in
very long tail completion times. At 40% load, the R-AQM’s
mice-flow completion time was lower than that of the ECN,
with no timeouts. This can prove that R-AQM can maintain
a short forward queue, significantly improving the mice-flow
application experience.

At the load of 80% scenarios, more than 15% of mice flows
and 80% of elephant flows timeout in ECN, and only a small
number of elephant flow timeouts in R-AQM. Even though
the network load is very high, making ECN almost unusable,
R-AQM guarantees that mice flows will not be RTO.

D. Real Workload

We use widely accepted and public available data center
traffic traces, WebSearch [5] and FBHadoop [50] in real
workload. Unlike traditional real workload scenario testing,
we deployed only one ToR switch with R-AQM to validate the
scenario of incremental deployment. To minimize the impact

Fig. 13. Real workload.

of congestion elsewhere on the measurement, we selected
only one host per rack (out of a total of 20 racks) and sent
data to the fixed nodes in a real flow size distribution. That
is, in this experiment, we measured how much performance
improvement we could achieve by simply replacing the most
congested bottleneck switch.

Figure 13 shows the FCT under the two workloads. The
99th FCT of R-AQM was all the better than that of ECN.
At 50th FCT, only ECN is good at the short flow part. The
reason why ECN is good at short flows is that the ECN flows
are RTO, so the link is idle and short flows can pass through
quickly.

Through the above experiments, on the premise of avoiding
RTO as much as possible, R-AQM can also provide a low
latency for mice flows, which is enough to show that R-AQM
can effectively alleviate the incast problem.

VII. SIMULATIONS OF RDMA

In this section, we conduct a simulation analysis of R-AQM
performance in RDMA with DCQCN [63] using NS-3 [1].
The purpose of R-AQM is to solve the TCP incast problem.
In the RDMA network, the PFC mechanism can ensure that
the network does not drop packets due to congestion, so it does
not cause goodput loss. Therefore, we want to explore whether
R-AQM can provide performance improvement in RDMA
networks. R-AQM requires the sender CC to use the sending
window, so our baseline scheme is DCQCN, DCQCN + win,
and DCQCN + win + R-AQM.

A. Settings

The topology is the same as section VI. The switch is a
shared memory switch. The dynamic threshold α is 1, and the
memory is 2 MB.

The relevant parameters are set as follows: For R-AQM,
we set Kmin to 100 packets, Kmax to 400 packets, T to 3μs,
α1
n1

= 1, α2
n2

= 0.5 and α3
n3

= 10 in Algorithm 1. The switch
VIQ is 500 packets, about 23KB. For the ECN threshold,
we scale the ECN threshold proportional to the link bandwidth.
We set ECNKmin = 5 KB, ECNKmax = 200 KB and
Pmax = 1% according to [63].

B. Incast

In incast, N hosts send a 3.2MB flow to a host. We vary the
number of flows from 1 to 200. Figure 14 shows the results.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 537

Fig. 14. Goodput, PFC times, RTO times, latency and queue length with many concurrent flows (DCQCN).

Goodput: First, we measured the goodput. Since RDMA
does not drop packets due to congestion, there is no goodput
loss, and both can easily handle 200 concurrent connections.
Because the sending window will limit the rate of the sender,
DCQCN + win will suffer a goodput loss when the sender is
less than 50. R-AQM can mark ECN more accurately in the
reverse path, so goodput loss is less than DCQCN + win.

PFC times: Second, we measured the PFC times. The
PFC triggers only when the buffer of the switch exceeds the
PFC threshold. PFC affects network performance, resulting
in congestion spreading, PFC storms, and network dead-
locks [24], [30], [43]. Therefore, avoiding PFC triggering is
also an important performance indicator for RDMA networks.
As shown in Figure 14(b), the number of times DCQCN
triggers PFC is proportional to the number of concurrent flows.
DCQCN + win can limit part of the PFC. However, when
the number of senders exceeds 100, triggering the PFC is
inevitable. R-AQM can always maintain a small number of
PFC triggers.

Latency: Third, we measured forward one-way latency.
It can be seen in Figure 14(c) that as the number of concurrent
connections increases, the latency almost remains unchanged,
indicating that R-AQM can keep the forward delay at a low
value regardless of the number of concurrent flows.

Queue Length: Fourth, we measure the switch buffer use
of R-AQM. Figure 14(d) shows that the buffer occupation of
R-AQM is much lower than that of DCQCN and DCQCN +
win. Moreover, as the number of senders increases, the buffer
grows less significantly, while others fill up when the sender
is 125.

Through the Incast experiment, we can prove that R-AQM
can also take effect in the RDMA network. PFC times, latency,
and queue length are all reduced with no goodput loss.

C. All to All

The all-to-all traffic patterns are also the same as Section VI.
Figure 15 shows the CDF of the flow completion time under
different loads.

At the load of 40% scenarios, with sending window, the
completion time of the mice flows in DCQCN is reduced. The
50th percentile FCTs are reduced from 124 μs to 89 μs and
the 99th percentile FCTs are reduced from 2030 μs to 900 μs
with sending window. R-AQM can reduce the 99th FCT by
a little bit compared to DCQCN + win. The 50th percentile
FCT is the same as DCQCN + win, and the 99th FCT is
543 μs However, the R-AQM’s elephant-flow completion time

Fig. 15. Shuffle workload (DCQCN).

Fig. 16. Real workload (DCQCN).

is the same as DCQCN + win. This can prove that R-AQM
can maintain a short forward queue, improving the mice-flow
application experience. At the load of 80% scenarios, R-AQM
can greatly reduce the FCT of mice flow. Through the above
experiments, we find that R-AQM can also provide low latency
for mice flows effectively in incast in RDMA networks.

D. Real Workload

The settings are also the same as Section VI. Figure 16
shows the FCT of R-AQM with DCQCN under two workloads.
The DCQCN+win+R-AQM is effective in reducing FCTs
significantly for mice flows. Because the number of flows here
is large, R-AQM can well control the queue length to give mice
flows in a low-delay environment.

VIII. TESTBED EXPERIMENTS

In this section, we conduct a testbed experiment to val-
idate the performance of R-AQM on the small-scale net-
work. We verify R-AQM’s ability to mitigate packet loss
and low latency in a small-scale scenario through two typical
workloads.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

538 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

Fig. 17. Latency and throughput of CDF in the incast scenario.

A. Settings

The topology of the testbed experiment mimics a small rack
of the datacenter. The testbed includes one ToR NetFPGA
switch and four servers connected via four 10Gbps links. Each
server is equipped with a single Intel Xeno CPU and two
dual-port Intel 82599 10G NICs. The CC algorithm at the
hosts is DCTCP. TCP’s results are similar and are therefore
omitted later. On the NetFPGA switch, we also implemented
the ECN version for comparison. The relevant parameters are
set as follows: For R-AQM, we set Kmin to 20 packets, Kmax

to 40 packets, T to 3μs, α1
n1

= 1, α2
n2

= 0.5 and α3
n3

= 10 in
Algorithm 1. For the ECN threshold, R-AQM and pure ECN
both set the 65 packets according to [5], and the switch output
drop threshold is 300 packets.

B. Incast

We run a 3-to-1 incast: the frontend application on one
host sends requests to another three servers. Upon receiving
the request, each server replies with continuous elephant flow
immediately. Meanwhile, a 1KB test mice flow is sent every
second, which is used to measure the end to end latency.
We calculate throughput and latency per second for each
computer NIC port. At the same time, we apply the same
scenario in the simulation to validate the testbed.

Figure 17 shows the throughput and latency of ECN and
R-AQM in both simulation and testbed. We can see that the
simulation experiment results are similar to the testbed exper-
iment. For the 50th percentile throughput, R-AQM performs
almost equally well compared to ECN, with the throughput
of 2.88Gbps for ECN and 2.90Gbps for R-AQM. ECN has
a long tail of 8.84Gpbs, which means an extremely unfair
distribution of throughput could occur, with one port higher
and the other two lower. The reason is that when a flow
suffers from RTO caused by packet loss, other traffic takes
up the bandwidth. In contrast, R-AQM shows a more even
distribution of throughput and provides better fairness.

For latency, the 50th percentile and the worst case of
R-AQM are 25μs and 103μs, respectively, both of which
are lower than ECN. The 50th percentile of one-way delay
for R-AQM is approximately 78μs, which is just slightly
bigger (10μs) than the optimum transfer time in an idle
network (67.7μs, labeled as “without load” in the figure). The
improvement in latency by R-AQM is not outstanding due to
the small scale of the testbed and the fact that the system kernel

Fig. 18. Latency and drop times in the all to all scenario (testbed).

latency occupies a certain proportion of the overall latency.
Despite that, it has been proved that R-AQM is effective in
reducing latency.

C. All to All

To further demonstrate the functionality of R-AQM, we per-
formed an all to all traffic pattern. Each host sends requests to
the other three at the same time. The reply traffic’s load varies
from 10% to 90%. Meanwhile, a 1KB test mice flow is sent
every second, which is used to measure the end to end latency.
As shown in Figure 18, with the increase of load before 40%,
the latency of ECN increases linearly, while R-AQM does
not change. At 40%, R-AQM achieves 1.06× faster average
latency than ECN, and the gap is more significant at the 99th
percentile. This shows that R-AQM can effectively reduce
end-to-end latency. Over 40%, the switch cannot handle more
data, and packet loss begins, so the latency for both ECN and
R-AQM starts to decrease. However, it is evident from the
figure that R-AQM can keep the loss rate lower. Compared
with ECN, R-AQM achieves up to 3.22 lower packet loss rates.

To conclude from our experiment, R-AQM effectively tames
incast problems, decreases packet loss rate, reduces latency,
and provides better fairness.

IX. RELATED WORK

Many proposals address the incast congestion problem in
data centers. Nevertheless, there has been relatively little
effort to address incast in multi-tenant data centers. AC/DC
TCP [27], vCC [15], DCTCP [5] and HSCC [2] can be used
in multi-tenant data centers, but as discussed earlier, when
incast arrived, even all senders’ send windows are 1 MSS, the
concurrency would not support much.

The most related works to R-AQM is PAC [10], which
controls the sending rate of ACKs on the receiver to prevent
incast congestion. We clarify the differences between R-AQM
and PAC in two aspects. (1) PAC is an end-hosts mechanism,
while R-AQM is a switch mechanism. (2) PAC cannot accu-
rately predict the incast because the incast often occurs on the
last-hop switch. R-AQM can directly obtain the queue length
of the last-hop switch and take effect in advance.

In addition to the above works, a number of other data
center transport designs have emerged, although their pri-
mary design space is not suitable for multi-tenant data
centers.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 539

Congestion control in private datacenter:
ICTCP [57] handles incast by adaptively adjusting the

receiver side’s receive window to throttle aggregate through-
put. Tuning ECN [58] accelerates the delivery of congestion
notifications using dequeue marking instead of traditional
enqueue marking. D2TCP [54] adds deadline-awareness at
the top of the DCTCP. It adjusts the congestion window
to meet the deadline based on congestion conditions and
deadline information. ExpressPass [14] uses credit packets
for the preallocation of bandwidth to avoid congestion and
to guarantee bounded queues.

DCQCN [63] and TIMELY [44] are proposed as the new
end-to-end CC scheme designed for RDMA over Converged
Ethernet v2 (RoCEv2) [8]. RoCEv2 enables lossless net-
works through Priority-based Flow Control (PFC), so there
is no problem with large-scale RTO and goodput degradation.
HPCC [43] also is a RoCEv2 CC that uses switch INT (in-
network telemetry) to obtain the precise switch congestion
state and calculates the remaining bandwidth. However, incast
can also cause other congestion problems, such as PFC
storm [43] and PFC deadlock [24], [30], resulting in high
latency and unusable network.

All of the above approaches may face deployment issues
in multi-tenant data centers and is out of the design scope
of R-AQM. However, there is a theoretical possibility
that R-AQM can be incrementally deployable with these
approaches.

Switch-assisted mechanisms and CCs:
QCN [31] sends the quantized value of the congestion

metric as feedback to senders, requiring fine parameters adjust-
ment. PFC [32] allows switches to avoid buffer overflows by
forcing the direct upstream switch or NIC to suspend data
transfers. XCP [36] and RCP [19] use explicit feedback to
measure the extent of congestion. D3 [56] achieves explicit
rate control based on deadline information to guarantee dead-
lines. HULL [7] uses phantom queues to simulate a network
at less than 100% utilization and relies on ECN to deliver
congestion information. CP [13] and NDP [26] realizes fast
packet loss notification by cutting packet payload in the switch
and sending packet header back to the sender quickly.

These approaches share the same idea that switches cooper-
ate with congestion control through congestion signals (packet
loss, ECN, RTT, INT, etc.). However, most of them require
an intrusive modification to the protocol stack. In contrast,
R-AQM is an incremental and transparent design for end-
systems, helping to alleviate the incast problem and gaining
marginal benefit in terms of concurrency.

X. CONCLUSION

In this paper, we present R-AQM, a transparent reverse ACK
active queue management design for multi-tenant data centers
to tame the TCP incast problem through active ACK control.
The basic principle of R-AQM is to reduce the nontrivial
forward queue delay by introducing a trivial backward ACK
delay. The critical design idea behind R-AQM is to proactively
intercept the ACK in the switch and release it at a moderate
rate to prevent too fast new packets from overwhelming

the switch. R-AQM set up VIQs to buffer the ACK and
use the Token Bucket to shape the flow. R-AQM also uses
queue length and its gradient to judge burst and congestion.
Our extensive simulations and experiments have shown that
R-AQM can enhance existing CC solutions by supporting
16 times more senders and reducing forward queue delay by
4.6 times. One of the limitations of R-AQM is that it can only
cooperate with window-based ACK-clocking protocols.

ACKNOWLEDGMENT

This work is not possible without the efforts of Xinping
Chen and Shengjun Chen. The authors are grateful for con-
versations with and feedback from Kun Tan, Binzhang Fu, and
Jincheng Bao. They also thank the reviewers for their valuable
comments.

REFERENCES

[1] (2019). Network Simulator 3. [Online]. Available: https://www.
nsnam.org/

[2] A. M. Abdelmoniem and B. Bensaou, “Hysteresis-based active queue
management for TCP traffic in data centers,” in Proc. IEEE, Apr. 2019,
pp. 1621–1629.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[4] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 503–514.

[5] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 63–74, Oct. 2011.

[6] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, convergence, and fairness,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 39, no. 1, pp. 73–84, 2011.

[7] M. Alizadeh et al., “Less is more: Trading a little bandwidth for
ultra-low latency in the data center,” in Proc. USENIX NSDI, 2012,
pp. 253–266.

[8] InfiniBand Trade Association. (Sep. 2014). RoCE v2. [Online]. Avail-
able: https://cw.infinibandta.org/document/dl/7781

[9] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: Active queue
management,” IEEE Netw., vol. 15, no. 3, pp. 48–53, May 2001.

[10] W. Bai, K. Chen, H. Wu, W. Lan, and Y. Zhao, “PAC: Taming TCP
incast congestion using proactive ACK control,” in Proc. IEEE ICNP,
Oct. 2014, pp. 385–396.

[11] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
no. 5, pp. 20–53, 2016.

[12] W. Chen, F. Ren, J. Xie, C. Lin, K. Yin, and F. Baker, “Comprehensive
understanding of TCP incast problem,” in Proc. IEEE INFOCOM,
Apr. 2015, pp. 1688–1696.

[13] P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the whole lot in an action:
Rapid precise packet loss notification in data center,” in Proc. USENIX
NSDI, 2014, pp. 17–28.

[14] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded con-
gestion control for datacenters,” in Proc. ACM SIGCOMM, Aug. 2017,
pp. 239–252.

[15] B. Cronkite-Ratcliff et al., “Virtualized congestion control,” in Proc.
ACM SIGCOMM, Aug. 2016, pp. 230–243.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[17] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 2130–2138.

[18] X. Du, K. Xu, T. Li, K. Zheng, S. Fu, and M. Shen, “Traffic control for
data center network: State of the art and future research,” (in Chinese)
Chin. J. Comput., vol. 43, no. 17, pp. 1–23, 2020.

[19] N. Dukkipati, Rate Control Protocol (RCP): Congestion Control to Make
Flows Complete Quickly. Princeton, NJ, USA: Citeseer, 2008.

[20] S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM
Comput. Commun. Rev., vol. 24, no. 5, pp. 8–23, Oct. 1994.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

540 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 2, APRIL 2023

[21] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. 19th ACM Symp. Operating Syst. Princ., 2003, pp. 29–43.

[23] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

[24] C. Guo et al., “RDMA over commodity Ethernet at scale,” in Proc. ACM
SIGCOMM, Aug. 2016, pp. 202–215.

[25] A. Gurtov, T. Henderson, S. Floyd, and Y. Nishida, The NewReno
Modification to TCP’s Fast Recovery Algorithm, document RFC 6582,
Apr. 2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6582.txt

[26] M. Handley et al., “Re-architecting datacenter networks and stacks
for low latency and high performance,” in Proc. ACM SIGCOMM,
Aug. 2017, pp. 29–42.

[27] K. He et al., “AC/DC TCP: Virtual congestion control enforcement
for datacenter networks,” in Proc. ACM SIGCOMM, Aug. 2016,
pp. 244–257.

[28] Y. He and W. Wu, “Fully functional rate limiter design on programmable
hardware switches,” in Proc. ACM SIGCOMM Conf. Posters, 2019,
pp. 159–160.

[29] Z. He et al., “MASQ: RDMA for virtual private cloud,” in Proc. Annu.
Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Architectures, Protocols Comput. Commun., 2020, pp. 1–14.

[30] S. Hu et al., “Tagger: Practical PFC deadlock prevention in data center
networks,” in Proc. ACM CoNEXT, 2017, pp. 451–463.

[31] Congestion Notification, Standard 802.11Qau, 2010.
[32] Priority Based Flow Control, Standard 802.11Qbb, 2011.
[33] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM

Comput. Commun. Rev., vol. 18, no. 4, pp. 314–329, 1988.
[34] K. Jacobsson, L. L. H. Andrew, A. Tang, K. H. Johansson, H. Hjalmars-

son, and S. H. Low, “ACK-clocking dynamics: Modelling the interac-
tion between windows and the network,” in Proc. IEEE INFOCOM,
Apr. 2008, pp. 2146–2152.

[35] R. K. Jain et al., “A quantitative measure of fairness and discrimi-
nation,” Eastern Res. Lab., Digit. Equip. Corp., Hudson, MA, USA,
Tech. Rep. DEC-TR-301, 1984, vol. 21.

[36] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 32, no. 4, pp. 89–102, Oct. 2002.

[37] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. USENIX NSDI, 2014, pp. 203–216.

[38] L. Li et al., “A measurement study on multi-path TCP with multiple cel-
lular carriers on high speed rails,” in Proc. ACM SIGCOMM, Aug. 2018,
pp. 161–175.

[39] T. Li, K. Wang, K. Xu, K. Yang, C. S. Magurawalage, and H. Wang,
“Communication and computation cooperation in cloud radio access
network with mobile edge computing,” CCF Trans. Netw., vol. 2, no. 1,
pp. 43–56, Jun. 2019.

[40] T. Li, K. Zheng, and K. Xu, “Acknowledgment on demand for transport
control,” IEEE Internet Comput., vol. 25, no. 2, pp. 109–115, Mar. 2021.

[41] T. Li et al., “TACK: Improving wireless transport performance by taming
acknowledgments,” in Proc. ACM SIGCOMM, Jul. 2020, pp. 15–30.

[42] T. Li et al., “Revisiting acknowledgment mechanism for transport
control: Modeling, analysis, and implementation,” IEEE/ACM Trans.
Netw., vol. 29, no. 6, pp. 2678–2692, Dec. 2021.

[43] Y. Li et al., “HPCC: High precision congestion control,” in Proc. ACM
SIGCOMM, Aug. 2019, pp. 44–58.

[44] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 537–550, 2015.

[45] R. Mittal et al., “Revisiting network support for RDMA,” in Proc. ACM
SIGCOMM, Aug. 2018, pp. 313–326.

[46] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in Proc.
ACM SIGCOMM, vol. 2018, pp. 221–235.

[47] R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. USENIX
NSDI, 2013, pp. 385–398.

[48] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control: Avoiding
deadlock in lossless networks,” in Proc. ACM SIGCOMM, Aug. 2019,
pp. 75–89.

[49] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffeneg-
ger, CUBIC for Fast Long-Distance Networks, document RFC 8312,
Feb. 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8312.txt

[50] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM Conf. Special
Interest Group Data Commun., Aug. 2015, pp. 123–137.

[51] D. Shan, W. Jiang, and F. Ren, “Analyzing and enhancing dynamic
threshold policy of data center switches,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 9, pp. 2454–2470, Sep. 2017.

[52] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE MSST, May 2010, pp. 1–10.

[53] S. Huang, M. Wang, and Y. Cui, “Traffic-aware buffer management
in shared memory switches,” in Proc. IEEE INFOCOM, May 2021,
pp. 1–10.

[54] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter TCP (D2TCP),” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 115–126, Sep. 2012.

[55] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” ACM SIGCOMM Comput. Commun.
Rev., vol. 39, no. 4, pp. 303–314, 2009.

[56] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 50–61, Aug. 2011.

[57] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data-center networks,” IEEE/ACM Trans. Netw.,
vol. 21, no. 2, pp. 345–358, Apr. 2013.

[58] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for data center networks,” in Proc. ACM CoNEXT, 2012, pp. 25–36.

[59] K. Xu et al., “Modeling, analysis, and implementation of universal
acceleration platform across online video sharing sites,” IEEE Trans.
Serv. Comput., vol. 11, no. 3, pp. 534–548, May/Jun. 2018.

[60] K. Xu, L. Lv, T. Li, M. Shen, H. Wang, and K. Yang, “Minimiz-
ing tardiness for data-intensive applications in heterogeneous systems:
A matching theory perspective,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 1, pp. 144–158, Jan. 2020.

[61] L. Xu et al., “ABQ: Active buffer queueing in datacenters,” IEEE Netw.,
vol. 34, no. 2, pp. 232–237, Mar. 2020.

[62] J. Zhang, F. Ren, and C. Lin, “Modeling and understanding TCP
incast in data center networks,” in Proc. IEEE INFOCOM, Apr. 2011,
pp. 1377–1385.

[63] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
2015.

[64] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,” IEEE
Micro, vol. 34, no. 5, pp. 32–41, Sep./Oct. 2014.

Xinle Du received the B.E. degree from the Depart-
ment of Computer Science and Technology, Xidian
University, Xi’an, China, in 2014. He is currently
pursuing the Ph.D. degree with Tsinghua University.
His research interests include data-driven networks,
data center network transport protocol, and AQM.

Ke Xu (Senior Member, IEEE) received the Ph.D.
degree from the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China. He is currently as a Full Professor with the
Department of Computer Science and Technology,
Tsinghua University. He has published more than
200 technical papers and holds 11 U.S. patents
in the research areas of next-generation Internet,
blockchain systems, the Internet of Things, and
network security. He is a member of ACM. He has
guest-edited several special issues in IEEE and

Springer journals, and also served as the Steering Committee Chair for
IEEE/ACM IWQoS. He is an Editor of IEEE INTERNET OF THINGS

JOURNAL.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

DU et al.: R-AQM: REVERSE ACK ACTIVE QUEUE MANAGEMENT IN MULTITENANT DATA CENTERS 541

Lei Xu received the B.E. degree from the
Department of Computer Science and Technology,
Beijing Institute of Technology, China, in 2006, and
the Ph.D. degree from the Department of Com-
puter Science and Technology, Tsinghua University,
China, in 2018. He held a Visiting Scholar with
the School of Computer Science and Electronic
Engineering, University of Essex, U.K., in 2014.
In 2018, he joined HiSilicon Technologies Company
Ltd. focusing on DC networking, congestion control,
and design of switch chip.

Kai Zheng (Senior Member, IEEE) is currently
the Director of the Computer Network and Pro-
tocol Research Laboratory, Huawei Technologies.
His research interests covered architectures and pro-
tocols for the next generation networks, such as
5G/IoT networks, cloud oriented data center net-
works, RDMA networks, and real-time multimedia
networks.

Meng Shen (Member, IEEE) received the B.Eng.
degree in computer science from Shandong Univer-
sity, Jinan, China, in 2009, and the Ph.D. degree
in computer science from Tsinghua University,
Beijing, China, in 2014. He is currently a Profes-
sor at the Beijing Institute of Technology, Beijing.
He has authored over 50 papers in top-level journals
and conferences, such as ACM SIGCOMM, IEEE
JOURNAL ON SELECTED AREAS IN COMMUNI-
CATIONS (JSAC), and IEEE TRANSACTIONS ON

INFORMATION FORENSICS AND SECURITY (TIFS).
His research interests include data privacy and security, blockchain appli-
cations, and encrypted traffic classification. He received the Best Paper
Runner-Up Award from IEEE IPCCC 2014 and IEEE/ACM IWQoS 2020.
He was selected by the Beijing Nova Program 2020 and the winner of the
ACM SIGCOMM China Rising Star Award 2019. He has guest edited Special
Issues on Emerging Technologies for Data Security and Privacy in IEEE
NETWORK and IEEE INTERNET OF THINGS JOURNAL.

Bo Wu received the B.E. degree from the School
of Software, Shandong University, China, in 2014,
and the Ph.D. degree from the Department of Com-
puter Science and Technology, Tsinghua University,
China, in 2019. He acted as a Visiting Scholar with
the Department of Computer Science, Northwestern
University, USA, from 2017 to 2018. He is currently
as a Research Fellow at Tencent Technologies. His
research interests include Internet architecture, net-
work security, and machine learning.

Tong Li (Member, IEEE) received the B.E. degree
from the School of Computer Science, Wuhan Uni-
versity, China, in 2012, and the Ph.D. degree from
the Department of Computer Science and Technol-
ogy, Tsinghua University, China, in 2017. He was
a Visiting Scholar with the School of Computer
Science and Electronic Engineering, University of
Essex, U.K., in 2014 and 2016. He worked as a
Chief Engineer at Huawei before 2022, and currently
he serves as an Associate Professor at the Renmin
University of China. His research interests include
networking, distributed systems, and big data.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 08:29:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

