
DIP: Unifying Network Layer Innovations using
Shared L3 Core Functions

Ziqiang Wang
Southeast University

Nanjing, China
ziqiangwang@seu.edu.cn

Zhuotao Liu
Tsinghua University and
Zhongguancun Laboratory

Beijing, China
zhuotaoliu@tsinghua.edu.cn

Xiaoliang Wang
Capital Normal University

Beijing, China
wangxiaoliang@cnu.edu.cn

Songtao Fu
Tsinghua University

Beijing, China
fust18@mails.tsinghua.edu.cn

Ke Xu
Tsinghua University and
Zhongguancun Laboratory

Beijing, China
xuke@tsinghua.edu.cn

ABSTRACT
The IP protocol has made a great contribution to the develop-
ment of the Internet and has become the narrow waist of the
Internet. However, the fixed packet processing of IP hinders
the functional expansion and evolution of the Internet. In
order to solve the rigidity of the Internet, our community has
proposed various new L3 protocols to better support various
network functions at the network layer. In this paper, we
propose DIP (Dynamic Internet Protocol), a novel primitive
to unify these protocols. DIP builds a common network func-
tion core shared by these L3 protocols based on a new L3
function core primitive, named Field Operation (FN). With
FNs, each standalone L3 protocol can be decomposed into
a combination of multiple FNs, and meanwhile it is feasible
to compose various FNs to realize new (derived) L3 proto-
cols. We demonstrate the feasibility of DIP by realizing five
radically different network layer protocols1: the canonical IP
forwarding, NDN [41], XIA [12], OPT [16], and NDN+OPT
(a derived L3 protocol combining the merits of both NDN
and OPT). We implement a prototype of DIP and evaluate
its forwarding performance.
1We clarify that NDN and XIA are next-generation Internet architecture
proposals. In this paper, whenever we referred to NDN and XIA, we mean
their core packet forwarding protocols.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564092

CCS CONCEPTS
• Networks → Network protocol design;

KEYWORDS
Network Layer Innovations, Field Operations
ACM Reference Format:
Ziqiang Wang, Zhuotao Liu, Xiaoliang Wang, Songtao Fu, and Ke
Xu. 2022. DIP: Unifying Network Layer Innovations using Shared L3
Core Functions. In The 21st ACMWorkshop on Hot Topics in Networks
(HotNets ’22), November 14–15, 2022, Austin, TX, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3563766.3564092

1 INTRODUCTION
The Internet architecture with IP narrow-waist design has
achieved great success. It shields the diversity of heteroge-
neous underlying technologies and supports the thriving
top-level ecosystem, ensuring the ubiquitous connection and
vitality of the Internet. However, innovations about the In-
ternet infrastructure itself are difficult. The reason could be
attributed to the inability of the fixed Internet architecture to
accommodate innovations in core mechanisms, such as the
inability to dynamically deploy a non-IP addressing model
better suited to the mobile scenarios. As a result, many Inter-
net improvement mechanisms are ad-hoc in nature, based
on various patching through middleboxes or/and traffic indi-
rection.
In response to these problems, the academic community

proposed a line of research in architecture customization
and coexistence to eliminate the deadlock of innovation by
increasing the diversity of Internet functions. Pioneers have
contributed a lot of valuable experience and substantial re-
sults achievements [5, 12, 22, 34]. For example, active net-
work [34] proposes “capsules” - program fragments that are
executed at each network router/switch they traverse and
allow users to inject customized programs into the nodes

60

https://doi.org/10.1145/3563766.3564092
https://doi.org/10.1145/3563766.3564092
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563766.3564092&domain=pdf&date_stamp=2022-11-14

HotNets ’22, November 14–15, 2022, Austin, TX, USA Ziqiang Wang, Zhuotao Liu, Xiaoliang Wang, Songtao Fu, and Ke Xu

of the network. Active network sparked various subsequent
work on network programmability, such as OpenFlow and
SDN [23], P4 [3] and runtime programmable devices [10]. In
addition to active network, the community also proposed dif-
ferent Internet architectures to advocate radically different
Internet designs. For instance, XIA [12, 24] replaces the single
address with a directed acyclic graph and uses the “fallback”
technology to support multi-protocol coexistence. NDN [41]
uses data names instead of IP addresses for better content
delivery with interest packets and data packets. SCION [42]
is a security-oriented architecture that enables explicit path
control and selection to achieve secure inter-domain routing.
Besides these new Internet architecture proposals, a se-

ries of security-oriented protocols (such as NetFence [19],
OPT [16], MiddlePolice [20], EPIC [17]) also proposed to
change the L3 protocols. For instance, NetFence inserts a
slim customized header between L3 and L4 to emulate con-
gestion control (i.e., additive increase and multiplicative de-
crease, AIMD) inside the network to mitigate DDoS attacks
(MiddlePolice shares a similar design principle, with a more
deployable architecture and more flexible traffic control pro-
tocols). OPT and EPIC, designed based on SCION, requires
on-path routers to verify and update the cryptographically
generated code carried customized packet headers to achieve
source validation and path authentication.
In this paper, we argue that unifying the key merits of

these prior protocols is (at least) equally important as inno-
vating yet another new L3 protocol. Trotsky [22] attempts
to move the service model of the Internet from the prede-
fined L3 to configurable (software) L3.5. Yet, the unification
discussed in this paper differs significantly from Trotsky. On
the one hand, we focus on researching a novel primitive
to natively implement a wide range of radically different
L3 protocols, including the canonical IP protocol, the ad-
dressing protocols defined in NDN [41] and XIA [12], and
security protocols such as OPT [16]. On the other hand,
because of the fine-grained primitive (referred to DIP here-
after), the protocol unification in our paper can essentially
merge or consolidate different L3 protocols. Therefore, DIP
enables derived L3 protocols with merits that are more ad-
vanced than any individual L3 protocols. For instance, DIP
derives NDN+OPT from NDN [41] and OPT [16], which adds
security ingredients to the original NDN design.
Contributions.We proposeDIP, a novel primitive to enable
a wide range of network functions on the network layer.
We position DIP as an orthogonal supplement to Trotsky,
and meanwhile a concrete realization of a limited, yet more
deployable, form of active networking based on the emerging
programmable switches. We demonstrate the capability of
DIP through the concrete instantiation of 5 radically different

L3 protocols, including IP, NDN, OPT [16], XIA [12] and a
derived L3 protocol combining both NDN and OPT.

2 DIP DESIGN
This section introduces the design of DIP. We first introduce
field operation (FN), the basic protocol primitive in DIP to
enable dynamic packet processing by composing various
FNs as desired. Then, we show a draft of the DIP header
and describe the host and per-hop DIP-packet processing
designs. Finally, we address several design design concerns.

2.1 Field Operations
To unify (often) mutually incompatible L3 protocols, DIP
needs to build a common network function core shared by
these protocols. Such an L3 network function core should
simultaneously achieve decomposability and composabil-
ity: each standalone L3 protocol can be decomposed into a
combination of multiple core functions, and meanwhile, it is
feasible to compose various fine-grained core functions to
implement new (derived) L3 protocols.

The network community previously discussed a conceptu-
ally similar L3 function core in the context of enabling flexi-
ble L3 forwarding. Notably, I3 [28] proposes to use a Peer-
to-Peer lookup service to implement fine-grained packet
processing at Rendezvous points; Capsules [34] treat each
network message as a program and every capsule contains a
program fragment (with at least one instruction) that may
include embedded data; Network pointers [35] are similar to
C-pointers and each data packet becomes a thread of control
that works its way through a chain of dereferencing opera-
tions. Despite their flexibility, neither of these proposals was
designed to decompose and compose different L3 protocols.
In DIP, we abstract a new L3 function core primitive,

named Field Operation (FN), to define fine-grained packet
processing functions on the network layer. Each FN consists
of two elements: a target field and an operation to be applied
on the corresponding target field. In particular, a target field
is a sequence of consecutive bits present in the packet header
with specific meaning (e.g., the destination address field in IP
forwarding, and the MAC-protected congestion control tag
in NetFence [19]. The operation is a functional module that
takes the field as input and performs pre-defined calculations
or matches, and then modifies the packet field (e.g., update
the verification tags in OPT [16] and EPIC [17]) or determine
the packet fate (e.g., discard the packet if the carried path
authentication tags are incorrect).
Surprisingly, this simple abstraction of FNs achieves ex-

cellent decomposability and composability desired in DIP.
As we shall see in § 3, we design four radically different
L3 protocols uniformly using FNs (i.e., IP, NDN, OPT [16]
and XIA [12]) and one derived protocol that combines NDN
and OPT. Another benefit of the FN abstraction is that it is

61

DIP: Unifying Network Layer Innovations using
Shared L3 Core Functions HotNets ’22, November 14–15, 2022, Austin, TX, USA

32 bits

FN_Num HopL

Packet Parameter FieldLoc

FieldLen Operation_Key

FN Definitions …

FN
Definition

FN Locations

NextHdr

FN Locations …

Figure 1: The structure of a DIP packet header.

hardware-friendly. The emerging programmable switch tech-
nology, centering around Protocol-Independent Switch Ar-
chitecture (PISA), enables programmable switching pipeline
in which one can define customized packet header manipu-
lations (e.g., dynamic packet header parsing). Such hardware
innovations enable highly performant FN implementations,
as shown in § 4.2.

2.2 A Draft of DIP Header
Figure 1 plots a draft of DIP packet header, including the
basic header (colored in gray), FN definitions (colored in
blue), and FN locations (colored in orange).

The basic header of DIP consists of four fields: next header,
FN number, hop limit, and packet parameter. We use the
FN number to indicate the number of FNs defined in this
packet. There are currently two attributes defined in the
packet parameter field. The lowest bit indicates whether the
operation modules can be executed in parallel and this flag is
used to improve packet processing speed when the modular
parallelism technique [31, 32] is used. The higher ten bits
represent the length of FN locations and the remaining five
bits are reserved for other use.
Each FN is specified by three fields in the packet header:

field location, field length, and operation key. The actual
packet location where an FN reads from and writes to is
defined as FN location, which is specified by the FN’s field
location and field length. The operation key indicates the
operation that needs to be performed on the FN location. The
highest bit of the operation key field is a tag bit to indicate
whether the operation should be performed by the router or
the host. Since the triplet structure of an FN is fixed, we can
use the FN number and the FN locations length to derive the
DIP header length.

2.3 Packet Processing Logic
The actual packet processing logic in DIP is determined by
the FNs carried in the packet header. In this section, we use
the following example to illustrate the packet processing
logic in DIP: a host requests content with content name, and

Algorithm 1: The packet processing logic in router
Input: 𝑝𝑘𝑡

1 parse basic DIP header (FN_Num and FN_LocLen);
2 parse FN[] according to FN_Num;
3 extract FN_Loc according to FN_LocLen;
4 for 𝑖 ← 1 to 𝐹𝑁_𝑁𝑢𝑚 do
5 if FN[i].tag == 1 then
6 /* skip host operation */

7 continue;
8 else
9 target_field← FN_Loc(FN[i].FieldLoc,

FN[i].FieldLen);
10 switch FN[i].key do
11 ...
12 case 4 : FFIB(target_field);
13 case 5 : FPIT(target_field);
14 case 6 : Fparm(target_field);
15 case 7 : FMAC(target_field);
16 case 8 : Fmark(target_field);
17 ...

18 end processing;

meanwhile it verifies the content’s source and the network
path used to deliver the content are secure.
Available FNs. After the host is connected to an accessed
AS, it uses bootstrapping mechanisms (similar to DHCP) to
get the set of available FNs. To illustrate the workflow of DIP,
here we assume that all network devices are DIP-capable
and have the same FN configuration. We discuss the hetero-
geneous deployment case in § 2.4. Table 1 summarizes the
FNs discussed in this paper. We recommend the ASes should
agree upon a dedicated operation standard for enabling new
field operations. One readily deployable mechanism to glob-
ally propagate supported FNs among ASes is relying on BGP
communities, which is part of our future work.
Host Constructions. Before sending the data packets, the
host needs to formulate appropriate FNs in the packet header
considering both the required network services and the sup-
ported FNs. Here, we consider the host wants to request a file
named “hotnets.org” and it retrieves the relevant FNs defined
in Table 1, including F32_match, F128_match, FFIB, FPIT, Fparm,
FMAC, Fmark and Fver. The host requests this file using the
FFIB, which is a forwarding information base and performs
the longest prefix match with the content name. It sets the
file name (i.e., “hotnets.org”) in the FN locations, and takes
the FFIB, with the FN key as 4 and the FN tag as 0, as the
desired operation on the router. After the host finds this file
source (e.g., a server), it wishes to verify the authenticity

62

HotNets ’22, November 14–15, 2022, Austin, TX, USA Ziqiang Wang, Zhuotao Liu, Xiaoliang Wang, Songtao Fu, and Ke Xu

Table 1: Field operations in the DIP prototype

operation notation key

32-bit address match F32_match 1
128-bit address match F128_match 2

source address Fsource 3
forwarding information base match FFIB 4

pending interest table match FPIT 5
load parameters Fparm 6
calculate MAC FMAC 7
mark update Fmark 8

destination verification Fver 9
parse the directed acyclic graph FDAG 10

handle intent Fintent 11

of the source and the network path. Towards this end, the
server sets some authentication tags in the FN locations and
uses the FMAC, which is a cryptographic computing module
(e.g., 2EM [2]), to instruct the on-path routers to update the
authentication tags. The exact packet header construction
for integrating content delivery and path authentication is
detailed in § 3.
Router Processing.We present the packet processing logic
in Algorithm 1 and the operation modules involved are
described in Table 1. Upon receiving a packet, the router
will first parse the basic DIP header to get the number of
FNs (FN_Num) and the length of FN locations (FN_LocLen).
Then, the router parses the FN definitions (FN[]) carried in
the packet header in the form of triples according to the
FN_Num and extracts the FN locations (FN_Loc) according to
the FN_LocLen. After that, the router operates on the target
fields (target_field) according to the FN definitions (i.e., field
location, field length, and operation key). In our example,
the router will perform FFIB with the target field (i.e., “hot-
nets.org”) to forward the packet and find the file source. After
that, the router will perform FFIT, which is a pending interest
table and performs the longest prefix match with the content
name, to transfer the file to the host. Besides, the router will
perform three authentication operation (i.e., Fparm, FMAC,
Fmark) one by one to update the authentication tags. Finally,
the host receives and verifies the packet by performing Fver.
The detailed authentication operation instruction is in § 3.

2.4 Additional Design Concerns
Incremental deployment. In the early stage of deployment,
two DIP domains may not be directly connected. One could
use tunneling technology [6, 8] to build end-to-end path
across DIP-agnostic domains.
Backward compatibility and heterogeneous configura-
tion.We can make lightweight changes on the DIP packet
header to be compatible with backward protocols. In partic-
ular, the existing network protocol header can be viewed as

an FN location in the DIP. For example, when a DIP host con-
nects to another host using IPv6. We set the IPv6 header in
the FN location part and define the corresponding forward-
ing operations. Afterward, the border router can remove the
basic header and FN definitions, so that the packet is routed
only based on the FN operations that are recognized by the
legacy devices. Similarly, to process packets from a legacy
domain, the inbound border router needs to add back the
DIP basic header and FN definitions. In case of heteroge-
neous FN configurations among ASes, the inbound router
may receive a DIP packet carrying an FN that the AS has not
supported yet. If this FN requires all on-path ASes to partic-
ulate (e.g., the FN designed for path authentication [16]), the
router should return an FN unsupported message to notify
the source through a mechanism similar to ICMP. Otherwise,
the router can simply ignore this FN.
Security. Here we discuss two major security concerns of
DIP. First, the processing of the packet is dynamically cus-
tomized according to the FNs in the packet header, so we
should prevent packet processing from exhausting the router
state. Enforcing a hard limit for packet processing time and
per-packet state consumption is enough to prevent such at-
tacks. Second, an adversary may strategically combine FNs
to launch attacks. For instance, an attacker can use both FFIB
and FPIT in one packet and carry maliciously constructed
data to pollute the node’s content cache. Nodes can enable
source label verification designs (e.g., [15], implemented as
a new FN Fpass) to defend against this attack. Although en-
abling Fpass all the time is expensive, DIP allows the network
operators to dynamically adjust security policies based on
network conditions. For instance, Fpass can be enabled on
the fly upon detecting content poisoning attacks.

3 PROTOCOL REALIZATION USING DIP
We describe how to realize various L3 protocols based on
DIP by properly constructing DIP headers.
IP Forwarding.We first use DIP to achieve the canonical
IPv4 and IPv6 forwarding. In the FN definition part of the
DIP header, we use F128_match and F32_match to instruct the
router to perform 128-bit/32-bit address matching and for-
warding and use Fsource to specify the source address. We
set the destination address in the lower 128/32 bits of the FN
locations and the source address in the upper 128/32 bits, so
the FN triples used in our prototype are (loc: 0, len: 128, key:
1)/(loc: 0, len: 32, key: 2) and (loc: 128, len: 128, key: 3)/(loc:
32, len: 32, key: 3).
NDN [41]. NDN is a content delivery network, in which
there are two types of packets: interest packets and data
packets. For the first type of packets, according to the NDN
routing protocol [41], the router records its receiving port
in the PIT (pending interest table) and matches it in the

63

DIP: Unifying Network Layer Innovations using
Shared L3 Core Functions HotNets ’22, November 14–15, 2022, Austin, TX, USA

FIB (forwarding information base) with the content name
to determine the forwarding port2. For the data packets, the
router looks up the content name in the PIT and forwards
it to the recorded request port (match hit) or discards the
packet (match miss). We abstract the packet processing of
NDN into two operation modules: FFIB and FPIT, and use the
following two FN triples (loc: 0, len: 32, key: 4) and (loc: 0, len:
32, key: 5) to explicitly customize NDN packet processing
and set the content name in the FN locations.
OPT [16]. In addition to basic packet forwarding functions,
the research community has proposed various related func-
tions (e.g., source and path verification [11, 16, 38]). Here
we use OPT [16] as an example to demonstrate how to use
FNs to explicitly customize packet processing that supports
source and path verification functions. Packet processing
in OPT mainly involves MAC calculation and updates of
cryptographically-signed tags. After receiving a packet, the
router will derive a dynamic key form session ID3 in the
packet header with its local key. Then the router uses the
dynamic key, which is shared with the host, to recalculate
and update the tags. Finally, the host receives the packet and
recalculates these tags to verify the legitimacy of the source
and path used. We abstract this process into four operation
modules: Fparm, FMAC, Fmark and Fver. We set the OPT header
in the FN locations and use the triple (loc: 128, len: 128, key:
6) to instruct the router to generate the key and load other
parameters (e.g., previous validator node label, which will be
used in the MAC operation). Then we use the FN triples (loc:
0, len: 416, key: 7) and (loc: 288, len: 128, key: 8) to recalculate
and update the tags. Finally, we use the triple (loc: 0, len: 544,
key: 9) to instruct the destination host to verify the packet
source and path.
NDN+OPT. OPT is a security-oriented protocol and uses
authentication tags to achieve source validation and path
authentication in the IP network. With FNs, we can integrate
OPT with NDN to derive a secure content delivery network,
which is called NDN+OPT. In particular, we compose the
following FN modules (FFIB, FPIT, Fparm, FMAC, Fmark and
Fver) to construct the DIP packet header for NDN+OPT.
XIA. We use the FDAG and Fintent FN modules to realize the
complex packet processing logic in XIA. We set the header of
XIA in the FN locations and use these two operation modules
to parse the directed acyclic graph and handle the intent.

2In our prototype the router has no cached data, so there is no matching
content store. For the forwarding devices that support caching, the FIB
matching module can be slightly modified to first match the local content
store and then match the FIB.
3The session ID is a flow tag and is generated during the key negotiation
process in OPT.

128 768 1500
Packet size (Byte)

0

400

800

1200

1600

Pr
oc

es
si

ng
 ti

m
e

pe
r p

ac
ke

t (
ns

)

IPv4
DIP-32

IPv6
DIP-128

NDN
OPT

NDN+OPT

Figure 2: Packet processing time in the DIP prototype.

4 EVALUATION
4.1 Implementation
We implement a prototype DIP with the commodity Bare-
foot Tofino programmable switch S9180-32X. On account of
the current hardware limitations of the commodity Barefoot
Tofino programmable switch, it was challenging to imple-
ment a loop to invoke the operation modules. We use the
simple "if-else" statement with FN_Num to determine how
many field operations to perform. The field slices in Barefoot
Tofino are restricted to not using variables, therefore we pre-
set some fixed field slices and use some tables to match the
target field. Runtime programmability has not yet been im-
plemented on Barefoot Tofino, so we pre-write the required
operation modules on the data plane and use the operation
key to match these operation modules.
The header length of OPT [16] packet varies with the

path length and we use one hop for evaluation. For the MAC
operation in OPT, we take 2EM [2] instead of AES, since 2EM
is more friendly to Barefoot Tofino and can be completed
without resubmitting the packet, while the AES needs to
resubmit the packet. As for the NDN [41] packet, we take
the 32-bit content name for the packet forwarding with FFIB
and FPIT.

4.2 Evaluation
Packet processing time. For the IP, NDN, OPT, and NDN
+OPT packets, we test their processing time with 128-byte,
768-byte, and 1500-byte packet sizes. The forwarding times
of IPv4 and IPv6 packets are used as baselines. We carried
out 1000 forwarding tests for each size of the packet and
the evaluation results are shown in Figure 2. The results
show that the processing times of DIP packets are close to
the baseline. The OPT and NDN+OPT packets take more
processing time since the MAC operations are expensive.
Packet header size overhead. The packet header size over-
head is shown in Table 2. The basic DIP header occupies 6
bytes and the remaining parts (i.e., FN definitions and FN

64

HotNets ’22, November 14–15, 2022, Austin, TX, USA Ziqiang Wang, Zhuotao Liu, Xiaoliang Wang, Songtao Fu, and Ke Xu

Table 2: The packet header size overhead

Network function Total header size (Byte)

IPv6 forwarding 40
IPv4 forwarding 20

DIP-128 forwarding 50
DIP-32 forwarding 26
NDN forwarding 16
OPT forwarding 98

NDN+OPT forwarding 108

locations) vary in different L3 protocols. Therefore, DIP has
slightlymore packet header size overhead than IP forwarding.
The packet headers of OPT and NDN+OPT are significantly
larger than the IP packet header due to the extra source and
path authentication tags.

5 DISCUSSION
Addressable Market. The long-cherished desire of our com-
munity is making the Internet support diverse network func-
tions and protocols. To this end, the community considered
to build new clean-slate Internet architectures (e.g., [12, 41]),
and then switched gears to gradually, not surely, improve
the Internet via incrementally deployable protocols like Trot-
sky [22]. DIP is the successor to these efforts: DIP proposes
a new primitive, name FN, as the basic building block to
enable customizable network functions, as demonstrated in
§ 3. We do not claim that FN is the only option. Yet, it fol-
lows the recent research trend of Runtime Programmable
Networks [10, 40].
Opportunities with DIP. DIP is beneficial for both net-
work providers and end users. On the one hand, users are
allowed to construct their desired network protocols. On the
other hand, the network providers can now support new
services by only upgrading FNs, instead of replacing the
underlying hardware. Further, the flexibility of FNs also en-
ables the providers to offer differentiated services to different
users, according to their subscription models. Other oppor-
tunities of DIP include implementing stateless guaranteed
services [29, 30] and efficient network telemetry [14, 33].
Hardware Limitations. The commodity switch in our lab
(i.e., Barefoot Tofino programmable switch S9180-32X) has
some limitations and we made some compromises in imple-
menting theDIP prototype, as described in § 4.1. Considering
that runtime programmable device is currently a hot research
topic in our community and some exciting results have been
achieved [9, 39], we believe that DIP can also embrace the
advances in the foreseeable future.

6 RELATEDWORK
Research on network architecture is protracted. There
are many notable achievements [4, 5, 12, 24, 25, 35] and the

Trotsky [22] is one of the currently hotly discussed schemes.
The main idea of Trotsky is to add a new protocol layer
(i.e., L3.5) to shield the various L3 protocols, as the IP pro-
tocol shields different link-layer technologies, and decide
the Internet’s service model at L3.5. Our work is orthogonal
to Trotsky and focuses on virtually integrating various L3
protocols.
Active network [34] is an advanced network vision, which
allows users to inject customized programs into the network
nodes and replaces packet with "capsule". Its research has
laid the foundation for many important developments in
network programmability [1, 7, 26, 37]. However, the extreme
flexibility of active network makes it difficult to address
issues such as resource isolation and security. DIP allows
the host to customize the packet processing with FNs, which
provides constrained and appropriate flexibility.
Programmable Network Infrastructure [3, 27] is a hot re-
search topic in our community and the runtime programma-
bility has been studied in several contexts. The architecture
community has extensively explored the capability of live,
partial reconfiguration of FPGAs [36]. Recently, switch ven-
dors are increasingly exposing runtime programmability in
their ASICs [40] and our community has also made some aca-
demic achievements [9, 10, 39] to programming the network
to add, remove, and modify functions at runtime.
Network Function Virtualization [13, 18, 21, 32] is a long-
researched topic in our community, which is a network ar-
chitecture for virtualizing network functions (VNFs) on com-
modity general-purpose hardware. DIP takes the FN as the
building block and some operation modules without delay
requirements can be implemented with VNFs.

7 CONCLUSION
DIP leverages the development of network programmable
devices to provide a new design space for the use and cus-
tomization of network functions. The preliminary imple-
mentation and evaluation have shown that DIP can realize
various L3 protocols with good performance. We are work-
ing on improving the DIP scheme and implementing more
L3 protocols with DIP in an extended paper.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
This workwas in part supported by the China National Funds
for Distinguished Young Scientists under Grant 61825204; in
part by NSFC Project under Grant 61932016 and 62132011; in
part by Beijing Outstanding Young Scientist Program under
Grant BJJWZYJH01201910003011.

65

DIP: Unifying Network Layer Innovations using
Shared L3 Core Functions HotNets ’22, November 14–15, 2022, Austin, TX, USA

REFERENCES
[1] D Scott Alexander, William A Arbaugh, Michael W Hicks, Pankaj

Kakkar, Angelos D Keromytis, Jonathan T Moore, Carl A Gunter,
Scott M Nettles, and Jonathan M Smith. 1998. The SwitchWare active
network architecture. IEEE network 12, 3 (1998), 29–36.

[2] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, François-Xavier
Standaert, John Steinberger, and Elmar Tischhauser. 2012. Key-
alternating ciphers in a provable setting: encryption using a small
number of public permutations. In Annual international conference
on the theory and applications of cryptographic techniques. Springer,
45–62.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[4] Dave Clark, Bill Lehr, Steve Bauer, Peyman Faratin, Rahul Sami, and
John Wroclawski. 2006. Overlay Networks and the Future of the
Internet. Communications and Strategies 63 (2006), 109.

[5] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and
Andrew Warfield. 2003. Plutarch: an argument for network pluralism.
ACM SIGCOMM Computer Communication Review 33, 4 (2003), 258–
266.

[6] Jason ADonenfeld. 2017. WireGuard: Next Generation Kernel Network
Tunnel.. In NDSS. 1–12.

[7] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The road
to SDN: an intellectual history of programmable networks. ACM
SIGCOMM Computer Communication Review 44, 2 (2014), 87–98.

[8] Markus Feilner. 2006. OpenVPN: Building and integrating virtual private
networks. Packt Publishing Ltd.

[9] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li, Zi-
jian Zhang, Tong Yun, Ying Wan, and Bin Liu. 2022. Enabling In-situ
Programmability in Network Data Plane: From Architecture to Lan-
guage. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). 635–649.

[10] Yong Feng, Haoyu Song, Jiahao Li, Zhikang Chen, Wenquan Xu, and
Bin Liu. 2021. In-situ programmable switching using rp4: Towards
runtime data plane programmability. In Proceedings of the Twentieth
ACM Workshop on Hot Topics in Networks. 69–76.

[11] Songtao Fu, Ke Xu, Qi Li, Xiaoliang Wang, Su Yao, Yangfei Guo, and
Xinle Du. 2021. MASK: practical source and path verification based
on Multi-AS-Key. In 2021 IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS). IEEE, 1–10.

[12] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek Lim,
Michel Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella,
David G Andersen, et al. 2012. {XIA}: Efficient support for evolv-
able internetworking. In 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12). 309–322.

[13] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert,
and Gerald Q Maguire Jr. 2018. Metron:{NFV} service chains at the
true speed of the underlying hardware. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). 171–186.

[14] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence J Wobker. 2015. In-band network telemetry via
programmable dataplanes. In ACM SIGCOMM, Vol. 15.

[15] Dohyung Kim, Jun Bi, Athanasios V Vasilakos, and Ikjun Yeom. 2017.
Security of cached content in NDN. IEEE Transactions on Information
Forensics and Security 12, 12 (2017), 2933–2944.

[16] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee, Yih-
Chun Hu, and Adrian Perrig. 2014. Lightweight source authentication
and path validation. In Proceedings of the 2014 ACM Conference on

SIGCOMM. 271–282.
[17] Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and

Adrian Perrig. 2020. {EPIC}: Every Packet Is Checked in the Data
Plane of a {Path-Aware} Internet. In 29th USENIX Security Symposium
(USENIX Security 20). 541–558.

[18] Bojie Li, Kun Tan, Layong Luo, Yanqing Peng, Renqian Luo, Ningyi
Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. Clicknp:
Highly flexible and high performance network processing with re-
configurable hardware. In Proceedings of the 2016 ACM SIGCOMM
Conference. 1–14.

[19] Xin Liu, Xiaowei Yang, and Yong Xia. 2010. Netfence: preventing
internet denial of service from inside out. ACM SIGCOMM Computer
Communication Review 40, 4 (2010), 255–266.

[20] Zhuotao Liu, Hao Jin, Yih-Chun Hu, and Michael Bailey. 2016. Middle-
Police: Toward enforcing destination-defined policies in the middle
of the Internet. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. 1268–1279.

[21] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, and Justine
Sherry. 2020. Contention-aware performance prediction for virtualized
network functions. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication.
270–282.

[22] James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan,
and Scott Shenker. 2019. Enabling a permanent revolution in internet
architecture. In Proceedings of the ACM Special Interest Group on Data
Communication. 1–14.

[23] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM computer communication review 38, 2 (2008), 69–74.

[24] David Naylor, Matthew K Mukerjee, Patrick Agyapong, Robert Grandl,
Ruogu Kang, Michel Machado, Stephanie Brown, Cody Doucette, Hsu-
Chun Hsiao, Dongsu Han, et al. 2014. XIA: Architecting a more trust-
worthy and evolvable Internet. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 50–57.

[25] Norbert Niebert, Stephan Baucke, Ibtissam El-Khayat, Martin Johnsson,
Borje Ohlman, Henrik Abramowicz, Klaus Wuenstel, Hagen Woesner,
Jurgen Quittek, and Luis M Correia. 2008. The way 4ward to the
creation of a future internet. In 2008 IEEE 19th International Symposium
on Personal, Indoor and Mobile Radio Communications. IEEE, 1–5.

[26] Beverly Schwartz, Alden W Jackson, W Timothy Strayer, Wenyi Zhou,
R Dennis Rockwell, and Craig Partridge. 1999. Smart packets for active
networks. In 1999 IEEE Second Conference on Open Architectures and
Network Programming. Proceedings. OPENARCH’99 (Cat. No. 99EX252).
IEEE, 90–97.

[27] Haoyu Song. 2013. Protocol-oblivious forwarding: Unleash the power
of SDN through a future-proof forwarding plane. In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software defined
networking. 127–132.

[28] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh
Surana. 2002. Internet indirection infrastructure. In Proceedings of
the 2002 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. 73–86.

[29] Ion Stoica and Hui Zhang. 1999. Providing guaranteed services without
per flow management. ACM SIGCOMM Computer Communication
Review 29, 4 (1999), 81–94.

[30] Ion Stoica, Hui Zhang, S Shenker, R Yavatkar, D Stephens, A Malis, Y
Bernet, Z Wang, F Baker, J Wroclawski, et al. 1999. Per hop behaviors
based on dynamic packet states. draft-stoica-diffserv-dps-00. txt (1999).

[31] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and

66

HotNets ’22, November 14–15, 2022, Austin, TX, USA Ziqiang Wang, Zhuotao Liu, Xiaoliang Wang, Songtao Fu, and Ke Xu

Boon Thau Loo. 2021. Flightplan: Dataplane disaggregation and place-
ment for p4 programs. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21). 571–592.

[32] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017.
NFP: Enabling network function parallelism in NFV. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communica-
tion. 43–56.

[33] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi Zhang, Jingying
Miao, Xiaoxi Liu, and Na Li. 2021. In-band network telemetry: A
survey. Computer Networks 186 (2021), 107763.

[34] David L Tennenhouse and David J Wetherall. 2002. Towards an active
network architecture. In Proceedings DARPA Active Networks Confer-
ence and Exposition. IEEE, 2–15.

[35] Christian Tschudin and Richard Gold. 2003. Network pointers. ACM
SIGCOMM Computer Communication Review 33, 1 (2003), 23–28.

[36] Kizheppatt Vipin and Suhaib A Fahmy. 2018. FPGA dynamic and partial
reconfiguration: A survey of architectures, methods, and applications.
ACM Computing Surveys (CSUR) 51, 4 (2018), 1–39.

[37] David Wetherall and David Tennenhouse. 2019. Retrospective on"
towards an active network architecture". ACM SIGCOMM Computer
Communication Review 49, 5 (2019), 86–89.

[38] Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, Martin J Reed, Meng
Shen, and Fan Yang. 2018. Enabling efficient source and path verifica-
tion via probabilistic packet marking. In 2018 IEEE/ACM 26th Interna-
tional Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[39] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Pi-
asetzky, Arvind Krishnamurthy, and Ang Chen. 2022. Runtime pro-
grammable switches. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). 651–665.

[40] Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Hongyi Liu, Matty Kadosh,
Alan Lo, Aditya Akella, Thomas Anderson, Arvind Krishnamurthy,
TS Eugene Ng, et al. 2021. A Vision for Runtime Programmable Net-
works. In Proceedings of the Twentieth ACM Workshop on Hot Topics in
Networks. 91–98.

[41] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KC
Claffy, Patrick Crowley, Christos Papadopoulos, Lan Wang, and Be-
ichuan Zhang. 2014. Named data networking. ACM SIGCOMM Com-
puter Communication Review 44, 3 (2014), 66–73.

[42] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian
Perrig, and David G Andersen. 2011. SCION: Scalability, control, and
isolation on next-generation networks. In 2011 IEEE Symposium on
Security and Privacy. IEEE, 212–227.

67

	Abstract
	1 Introduction
	2 DIP Design
	2.1 Field Operations
	2.2 A Draft of DIP Header
	2.3 Packet Processing Logic
	2.4 Additional Design Concerns

	3 Protocol Realization using DIP
	4 Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Discussion
	6 Related Work
	7 Conclusion
	References

