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Abstract—Website fingerprinting enables an eavesdropper to
determine which websites a user is visiting over an encrypted con-
nection. State-of-the-art website fingerprinting (WF) attacks have
demonstrated effectiveness even against Tor-protected network
traffic. However, existing WF attacks have critical limitations on
accurately identifying websites in multi-tab browsing sessions,
where the holistic pattern of individual websites is no longer
preserved, and the number of tabs opened by a client is unknown
a priori. In this paper, we propose ARES, a novel WF framework
natively designed for multi-tab WF attacks. ARES formulates the
multi-tab attack as a multi-label classification problem and solves
it using a multi-classifier framework. Each classifier, designed
based on a novel transformer model, identifies a specific website
using its local patterns extracted from multiple traffic segments.
We implement a prototype of ARES and extensively evaluate its
effectiveness using our large-scale dataset collected over multiple
months (by far the largest multi-tab WF dataset studied in
academic papers.) The experimental results illustrate that ARES
effectively achieves the multi-tab WF attack with the best F1-
score of 0.907. Further, ARES remains robust even against
various WF defenses.

I. INTRODUCTION

Anonymous communication techniques are designed to pre-
vent the content and metadata of network communications
from being leaked and/or tampered by malicious activities,
such as eavesdropping and man-in-the-middle attack. With
millions of daily users [1], the Onion Router (Tor) is one of the
most popular anonymous communication tools used to protect
web browsing privacy. Tor hides user activities by establishing
browsing sessions through Tor circuits with randomly selected
Tor relays, where data communication in each Tor circuit
is encrypted via ephemeral keys and forwarded in fix-sized
cells [2].

Although Tor mitigates the privacy threat to some extent,
an adversary can still observe the encrypted traffic of a Tor
browsing session and utilize its network traffic patterns (e.g.,
the packet size and interval statistics) to infer the websites
visited by the Tor client. This technique is referred to as
the Website Fingerprinting (WF) attack. The rationale behind
the WF attack is that the content of each website results in
a unique traffic pattern distinguishable from other websites.
Prior works [3], [4], [5], [6], [7], [8] demonstrated the effec-
tiveness of WF attack, with best attack accuracy exceeding
95%. In general, these works formulate the WF attack as a
classification problem and solve it based on machine learning

or deep learning algorithms, such as Support Vector Machine
(SVM), Random Forest, and Convolutional Neural Networks
(CNN).

The effectiveness of existing WF attacks relies on a common
yet unrealistic assumption. In particular, they assume that the
client only visits a single web page in one browsing session [9],
[10], [11]. This Single Page Assumption does not always hold
in practice since normal clients often open multiple browser
tabs simultaneously (or within a very short period) [9], [10],
[12]. A multi-tab browsing session contains the network traffic
generated by different web pages such that their patterns
are mixed and become more difficult to be identified. Prior
work [9] shows that the performance of the traditional WF
attacks decreases drastically on multi-tab browsing scenarios.
To relax this assumption, a series of multi-tab WF attacks have
been proposed [10], [11], [13], [14], [15].

Most existing multi-tab WF attacks (e.g., [10], [11], [13],
[14]) share a similar design architecture: they first divide the
whole browsing sessions into multiple clean traffic chunks,
where each chunk only contains the traffic of a single website,
and then infer the visited websites based on each chunk.
However, this architecture has three critical drawbacks. (i)
They require prior knowledge of how many tabs are opened
by clients. Existing multi-tab WF models are trained given a
fixed number of tabs, e.g., 2 tabs in [11]. Yet, their models
are not generic enough to handle other tab numbers. Con-
sequently, these methods often yield very limited accuracy
in practice when the number of opened tabs is dynamic and
unknown a priori. (ii) Even in such a restricted setting, these
methods are not resilient to the WF defense mechanisms. WF
defenses are designed to perturb the original network traffic
patterns by either delaying packet transmissions or padding
dummy packets. Prior work [14] shows that lightweight WF
defenses [16], [17] can significantly limit the effectiveness of
existing multi-tab WF attacks. (iii) Further, their effectiveness
further decreases as clients open more browser tabs. The capa-
bility of existing multi-tab WF attacks depends on the quality
of clean traffic chunks, such as the number of clean chunks
and the amount of clean traffic in these chunks. As clients
open more browser tabs, it is more difficult to extract clean
chunks from a browsing session. A recent art [15] explores
WF attacks without explicitly dividing the obfuscated traffic
into individual chunks, yet it still requires prior knowledge of
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the number of tabs.
Our Work. To address these limitations, we propose a new
multi-tab website fingerprinting attack mechanism, ARES.
The core idea of ARES is formulating the multi-tab WF attack
as a multi-label classification problem to fundamentally relax
the required prior knowledge on the number of tabs opened in
a browsing session. Towards this end, we design ARES based
on a novel multi-tab WF attack framework containing multiple
classifiers. Different from the existing end-to-end WF attacks,
we transform the complex multi-label classification problems
into the multiple binary classification problem, where each
classifier is responsible for calculating the possibility that
whether a specific monitored website is visited. Afterwards,
ARES regularizes and ranks these possibilities, and then
outputs the complete label set for all monitored websites
based on a pre-determined threshold. Besides the architectural
innovation, we also develop a new transformer model, Trans-
WF, as the robust individual classifier used in ARES, as
described below.

The key observation for designing Trans-WF is that al-
though a website’s clean and holistic traffic pattern is no
longer preserved in multi-tab browsing sessions (or simply
due to the dummy packets padded by WF defenses), it is still
possible to extract multiple local patterns for the website from
multiple short traffic segments. Thus, Trans-WF can build
signatures for different websites by analyzing the relevance
among these local traffic patterns. In its design, Trans-WF
uses a traffic division module to divide a browsing session into
multiple traffic segments while preserving the integrity of local
patterns, and a local profiling module to accurately extract the
local patterns from each traffic segment. Moreover, Trans-WF
designs an improved attention mechanism to further reduce
the impact of noises on calculating the relevance among local
patterns.

We extensively evaluate ARES based on a large-scale
dataset from over 500 thousand multi-tab Tor browsing
sessions collected from May 2021 to December 2021 and
from June 2022 to November 2022. In addition to multi-tab
browsing, we consider various real-world complexities in WF
attacks, including (i) multiple Tor versions co-exist, (ii) clients
may visit sub-pages beyond the main page in each website,
(iii) the vantage points for collecting traffic could vary (not just
at client-side), and (iv) network traffic is generated by real Tor
users. To the best of our knowledge, our datasets are by far
the largest multi-tab WF datasets.

The contributions of our work are four-fold:
• We develop ARES, a novel WF attack mechanism specif-

ically designed for the generic multi-tab browsing setting
where the number of open tabs is dynamic and unknown a
priori.

• ARES employs a one-vs-all framework containing parallel
classifiers to formulate the multi-tab WF attack as a multi-
label classification problem. At its core, each classifier is
powered by a novel Trans-WF design that can accurately
identify a specific website without depending on a clean and
holistic traffic pattern from the website.

• We release the first real large-scale multi-tab browsing
dataset1 that contains more than 500 thousand instances,
which is the largest publicly available multi-tab browsing
dataset. Crucially, we considered the aforementioned critical
WF attack complexities while collecting these data.

• We implement a prototype of ARES and extensively evalu-
ate it on our large-scale multi-tab browsing dataset. The ex-
perimental results illustrate that ARES effectively achieves
the best F1-score of 0.907. Even when clients open 5 tabs,
on average, ARES can still achieve the F1-score of 0.805
and 260.4% improvements over the baselines. In addition,
ARES is more resilient against defenses than existing WF
attacks.

II. BACKGROUND

A. WF Attacks and Defenses

In general, the fingerprint of a website is a combination
of network traffic patterns, such as the statistics of packet
sizes and intervals when accessing this website. The Website
Fingerprinting (WF) attack is a technique that can identify the
websites accessed by a client only by analyzing the client’s
browsing traffic, even in encrypted form. When applied by
adversaries, the WF attack could compromise normal users’
online privacy. Yet WF could also assist in crime tracking on
the dark web.

Technically, the WF attack is formulated as a classification
problem solvable using machine learning (ML) algorithms.
The existing researches have developed various types of fea-
tures, e.g., the data volume and packet intervals, to profile
the encrypted traffic. A series of ML-based classifiers (e.g.,
SVM and Random Forest) are used to perform WF attack [3],
[4], [5], [10], [18]. In particular, with the emergence of
deep learning (DL), DL-based WF attacks achieve automatic
feature extraction and higher accuracy [7], [8]. Further, a
study [8] shows DL-based WF attacks can effectively bypass
the existing WTF-PAD defense [16]. However, DL-based WF
attacks require a large amount of training data. Sirinam et
al. [19] proposed the triple networks based WF attack to solve
this problem. Still, the above WF attacks assume the client’s
browsing traffic is purely generated by a single website. The
recent multi-tab attacks [10], [11], [13], [14], [15] relaxed
this assumption. They propose to divide the network traffic to
obtain clean traffic chunks to facilitate website fingerprinting.
Yet, they need to know a priori the number of opened tabs,
which is challenging in practice. Moreover, they are not
resilient to the WF defense.

Website fingerprinting defenses are designed as countermea-
sures against WF attacks. Existing WF defenses mainly fall
into three categories: padding-based, mimicry and regulariza-
tion defense. Padding-based defenses (such as WTF-PAD [16]
and Front [17]) disorder the original traffic pattern by ran-
domly adding dummy packets. Mimicry defenses confuse the
traffic pattern, causing the classifiers of WF attacks to falsely
identify a website as another one [20], [21]. For example,

1https://github.com/Xinhao-Deng/Multi-tab-WF-Attack-datasets
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Fig. 1: The threat model of ARES. Users open multiple tabs
to visit different websites, and the middle nodes of the Tor
network may be a defense proxy.

Decoy [21] loads a decoy website along with the real website.
Regularization defenses make the traffic pattern of all websites
fixed by adding dummy packets and delaying packets [22],
[23], yet these defenses typically impose high overhead.

B. Multi-Class and Multi-Label Classification

In machine learning, the Multi-Class classification means
that the total number of class labels is greater than two [24]
(otherwise, it is a Binary classification). For example, an
adversary has a monitoring set with 100 different websites
(i.e., class labels) and tries to classify a client’s browsing
session (i.e., an instance) into one of these websites.

Regardless of the number of class labels, the Single-Label
classification [25] only assigns one class label to an instance,
e.g., classifying the species of an animal. By contrast, the
Multi-Label classification [26] may assign one or more class
labels to one instance simultaneously. Thus, it is more suitable
for the multi-tab web browsing scenario, where each encrypted
session contains multiple websites.

III. THREAT MODEL

In our threat model, clients access websites using privacy-
enhancing techniques like Tor to hide their online activities.
Each client could open several browser tabs to load multiple
pages from different websites simultaneously (or within a short
period of time). As a result, a client’s browsing session may
contain encrypted network packets from multiple websites.
Further, the client’s browser or on-path Tor relay nodes could
have deployed some WF defense mechanisms, such that the
traffic patterns of individual websites are no longer preserved.
Figure 1 illustrates our threat model.

We consider a privacy-hungry adversary that primarily
focuses on de-anonymizing a client’s online activities by
inferring the websites visited by the client through website
fingerprinting. Therefore, the adversary could deploy multiple
traffic mirroring points to record the client’s encrypted network
traffic, even before the traffic enters the entry node of the Tor
network. Yet, actively delaying or even discarding the client’s
network traffic is out of the scope of our threat model.

Compared with the original multi-tab WF threat mod-
els [10], [11], [13], [14], [15], our model is more realistic,
yet more challenging, for the following three reasons. (i) We
consider that the client could have deployed existing WF
defenses. As a result, the traffic pattern of individual websites

TABLE I: The comparison with the existing methods.

Methods Multi-tab Genericitya Robustnessb Practicalityc

k-FP [5] ✗ ✗ ✗ ✗
CUMUL [27] ✗ ✗ ✗ ✗

AWF [7] ✗ ✗ ✗ ✗
DF [8] ✗ ✗ ✓ ✗

Tik-tok [28] ✗ ✗ ✓ ✗
MWF [14] ✓ ✗ ✗ ✗
CWF [13] ✓ ✗ ✗ ✗

BAPM [15] ✓ ✗ ✗ ✗
ARES ✓ ✓ ✓ ✓

aGenericity represents that the attack can be achieved when the number of
opened tabs is dynamic and unknown a priori.

bRobustness means that the attack is more resilient against defenses,
quantified as performance degradation measured in Table IV.

cPracticality means that the attack considers critical real-world complexi-
ties.

could have been perturbed by these anti-WF techniques. (ii)
We consider that the number of tabs opened by the client is
dynamic and unknown a priori. Prior WF mechanisms assume
that the clients always open a fixed number of tabs (e.g.,
two tabs in [14]) since their models have to be trained and
tested under the same specific setting. This is restrictive and
unrealistic. (iii) We consider critical real-world complexities
in WF attacks. Existing WF attacks [5], [7], [8], [19], [29]
are evaluated using over-simplified scenarios, where clients
use the same version of Tor Browser, clients only browse the
homepage of websites, and network traffic is collectible at
the client-side, etc. These assumptions are largely incorrect
in practice. Therefore, our design considers a more practical
threat model, where multiple versions of Tor Browsers can co-
exist, clients can visit the sub-pages of websites, and different
vantage points for traffic collection other than at the client side
are evaluated. We summarize the critical model difference in
Table I.

Similar to existing arts [5], [7], [8], [19], our model con-
tains two attack scenarios: closed-world and open-world. The
closed-world scenario assumes that clients will only visit a
small set of websites (e.g., the Alexa Top 100 websites). In
this case, the adversary has the resources to collect data from
all these websites (referred to as monitored websites). In the
open-world scenario, clients can visit arbitrary websites, and
therefore the adversary may only possess training data for a
subset of the websites.

IV. DESIGN OF ARES

In this section, we present the design detail of ARES.
We start with an overview of ARES before delving into its
individual components.

A. Overview

As discussed in Section I, prior multi-tab WF attacks require
prior knowledge of the number of tabs opened in a browsing
session. To fundamentally relax this limitation, ARES regards
the multi-tab attack as a multi-label classification problem.
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Fig. 2: The overview of our generic robust WF attack ARES. ARES is based on multi-tab WF architecture with multiple
Trans-WF, and each Trans-WF identifies a specific website. Trans-WF consists of three module: traffic division module, local
profiling module and website identification module.

It is challenging to solve the multi-label classification
problem because the traffic from different websites is mixed
together and the number of visited websites is unknown and
dynamic. In particular, due to the high-dimensional features,
mixed website traffic, and noises generated by WF defenses,
it is difficult to train one classifier for the multi-tab WF attack.
Therefore, ARES builds a multi-tab WF attack framework
with multiple classifiers, and each classifier is utilized to
calculate the possibility of whether a specific website is
accessed. Then, ARES integrates the results of individual
classifiers to generate the complete label set for all monitored
websites without prior knowledge of the number of tabs.
Moreover, we develop a novel transformer [30] model called
Transformer for Website Fingerprinting (Trans-WF), as the
classifier used in ARES. The design of Trans-WF is based
on a key observation that a website’s local patterns are still
extractable from multiple short traffic segments, even when
the entire traffic pattern is no longer preserved in a multi-tab
browsing session and under defenses. Thus, Trans-WF can
build robust signatures for different websites based on these
local patterns.

We plot the architecture of ARES in Figure 2. At a high
level, ARES consists of N Trans-WF, where N is the number
of monitored websites and the i-th Trans-WF is used to iden-
tify the i-th monitored website. ARES combines all Trans-
WFs with a softmax layer, and then outputs a label set for all
monitored websites. The Trans-WF model consists of a traffic
division module (see Section IV-B), a local profiling module
(see Section IV-C), and a website identification module (see
Section IV-D). A typical WF attack using ARES proceeds
as follows. First, ARES extracts the direction sequence to
represent outgoing packets via +1 and incoming packets
via -1. Second, the traffic division module utilizes multiple
sliding windows, to divide the direction sequence into multiple
segments while preserving the integrity of local patterns.
Third, the local profiling module accurately extracts the key
local features representing the local traffic patterns of these
segments based on a Convolutional Neural Network (CNN).
Afterwards, the website identification module calculates the
relevance among the extracted local features via an improved
self-attention mechanism as the identification result for one

website. Finally, ARES regularizes and ranks these results to
output the label set for this browsing session based on a pre-
defined threshold.

The architecture of ARES has two advantages in practical
deployment. First, unlike prior WF attacks that rely on a
single holistic multi-class classifier, each individual classifier
in ARES is only responsible for a simpler problem (i.e.,
whether a specific website is visited). Thus, different classifiers
can be trained and inferred in parallel. Second, the WF attack
is not a one-time effort. It needs to be updated regularly
because the set of monitored websites may change, and the
network patterns of existing websites also change over time.
To handle such dynamics, ARES only needs to update the
corresponding classifiers, whereas the prior design requires
retraining a holistic new model.

B. Dividing Traffic

The traffic division module is responsible for dividing the
whole browsing session (i.e., the direction sequence) into
multiple traffic segments to facilitate local pattern extraction.
Generally, the local patterns of a website page are correlated
with the page’s HTML elements. The packets related to an
element tend to concentrate in a small traffic segment, forming
a local traffic pattern. However, due to the heterogeneity of
these local patterns, the straightforward way of dividing the
whole direction sequence into equal-sized non-overlapping
segments is inappropriate, since it may break certain local
patterns. Further, simply increasing the segment sizes cannot
guarantee good performance as it reduces the number of
segments, i.e., the number of profiled local patterns.

To preserve the integrity of local patterns, we utilize mul-
tiple sliding windows with different start positions in this
module. As a result, even if a local pattern is broken by
one particular sliding window, it is still possible that its
intact pattern is instead captured by some other windows.
In particular, let (d,y) denotes a client’s browsing session
instance, where d is its direction sequence of length ℓ, and y
is its label indicator vector. If this instance contains the i-th
monitored website, then yi = 1. Otherwise, yi = 0. We also
define w, n as the size of the sliding window and the number
of sliding windows, respectively, and the starting point of the i-
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th sliding window is the i-th position of the sequence d. Then,
as shown in Equation (1), we can obtain the set S containing
all the segments acquired by n sliding windows.

S = {W1, . . . ,Wn}, (1)

where Wi = {d[i + jw : i + jw + w]},∀j ∈ [0, ⌈l/w⌉ −
1] is the set of non-overlapping segments produced by the i-
th sliding window. Note that we replicate the sequence and
splice it together with the original sequence before dividing
it, ensuring that the loop division and all the segments are
the same lengths. The segments produced by different sliding
windows can overlap.

C. Profiling Local Patterns

The local profiling module is applied to profile the local
patterns of a monitored website by extracting the local feature
vectors from S. This is challenging for the following two
reasons: (i) the locations of the packet sequences representing
different local patterns are not fixed; (ii) the irreverent packets
in the same segment generated from other websites or WF
defenses create non-trivial noises. To overcome this challenge,
we design our local profiling module based on Convolutional
Neural Networks (CNN). CNN has the characteristic of in-
variant translation [31], i.e., it can profile the input data into
the same embedding vectors regardless of how the input data
is shifted. Moreover, prior WF attacks have demonstrated that
CNN is more resilient against noises [8], [28].

As shown in Figure 3, the local profiling module contains
L blocks and each block consists of two one-dimensional
convolution layers (Conv1d), two batch normalization layers
(BN) with the ReLU activation function (ReLU) and a max-
pooling layer. Besides, we introduce two additional regular-
ization techniques to further enhance our module. (i) Residual
connection. It propagates the intermediate output of lower
layers to higher layers through skip connections to prevent
gradient vanishing. (ii) Dropout. It randomly drops some units
(along with their connections) from the neural network during
training to alleviate over-fitting.

The input to the first block in our module is a segment s
in S, where s ∈ {−1, 1}w. Then, the output of this block is
the input of the second block, and so on. In each block, the

input is first fed into two convolution layers and two batch
normalization layers, to extract the local features. These local
feature vectors (i.e., the output of the last batch normalization
layer) are connected with their original input via the residual
connection, and then they will be fed into the max-pooling
layer, for the purpose of retaining the most representative
features while progressively reducing their sizes. Thus, the
small perturbations in the input traffic segments can be filtered
by the max-pooling layer.

D. Identifying Websites

The website identification module is in charge of analyzing
the relevance among local patterns to identify whether a
monitored website is visited in the multi-tab browsing session.
The self-attention mechanism proposed in the transformer
model [30] is a reasonable choice for this goal. The self-
attention mechanism is widely applied in natural language
processing and computer vision [30], [32], [33], [34], which
can capture the dependencies within a sequence. Therefore,
the self-attention mechanism can effectively analyze the de-
pendencies of multiple local patterns, and thus identify the
target website. Since the number of tabs opened by the client
is dynamic, we use a multi-headed self-attention mechanism
to capture the information of the target website under the
different numbers of tabs. Furthermore, we design the Top-m
attention, an improved self-attention mechanism, to enhance
the model robustness under WF defenses.

The attention mechanism is a function that computes the
relevance between a query and a set of key-value pairs, where
the query, key, and value are all vectors projected from
the input data individually [30]. In particular, the attention
function first calculates the weight of each value using a
compatibility function of the query and its corresponding key,
and then produces a weighted sum of all values as the output
that represents the relevance between the query and key-value
pairs. When we apply this mechanism to correlate different
segments of the same sequence, namely the self-attention [30],
it can convert the sequence into a new representation that
reveals its internal relevance. Thus, we can take the local
feature vectors as the input of the self-attention function,
and utilize the corresponding output as the fingerprint of a
monitored website. We present the details of the vanilla self-
attention mechanism in Appendix A.

However, when identifying a monitored website under
multi-tab browsing scenarios, the vanilla self-attention mech-
anism has a severe shortcoming in that it is not resilient to the
traffic noises generated by other websites and WF defenses. In
particular, this mechanism contains a fully-connected attention
layer such that the output vector for an input vector (i.e., a local
feature vector) depends on the relevance between this input
with all other inputs (i.e., all other local feature vectors). As a
result, the local features extracted from noisy traffic inevitably
reduce the accuracy of the output.

To handle this issue, we design an improved attention
layer, namely Top-m Attention, based on [35]. This layer
calculates the output for an input vector based on the Top-
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m weight values computed by its corresponding query and
all keys, rather than all weight values. In general, the traffic
of the monitored website is less correlated with the traffic
generated by other websites or WF defenses than itself. This
means that the monitored website’s local features and the local
features from other websites tend to have smaller attention-
based weight values. Thus, we can filter out the interference
from the traffic noises via the Top-m selection strategy. Let
Q, K, and V donate the query, key, and value matrices,
respectively. We formally describe this new attention layer
design in Equation (2):

AttentionTop−m(Q,K,V ) = softmax(Γ(
QKT

√
d

))V , (2)

[Γ(A)]ij =

{
Aij , Aij is the top-m largest elements in row j,
ϵ, otherwise,

(3)
where Γ(·) defines a row-wise top-m selection operation and
ϵ is a small enough constant. In our website identification
module, we replace the vanilla attention layer with our new
design.

As the number of tabs opened by the client is unknown and
dynamic, the correlation between local patterns varies with the
number of tabs. Therefore, we parallel multiple Top-m atten-
tion layers to compose a multi-head Top-m attention layer.
As shown in Figure 4, it allows Trans-WF to jointly capture
the relevance among the local features even in the dynamic
number of tabs , such that the relevance representations can be
enriched to achieve even more accurate website identifications.
For the i-th head, its output is computed via Equation (4):

headi = AttentionTop−m(QWQ
i ,KWK

i ,V W V
i ), (4)

where WQ
i ,WK

i ,W V
i ∈ Rd×dh are the weight matrices

specific to this head, where dh is the dimension of the output
vector of each head. Let h denotes the number of heads,
and we set dh = d/h. Note that each head performs its
own task individually. Then, the results of each head will
be concatenated and transformed by a linear projection. Let
Λ(X) denotes the output of our multi-head Top-m attention

layer. Finally, we can produce Λ(X) via Equation (5).

Λ(X) = Concat(head1, . . . , headh)WO, (5)

where WO ∈ Rhdh×d is the weight matrix. With the output
of the attention layer, we utilize a batch normalization layer
and a Multilayer perceptron (MLP) to identify the existence
of a target website. Also, we apply the techniques of residual
connection and dropout to avoid the problems of gradient van-
ishing and over-fitting, respectively. The identification result
Φ(X) of a target website can be computed as follows:

Φ(X) = MLP (LN(X +Dropout(Λ(X)))), (6)

LN(X) =
g√

σ2 + ϵ
⊙ (X − µ) + b, (7)

where LN is the layer normalization, g, b are the gain and
bias parameters, µ, σ are the mean and the variance of X , ⊙
is the element-wise multiplication between two vectors, and
ϵ is a small constant to prevent division by zero. The MLP
utilizes the common softmax function.

To mitigate the potential over-fitting of Trans-WF, we thus
use Droppath [36] in Trans-WF. The Droppath randomly
drops some training instances in the residual connection during
training, causing these instances to skip part of the training. In
particular, the Droppath achieves differential model training,
which can alleviate the over-fitting.

V. EVALUATION

In this section, we evaluate the effectiveness of ARES with
real-world multi-tab datasets. We also compare the perfor-
mance of our work with the state-of-the-art WF attacks.

A. Experimental Setup

Implementation. We prototype ARES using PyTorch with
more than 1,500 lines of code. We show the default parameter
values in Table VII and we further study the impacts of
parameter choices in Appendix B. We use 10-fold cross-
validation and calculate the average values as the experimental
results.
Dataset. We collect and release the first real-world large-
scale multi-tab browsing datasets. Our datasets encompass 8
categories of data.
• Multi-tab datasets: We collect multi-tab instances of Alexa-

top websites in the closed-world scenario and the open-
world scenario, respectively. The number of tabs varies from
2 to 5.

• Datasets with WF defense in place: We deploy 4 types
of defense mechanisms (i.e., Random, WTF-PAD [16],
Front [17], and Tamaraw [22]) in Tor via WFDefProxy [37],
and then collect the 2-tab defense datasets.

• Datasets for dynamic settings: We randomly sample the
traffic instances from the multi-tab and defense datasets
under different settings and mix them together.

• Datasets for websites beyond Alexa-top 100 collection: we
collect a 5-tab dataset containing 10 websites on darkweb
(Tor is often abused to access darkweb) and 90 websites
outside the Alexa-top 100 collection.
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• Datasets for multiple Tor Browser versions: we consider
the scenario where multiple Tor browser versions coexist.
We collect a 5-tab dataset from five versions of Tor Browser,
including version 10.0.15, 10.5, 11.0.3, 11.0.10,
and 11.5.

• Datasets for subpage browsing: We consider the case
where the clients can visit subpages of a website beyond
the homepage. We collect a 5-tab dataset based on 1000
subpages of 100 websites.

• Datasets for different vantage points: We collect a 5-tab
dataset for exploring the effect of vantage points where the
adversary can collect network traffic.

• Datasets generated by real users: We collect a dataset
using the network traffic generated based on the browsing
behavior of 50 volunteers.
Details of dataset construction are given in Appendix C.

Baseline. We use seven representative WF attacks as our
baseline methods, divided into three categories.
• Single-tab WF attacks: We select three classical single-tab

WF attacks: CUMUL [27], k-FP [5] and AWF [7]. CUMUL
and k-FP utilize carefully selected features and machine
learning algorithms. AWF applies deep learning models to
generate the website fingerprints automatically.

• WF attacks resilient to defenses: We select two state-of-
the-art (SOTA) single-tab WF attacks that are resilient to WF
defenses: DF [8] and Tik-tok [28]. To bypass WF defense,
DF utilizes deep learning models and Tik-tok introduces the
timing-based features.

• Multi-tab WF attacks: We choose three state-of-the-art
(SOTA) multi-tab WF attacks: MWF [14], CWF [13] and
BAPM [15]. MWF is an extended version of SWF [11]. It
performs the WF attack by locating the clean traffic chunk
generated by the first website and can only output a single
label (i.e., the first website’s category). CWF divides the
whole session traffic into segments and classifies each one
separately. It can achieve multiple labels for different web-
sites based on the voting results. BAPM is an end-to-end WP
attack built upon the mulit-head attention mechanism, where
one attention head calculates the probability of visiting one
specific website.
Among all these baselines, only CWF and BAPM output

multiple website labels in multi-tab WF attack scenarios.
Therefore, we extend the deep learning-based baselines, i.e.,
AWF, DF, and Tik-tok, so that they can output multiple
website labels for multi-tab WF attacks. We further tune the
designs of these attacks to achieve the best performance under
multi-tab settings. We discuss the details of the extension in
Appendix D.
Metrics. We use six metrics in two categories in evaluations:
• Multi-Label Metrics: We use three widely-used multi-label

classification metrics: AUC [38], P@K and MAP@K [39].
These metrics evaluate the predicted label set of each
instance individually so that we can calculate the average
results for all testing instances. Recall that y is the true label
vector for an instance x and if x browses the i-th website,
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Fig. 5: The AUC and MAP@k of multi-tab WF attacks with
different numbers of tabs

then yi = 1. Otherwise, yi = 0. For x, ŷ indicates the
predicted label vector (i.e., the probability of each website).
P@K and MAP@K are two metrics for measuring the k
websites with top-k highest probabilities in ŷ, while AUC
is a metric for measuring all websites. In particular, P@K
measures how many browsed websites existed in the top-k
predicted websites.
We calculate P@K for x via Equation (8), where rk(ŷ) is
the set of websites with top-k highest probabilities in ŷ.

P@k =
1

k

∑
l∈rk(ŷ)

yl. (8)

The MAP@K metric extends P@K, to further evaluate
whether the browsed websites have higher probabilities than
the non-browsed websites in the top-k prediction result.
Since a MAP@K score integrates the P@K scores with
different k values, it is not necessary to change the k value
for a specific tab setting. We can compute MAP@K as
follows: according to Equation (9).

MAP@k =

∑k
i=1 P@i

k
. (9)

• Single-Label Metrics: Since existing single-tab WF at-
tacks [27], [5] can only output a single label, we use
three single-label metrics, i.e., Precision, Recall, and F1-
score, for fair comparisons. These metrics evaluate the
prediction results of all instances for each website indi-
vidually. Based on instances’ prediction results, we can
calculate the numbers of true positive instances (TP), false
positive instances (FP), true negative instances (TN), and
false negative instances (FN) for each website, respectively.
These three metrics for each website can be computed as:
Precision = TP

TP+FP , Recall = TP
TP+FN , and F1-Score =

2×Precision×Recall
Precision+Recall . We can compute the average results for

all websites.

B. Multi-tab WF Attacks in the Closed-World.

We first evaluate ARES in the closed-world scenario. We
compare ARES with AWF, DF, Tik-tok, and CWF using
the multi-label metrics. Then we compare ARES with all
baselines using the single-label metrics.
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Fig. 6: Comparison with existing multi-tab WF attacks in the multi-label classification evaluation, where P@K is the precision
at top k.

Multi-Label Evaluation Results. Figure 5 shows the AUC
and MAP@k results. ARES achieves higher AUC scores
than the baselines under different tab settings. In particular,
ARES achieves an AUC score of around 0.903 under the 2-tab
setting, while the scores for Tik-tok, DF, AWF and CWF are
about 0.801, 0.802, 0.712, and 0.708, respectively. On average,
ARES has around 20% improvements over these baselines.
Even under the most challenging 5-tab setting, ARES achieves
an AUC score of about 0.708. Compared with the effective
baseline multi-tab WF attack, i.e., CWF, ARES still achieves
more than 28.6% improvement. Note that, we do not include
BAPM here since it is infeasible to compute AUC for BAPM.
In particular, when the number of tabs is k, BAPM only
outputs the rank of the top k websites that are most likely
to be visited. However, the AUC needs to be calculated based
on the rank of all websites.

Figure 5 also illustrates the MAP@K results. We set the
k value as the number of tabs, e.g., we use MAP@2 to
assess the results of 2-tab instances. We see that the MAP@K
performance of ARES is always better than other WF attacks.
Specifically, the MAP@K average improvements of ARES
over BAPM, Tik-tok, DF, AWF and CWF are about 33.4%,
46.6%, 53.4%, 187.5%, 206.7%, respectively. It demonstrates
that, even in the top-k prediction results, ARES can still obtain
much higher probabilities on the browsed websites than the
non-browsed ones. Thus, ARES can identify the browsed
websites more accurately than all state-of-the-art WF attacks.

We further evaluate the top-k predicted websites of different
attacks using the P@K metric. In particular, P@K measures
how many browsed websites existed in the top-k predicted
websites. As shown in Figure 6, ARES outperforms the other
WF attacks under different tab settings. For instance, ARES
achieves the best P@2 score (around 0.779) under the 2-tab
setting, while the P@2 scores of other methods are all lower
than 0.65. Similarly, under the 3 and 4-tab settings, ARES
can still achieve P@2 scores higher than 0.71, while the other
WF attacks achieve less than 0.58 P@2 scores. These results
demonstrate that the adversary can identify a greater number of
websites that are actually browsed by the client using the top-k
predictions given by ARES. Note that the P@K score slightly
decreases as k increases. This, however, does not indicate
significant effectiveness degradation of ARES. According to

Equation (8), k is independent of the prediction result in
ŷ. The P@K decrease is mainly caused by the increase of
the denominator (i.e., k) in Equation (8). Similar to AUC,
we cannot calculate P@k of BAPM when k is greater than
the number of tabs. Therefore, we do not include BAPM in
Figure 6.
Single-Label Evaluation Results. As shown in Table II, we
can see that ARES always achieves the best performance
for all single-label metrics. For instance, the F1-score of
ARES is as high as 0.907 under the 2-tab setting, while
the highest F1-score achieved by any baseline is lower than
0.740. On average, ARES improves the F1-scores of the
baselines by 132.6%. More importantly, the performance of
ARES is relatively stable as the clients open more tabs. Even
under the 5-tab setting, ARES still achieves a F1-score of
0.805, while the F1-scores of all baselines are lower than
0.530. On average, ARES shows an average 260.4% F1-
score improvement over all baselines in this setting. Such
significant gains are because under the 5-tab setting, it is
extremely difficult to identify the clean traffic chunks of a
specific web page, resulting in very low WF accuracies by
these baseline methods. Further, as shown in Table II, we
notice that the performance of ARES slightly declines with
more tabs (roughly 3.8% reduction on average per additional
tab). Thus, ARES predictably achieves reasonably effective
WF attacks even when the number of tabs exceeds five.
Remark. Overall, the above evaluation results demonstrate
that ARES can accurately identify the browsed websites in
multi-tab scenarios. Moreover, it validates the performance
advantage of our work over all existing WF attacks, especially
when clients open more tabs. The main reason is that ARES
can build robust signatures for different websites only based
on the local features extracted from multiple traffic segments.

C. Multi-tab WF Attack in the Open-World

Now we evaluate the performance of ARES in the open-
world scenario. Recall that the open-world experiments regard
all non-monitored websites as one website category, while
each monitored website is viewed as an individual category. As
a result, the number of instances in the non-monitored website
category is much larger than that of each monitored category.
To avoid the data imbalance problem, we follow the settings
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TABLE II: Comparisons with prior arts with different tabs in the closed-world single-label classification evaluation.

2-tab 3-tab 4-tab 5-tab
Attacks Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

CUMUL 0.328 0.327 0.315 0.219 0.230 0.215 0.201 0.208 0.196 0.160 0.170 0.158
k-FP 0.668 0.626 0.633 0.589 0.553 0.567 0.563 0.513 0.519 0.486 0.419 0.423
MWF 0.187 0.171 0.170 0.135 0.130 0.128 0.133 0.129 0.127 0.101 0.098 0.095
AWF 0.414 0.470 0.419 0.286 0.354 0.287 0.203 0.304 0.219 0.225 0.287 0.210
DF 0.701 0.729 0.710 0.660 0.740 0.688 0.550 0.675 0.596 0.503 0.601 0.529

Tik-tok 0.689 0.722 0.701 0.425 0.496 0.452 0.316 0.414 0.349 0.263 0.356 0.288
CWF 0.417 0.297 0.304 0.348 0.256 0.240 0.288 0.364 0.268 0.315 0.277 0.224

BAPM 0.748 0.732 0.731 0.665 0.651 0.649 0.631 0.616 0.615 0.522 0.502 0.498
ARES 0.913 0.906 0.907 0.913 0.904 0.905 0.902 0.896 0.894 0.818 0.815 0.805
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Fig. 7: Comparison of AUC of monitored websites AUCM

and non-monitored websites AUCN with different tab settings
in the open-world scenario.

TABLE III: Comparison with the existing multi-tab WF at-
tacks in the open-world scenario.

# of tabs Metrics CWF AWF DF Tik-tok BAPM ARES

2-tab P@2 0.206 0.288 0.488 0.490 0.631 0.752
MAP@2 0.229 0.375 0.656 0.658 0.671 0.827

3-tab P@3 0.196 0.193 0.318 0.338 0.496 0.587
MAP@3 0.241 0.271 0.496 0.518 0.581 0.747

4-tab P@4 0.160 0.155 0.247 0.272 0.432 0.528
MAP@4 0.210 0.225 0.413 0.440 0.521 0.713

5-tab P@5 0.147 0.138 0.205 0.221 0.338 0.438
MAP@5 0.208 0.198 0.345 0.368 0.418 0.604

in the prior arts [7], [8] that mix all closed and open-world
instances collected from the same tab setting in our evaluation.
For instance, we combine the 2-tab closed and open-world
instances to run the 2-tab open-world experiment.

We first measure the AUC scores for monitored and non-
monitored websites individually, indicated by AUCM and
AUCN . Figure 7 shows that ARES achieves the best perfor-
mance among all tab settings. For instance, under the 2-tab
setting, ARES achieves the best AUCM score of about 0.886
and its improvements over the baselines Tik-tok, DF, AWF,
and CWF are about 11.2%, 11.4%, 23.2%, and 25.7%, respec-
tively. We notice that the AUCN score of ARES is slightly
lower than its AUCM score under the same tab settings. Recall
that each open-world instance visits one unique non-monitored
website, whereas the total number of non-monitored websites
is huge. Thus, this slight decrease mainly attributes to the
traffic pattern difference between the training and testing set
of the classifier regarding the non-monitored website category.
Further, Table III lists the P@K and MAP@K scores, where k

is the number of opened tabs. We can see that ARES achieves
the best P@2 and MAP@2 of 0.752 and 0.827 in the 2-
tab setting. Under the most complicated 5-tab setting, the
MAP@5 of ARES remains above 0.60 and its improvements
over the baselines are non-trivial, ranging from 44.5% to
205.1%.
Remark. The experimental results in the open-world scenarios
demonstrate that ARES is able to accurately identify the
websites browsed by the clients even if the complete set of
potentially visited websites is unknown a priori.

D. Multi-tab WF Attack under Defenses

Next, we evaluate the attack performance under WF de-
fenses. Table IV lists the experimental results. ARES achieves
robust WF attack performance in the majority of the scenarios
and outperforms all baselines. In particular, under the random
defense, ARES achieves the best AUC score of about 0.881,
while the AUC scores of other WF attacks are less than 0.770.
Under the WTF-PAD defense, the AUC score of ARES is
0.843 and its improvements over the existing WF attacks
DF and Tik-tok are about 19.7% and 18.4%, respectively.
When facing the SOTA lightweight WF defense Front, ARES
achieves the best AUC score of 0.761. We observe that all
WF attacks have obvious performance degradation against the
Tamaraw defense. Note that Tamaraw is a heavyweight de-
fense with high latency and data overheads. Thus, it is difficult
to deploy Tamaraw in the real Tor network [17]. Even against
this defense, ARES still outperforms all baselines with non-
trivial margins. For instance, compared with the SOTA robust
WF attack Tik-tok, ARES increases the AUC, Precision and
MAP@2 by 11.9%, 44.6% and 43.0%, respectively.
Remark. To sum up, these experimental results demonstrate
that ARES can perform accurate multi-tab WF attacks even
when various WF defenses are present. Compared with the
SOTA robust WF attacks, ARES is more resilient against WF
defenses. The robustness of ARES is attributed to our Trans-
WF model. It builds robust website fingerprints based on local
traffic patterns with less noises and proposes several designs
to offset the impacts of noises.

E. Multi-tab Attack under Dynamic Settings

Moreover, we evaluate the effectiveness of ARES in the
following dynamic settings. (i) Dynamic multi-tab setting: the
adversary cannot know the number of tabs opened by the client
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TABLE IV: AUC, Precision (Pre) and MAP@k of WF attacks on four representative defenses in the 2-tab setting.

Attacks Random WTF-PAD Front Tamaraw

AUC Pre MAP@2 AUC Pre MAP@2 AUC Pre MAP@2 AUC Pre MAP@2

CWF 0.610 0.501 0.248 0.575 0.431 0.229 0.542 0.355 0.187 0.520 0.296 0.085
AWF 0.625 0.529 0.309 0.583 0.462 0.275 0.556 0.392 0.212 0.529 0.305 0.123
DF 0.743 0.748 0.537 0.704 0.649 0.509 0.592 0.526 0.341 0.542 0.447 0.207

Tik-tok 0.768 0.756 0.651 0.712 0.654 0.546 0.628 0.551 0.380 0.548 0.469 0.228
BAPM - 0.772 0.672 - 0.686 0.568 - 0.607 0.435 - 0.406 0.160
ARES 0.881 0.892 0.810 0.843 0.868 0.712 0.761 0.792 0.627 0.613 0.678 0.326

TABLE V: AUC, Precision (Pre) and MAP@k of WF attacks
under dynamic settings.

Attacks Multi-tab Defense

AUC Pre MAP@5 AUC Pre MAP@2

CWF 0.608 0.437 0.247 0.538 0.341 0.135
AWF 0.605 0.359 0.219 0.543 0.368 0.146
DF 0.651 0.686 0.388 0.556 0.503 0.232

Tik-tok 0.661 0.693 0.393 0.591 0.529 0.287
BAPM - 0.712 0.429 - 0.575 0.304
ARES 0.738 0.825 0.557 0.708 0.774 0.521

TABLE VI: Further evaluation of ARES under dynamic set-
tings. Entry in row X, column Y corresponds to the AUC and
Precision (Pre) obtained by training with X-tab instances and
testing with Y-tab instances.

# of tabs 3-tab (Test) 4-tab (Test) 5-tab (Test)

AUC Pre AUC Pre AUC Pre

3-tab (Train) 0.855 0.908 0.766 0.824 0.713 0.758
4-tab (Train) 0.813 0.828 0.834 0.896 0.715 0.747
5-tab (Train) 0.790 0.796 0.750 0.775 0.747 0.816

in advance. (ii) Dynamic defense setting: the adversary has
no prior knowledge about the deployed WF defense. We use
AUC, Precision, and MAP@k to evaluate the performance of
multi-tab WF attacks in this section.

As listed in Table V, the performance of ARES is superior
to all baselines under the dynamic settings. For instance, the
AUC scores of ARES are 0.738 and 0.708 in the dynamic
multi-tab and dynamic defense setting, respectively, and the
average improvements over all baselines are 17.1% and 27.3%,
respectively. Similarly, under the dynamic multi-tab setting,
ARES achieves an average MAP@5 improvement of 79.0%
over all baselines. Meanwhile, ARES’s average MAP@2
improvement under the dynamic defense setting is 164.1%.

In Table VI, we show the further evaluation of ARES under
dynamic settings. We train ARES with 3-tab, 4-tab, and 5-tab
instances separately, and then test ARES with additional 3-
tab, 4-tab, and 5-tab instances, respectively. We find that the
attacks perform of ARES best when trained and tested using
instances from the same number of tabs. When the number of
tabs in the training and testing instances is different, ARES
can still achieve an effective WF attack. For example, when
we train ARES with 5-tab training instances, ARES achieves
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Fig. 8: Evaluation of concept drift. (a) We use the cosine
distance of traffic features to measure the degree of concept
drift of websites for different time gaps. We show a cumulative
distribution of the number of websites. (b) The comparison of
WF attacks under the impact of concept drift.

the precision of 0.796, 0.775, and 0.816 with 3-tab, 4-tab, and
5-tab testing instances, respectively. Compared to the attack
performance with the 5-tab testing instances, ARES is only
2.45% and 5.02% degraded in Precision with 3-tab and 4-tab
testing instances, respectively.
Remark. The significant performance improvements above
demonstrate the applicability of ARES in practical deploy-
ment. This attributes to our novel architecture of ARES
that can effectively learn the patterns of various websites
simultaneously. Unlike the prior WF attacks that apply a single
holistic multi-class classifier, each classifier in ARES only
checks the existence of one specific website under different
settings. Thus, ARES achieves more robust website finger-
prints regardless of how many tabs are opened or what type
of defenses is deployed.

F. Evaluating Concept Drift

When a website’s contents (e.g., texts, images, and ads) are
updated, its traffic patterns also change accordingly. Therefore,
the difference between the training and testing website data
will be enlarged over time. This phenomenon referred to as
concept drift [40], [41], can result in significant performance
degradation of WF attacks. In this section, we first measure
the concept drift of websites at different time gaps, and
then we evaluate the robustness of ARES in the presence of
concept drift. In particular, we only train ARES using the 2-
tab instances collected before August 1st, 2022 and evaluate
its performance on testing the instances collected after some
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Fig. 9: The AUC and Precision of multi-tab WF attacks with
Alexa-top websites and websites beyond Alexa-top 100.

time (i.e., 0 days, 10 days, 20 days, 30 days, and 60 days).
Furthermore, We also compare ARES with other attacks.

Existing works [42], [43], [44] show that cosine distance
can be used to effectively measure and detect concept drift.
In our case, we first extract the features of all instances of the
website over a period of time for a monitored website and then
calculate the average feature of the website, i.e., the average
of features in each dimension. Afterwards, we calculate the
cosine distance of the average features between two time
periods as the drift. In Figure 8(a), we plot the cumulative
distribution of concept drift of monitored websites over time.
Clearly, as time goes by, more monitored websites experience
concept drift. For example, after 30 days, the average drift
value of the monitored websites is 0.04, but after 60 days
the average drift value increases to 0.14. Both the number of
websites experiencing concept drift and the drift value increase
significantly over time.

In Figure 8(b), we show the performance comparison of
different WF attacks using AUC. We observe that ARES
delivers the highest attack performance in all testing cases.
For instance, ARES has the best AUC scores of 0.868 on
the testing instances collected after 10 days. On the testing
set collected after 60 days, ARES still achieves the best
AUC scores of 0.672. Overall, ARES has the 18.2% average
improvement on AUC over all the baseline results.
Remark. These results demonstrate that ARES can maintain
good attack performance over time in real deployment because
ARES can learn non-temporal and stable features. In fact, even
if the classifiers in ARES experiences obvious performance
degradation over time, an adversary only needs to update the
corresponding classifiers, rather than re-training a holistic new
model. Note that, we observe that when the interval is 30
days, the performance of ARES drops by 14.9%. Thus, we
recommend retraining ARES once a month.

G. Beyond Alexa-top 100 Websites

We further evaluate WF attacks on the websites beyond the
Alexa-top ones. In Figure 9, we plot the AUC and precision
of multi-tab WF attacks against both the Alexa-top websites
and these new websites. ARES achieves 0.772 AUC and 0.901
Precision on the new websites, outperforming the baselines by
26.5% (AUC) and 70.1% (Precision), respectively, on average.
We also notice that all WF attacks achieve slightly better
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Fig. 10: The evaluation of multi-tab WF attacks where the
clients use different versions of Tor Browser.

performance on the new dataset than Alexa-top websites.
The reason is that the Alexa-top websites are somewhat
homogeneous as they are ranked by the number of visits. For
instance, many Alexa-top websites are regarding search, social
networking and video streaming. As a result, websites in the
same category may exhibit close traffic patterns.
Remark. In summary, ARES achieves effective multi-tab WF
attacks on websites beyond Alexa-top 100, which justifies
the generalizability of ARES. Meanwhile, ARES outperforms
other WF attacks on these new websites.

H. Considering Real-world Complexities

Existing methods [5], [7], [8], [19], [27], [28] are not
evaluated under real-world complexities. In this segment, we
consider three critical complexities in WF attacks: (i) clients
can adopt different versions of Tor Browsers, (ii) clients can
access subpages of a website, and (iii) the vantage point for
collecting traffic varies.
Multiple Tor Browser Versions. In this part, we evaluate
five different Tor Browser versions where each client uses
a randomly selected version. In Figure 10(a), we plot the
overall attack performance for ARES and other multi-tab WF
attacks. ARES achieves the best MAP@2 of 0.692, while the
MAP@2 of CWF, AWF, DF, Tik-tok, BAPM are 0.296, 0.221,
0.452, 0.507, and 0.562, respectively. We further present the
breakdown results for each individual Tor Browser version
in In Figure 10(b). ARES achieves an attack precision of
[0.749,0.802] for different browser versions. We notice that
the more recent Tor Browsers are more resilient against WF
attacks, due to the anti-traffic analysis mechanisms released in
these versions. For example, compared to the traffic collected
by the Tor Browser in version 10.0.15, the precision of ARES
attacks on traffic collected from the Tor Browser in version
11.5 decreased by 6.61%.
Subpage Browsing. In this part, when a client visits a
website, instead of main page, it randomly view a subpage
of this website. In Figure 11(a), we plot the overall attack
performance for ARES and other multi-tab WF attacks. ARES
achieves the best MAP@2 of 0.740, and improves MAP@2
of existing attacks by an average of 69.8%. In Figure 11(b), we
present the head-to-head comparison between homepage-based
and subpage-based WF attacks. Although we observe slight
performance decline when identifying websites using their
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where the vantage points for collecting traffic vary.

subpages, the overall attack performance is decent: ARES
achieves the AUC of 0.731 and the Precision of 0.854,
respectively, in subpage-based WF attacks.
Vantage Points. We further explore the effect of vantage
points for collecting traffic. We set our clients to randomly
selected bridges and then collect network traffic on the bridge
side. In Figure 12(a), we plot the overall attack performance
for ARES and other multi-tab WF attacks in this setting.
Compared to other attacks, ARES achieves the best MAP@2
of 0.708, and improves MAP@2 of other attacks by, on
average, 93%. In Figure 12(b), we further evaluate the AUC of
different attacks. Compared to other attacks, ARES achieves
the best AUC of 0.717. The reason is that the m-attention
mechanism of ARES can effectively eliminate the noise
brought by different vantage points.
Remark. This set of experiments demonstrates that ARES is
effective even considering various real-world WF complexi-
ties, and significantly outperforms prior art.

I. Traffic Generated by Real Users

In this segment, we evaluate WF attacks using the network
traffic generated by real users. In particular, we train the
model using the simulated 2-5 tab dataset and test the model
against the network traffic generated by these 50 volunteers as
they participate in our study. We show the WF attack results
for ARES and prior art in Figure 13. ARES achieves the
best attack performance, with an average Precision of 0.795
per website, and outperforms existing methods by non-trivial
margins.
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Fig. 13: Comparing with existing attacks using network traffic
generated by real users.

Remark. We notice the effective attack performance when
evaluating ARES using real user traffic. Thus, ARES is not
limited to only simulated network traces.

VI. DISCUSSION

Handling Extreme Multi-label Classification. Similar to
the existing attacks [8], [19], [27], our attack considers
fingerprinting roughly hundreds of monitored websites. If the
number of monitored sites increases to tens of thousands or
even millions, the multi-tab WF attack problem studied in the
paper becomes an extreme multi-label classification (XMLC)
problem [45]. The existing WF attack methods are unable to
solve this problem due to the difficulty of training a holistic
model to accurately identify millions of categories. The label
tree architecture [46], [47] may potentially solve this problem
since it can hierarchically divide the significantly large label
space into smaller subspaces. Currently, we do not apply the
label tree learning in ARES because its native form cannot
well handle the pattern dynamics of different websites. We
leave this to our future work.
Improving Training Performance. ARES requires a rela-
tively large time to train classifiers. For example, we need
around 30 minutes to train one Trans-WF with NVIDIA
RTX 2080Ti. Fortunately, the community has studied the
Transformer training optimization in both natural language
processing and computer vision domains [48], [49] We can
directly apply existing tools, such as Lightseq [49] and Tur-
boTransformers [48], to accelerate training in ARES. Further-
more, since different Trans-WF in ARES are independent,
we can further reduce the overall training time by training
different Trans-WF in parallel.
Effectiveness against Adversarial Defenses. Adversarial
training has been applied to design new WF defenses re-
cently [50], [51], [20]. However, these defenses [50], [51]
require prior knowledge about the traffic patterns in order
to perform adversarial learning, which might be difficult in
the real world. In addition, the WF adversary can train their
models using the network traces that already include the
packets generated by the defense proxies [20]. This will
offset the effectiveness of these WF defense designs based on
adversarial learning. We leave the detailed study of adversarial
learning based WF defenses in our future work.
Countermeasures against ARES. The key to reduce the
effectiveness of ARES is to reduce the relevance among the
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website’s local patterns. One possible design is as follows.
When the Tor exit node loads the page of a website, it first
computes the relevance among different HTML elements in
the page (e.g., by applying Transformer), chooses the elements
that are most relevant to others, regularizes them (e.g., add
dummy data to make them into the same size), and then sends
the page’s modified traffic to the Tor relay node. Regularizing
the most relevant elements blurs the signatures that can be
used by ARES. Moreover, it imposes less overhead than
regularizing the whole traffic. We leave in-depth exploration
of this design to future work.

VII. RELATED WORK

Traditional WF Attacks. Website fingerprinting (WF) attacks
that identify websites visited by clients according to encrypted
channels have been extensively studied. Traditional WF at-
tacks can be classified into two categories: manual feature
engineering [3], [4], [5], [18], [28], [52] and automated traffic
profiling [6], [7], [8], [53]. The first category utilizes carefully
chosen features and traditional machine learning algorithms.
For example, Wang et al. [3] utilized more than 3,000 features
to perform the WF attack via the k-Nearest Neighbors (k-
NN) classifier. The CUMUL approach [4] utilized 104 features
and an SVM-based classifier to perform the Internet-scale
WF attack. The k-FP attack [5] applied the random forest
algorithm to achieve better attack performance than either
kNN or CUMUL approach. The attacks in the second category
apply deep learning technologies to construct attacks. For
instance, Abe and Goto [6] proposed a Stacked Denoising
Autoencoder (SDAE) based WF attack, and Rimmer et al. [7]
utilized both Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) to perform WF attacks. All these
existing attacks are unable to accurately fingerprint websites
if the monitored traffic includes noises generated by multi-tab
browsing or WF defenses.
WF Defenses. WF defenses aim to eliminate traffic patterns
associated with specific websites to defend against WF attacks.
For instance, BuFLO [23] manipulated the transmission rate of
packets to interfere with the attacks. Yet other features such as
the total data volumes and the amounts of outgoing or incom-
ing packets are still available for fingerprinting. Tamaraw [54]
and CS-BuFLO [55] aggregated the traffic having similar sizes
and padded dummy packets in one group. However, they in-
curred significant latency in loading web pages [23], [54], [55].
Recently, several lightweight defenses [16], [17], [56] have
been developed to overcome these limitations. For instance,
WTF-PAD [16] used the adaptive padding mechanism [57]
that only pads dummy packets under the low channel usage
to reduce the defense overhead. Front [17] injected dummy
packets into early packets in the packet sequence.
Sophisticated WF Attacks. Recently a series of WF at-
tacks [3], [8], [10], [28], [56], [58] have been proposed to
improve the robustness of WF attacks. For example, Sirinam
et al. [8] utilized a CNN network to realize robust attacks
under the existing defenses, e.g., WTF-PAD [16]. Rahman et
al. [28] proposed Tik-tok that leveraged the features related to

the time interval to defeat the defenses. These methods require
a strong assumption that all monitored traffic is a single tab. In
order to relax this assumption, several multi-tab fingerprinting
attacks [11], [14], [58] have been developed. They divided
the monitored traffic into chunks and fingerprinted the traffic
by analyzing the clean chunks without noise. BAPM [15] is
proposed to further improve the performance of the multi-
tab WF attack, which identifies websites in obfuscated traffic
based on the self-attention mechanism. Unfortunately, they
assume that the attacker has prior knowledge about the traffic,
e.g., the number of tabs in the traffic, which is not practical.
ARES well addresses these issues, and achieves effective WF
attacks in the wild, while being robust to various defenses.

VIII. CONCLUSION

In this paper, we propose ARES, a novel WF attack
specifically designed for multi-tab browsing sessions. To fun-
damentally relax the limitations of existing arts that require
prior knowledge on the number of tabs opened in a browsing
session, ARES formulates the multi-tab WF attack as a multi-
label classification problem. To solve this problem, ARES
builds a multi-classifier framework where each classifier is
responsible for identifying one specific monitored website. The
classifier is designed based on a novel transformer model that
can accurately identify a website using local patterns extracted
from multiple traffic segments. We implemented a prototype of
ARES and extensively evaluated it using large-scale datasets.
The experimental results demonstrate that ARES improves the
F1-score of existing attacks by an average of 132.6%, and
remains robust even against various WF defenses.
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TABLE VII: Parameter settings in our evaluation

Module Part Design Details Value

Sequence Division
Input dimension 10000

Number of windows 10
Size of windows 2500

Local Profiling

Number of blocks 3
Number of filters [64, 128, 256]

Kernel size [8, 8, 8]
Pool size [8, 8, 8]

Output dimension 256

Website Identification

Number of heads 2
Dimension of head 64
Dimension of MLP 512

Top-m attention 2
Output dimension 2

in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 82–91.

APPENDIX A
SELF-ATTENTION MECHANISM

We illustrate this procedure using the vanilla attention mech-
anism [30] at first. Let Q, K, and V donate the query, key,
and value matrices, respectively. As shown in Equation (10),
these matrices can be achieved via linear projections of a
batch of input data X (i.e., the local feature vectors), where
X ∈ Rb×dm , b is the number of local features (i.e., batch size)
and dm represents the dimension of a local feature:

Q = XWQ, K = XWK , V = XW V , (10)

where WQ,WK ,W V ∈ Rdm×d are the matrices for pro-
jections and d is the dimension of an output vector. Note
that these projection matrices will be learned during model
training. Then, the output of this attention function can be
computed via Equation (11):

Attention(Q,K,V ) = softmax(
QKT

√
d

)V . (11)

In general, this equation computes the dot products of each
query with all keys, scales these results by dividing

√
d, and

applies a softmax function to obtain the weights of each value.

APPENDIX B
PARAMETER SETTINGS AND ANALYSIS

To set the parameters of ARES, we utilize the grid-
search technique [59] and choose the parameters with the best
performance. The Settings of parameter values are shown in
Table VII.

We further analyze the impacts of different parameter
choices on ARES with respect to the attack performance and
the attack time. Specifically, we select four critical parameters
including the sliding window size w, the number of sliding
windows n, the number of blocks in the local profiling
module L, and the Top-m attention mechanism. Since the
individual Trans-WF models in ARES can be trained and
tested in parallel, we evaluate the impacts of the parameters
using a single Trans-WF model. For simplicity, we perform
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Fig. 14: Parameter analysis of ARES. We select two, one and one key parameters from traffic division module, local
profiling module and website identification module, respectively. We demonstrate the impacts of different parameter settings
on classification accuracy and attack time overhead.

the evaluation on the 5-tab open-world scenario. Besides,
since each Trans-WF only checks one website, we use the
Accuracy metric to assess the attack performance. For the
attack time, we measure the average attack time of Trans-WF
for each instance. We fix the other parameters to their default
values when experimenting with one parameter.

As illustrated in Figure 14, we can see that the attack
performance is not sensitive to the parameter choices in most
cases. For instance, the Accuracy score only varies in the
range of 0.864 to 0.933 when the window size w raises
from 500 to 5000. Meanwhile, Accuracy under different n,
L and m values ranges between 0.938 and 0.889, between
0.935 and 0.902, and between 0.927 and 0.870. The difference
is only 0.049, 0.033, 0.057, respectively. In general, these
results demonstrate that the good WF attack performance of
ARES is attributed to our designs, rather than carefully crafted
parameters.

The average attack time per instance of Trans-WF is
between 0.26 s and 0.42 s for all combinations of parameters,
which indicates that ARES can guarantee effective attack
performance and small time overhead. We observe that a small
n value or a small L value can reduce the attack time of
Trans-WF. The reason behind this is that a small value of
n reduces the number of extracted local features. Also, a
smaller value of L further reduces the complexity of the Trans-
WF model. Therefore, an adversary can choose either these
specific parameter values for a faster multi-tab WF attack at
the expense of a slight performance decrease, or moderate
parameter values to achieve better attack performance.
Remark. In general, the performance of ARES is not sensitive
to parameter choices. ARES ensures the effective multi-tab
WF attack with a low time overhead. Moreover, the adversary
can find specific parameter values to reduce the attack time,
while retaining high attack performance.

APPENDIX C
DATA COLLECTION

To the best of our knowledge, there are no publicly available
multi-tab website fingerprint datasets. Most prior WF studies
collected their datasets under the unrealistic single-tab brows-
ing settings [7], [8]. To accurately evaluate the effectiveness of

ARES in the real world, we collect our Tor browsing datasets
under the real multi-tab scenario. In particular, we develop an
automatic Tor browsing tool based on the Tor browser and
the Selenium framework [60] by using over 1,000 lines of
code (LOC). We deploy our tool on 40 different cloud servers
located in different regions to simulate Tor clients located
across the globe. Our data collection is divided into two phases
from May 2021 to December 2021 and from June 2022 to
November 2022. Similar to the existing study [61], the Tor
browser is set to visit websites without caching. To avoid noise
interference, we stop all other processes running on the cloud
servers to prevent generating background traffic.

In general, our data collection tool takes the following steps
to repeatedly collect each multi-tab Tor browsing session: (i)
Start the tcpdump tool for network traffic collection and open
the Tor browser; (ii) Open multiple browser tabs sequentially
to visit different websites; (iii) We use the tcpdump tool to
collect the entire stream of packets generated while visiting
the websites and record them into a pcap file; (iv) Close the
Tor browser and its relevant processes to clean the browser’s
profile information after a pre-defined browsing time; (v) Close
the tcpdump tool and regard the collected pcap file as the
traffic instance of this session; (vi) Wait for 15 seconds, check
all flows of this session are terminated, and then start a new
iteration. By applying the steps above, we can ensure that a
pcap file associated with a session only contains the traffic
of websites browsed in this session. Afterward, we extract
the direction sequence of packets from each pcap file as the
feature vector used for WF attacks. A traffic segment means
a subsequence of the entire direction sequence. Specifically,
we collect various sessions by opening different numbers of
browser tabs in closed and open-world scenarios. The number
of browser tabs is set from two to five. Also, the interval
between loading two consecutive websites in one session is
randomly selected between 3 and 10 seconds. Note that, prior
art [17] shows that the front packets contain most website-
specific information and are sufficient to construct WF attacks.
Thus, we set the browsing time of each session as 240 seconds
which, according to our measurement study, is long enough
to load the entire pages for most websites.

Note that, our data collection does not incur negative
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impacts on the real-world Tor network or other Tor clients.
We only launch and collect about 1,500 browsing sessions per
day, a tiny fraction of all the sessions created by millions of
real Tor clients each day [62]. Further, we only collect the
browsing sessions launched by ourselves locally such that our
datasets do not contain other Tor clients’ data.

Multi-tab Datasets. We collect multi-tab datasets in closed
and open-world scenarios. In the closed-world scenario, clients
will only visit a small set of monitored websites. For a
fair comparison, we use the same settings as prior arts [7],
[8], i.e., we choose Alexa’s top 100 websites as the set of
monitored websites. Under the closed-world k-tab setting, we
randomly select k websites from this monitored set as website
combinations. For each website combination, our tool visits
the homepage of the websites in the combination sequen-
tially with random intervals. Meanwhile, our tool collects
the website traffic as an instance of this combination. Since
the total number of website combinations becomes extremely
large as k increases, e.g., there are over 76 million 5-tab
combinations for 100 monitored websites, we only randomly
generate thousands of website combinations for each k-tab
setting and each combination will be collected for 20 times,
i.e., a combination has 20 instances.

In the open-world scenario, clients can visit other websites
outside the monitored websites set. Therefore, we build a non-
monitored website set from Alexa’s top 20,000, excluding the
first 100 websites used in the closed-world scenario. Under
the open-world k-tab setting, we randomly select k-1 websites
from the monitored websites set and one website from the
non-monitored set as the website combinations. Note that, in
the open-world scenario, each monitored website is associated
with one specific label, and all non-monitored websites are
associated with same single label different from all monitored
websites. Thus, we only have to select one non-monitored
website for each k-tab open-world website combination. Be-
sides, each website in the non-monitored set will be selected
only once. Thus, the open-world website combinations under a
specific tab setting will have different non-monitored websites.
Then, our tool uses the same procedures for closed-world
scenarios to collect the traffic instances for these combina-
tions. Due to the significant number of open-world website
combinations, each combination will only be collected once.

We further check all collected instances to ensure the quality
of our datasets. First, we examine the relevant Selenium
logs, to remove the generated error instances, e.g., website
server timeouts or Selenium crashes. Second, at the end of
one browsing session, our tool saves a screenshot for each
browsed website such that we can easily filter out the instances
containing failed website browsing. After these two steps, we
only keep the closed-world website combinations having at
least 10 instances.

Defense datasets. Since most heavyweight WF defenses can-
not be applied to the real-world Tor network due to their high

latency overheads2 [17], in our experiments, we choose two
representative lightweight defenses, i.e., WTF-PAD [16] and
Front [17], and a heavyweight defense, i.e., Tamaraw [22].
WTF-PAD and Front only inject packets in the traffic (i.e.,
incurring data overheads) and will not delay data packets.
Tamaraw introduces high latency and data overheads, but it
is effective against the existing WF attacks [8], [28], [17]. We
collect a 2-tab defense dataset for each chosen defense setting
with real-world defense deployment in the Tor network based
on WFDefProxy [37]. With WFDefProxy, we can implement
each defense as a pluggable transport (PT) that obfuscates the
traffic between the client and the entry node in the real world.
Besides, we generate another defense dataset by randomly
inserting dummy packets in the traffic. Random inserting is a
common defense strategy in practice. To avoid incurring high
data overheads, the percentage of dummy packets per instance
is limited to 20%. Thus, we obtain four defense datasets
and each dataset includes 20 thousand 2-tab instances. Each
network traffic instance in the defense datasets corresponds to
a multi-tab browsing session perturbed by a specific defense
setting.
Datasets for Dynamic Settings. Most of the existing studies
assume that an adversary learns the number of tabs a priori. In
practice, it is difficult to obtain such information. In addition,
since the clients may change their deployed WF defense over
time, the deployed WF defense may be also transparent to
the adversary. Thus, we consider dynamic settings where the
number of tabs and deployed WF defenses are unknown.
To generate evaluation datasets for such dynamic settings,
we randomly sample the traffic instances from the multi-tab
and defense datasets under different settings and mix them
together. In particular, we create two sets of datasets for
the dynamic settings: the dynamic multi-tab datasets and the
dynamic defense datasets. In the former set, we randomly
select and mix 100k closed-world instances and 20k open-
world instances with different numbers of tabs, where the 2-tab
instances account for 40%, 3-tab instances account for 30%,
4-tab instances account for 20%, and 5-tab instances account
for 10%. In the latter set, 60k instances collected with WF
defenses are randomly selected and mixed. We select the same
number of instances from the four types of defenses (Random
instances, WTF-PAD instances, Front instances, and Tamaraw
instances).
Datasets for Beyond Alexa-top 100 Websites. The avail-
able public WF datasets [7], [8] are all based on Alexa-top
websites. This may have two potential problems. (i) Alexa-
top websites are ranked solely based on the number of visits,
without considering other factors like the types of websites.
For example, the Alexa-top 100 websites include a large num-
ber of search websites and social networking websites. (ii) The
Alexa-top websites do not include the websites of the dark web
which Tor users may visit. To address this problem, we collect
a dataset for a more representative list of websites. We first

2As pointed out by the guideline of the Tor project, WF defenses having
latency overhead may cause out-of-memory errors on the Tor relay nodes

1005



select 10 websites from the dark web which are anonymized
using the Onion service. For ethical reasons, we only visit the
home page and collect traffic for research purposes, and do
not publish links. Then we select 9 types of websites including
search websites, social networking websites, video websites,
news websites, e-commerce websites, etc., and choose 10
websites from each type.
Datasets for Multiple Tor Browser Versions. We consider
a practical scenario where multiple Tor browser versions co-
exist. In contrast to the existing work [9] that uses three
Tor browser versions, we select five Tor browser versions
released in the last two years, including version 10.0.15,
10.5, 11.0.3, 11.0.10, and 11.5. We use more recent
Tor Browsers because older versions are vulnerable to finger-
printing attacks. Before version 10.0.15, a lot of effort
was made to implement traffic padding and fix a series of
bugs [63], [64]. We deploy clients in 20 different locations,
each of which randomly selects one Tor browser version and
accesses websites in 5 tabs.
Datasets for Subpage Browsing. Previous WF attacks [7],
[8], [19], [27], [28] are evaluated by assuming that the client
only visits the homepage of each website. This is not realistic.
We thus consider the case where clients can visit subpages of
a website beyond the homepage. To this end, we first collect
1000 subpages of Alexa-top 100 websites based on crawlers
and 10 subpages per website. Then each time a client visits
the website, a subpage of the website is randomly selected for
browsing.
Datasets for Vantage Points. As discussed in Section III,
potential adversaries include local network administrators,
Internet Service Providers (ISP), and eavesdroppers on the
local network. Therefore, the vantage points for deploying WF
attacks can vary. To evaluate ARES in this scenario, we set
up 10 clients and 10 private bridges. When a client browses
websites, it connects to a randomly selected bridge, and then
we collect traffic at the bridge.
Datasets generated by Real Users. Finally, we collect
browsing traffic generated based on the browsing behavior of
real users. We recruited 50 volunteers from our university,
and we provide a wide range of websites (including news,
online shopping, social activities, academic activities, etc) for
volunteers. We record the websites they visited, the number
of tabs they opened, and the time interval between two tabs.
We collect 10 testing samples (each sample represents one
browsing session) for each user, where the largest number of
opened tabs in each session is 20. In particular, we do not
collect or handle any Personal Identifiable Information (PII).
The collected trace will not leak the privacy of volunteers.

APPENDIX D
EXTENSION OF SINGLE-TAB WF ATTACKS

We extend three single-tab attacks, i.e. AWF, DF and
Tik-tok, so that they can achieve multi-label classification.
Extending DL-based methods to achieve multi-label classifi-
cation is studied in computer vision (CV), natural language
processing (NLP), and data mining (DM) [45]. Methods

for extending DL-based models can be classified into two
categories: embedding-based methods and loss function-based
methods. The first category requires reconstructing the model
to learn a deep latent space to jointly embed the features and
labels [65], [66], [67], [68], [69]. For example, DCSPE [66]
achieves multi-label classification by integrating two DNN-
based models to learn the label embedding space. The methods
in the second category extend DL-based models by replacing
the original loss function with a new loss function target-
ing multi-label classification. In particular, the binary cross-
entropy function is widely applied [70], [71], [72], [73].

The embedding-based extension methods require recon-
struction of the original model, which may destroy the core
design of WF attacks. Furthermore, the embedding-based
methods have a large time overhead in inference, which is not
applicable to WF attacks. Therefore, we use the loss function-
based extension method. Specifically, we replace the loss of
three single-tab WF attacks with the binary cross-entropy loss,
and use the sigmoid layer as their output layer to optimize
the model training. This is a minor extension of models and
enables multi-tab WF attacks.
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