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Abstract
Website Fingerprinting (WF) attacks identify the websites visited
by users by performing traffic analysis, compromising user pri-
vacy. Particularly, DL-based WF attacks demonstrate impressive
attack performance. However, the effectiveness of DL-based WF
attacks relies on the collected complete and pure traffic during the
page loading, which impacts the practicality of these attacks. The
WF performance is rather low under dynamic network conditions
and various WF defenses, particularly when the analyzed traffic is
only a small part of the complete traffic. In this paper, we propose
Holmes, a robust and reliable early-stage WF attack. Holmes uti-
lizes temporal and spatial distribution analysis of website traffic
to effectively identify websites in the early stages of page loading.
Specifically, Holmes develops adaptive data augmentation based on
the temporal distribution of website traffic and utilizes a supervised
contrastive learning method to extract the correlations between the
early-stage traffic and the pre-collected complete traffic. Holmes
accurately identifies traffic in the early stages of page loading by
computing the correlation of the traffic with the spatial distribution
information, which ensures robust and reliable detection according
to early-stage traffic. We extensively evaluate Holmes using six
datasets. Compared to nine existing DL-based WF attacks, Holmes
improves the F1-score of identifying early-stage traffic by an av-
erage of 169.18%. Furthermore, we replay the traffic of visiting
real-world dark web websites. Holmes successfully identifies dark
web websites when the ratio of page loading on average is only
21.71%, with an average precision improvement of 169.36% over the
existing WF attacks.
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1 Introduction
Tor [12] is the most popular anonymous communication system,
boasting millions of active daily users [28]. Tor utilizes various
mechanisms, including randomly selected relays and multi-layer
encryption, to anonymize user browsing behaviors. Unfortunately,
Tor is vulnerable to Website Fingerprinting (WF) attacks [2, 10,
21, 35, 36, 39, 40]. WF attacks utilize Machine Learning (ML) or
Deep Learning (DL) models to extract unique traffic patterns of
websites and effectively identify the websites visited by Tor users. In
particular, existing DL-based WF attacks demonstrate outstanding
attack performance, achieving over 95% accuracy [10, 37, 39, 40].
WF attacks on Tor traffic are challenging, yet these attacks can also
be successfully applied to other privacy-preserving systems [11, 47].

The DL-based WF attacks heavily rely on the collected com-
plete and pure traffic during the page loading for traffic analysis. In
practice, adversaries cannot perceive the entire process of website
loading traffic due to mixed background traffic. Existing WF attacks
apply fixed conditions for traffic collection [10, 36, 37, 39, 40]. These
settings do not consider the differences between websites and may
compromise the attack performance, e.g., the adversary can only
collect partial traffic from slow-loading websites. Particularly, poor
network conditions and WF defenses also prevent the adversary
from effectively collecting the complete pure traffic of page load-
ing, leading to a significant decrease in attack performance against
certain websites [23]. Our study shows that the robust WF attack
(i.e., DF) achieves an average precision of over 91% for all web-
sites under the WTF-PAD defense. Notably, the lowest precision of
fingerprinting is only less than 55%1.

To address the limitations of existing DL-based WF attacks, we
aim to develop an effectiveWF attack, i.e., the early-stageWF attack,
that only utilizes the traffic generated from the early stage of page
loading. The early-stage WF attack can identify the visited website
during early-stage page loading. As shown in Figure 1, compared
with existing WF attacks, the early-stage attack does not require
waiting for the complete traffic of page loading. However, there are
three critical challenges in constructing the early-stage WF attack.
(i) Early-stage traffic under dynamic network conditions is prone
to traffic misidentification. Dynamic network conditions refer to

1The detailed results can be found in Section 6.5.
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Figure 1: Comparison of the early-stage WF attack with ex-
isting WF attacks. The early-stage WF attack can identify
websites in the early stage of page loading.

that Tor users may use different paths with different bandwidths
and latency across various networks. Under such dynamic network
conditions, the patterns of different traffic from the same website
vary. Traffic at the early stages of page loading contains less website
information, which varies under dynamic network conditions. (ii)
Early-stage WF attacks are more susceptible to various defenses.
By padding dummy packets [16, 23], delaying packets [5, 44] or
splitting traffic [8], defenses can significantly impact the effective-
ness of WF attacks. (iii) The page loading speeds vary significantly
across different websites, making it difficult to ensure high preci-
sion in detecting early-stage traffic of all websites. Since existing
WF attacks based on fixed-setting traffic collection cannot perceive
the page loading of websites visited by Tor users, the effective-
ness is unreliable. Especially, as discussed above, they achieve very
low identification precision in detecting the traffic visiting some
websites.

In this paper, we propose Holmes2, a robust and reliable early-
stage WF attack that can accurately fingerprint traffic visiting dif-
ferent websites according to a small amount of traffic. Holmes is
capable of effectively identifying the early-stage traffic of websites
under dynamic network conditions and deployed defenses by corre-
lating the early-stage traffic with the pre-collected complete traffic.
We find that both the early-stage traffic and the complete traffic of
the same website exhibit a strong connection of temporal-spatial
distribution because they contain the same website information,
e.g., the same parts of the website content and elements. As il-
lustrated in Figure 1, Holmes achieves early-stage WF attacks by
capturing the correlation between the unknown early-stage traffic
and the pre-collected complete traffic.

To efficiently capture the correlation between the traffic of differ-
ent stages of page loading, we design a three-step approach based
on temporal-spatial distribution analysis. First, Holmes utilizes an
adaptive data augmentation method built on the temporal distribu-
tion of traffic features, which augment the traffic at different stages
of page loading. Second, Holmes utilizes supervised contrastive
learning to transform traffic features into the low-dimensional em-
bedding space so that traffic at different loading stages is clustered
closely in the same embedding space. Notably, supervised con-
trastive learning makes the traffic of the same website closer in the
embedding space by learning the correlations of the traffic. Third,
Holmes transforms unknown early-stage traffic into a point in the
2Holmes is a fictional British detective in novels, known for his skill in analyzing the
correlations of clues to solve problems earlier than others.

embedding space and calculates the correlation between the un-
known traffic and each website based on the spatial distribution of
website traffic. It allows Holmes to perform website identification
at each short interval of traffic collection. The identified results
with low confidence will be rejected because the dynamic network
conditions or defenses cause insufficient website information in
the early-stage traffic. Holmes automatically continues collecting
more packets and analyzing the traffic at the next interval until the
website is successfully identified. Therefore, Holmes can ensure
adaptive traffic collection and reliable early-stage website identifi-
cation.

We prototype Holmes and conduct extensive performance eval-
uations using six different datasets, including the Alexa-top web-
sites dataset, dark web websites dataset, and four defense datasets.
Moreover, we implement nine advanced DL-based WF attacks for
comparison with Holmes. Compared to the existing WF attacks,
Holmes achieves an average improvement of 169.18% in the F1-
score to identify the early-stage traffic. Particularly, the experimen-
tal results under multiple defenses demonstrate the exceptional
robustness of Holmes. Furthermore, we evaluate the performance
of Holmes under real-world deployment. We selected 80 popular
dark web websites based on Tor onion services [41] and collected
real-world dark web traffic in August 2023 and April 2024. Holmes
achieves a precision of 85.19% in identifying these real-world dark
web websites, with an average page loading ratio of only 21.71%.

The contributions of our work are three-fold:
• We propose Holmes, the first robust and reliable early-stage
WF attack against Tor traffic, which can fingerprint websites
according to a small amount of traffic visiting the websites.

• Holmes utilizes feature attribution to analyze the temporal dis-
tribution of traffic features, enabling website-adaptive data aug-
mentation. Furthermore,Holmes utilizes a supervised contrastive
learning method to extract correlations between early-stage traf-
fic and complete traffic and obtain the spatial distribution of
websites. By correlating the spatial and temporal distribution,
Holmes achieves a robust and reliable website identification,
which can accurately fingerprint traffic under different network
conditions and various defenses.

• We prototype Holmes and perform extensive experiments in
various settings to demonstrate its performance. We release the
source code of Holmes3.
The rest of this paper is organized as follows: Section 2 presents

the background and the problem statement. Section 3 presents the
threat model. In Section 4, we present the key observation and
overview of Holmes. Section 5 presents the detailed designs. In
Section 6, we evaluate the performances of Holmes. In Section 7, we
discuss the practicality of Holmes and the possible countermeasure
against Holmes. Section 8 and 9 review related works and conclude
the paper, respectively.

2 Background & Problem Statement
2.1 Background
Website fingerprinting (WF) attacks identify the websites visited
by Tor users by analyzing traffic patterns, such as packet sizes and

3https://github.com/Xinhao-Deng/Website-Fingerprinting-Library
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Figure 2: Distribution of page load times and number of pack-
ets for Alexa-top 10k websites.

timing information. Previous WF attacks extract fingerprinting
features from traffic based on expert knowledge and employ Ma-
chine Learning (ML) models to classify these features for website
identification [18, 32, 43]. However, features extracted based on
expert knowledge can be easily compromised by defenses [23].
With the advancement of deep learning (DL), DL-based WF attacks
achieve automated feature extraction and significantly enhance
performance [3, 36, 39]. DL-based WF attacks can effectively iden-
tify websites in various real-world scenarios, such as multi-tab
browsing [10, 21, 46], under defenses [35, 37], dynamic network
environments [2], and concept drift [40]. However, reliance on the
collection of pure traffic throughout the entire page loading hin-
ders the real-world deployment of WF attacks. Holmes achieves
early-stage WF attacks by utilizing both the temporal and spatial
distributions of website traffic.

Website fingerprinting (WF) defenses aim to undermine the ef-
fectiveness of WF attacks. Existing defenses mainly fall into two
categories: disturbing traffic and splitting traffic. The defenses for
disturbing traffic involve padding dummy packets [16, 23], delay-
ing packets [19, 44], inserting adversarial perturbations [30] and
obfuscating traffic [31]. However, the significant overhead of de-
fenses may affect the operation of relay nodes [7]. Only a variant
of the lightweight defense WTF-PAD has been deployed in the Tor
network [1]. Traffic splitting defenses involve splitting traffic into
multiple paths so that the adversary can only collect a portion of
the packets, thereby obscuring the traffic patterns [8]. We evaluate
the robustness of Holmes against existing defenses in Section 6.4.

2.2 Problem Statement
The goal of this paper is to develop reliable WF attacks (i.e., accu-
rately identifying all websites) based on the traffic in the early stage
of page loading. Previous WF attacks rely on collecting pure traffic
throughout the entire page load process. However, under dynamic
network conditions or defenses, existing attacks cannot effectively
collect complete traffic from all websites. Meanwhile, increasing
the traffic collection time incurs more noise from background traf-
fic or defenses, which further impacts the WF performance. We
analyze the SOTA multi-tab attack ARES [10] and the robust attack
DF [39]. ARES and DF achieve over 90% average precision in the
presence of obfuscated traffic under multi-tab browsing and WTF-
PAD defenses, respectively. We find that the minimum precision of
fingerprinting achieved by ARES and DF is only 42.86% and 54.11%,
respectively.

Tor network

Defense mechanismsTor users

Adversary

Websites

Page loading

Figure 3: The threat model of Holmes.

Note that, the fixed traffic collection settings required by the
existing attacks further undermine the practicality. For example,
the DF attack sets a traffic collection time of 120 seconds and an
input length of 5000. The input is the direction sequence of pack-
ets, which is either truncated or zero-padded. However, different
websites exhibit significant variations in page loading latency and
the number of generated packets, and such fixed settings cannot
guarantee reliable identification of all websites. Figure 2 illustrates
the distribution of page loading latency and the number of packets
for the Alexa-top 10k websites. We observe that the page loading
latency of 5.04% of websites exceeds 120 seconds or the packet
count is over 5000, making it difficult for the existing attacks to
collect pure traffic with sufficient website information. Moreover,
we find that over 58.17% of websites require less than 60 seconds
or fewer than 2500 packets for page loading. When these websites
finish loading, existing attacks continue collecting noise packets,
which further degrades the performance of attacks.

To address the issues above and achieve effective WF attacks
at the early stage of page loading, we develop Holmes to achieve
the following goals. (i) Reliability. Holmes utilizes traffic collected
from the early stages of page loading to achieve high identification
precision across all websites. (ii) Adaptivity. For traffic from various
websites, Holmes dynamically performs an attack during each time
interval of the traffic collection. Holmes should adaptively stop
traffic collection once enough website information is obtained, and
accurately identify traffic. (iii) Robustness. Holmes should maintain
robust performance under various WF defenses.

In a nutshell, Holmes aims to achieve robust and reliable early-
stage WF attacks, effectively identifying each website during the
early stages of page loading. Compared to previous attacks, Holmes
may be more practical in the real world, with applications such as
early detection and prevention of dark web crimes.

3 Threat Model
This paper aims to develop an early-stage website fingerprinting
attack that can identify websites visited by Tor users based on the
traffic in the early stages of page loading. In particular, early-stage
WF attacks can identify websites while the Tor user is still waiting
for the page to fully load. In Figure 3, we show the threat model of
our early-stageWF attack. Similar with previous works [2, 10, 18, 21,
32, 35, 36, 39, 40], we consider a local and passive adversary for Tor,
such as network administrators, Internet Service Providers (ISPs),
and Autonomous Systems (AS). The adversary can only collect
packets without the capability to decrypt packets. Specifically, a
passive adversary is unable to detect the end of a webpage loading,
and can only configure fixed conditions for traffic collection [10, 36,
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Figure 4: Visualization of temporal distribution based on
feature attribution method SHAP [27].

39]. Furthermore, we consider real-world scenarios with defenses.
On-path Tor relay nodes can be deployed with defenses, such as
padding dummy packets and delaying packets.

Similar to existing attacks [36, 39, 40], we consider closed-world
and open-world scenarios. The closed-world scenario assumes that
Tor users only visit a limited number of websites. Therefore, the
adversary can collect the traffic from all websites in advance in
the closed-world scenario. In the open-world scenario, clients can
browse arbitrary websites, and the adversary can only collect traffic
from a small subset of websites. Therefore, Tor users might browse
unmonitored websites unknown to the adversary in the open-world
scenario.

4 Design of Holmes
In this section, we present the key observation for our design and
propose a robust and reliable early-stage WF attack.

4.1 Key Observation
As discussed in Section 2.2, identifying websites by analyzing single
early-stage traffic is challenging due to dynamic network conditions
and deployed defenses. Particularly, the loaded content during the
same loading interval varies under different network conditions.
However, we observe a strong correlation between the early-stage
traffic and the pre-collected complete traffic of the same website,
both of which invariably contain the same website information,
including parts of the website content and elements.

Figure 4 illustrates the distribution of website information across
different stages of page loading, i.e., the temporal distribution of
the website features. For simplicity without losing generality, we
randomly select 20 websites from the Alexa-top 95 websites. We
cannot directly analyze the website information corresponding to
the encrypted packets. Thus, we measure the importance of traffic
features for each page loading stage based on the feature attribution
method, i.e., SHAP [27]. The importance of traffic features refers to
their contribution to website identification. The more website in-
formation contained in the page loading stage, the more important
the corresponding traffic features. We observe that the early-stage
traffic of all websites shares similar sufficient website information
with the complete traffic. Therefore, it is possible for us to achieve

accurate early-stage traffic fingerprinting by analyzing the correla-
tion between the early-stage traffic and the pre-collected complete
traffic.

4.2 Overview of Holmes
In this paper, we propose Holmes that exploits the correlations be-
tween the early-stage traffic and the pre-collected complete traffic
to achieve early-stage WF attacks. Particularly, Holmes captures
the spatial and temporal distribution of different websites so that it
can accurately fingerprint the traffic according to a small amount
of the traffic visiting the websites, even under varied network con-
ditions and WF defenses. Holmes first performs data augmentation
based on the unique temporal distribution of traffic features for
each website, which generates early-stage traffic that contains suf-
ficient website information. Second, Holmes utilizes Supervised
Contrastive Learning (SCL) [24] to transform traffic features into a
low-dimensional embedding space, where each flow of traffic corre-
sponds to a point in the space. SCL extracts the correlation between
early-stage and complete traffic of the same website by clustering
the points of early-stage and complete traffic in the embedding
space. Finally, Holmes projects unknown early-stage traffic into the
embedding space and calculates its correlation with each website
based on the spatial distribution of website traffic in the embedding
space. Note that, to avoid misidentification of early-stage traffic
containing only connection information, Holmes rejects results of
identifying early-stage traffic with low correlations to all websites.
Therefore, Holmes performs attacks at each short time interval
of traffic collection until the corresponding website is identified
with high confidence, thus enabling adaptive traffic collection and
reliable identification for each website.

Figure 5 illustrates the overview of Holmes. Holmes consists
of three modules designed to construct robust and reliable early-
stage WF attacks, including adaptive data augmentation, spatial
distribution analysis, and early-stage website identification.
Adaptive Data Augmentation. The adaptive data augmentation
module generates early-stage traffic by masking the tail of complete
traffic during the training phase, which ensures that early-stage
traffic contains sufficient website information based on the unique
temporal distribution of the website. Holmes employs the feature
attribution method, i.e., SHAP [27], to analyze the temporal distri-
bution of the website traffic. It aggregates the feature attribution
results of multiple traffic associated with the same websites to ob-
tain the feature importance distribution of the website. Holmes
leverages the temporal distribution of websites to apply tail mask-
ing of various lengths for the traffic of different websites so that
it can adaptively generate early-stage traffic containing sufficient
website information for each website. The details of this module
will be described in Section 5.1.
Spatial Distribution Analysis. The spatial distribution analysis
module utilizes supervised contrastive learning to transform traffic
features and computes the spatial distribution of websites according
to the new feature space. To effectively extract the correlation
between early-stage traffic and complete traffic, Holmes utilizes
an encoder built on supervised contrastive learning to transform
traffic features into low-dimensional embedding features, ensuring
that the embedding features corresponding to the early-stage and

2000



Robust and Reliable Early-Stage Website Fingerprinting Attacks via Spatial-Temporal Distribution Analysis CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Training traffic

Unknown early-
stage traffic

Training Only

Attack

1 Adaptive Data Augmentation

Feature Extraction

2 Spatial Distribution Analysis 3 Early-stage Website Identification

Feature attribution

...

Encoder

Supervised contrastive learning

Analyzing the spatial distribution of 
website embeddings

Centroid
..

Traffic features Embeddings

Radius

Projecting traffic into the 
embedding space

Identified Websites

Traffic collection timeline

t1 t2 t3

Attack every time interval

Waiting for 
next interval

t1 t2

t3

...

Analyzing the temporal distribution 
based on feature attribution

…

... Masking

Generating early-stage traffic based on 
website-adaptive masking

Embedding space

Reliable identification 
based on spatial correlation

...
... Embedding space

Figure 5: The overview of Holmes.

complete traffic of the same website are similar. The embedding
features of traffic are viewed as points in the embedding space,
where points corresponding to early-stage and complete traffic
with similar embedding features will be clustered together in this
space. Holmes analyzes the spatial distribution of each website’s
traffic in the embedding space, calculating the centroid and radius
of each website to support early-stage website identification. We
will describe this module in Section 5.2.
Early-StageWebsite Identification. The early-stage website iden-
tification module adaptively collects traffic according to the spatial
distribution of websites and achieves reliable website identification.
Since the adversary cannot perceive the page loading progress asso-
ciated with unknown website traffic, Holmes conducts a WF attack
during each traffic collection interval. During each interval,Holmes
projects the unknown early-stage traffic into the embedding space
and then calculates the distance between the point corresponding
to the unknown traffic and the centroid of each website. Since dif-
ferent websites have unique distribution densities in the embedding
space, i.e. radii, we can obtain the correlation between unknown
traffic and each website by comparing the distances and radii of
websites. If the distance between the centroid of a website and
the unknown traffic is less than the radius of the website, the traf-
fic is successfully identified and traffic collection ends. Otherwise,
Holmes will continue collecting traffic and analyze the traffic at
the next time interval. We will present the details of early-stage
website identification in Section 5.3.

5 Design Details
In this section, we present the design details of Holmes, including
the adaptive data augmentation module, the spatial distribution
analysis module, and the early-stage website identification module.

5.1 Adaptive Data Augmentation
The Adaptive Data Augmentation module generates traffic at dif-
ferent stages of page loading based on masked tail traffic, thereby
facilitating the analysis of the correlation between early-stage traf-
fic and complete traffic. However, randomly generated early-stage

traffic may not contain sufficient website information. The reason
is that due to network dynamic conditions and defenses, randomly
generated early-stage traffic may only contain connection infor-
mation and dummy packets. Furthermore, differences in website
loading speed can also affect the correlation between the generated
early-stage traffic and the complete traffic. To achieve website-
adaptive data augmentation, Holmes utilizes the feature attribution
method to analyze the temporal distribution of traffic features, en-
suring that the generated early-stage traffic is correlated with the
complete traffic of the same website.
Temporal Distribution Analysis. Holmes analyzes the temporal
distribution by profiling the feature importance, which is challeng-
ing for two reasons: (i) Packets are encrypted in multiple layers by
Tor, making it difficult to analyze their importance. (ii) In dynamic
network environments or under traffic obfuscation by defenses, the
positions of important packets may change.

To address these challenges, we extend the feature attribution
method SHapley Additive exPlanations (SHAP) [27] to analyze the
feature importance distribution at different stages of page loading.
SHAP calculates the marginal contribution of each feature by gen-
erating combinations of all features. It is based on Shapley values, a
concept from cooperative game theory, which ensures a fair distri-
bution of the contribution among the features. SHAP provides local
explanations showing how much each feature in a specific instance
contributes to the model’s output, as well as global insights about
the overall model behavior.

The advantages of SHAP over other feature attribution meth-
ods include (i) Accuracy. SHAP calculates all feature combinations,
which enables effective analysis of the relationships among fea-
tures in encrypted traffic, resulting in more accurate attribution
outcomes. (ii) Consistency. SHAP provides consistent feature attri-
bution results for multiple traffic to the same website. Therefore,
Holmes can aggregate the feature attribution results of multiple
traffic to obtain a website-level distribution of feature importance.

Let𝑈 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} represent the feature set of traffic, where
𝑛 is the number of features. Holmes divides the page loading time
into 𝑛 equal time intervals and counts the number of incoming
and outgoing packets in each interval as traffic features, where 𝑓𝑖
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Figure 6: Adaptive data augmentation of Holmes. (a) Holmes
calculates the effective loading ranges of websites based on
the temporal distribution of websites. (b) Holmes randomly
samples the start of the mask based on the effective loading
ranges of websites and generates early-stage traffic by mask-
ing traffic tails.

represents the feature of the i-th interval. Holmes calculates the
importance of the i-th feature 𝑓𝑖 based on the difference in the
expected model output when conditioning on the feature 𝑓𝑖 . To
miner the dependencies among traffic features, Holmes generates
all feature combinations excluding the feature 𝑓𝑖 to calculate the
marginal contribution of the feature 𝑓𝑖 . Specifically, the importance
of the i-th feature 𝜙𝑖 can be computed as follows:

𝜙𝑖 =
∑︁

𝑆⊆𝑈 \{ 𝑓𝑖 }

|𝑆 |! · (𝑛 − |𝑆 | − 1)!
𝑛!

· (O(𝑆 ∪ {𝑓𝑖 }) − O(𝑆)), (1)

where 𝑆 is a feature subset excluding 𝑓𝑖 . O(𝑆 ∪ {𝑓𝑖 }) and O(𝑆)
represent the expected outputs of the model when feature 𝑓𝑖 is
present and absent, respectively. The weight of the set 𝑆 is the
frequency of occurrence among all possible feature combinations.
Subsets of varying sizes are balanced in terms of weight to ensure
that the contributions of each feature can be fairly assessed. Due to
the high computational cost of Equation 1, we employ the DeepLIFT
algorithm [38] for approximation to expedite the calculation.

We select the SOTA WF attack RF [37] as the target model for
feature profiling. For each website, we randomly select 10 traffic.
We calculate the importance of features corresponding to different
loading stages of the website and represent the temporal distribu-
tion of each website using the average temporal distribution of the
traffic.
Mask-based Data Augmentation. Data augmentation is a ma-
chine learning technique that enhances the diversity of training
data by artificially modifying samples to improve model perfor-
mance [2]. Holmes achieves the data augmentation by masking
the tail of the traffic. However, the setting of mask proportion is
challenging. A prolonged mask results in early-stage traffic lack-
ing information related to the website, whereas a too-brief mask
requires the adversary to spend a lot of time collecting enough
packets. To address the above challenges, Holmes employs website-
adaptive data augmentation based on the temporal distribution of
websites.
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Figure 7: The Encoder of Holmes.

In Figure 6, we show the details of the data augmentation.Holmes
initially calculates the effective loading ranges of websites. When
the page loading ratio of a website reaches the effective loading
range, the early-stage traffic contains enough website information
to be correlated with the complete traffic. As shown in Figure 6(a),
Holmes generates the cumulative distribution of feature impor-
tance for all websites. Holmes sets two parameters, 𝜆 and 𝜇, rep-
resenting the upper and lower bounds of the cumulative feature
importance corresponding to the effective loading proportions of
websites. Based on the parameters 𝜆 and 𝜇, Holmes can calculate
the effective loading range for each website.

To ensure the correlation between the generated early-stage
traffic and the complete traffic, Holmes adaptively enhances the
traffic for each website, making the generated traffic originate
from the effective loading range of the corresponding website. Let
𝑅 = {(𝑠1, 𝑡1), (𝑠2, 𝑡2), . . . , (𝑠𝑚, 𝑡𝑚)} represent the effective loading
ranges for𝑚 monitored websites, where the effective loading range
for the i-th website is from 𝑠𝑖 to 𝑡𝑖 . In Figure 6(b), we show the
details of early-stage traffic generation. For the traffic of the i-th
website, Holmes randomly samples an integer 𝒍 from 𝑠𝑖 to 𝑡𝑖 , then
masks the tail of traffic from the loading ratio 𝒍 to the entire page
loading. We select the starting point of the mask randomly within
an effective range, ensuring that the generated traffic belongs to
the early stages of page loading and contains adequate website
information.

𝒍 ∼ Uniform[𝑠𝑖 , 𝑡𝑖 ] . (2)

Holmes performs data augmentation on each traffic 𝛼 times. The
higher the value of 𝛼 , the more early-stage traffic is generated.
However, excessive generation of early-stage traffic can lead to
significant time overhead of model training.

5.2 Spatial Distribution Analysis
Utilizing the early-stage traffic generated by the temporal distri-
bution analysis module, the spatial distribution analysis module
extracts the correlation between early-stage and complete traf-
fic. Specifically, Holmes builds an Encoder based on Supervised
Contrastive Learning (SCL) [24] to extract common features of
early-stage and complete traffic, generating low-dimensional em-
beddings that are spatially proximate. Then Holmes analyzes the
spatial distribution of websites using the Median Absolute Devia-
tion (MAD) [25].
Traffic Embedding Based on SCL. To address the challenges
posed by network jitter and defenses in the real world on the anal-
ysis of early-stage traffic, Holmes employs Supervised Contrastive
Learning (SCL) for traffic embedding. The generated embeddings
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encompass robust features of the traffic, enabling traffic from dif-
ferent loading stages of the same website to aggregate in the em-
bedding space. Note that, Holmes addresses the limitation of the
clustering methods, i.e., they cannot effectively aggregate original
high-dimensional features due to the “curse of dimensionality” [48].

Holmes initially extracts raw features from traffic, serving as the
input for generating embeddings. We use the Traffic Aggregation
Features (TAF) as the raw features. TAF is an extension of the
Traffic Aggregation Matrix (TAM) [37] that effectively represents
aggregated traffic information. We set up 𝜌 non-overlapping time
windows of equal length. The length of the timewindow is 𝜃 . For the
i-th time window, we calculate three types of aggregated features:
(i) the number of incoming and outgoing packets. (ii) the number of
incoming and outgoing bursts. (iii) the average size of incoming and
outgoing bursts. Therefore, we can aggregate statistical information
from multiple time windows as the initial feature of the traffic.

We use the Convolutional Neural Network (CNN) as the En-
coder network for traffic embedding. CNN is applied by previous
attacks [3, 35–37, 39, 40] and proved to be effective in extracting key
patterns of traffic associated with the website. Let Enc(·) denote
the encoder network, and we can obtain the embedding 𝒛 of the
traffic with the raw feature 𝒙 based on the Encoder.

𝒛 = Enc(𝒙) . (3)

We show the details of the Encoder in Figure 7. To effectively ex-
tract the correlation of the website traffic at different loading stages,
we utilize convolution with a greater number of channels and a
deeper network architecture compared to previous attacks [37, 39].
Since the input is two-dimensional features, Holmes uses two 2D
convolution blocks to extract high-dimensional information. Then
Holmes fusions information of packets with different directions
through the 2D pooling layer, transforming the two-dimensional
features into one-dimensional features. Subsequently, four 1D con-
volution blocks are utilized to extract traffic patterns related to
the website. Finally, Holmes employs an adaptive pooling layer to
generate embeddings of traffic.

Furthermore, we employ two complementary methods. First,
residual connections are utilized, which involve transmitting inter-
mediate outputs from lower to higher layers via skip connections,
thereby reducing the issue of gradient vanishing. Second, multiple
dropout layers are used, where a subset of units, including their
associated connections, are randomly omitted from the network
during the training, thus mitigating overfitting.

The performance of the Encoder depends on effective model
training. The Encoder aims to extract various correlations in traffic,
including (i) The correlation between the traffic at different loading
stages of the same website. (ii) The correlation between the traffic of
the same website where the traffic patterns change due to network
dynamics or defenses. Contrastive learning and metric learning can
learn the correlation between samples. However, both contrastive
learning and metric learning consider only one type of correlation
that exists in the samples. To effectively extract multiple types
of correlations existing in the samples, Holmes applies SCL to
train the Encoder. SCL combines the advantages of supervised
and contrastive learning. Specifically, Holmes randomly selects
one traffic as the anchor. Then, Holmes selects all traffic of the

Algorithm 1: Website Profiling
Input:
𝑊 : all websites.
𝑧: the embeddings of all websites.

Output:
𝑐 : the centroids of all websites.
𝑟 : the radii of all websites.

1 for 𝑤 ∈𝑊 do
2 𝑐𝑤 = Mean(𝑧𝑤 ) ⊲ Calculate the centroid of website 𝑤
3 for 𝑧𝑤

𝑖
∈ 𝑧𝑤 do

4 𝑑𝑤
𝑖

= 1 − cosine_similarity(𝑐𝑤 , 𝑧𝑤
𝑖
)

5 end
6 𝑀𝑤 = Median(𝑑𝑤 ) ⊲ Calculate the median
7 𝑟𝑤 = Median{ |𝑑𝑤

𝑖
− 𝑀𝑤 | } ⊲ Calculate the radius

8 end
9 for 𝑤𝑖 , 𝑤𝑗 ∈𝑊 do
10 𝑑 = 1 − cosine_similarity(𝑐𝑖 , 𝑐 𝑗 )
11 if 𝑟𝑖 + 𝑟 𝑗 ≥ 𝑑 then
12 ⊲ Tuning the radius
13 𝑟𝑖 = 𝑟𝑖 − 𝑟𝑖

𝑟𝑖+𝑟 𝑗 · (𝑟𝑖 + 𝑟 𝑗 − 𝑑 )
14 𝑟 𝑗 = 𝑟 𝑗 −

𝑟 𝑗
𝑟𝑖+𝑟 𝑗 · (𝑟𝑖 + 𝑟 𝑗 − 𝑑 )

15 end
16 end
17 return c, r

anchor’s corresponding website as positive samples and traffic of
other websites as negative samples. Holmes repeats this process
multiple times to ensure that the selected anchors include multiple
traffic for all websites.

SCL can learn various correlations between the anchor and the
positive samples, ensuring that in the generated embedding space,
the distance between the anchor and positive samples is close,
while the distance between the anchor and negative samples is far.
Formally, for the i-th traffic 𝒙𝑖 with embedding 𝒛𝑖 , we can calculate
its loss by SCL:

L𝑖 = − 1
|P(𝑖) |

∑︁
𝑝∈P(𝑖 )

log
exp(z𝑖 · z𝑝/𝛾)∑

𝑛∈N(𝑖 ) exp(z𝑖 · z𝑛/𝛾)
, (4)

where P(𝑖), N(𝑖) are the set of the index of all positive samples and
negative samples of the i-th traffic, respectively. For the embedding
of anchor 𝑧𝑖 , we calculate the similarity with each positive sample
embedding 𝑧𝑝 and compare it with similarities between the anchor
and all negative samples. In particular, 𝛾 is temperature, a hyper-
parameter that controls the distance of traffic 𝒙𝑖 from the most
similar negative sample. The smaller the temperature 𝛾 , the greater
the differentiation from the negative samples, but it tends to affect
the similarity to the positive samples. Through Equation 4, we can
effectively train the Encoder and extract the correlations of website
traffic at different loading stages.
Spatial Distribution Based on MAD. Holmes aims to achieve
reliable early-stage website identification. However, the early-stage
traffic contains little website information and is prone to misidenti-
fication under the interference of network dynamics and defenses.
Holmes addresses the challenge by utilizing the spatial distribu-
tion of website traffic. Traffic from different websites has different
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positions and levels of tightness in the embedding space. Holmes
calculates the centroid and radius for each website, representing the
position and level of tightness of the website traffic, respectively. By
leveraging the centroid and radius information of websites, Holmes
can reject low-confidence identifications of unknown traffic. We
will detail how to utilize the centroid and radius of websites for
reliable early-stage website identification in Section 5.3.

In Algorithm 1, we show the pseudocode for website profiling.
Suppose there are𝑚 websites. Holmes sequentially calculates the
centroid and radius for each website. For the website 𝑤 , Holmes
generates the embeddings for all traffic of the website 𝑤 . Let 𝑧𝑤

𝑖
represent the embedding of the i-th traffic of the website𝑤 .Holmes
calculates the centroid of website𝑤 by averaging all embeddings
across each dimension (line 2). Then Holmes calculates the distance
between each traffic embedding and the centroid of the website
𝑤 using cosine similarity (lines 3-4). We select cosine similarity
because matrix operations can accelerate multiple cosine similarity
calculations. Finally, we use a distribution estimation algorithm,
Mean Absolute Deviation (MAD) [25] to generate the radius for
the website𝑤 (lines 6-7). MAD calculates the median of absolute
deviations, where absolute deviation refers to the absolute value of
the difference between each data and the median of all data.

Based on the centroid and radius of each website, the spatial
distribution of each website in the embedding space forms a sphere.
Holmes utilizes supervised contrastive learning to separate the
centroids of different websites in the embedding space. However,
we observe a 0.01% probability of overlap between the spheres
corresponding to the two websites in our study. This occurs because
the centroids of websites with similar types or content are closer
to each other. Therefore, Holmes further examines the distances
between the centroids of different websites and their corresponding
radii. For two websites𝑤𝑖 and𝑤 𝑗 , if the distance between c𝑖 and c𝑗
is less than the sum of the radii, we proportionally reduce the radii
of website w𝑖 and website w𝑗 . Finally, the spheres corresponding to
each website in the embedding space are non-overlapping, which
facilitates the early-stage website identification of Holmes.

5.3 Early-Stage Website Identification
The early-stage website identification module leverages the correla-
tions between different loading stages of website traffic to achieve
robust and reliable identification of early-stage traffic. To achieve
early-stage website identification,Holmes attempts website identifi-
cation at each fixed time interval. The challenge faced by Holmes is
ensuring high confidence in website identification to avoid misiden-
tification of early-stage traffic. To address the above challenge,
Holmes calculates the correlation between unknown traffic and
monitored websites based on the position of unknown traffic in the
feature space and the spatial distribution of monitored websites.
Holmes rejects the identification of early-stage traffic with low
correlation to all monitored websites and continues to collect more
packets.

In Algorithm 2, we show the pseudocode for early-stage web-
site identification. At every time interval, Holmes first projects the
unknown early-stage traffic into the embedded space (lines 6-7)
and calculates the distance between the unknown traffic and the

Algorithm 2: Early-stage Website Identification
Input:
𝜏 : the time interval.
𝜎 : the maximum traffic collection time.
𝑊 : all monitored websites.
𝑐 : the centroids of all monitored websites.
𝑟 : the radii of all monitored websites.
�̂�: the unmonitored website.
𝜖 : threshold for concept drift detection.

Output:
res: the identification result.

1 res = �̂�

2 count = 0
3 while True do
4 time.sleep(𝜏 ) ⊲ Wait time interval 𝜏
5 count = count + 𝜏
6 x = getTraffic( ) ⊲ Get the current collected traffic
7 z = Encoder(x)
8 for 𝑤 ∈𝑊 do
9 𝑑 = 1 − cosine_similarity(𝑐𝑤 , z)

10 if 𝑑 ≤ 𝑟𝑤 then
11 res = 𝑤 ⊲ Identification success
12 break

13 end
14 end
15 if (res ≠ �̂�) or (count > 𝜎) then
16 break ⊲ Exit identification
17 end
18 end
19 if res == �̂� then
20 𝑑𝑚𝑖𝑛 = 𝜖

21 for 𝑤 ∈𝑊 do
22 𝑑 = 1 − cosine_similarity(𝑐𝑤 , z)
23 if 𝑑 − 𝑟𝑤 < 𝑑𝑚𝑖𝑛 then
24 𝑑𝑚𝑖𝑛 = 𝑑 − 𝑟𝑤

25 res = 𝑤

26 end
27 end
28 end
29 return res

centroids of all monitored websites (lines 8-9). If the distance be-
tween the unknown traffic and a website’s centroid is less than
the radius of the website, Holmes successfully identifies the traffic
(lines 10-12). Otherwise, Holmes continues to collect traffic and
waits for the next time interval.

However, not all early-stage traffic can be guaranteed to be iden-
tified. Changes in the content of monitored websites can lead to vari-
ations in traffic patterns (i.e., concept drift). Furthermore, Holmes
is unable to detect early-stage traffic from unmonitored websites.
Holmes sets a maximum traffic collection time 𝜎 . After collecting
traffic for 𝜎 seconds, Holmes will detect whether the unknown traf-
fic is due to concept drift or originates from unmonitored websites
(lines 19-28). A key insight is that the distance between a website’s
concept drift traffic and its centroid should be slightly greater than
the website’s radius, yet much smaller than the distance between
unmonitored website traffic and the website’s centroid. Therefore,

2004



Robust and Reliable Early-Stage Website Fingerprinting Attacks via Spatial-Temporal Distribution Analysis CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Parameter settings in our evaluation

Group parameters Value

Data Augmentation
Lower bound of CDF 𝜇 0.3
Upper bound of CDF 𝜆 0.6

Number of augmentation 𝛼 2

Spatial Analysis

Number of time windows 𝜌 2000
Length of time windows 𝜃 80 ms

Embedding size 𝜂 128
Temperature 𝛾 0.1

Website Identification
Time interval 𝜏 120 ms

Maximum collection time 𝜎 80 s
Threshold for concept drift 𝜖 0.01

we set a predefined threshold 𝜖 . If the difference between the dis-
tance of the unknown traffic from the website’s centroid 𝑑 and
the website’s radius 𝑟𝑤 is less than 𝜖 , then the unknown traffic
is identified as a concept drift sample of the website (lines 21-25).
Furthermore, we define a variable 𝑑𝑚𝑖𝑛 to represent the smallest
difference between 𝑑 and 𝑟𝑤 among all websites, with 𝑑𝑚𝑖𝑛 initially
set to the threshold 𝜖 (line 20). If the unknown traffic meets the
concept drift detection criteria for multiple monitored websites,
we identify the traffic as the website with the highest correlation,
which is the website corresponding to 𝑑𝑚𝑖𝑛 . In particular, we set
the threshold for concept drift detection 𝜖 to infinity in the closed-
world scenario. The reason is that in the closed-world scenario,
Tor users only visit monitored websites, eliminating the need to
identify traffic from unmonitored websites.

6 Performance Evaluation
In this section, we evaluate Holmes with public datasets and real-
world datasets. We compare the performance of Holmes with the
state-of-the-art WF attacks.

6.1 Experimental Setup
Implementation.We prototype Holmes using PyTorch 2.0.1 and
Python 3.8 with more than 1,400 lines of code. In particular, we use
a single NVIDIA GeForce RTX 4090 GPU for our experiments. We
show the default parameter values in Table 1. Furthermore, we split
the dataset into training, validation, and testing, with an 8:1:1 ratio.
The parameter tuning and spatial-temporal analysis are performed
on the validation dataset to avoid leakage of the testing dataset.
Dataset. Our datasets comprise six categories of data, including a
dataset of Alexa-top websites, a dataset of dark web websites, and
four types of defended datasets.
• Dataset of Alexa-top websites: This dataset is from [39], which
includes data from both closed-world and open-world scenarios.
The closed-world data comprises 95 monitored websites, each
with over 1000 traces. In the open-world scenario, there are over
40,000 unmonitored websites, each with only one trace. All web-
sites belong to the Alexa-top websites list, which ranks websites
based on popularity.

• Dataset of dark web websites: Since Alexa-top does not repre-
sent the popularity of visits by Tor users, we select 80 of the most
popular dark web websites based on the measurement of Tor v3

onion services [41]. The dataset includes various types of web-
sites, comprising black markets, social networks, and financial
services. These websites use onion services to anonymize servers,
requiring more relay nodes and resulting in greater loading la-
tency. We utilized 20 servers deployed across three countries to
collect traffic in August 2023 and April 2024. Note that our data
collection did not negatively impact the real-world Tor network.
We only collect traffic from browsing sessions we initiated locally,
ensuring our dataset does not include data from other Tor clients.

• Dataset with WTF-PAD defense: The WTF-PAD defense [23]
disrupts traffic patterns by adaptively padding dummy packets
without delaying any packets. The variation ofWTF-PAD defense
based on circuit-level padding has been deployed in Tor [1].

• Dataset with Front defense: The Front defense [16] utilizes the
Rayleigh distribution to generate the padding times for dummy
packets. Similar to the WTF-PAD defense, the time overhead for
the Front defense is zero.

• Dataset with Walkie-Talkie defense: Walkie-Talkie [44] em-
ploys a half-duplex communication model and merges original
traffic with traffic from randomly selected decoy pages to mislead
WF attacks. This defense introduces a mild bandwidth and time
overhead.

• DatasetwithTrafficSliver defense: The TrafficSliver defense [8]
employs a traffic-splitting mechanism that restricts the adversary
to collecting only partial packets. We generate the dataset by
splitting the traffic into three paths based on the script provided
by the authors.

WF defenses have been extensively studied [4, 5, 8, 13, 16, 17,
23, 44], yet some defenses are not practically deployable due to
the significant overhead [29]. The latency introduced by defenses
may cause out-of-memory errors in Tor relay nodes. Therefore,
following previous attacks [35, 37, 39], we select four representa-
tive defense methods for evaluation: WTF-PAD [23], Front [16],
TrafficSliver [8], and Walkie-Talkie [44].
Baselines.We select 9 state-of-the-art WF attacks as our baselines.

• AWF: AWF [36] utilizes CNNs to automatically extract features
from packet direction sequences for website identification.

• DF: DF [39] proposes more sophisticated CNNs compared to
AWF that can effectively undermine WTF-PAD defense.

• Tik-Tok: Tik-Tok [35] utilizes both direction and timestamp in-
formation of packets, which can effectively improve attack per-
formance under defense.

• Var-CNN: Var-CNN [3] designs a more powerful model based on
ResNets, which utilizes mechanisms such as dilated convolution
to improve attack performance.

• TF: TF [40] extends the DF model using Triplet networks to
achieve the best performance in scenarios with fewer training
instances.

• RF: RF [37] extracts a two-dimensional matrix feature named
TAM, which has better robustness against defenses.

• NetCLR: NetCLR [2] integrates data augmentation and self-
supervised learning. It introduces three data augmentation meth-
ods for traffic bursts to improve the effectiveness of WF attacks
in dynamic network environments.
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• ARES: ARES [10] is a robust multi-tab WF attack that integrates
multiple Transformer-based classifiers to identify websites within
obfuscated traffic. ARES also supports single-tab WF attacks.

• TMWF: TMWF [21] applies DETR [6], a Transformer-based ob-
ject detection framework, to achieve multi-tab WF attacks. We
set the number of tab queries to 1 to apply TMWF to single-tab
WF attacks.
To reduce the time overhead of the experiments, the parameters

of baselines are all set to their default values. Note that the baselines
may achieve better performance with parameter tuning.
Metrics.We select 4 metrics that are widely used to evaluate the
performance of WF attacks, i.e., Accuracy, Precision, Recall, and
F1-score. We calculate the macro average of all websites. Specifi-
cally, we can calculate the numbers of true positive instances (TP),
false positive instances (FP), true negative instances (TN), and false
negative instances (FN) for each website, respectively. These four
metrics can be calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

Precision =
TP

TP + FP
. (6)

Recall =
TP

TP + FN
. (7)

F1 − score =
2 × Precision × Recall

Precision + Recall
. (8)

The differences in website types and content lead to variations in
traffic patterns, and the average precision may obscure the low iden-
tification precision of some websites. Therefore, we use P@min to
represent the lowest precision across all websites. We can evaluate
the reliability ofWF attacks by calculating P@min. Furthermore, the
base rate fallacy [22] can lead to an overestimation of the precision
in the open-world setting. Following previous attacks [42], we use
r-precision for open-world evaluation. Specifically, r-precision
assumes that the frequency of visits to unmonitored websites is
𝑟 times that of monitored websites, hence the sample weight of
unmonitored websites is 𝑟 times that of monitored websites when
calculating precision. We set 𝑟 to 20 in our experiments.

6.2 Closed-World Evaluation
We first evaluate the performance of Holmes in the closed-world
scenario using the dataset of Alexa-top 95 websites. To assess the
performance of Holmes in identifying early-stage website traffic,
we generate traffic for different loading stages of websites based
on packet timestamps from the testing dataset. As shown in Fig-
ure 8, Holmes achieves optimal attack performance under different
page loading ratios. As the loading progress of websites increases
from 20% to full completion, the Accuracy of Holmes in identify-
ing the website gradually improves, rising from 50.94% to 98.36%.
Compared to existing attacks,Holmes demonstrates a significant ad-
vantage in early-stage traffic analysis. For example, when websites
are 40% loaded, Holmes achieves an Accuracy of 90.65%, which
represents an improvement of 26.84%, 90.68%, 109.50%, 140.32%,
175.36%, 194.22%, 224.68%, 235.12%, and 323.60% over RF, Var-CNN,
ARES, NetCLR, DF, Tik-tok, TMWF, AWF, and TF, respectively.
Specifically, Holmes exhibits the highest Accuracy for traffic at
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Figure 8: Comparison of WF attacks at different loading
stages of websites in the closed-world scenario.
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Figure 9: Comparison of the r-precision of WF attacks for
early-stage traffic in the open-world scenario.

all loading stages of websites. The primary reason is that Holmes
extracts traffic correlations at different loading stages of websites
through spatial-temporal analysis. This correlation enhances the
ability of Holmes to identify traffic across all loading stages of
websites.

We further evaluate the Precision, Recall, and F1-score of Holmes
in identifying early-stage traffic. Table 2 presents a comparison of
Holmeswith existingWF attacks.Holmes significantly outperforms
other attacks in all stages of page loading. For instance, when web-
sites are loaded to 20%, 30%, 40%, 50%, and 60%, the F1-score of
Holmes shows an average increase of 330.43%, 245.52%, 151.51%,
79.59%, and 38.85% over existing attacks, respectively. For early-
stage traffic, we observe that Holmes exhibits higher Precision
than Recall. This indicates that Holmes is effective in avoiding the
misidentification of traffic with insufficient website information.
Benefiting from the temporal distribution analysis of website fea-
tures and website-adaptive data augmentation, Holmes is capable
of effectively identifying early-stage traffic that contains sufficient
website information while avoiding misidentification of early-stage
traffic without adequate website information.
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Table 2: Comparisons with prior arts with the early-stage traffic in the closed-world scenario, where P, R, F1 represent Precision
(%), Recall (%), and F1-score (%).

20% loaded 30% loaded 40% loaded 50% loaded 60% loaded
Attacks P R F1 P R F1 P R F1 P R F1 P R F1

TF 24.74 7.48 8.50 30.25 12.63 14.15 36.55 21.44 23.31 48.14 35.79 37.76 61.72 55.23 56.20
AWF 28.39 9.97 11.75 33.40 17.26 19.22 41.12 27.06 29.14 51.16 42.15 43.61 63.63 59.71 59.93
TMWF 25.77 7.87 8.27 31.70 15.19 16.53 41.15 27.95 29.79 56.04 46.42 47.78 71.84 66.44 67.02
Tik-tok 37.91 10.83 11.50 40.54 18.56 20.08 47.00 30.82 32.89 59.03 47.71 49.19 71.46 65.84 66.60
DF 35.28 11.19 12.62 40.43 19.00 21.38 50.85 32.96 35.08 61.52 50.17 51.68 72.76 67.54 68.03

NetCLR 32.39 10.32 11.85 41.07 20.67 23.40 54.19 37.72 39.96 65.71 56.17 57.47 77.01 73.72 73.69
ARES 43.06 13.30 15.66 51.31 25.43 28.70 60.36 43.28 45.86 69.77 61.80 62.71 77.96 74.73 74.57

Var-CNN 49.66 15.28 18.29 57.66 29.12 32.85 65.49 47.52 50.39 74.21 65.98 67.22 81.64 78.51 78.69
RF 55.51 27.44 31.27 67.32 50.55 53.17 78.23 71.43 72.43 86.22 83.70 84.06 91.34 90.34 90.41

Holmes 66.79 50.92 53.45 80.22 76.85 76.48 91.14 90.64 90.48 95.19 95.01 95.00 96.40 96.24 96.23

6.3 Open-World Evaluation
We further evaluate the realistic open-world scenario using the
dataset of Alexa-top websites, including 95 monitored websites
and 40,000 unmonitored websites. The number of unmonitored
websites significantly exceeds the number ofmonitoredwebsites. To
effectively assess attack performance in the open-world setting, we
follow previous works [42] by utilizing r-precision for evaluation.

Figure 9 shows the comparison of r-precision for WF attacks
when the ratio of page loading ranges from 30% to 60%. Holmes
consistently achieves high r-precision across different page load-
ing ratios. Compared to existing attacks, Holmes demonstrates a
significant advantage in identifying early-stage traffic in the open-
world scenario. For example, when the ratio of page loading is 40%,
Holmes achieves the r-precision of 94.96%, while the F1-scores
for RF, Var-CNN, ARES, NetCLR, DF, Tik-tok, TMWF, AWF, and TF
are 83.77%, 71.72%, 56.99%, 51.49%, 49.33%, 51.26%, 38.46%, 31.31%,
and 26.06%, respectively. When websites are loaded to 30%, 40%,
50%, and 60%, the r-precision of Holmes shows an average in-
crease of 130.61%, 109.91%, 79.00%, and 57.62% over existing attacks,
respectively.

The experimental results demonstrate that Holmes can effec-
tively distinguish between early-stage traffic from monitored and
unmonitored websites in the open-world scenario. Particularly,
Holmes reduces training overhead compared to baselines by elim-
inating the requirement for training samples from unmonitored
websites. Holmes leverages the spatial distribution of monitored
websites in the feature space. By comparing the distance of un-
known traffic in the feature space to the centroid of the website
and the website’s radius, Holmes achieves early-stage WF attacks
with high precision in the open-world scenario.

6.4 Robustness Evaluation
Next, we evaluate the robustness of Holmes using datasets of Alexa-
top 95 websites with four defenses. In Figure 10, we demonstrate
the accuracy of WF attacks in different loading stages of websites
under defenses.

As shown in Figure 10(a), for the WTF-PAD defense, Holmes
achieves the best accuracy across all ratios of page loading. For
early-stage traffic,Holmes is more robust compared to other attacks.
When the page loading ratio is 40%,Holmes achieves an accuracy of

82.03%, while the accuracy of all baselines is below 45%. For early-
stage traffic when websites are 50% loaded, Holmes achieves an
accuracy of 89.45%, marking significant improvements over RF, Var-
CNN, ARES, NetCLR, DF, Tik-tok, TMWF, AWF, and TF by 46.95%,
88.04%, 138.98%, 284.73%, 123.23%, 115.65%, 191.18%, 539.84%, and
436.59%, respectively. Similar to Holmes, NetCLR and TF generate
embeddings of traffic features based on contrastive learning and
metric learning, respectively. However, the accuracies of NetCLR
and TF for early-stage traffic withWTF-PAD defense are both below
30%. The advantage of Holmes is attributed to its feature extraction
and SCL-based traffic embedding, which enable robust website
identification under defenses.

Front is a more powerful padding-based defense compared to
WTF-PAD. By padding dummy packets at the front of the traffic,
Front significantly impacts the identification of early-stage traf-
fic. Figure 10(b) shows the evaluation of WF attacks under Front
defense. Holmes achieves the best accuracy across all page load-
ing ratios. When the page loading ratio is 30%, 40%, 50%, and 60%,
Holmes improves the accuracy of baselines by 561.40%, 480.92%,
316.03%, and 192.97% on average, respectively. Existing WF attacks
rely on the complete features of individual traffic, whereas Holmes
leverages the correlation between early-stage traffic and complete
traffic of the same website to achieve a more robust WF attack.

In Figure 10(c), we show the accuracy of WF attacks under the
Walkie-Talkie defense. We find that the attack performance of RF
is close to that of Holmes. The reason is that traffic aggregation
information based on time windows has been proven to effectively
undermine the Walkie-Talkie defense [37]. Holmes still holds an
advantage in identifying early-stage traffic. For instance, at a page
loading ratio of 30%, Holmes achieves an accuracy of 87.04%, while
the accuracy of RF, Var-CNN, ARES, NetCLR, DF, Tik-tok, TMWF,
AWF, and TF are 83.70%, 61.80%, 38.07%, 21.93%, 30.24%, 26.47%,
16.93%, 8.39%, and 6.56%, respectively.

TrafficSliver is a potent defense that combats WF attacks by
splitting traffic. Figure 10(d) shows the comparison of WF attacks
under TrafficSliver defense. We observe a significant decrease in
the accuracy of baselines under TrafficSliver defense, while Holmes
maintains its robustness. When the page loading ratios are 30%, 40%,
50%, and 60%, the accuracy of Holmes is improved by an average
of 711.28%, 593.93%, 417.82%, and 283.98% compared to other WF

2007



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Xinhao Deng, Qi Li, and Ke Xu

30 40 50 60
Page loading ratio (%)

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

(a) WTF-PAD

Holmes RF Var-CNN ARES NetCLR DF Tik-tok TMWF AWF TF

30 40 50 60
Page loading ratio (%)

0

25

50

75

100

(b) Front

30 40 50 60
Page loading ratio (%)

0
25
50
75

100

(c) Walkie-Talkie

30 40 50 60
Page loading ratio (%)

0

25

50

75

(d) TrafficSliver

Figure 10: Evaluating robustness of WF attacks for early-stage traffic with four defenses.

60 80 100
Page loading ratio (%)

0
20
40
60
80

100

P@
m

in
 (%

) 70
77 82

16

60 66

0

46

70

0

29

54

0

32

64

0

23

54

0

26
35

0
15

31

0
14 18

0
6 10

Holmes
RF

Var-CNN
ARES

NetCLR
DF

Tik-tok
TMWF

AWF
TF

Figure 11: Reliability evaluation of WF attacks under WTF-
PAD defense, where P@min is theminimumof identification
Precision for all websites.

attacks. TrafficSliver is effective in reducing the amount of website
information in the early-stage traffic. However, TrafficSliver cannot
disrupt the correlation between traffic from different stages of page
loading. Therefore, Holmes is more robust against the TrafficSliver
defense compared to baselines.

6.5 Reliability Evaluation
The page loading speeds vary significantly across different websites,
making it difficult to ensure high precision in detecting early-stage
traffic of all websites. Therefore, we use the minimum precision
among all websites (i.e., P@min) to evaluate the reliability of WF
attacks on early-stage traffic.

Figure 11 illustrates the reliability of WF attacks under WTF-
PAD defense. We use the dataset of Alexa-top 95 websites with
WTF-PAD defense for evaluation because the variation of WTF-
PAD defense based on circuit-level padding has been practically
deployed in Tor [1]. When the page loading ratio is 60%, Holmes
achieves the best P@min of 70.25%, while Var-CNN, ARES, Net-
CLR, DF, Tik-tok, TMWF, AWF, and TF have the P@min of 0. The
P@min equals 0 means there are websites that these WF attacks
cannot identify. For traffic at page loading rates of 80% and 100%,
Holmes achieves an average P@min improvement of 299.43% and
160.60% over baselines, respectively. We find that multi-tab WF

Table 3: Comparison with existing attacks using the dataset
of dark web websites in real-world evaluation.

Attacks Latency a Loading ratio Precision

TF 162.44 s 73.67% 17.14
AWF 100.91 s 47.15% 10.18
TMWF 236.58 s 97.58% 47.21
Tik-tok 162.21 s 73.63% 63.19
DF 162.21 s 73.63% 33.68

NetCLR 162.20 s 73.61% 28.45
ARES 236.58 s 97.58% 52.09

Var-CNN 162.21 s 73.63% 67.31
RF 162.21 s 73.63% 84.99

RF30% 52.44 s 25.07% 83.70
Holmes 45.25 s 21.71% 85.19

a indicates lower is better and indicates higher is better.

attacks, ARES and TMWF, fail to ensure reliable identification un-
der obfuscated traffic. Existing attacks focus only on high average
precision, ignoring the low P@min caused by differences between
websites. Particularly, for traffic during the complete loading of
websites, the reliability of existing WF attacks is limited. RF, Tik-
tok, ARES, and DF, which claim to be robust attacks capable of
undermining WTF-PAD defense, achieve high average precisions
of 96.78%, 94.51%, 91.09%, and 91.19% in our evaluation. However,
the P@min for RF, Tik-tok, ARES, and DF are only 66.87%, 64.46%,
54.30% and 54.11%, respectively. In contrast, Holmes significantly
improves the reliability of WF attacks and achieves the best P@min
of 82.11%.

The reliability of Holmes is attributed to three aspects: (i) Holmes
achieves adaptive data augmentation based on the unique temporal
distribution of each website, ensuring high precision in the identifi-
cation of early-stage traffic across all websites. (ii) Holmes employs
supervised contrastive learning to transform features, effectively
separating traffic from different websites in the new feature space,
thus reducing the misclassification of similar websites. (iii) Holmes
calculates the spatial distribution features of website traffic in the
feature space and enhances the reliability of identification by as-
sessing the correlation between unknown traffic and the unique
spatial distribution of each website.
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6.6 Real-World Evaluation
Next, we evaluate Holmes using the dataset of 80 dark web web-
sites collected from the real world. Alexa-top websites are widely
used for evaluating WF attacks [10, 36, 37, 39, 40]. However, the
ranking of Alexa-top websites is based on the interests of all inter-
net users, which may not accurately represent the interests of Tor
users in the real world. Based on the measurements of Tor onion
services [41], we selected 80 of the most popular dark web websites.
We utilized 20 servers deployed across three different countries to
collect dark web traffic in August 2023 and April 2024. Therefore,
this dataset encompasses traffic under various network conditions
and traffic exhibiting concept drift due to changes in the websites.
We replay packets of testing traffic to evaluate the time overhead
and performance of different WF attacks. Moreover, the adversary
cannot know the end time of the page loading in advance. We set
up baselines to end traffic collection when the number of packets
meets the input requirements or when no new packets are collected
within 1 second. Particularly, we use one NVIDIA GeForce RTX
4090 to accelerate the inference of DL models.

Table 3 shows the comparison of WF attacks using the dataset of
dark web websites in the real-world evaluation. The attack latency
refers to the average time taken to collect and identify unknown
traffic, while the loading ratio represents the average page loading
ratio when the website identification result is obtained from the
WF attack. In particular, we optimize the best-performing attack
RF. RF30% represents RF attacks with the packet sequence lengths
reduced to 30% of the original length. We adjust the input sequence
lengths of the RF and retrain the models. Reducing the input length
significantly optimizes latency, but also compromises the identifi-
cation precision of RF. We find that compared to existing attacks
and enhanced RF, Holmes exhibits the best attack efficiency and
identification precision. Specifically, Holmes reduces latency by an
average of 66.33% and improves precision by an average of 169.36%
compared to baselines.

Dark web websites utilize onion services for server anonymiza-
tion, requiring more Tor relays and additional time overhead to
load. We additionally use the dataset of Alexa-top websites under
WTF-PAD defense for real-world evaluation. Holmes outperforms
existing attacks and enhanced RF in terms of latency and perfor-
mance. For Alexa-top websites, Holmes reduces latency by an av-
erage of 66.38% and increases precision by an average of 32.32%
compared to baselines. Holmes’s advantages are attributed to adap-
tive data augmentation for different websites and leveraging the
spatial distribution of websites for adaptive traffic collection and
high-precision website identification.

6.7 Comparison with Enhanced Baselines
In this section, we enhance the baselines and compare them with
Holmes. Similar to the data augmentation module of Holmes, we
generate early-stage traffic by masking the tail of the traffic with
random lengths, which is added to the training datasets of baselines.
We evaluate the accuracy of WF attacks on early-stage traffic using
the dataset of the Alexa-top 95 websites. As shown in Figure 12,
Holmesmaintains a significant advantage in identifying early-stage
traffic compared to the enhanced baselines. When the page loading
ratio is 20%, 30%, 40%, and 50%, Holmes’ accuracy improved by an
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Figure 12: Comparison with enhanced baselines with the
early-stage traffic of Alexa-top websites.

average of 255.78%, 215.09%, 136.12%, and 72.15% compared to the
enhanced baselines.

Holmes utilizes the temporal distribution of websites to achieve
website-adaptive data augmentation, effectively generating early-
stage traffic that contains sufficient website information. Further-
more, Holmes employs supervised contrastive learning to extract
the correlations between early-stage traffic and complete traffic,
which enables more effective correlation analysis between samples
compared to traditional supervised learning.

6.8 Parameters Analysis
We further study the impact of different parameter values on the
performance of Holmes. We select four key parameters, including
the lower bound of the cumulative time distribution 𝜇, the upper
bound of the cumulative time distribution 𝜆, the embedding size 𝜂,
and the temperature 𝛾 . We measure the accuracy of Holmes when
the website loading ratios are 20%, 40%, and 60%, respectively.

As shown in Figure 13, we show the accuracy of Holmes un-
der different parameter settings. The performance of Holmes is
insensitive to the settings of the lower bound 𝜇, upper bound 𝜆, and
embedding size 𝜂. For example, when the embedding size 𝜂 is in-
creased from 64 to 768, the accuracy of Holmes for the traffic of 20%
loaded ranges from 64.06% to 65.29%. For the traffic of 60% loaded,
the accuracy of Holmes ranges from 96.45% to 96.58%. Moreover,
we observe that a larger temperature 𝛾 leads to a decrease in the
performance of Holmes. The reason is that larger temperature 𝛾
will make model training difficult. Particularly, the performance of
Holmes is still stable when the temperature 𝛾 is less than 0.15. In
general, the performance of Holmes is not sensitive to parameter
choices.

7 Discussion
Concept Drift. The changing content of websites over time can
lead to a decline in the effectiveness of WF attacks, i.e., concept
drift. Concept drift can be addressed by periodically collecting new
traffic and retraining models [2, 10, 36, 40]. However, there are two
key challenges. (i) Detecting concept drift is difficult, and exist-
ing attacks detect concept drift by observing the degradation of
attack performance. (ii) Collecting traffic from all websites and re-
training models is time-consuming and resource-intensive. Holmes
can effectively detect concept drift samples for each website in the
open-world setting. Furthermore,Holmes does not require frequent
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Figure 13: Evaluation of Holmes with different parameter settings. We show the identification precision of Holmes at 20%, 40%,
and 60% loading stages, respectively.

model retraining. We only collect traffic from websites with con-
cept drift and update the centroid and radius of the corresponding
websites.
Multi-tab Browsing. In recent years, the identification of obfus-
cated traffic in multi-tab browsing has been widely studied [10, 21].
In fact, multi-tab WF attacks can be transformed into multiple
single-tab WF attacks. The adversary at the guard node can split
obfuscated traffic based on the circuit ID [39, 40]. On the other
hand, Holmes can be used to enhance the performance of existing
multi-tab attacks and trained used obfuscated traffic under multi-
tab settings. For instance, Holmes can replace the Trans-WF model
in the multi-tab attack framework ARES [10], effectively identifying
websites in the early stages of page loading.
Countermeasure against Holmes. Holmes exploits the temporal
and spatial distribution of website traffic. The spatial distribution
can be disrupted through traffic obfuscation. One possible design
is as follows. The Defender collects traffic in advance to calculate
the spatial distribution of website traffic. Then the defender utilizes
GAN to generate obfuscated traffic based on the spatial distribution
of website traffic so that the distance between the obfuscated traffic
and the centroid of the website increases. We leave an in-depth
exploration of this design to future work.
Limitations of Holmes. First, Holmes may not be able to accu-
rately identify websites with the same template and similar content
because they generate similar traffic patterns. Second, Tor software
updates and significant modifications of website content lead to
changes in website traffic patterns, which may impact the perfor-
mance of Holmes. We aim to further improve the practicality of
WF attacks in future work.

8 Related Work
DL-based WF Attacks. Recently deep learning has been widely
applied to construct website fingerprinting attacks [2, 3, 10, 21, 35–
37, 39]. DL-based WF attacks demonstrate outstanding attack per-
formance. However, these attacks require traffic close to the com-
pletion of page loading to identify websites. Holmes leverages the
temporal distribution and spatial distribution of website traffic, en-
abling the extraction of correlations among website traffic. There-
fore, our constructed attack can achieve robust and reliable WF
attacks based on the early-stage traffic of page loading.

Practical WF Attacks. The feasibility of deploying existing WF
attacks in the real world is hampered by strong assumptions [7,
22]. Recent works aim to relax these assumptions in real-world
settings, e.g., multi-tab browsing [10, 21], robust WF attacks against
defenses [37], attacks with a small number of training samples [40],
dynamic network conditions [2], open-world attacks [42]. Holmes
aims to accurately identify websites at a very early stage of page
loading, further enhancing the practicality of WF attacks.
Early-Stage Traffic Analysis. Early-stage traffic analysis facili-
tates real-time processing of traffic, which is crucial for throttling
malicious traffic [9, 14, 26, 33]. Most existing studies focus on early-
stage non-encrypted traffic analysis, where traffic can be accurately
identified by using a small number of packets [15, 20]. The challenge
intensifies if the traffic under analysis is encrypted [34]. Recently,
DL-based traffic analysis methods [45, 47] achieve accurate early-
stage encrypted traffic classification in specific scenarios. However,
existing methods cannot achieve WF attacks in the early stages
under Tor traffic. Holmes achieves early-stage WF attacks by ana-
lyzing the spatial-temporal correlations among website traffic. To
the best of our knowledge, Holmes is the first early-stage traffic
analysis for Tor traffic.

9 Conclusion
In this paper, we propose Holmes, a reliable and robust early-stage
WF attack. Specifically, Holmes utilizes the temporal distribution
of website traffic to achieve website-adaptive data augmentation
and employs supervised contrastive learning to embed traffic into a
low-dimensional feature space.Holmes calculates the correlation of
early-stage traffic with each website by leveraging the spatial distri-
bution of website traffic in the embedding space, thereby enabling
early-stage website identification. We conduct extensive evalua-
tions of Holmes using six datasets, and the experiment results
demonstrate its effectiveness in identifying early-stage traffic.
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