
3126 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Toward Practical Inter-Domain Source
Address Validation

Xiaoliang Wang , Ke Xu , Fellow, IEEE, Member, ACM, Yangfei Guo, Haiyang Wang, Songtao Fu,
Qi Li , Senior Member, IEEE, Bin Wu, and Jianping Wu, Fellow, IEEE

Abstract— The Internet Protocol (IP) is the most fundamental
building block of the Internet. However, it provides no explicit
notion of packet-level authenticity. Such a weakness allows mali-
cious actors to spoof IP packet headers and launch a wide variety
of attacks. Meanwhile, the highly decentralized management of
Internet infrastructure makes large-scale source address valida-
tion challenging in terms of overhead, validity, and flexibility.
This paper presents a practical anti-spoofing approach, Source
Address Validation Architecture eXternal (SAVA-X). SAVA-X
introduces the concept of Address Domain to enable address val-
idation in finer, prefix-level granularity. The address domains are
organized in nested hierarchies to provide higher scalability and
lower maintenance costs for partial deployment. We implement
SAVA-X on commercial backbone routers and the P4 platform.
The experiments indicate that the hardware implementation of
SAVA-X can achieve 98% throughput on 100 Gbps links and
close to the native IP forwarding in per-packet overhead, with
less than 10 microseconds additional processing latency.

Index Terms— Network security, source address validation,
hierarchical validation.

I. INTRODUCTION

THE enormous success of the Internet has made the
Internet Protocol (IP) a primary building block in modern

network architecture. However, this protocol does not provide
any address, prefix, or even Autonomous System(AS)-level

Manuscript received 25 October 2022; revised 18 April 2023, 31 August
2023, and 12 January 2024; accepted 5 March 2024; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor K. Chen. Date of publication
19 March 2024; date of current version 20 August 2024. This work was
supported in part by the National Key Research and Development Program of
China under Grant 2022YFB3102303; in part by the National Natural Science
Foundation of China (NSFC) under Grant U22B2031, Grant 61932016, Grant
62202258, and Grant 62132011; in part by the National Science Foundation
for Distinguished Young Scholars of China under Grant 61825204; and
in part by the Beijing Outstanding Young Scientist Program under Grant
BJJWZYJH01201910003011. (Corresponding author: Ke Xu.)

Xiaoliang Wang is with the Information Engineering College, Capital Nor-
mal University, Beijing 100048, China (e-mail: wangxiaoliang@cnu.edu.cn).

Ke Xu and Jianping Wu are with the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing 100084, China, and
also with the Zhongguancun Laboratory, Beijing 100094, China (e-mail:
xuke@tsinghua.edu.cn; jianping@cernet.edu.cn).

Yangfei Guo is with the Zhongguancun Laboratory, Beijing 100094, China
(e-mail: guoyangfei@zgclab.edu.cn).

Haiyang Wang is with the Department of Computer Science, University of
Minnesota Duluth, Duluth, MN 55904 USA (e-mail: haiyang@d.umn.edu).

Songtao Fu is with the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing 100084, China (e-mail: fust18@mails.
tsinghua.edu.cn).

Qi Li is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China, and also with the Zhongguancun Labora-
tory, Beijing 100094, China (e-mail: qli01@tsinghua.edu.cn).

Bin Wu is with H3C, Hangzhou 310052, China (e-mail: bin_wu@h3c.com).
Digital Object Identifier 10.1109/TNET.2024.3377116

authentication for security. There is no guarantee that a
received IP packet is from the claimed sender. Such a weak-
ness allows malicious actors to forge IP packet headers [1], [2]
and triggers various attacks in Internet communications. For
example, DHCP spoofing, resource exhaustion, DNS reflection
DDoS, DNS cache poisoning, TCP session hijacking, and TCP
SYN Flooding, [3], [4], [5] to name just a few. For large-scale
DoS attacks, IP spoofing remains the primary attack vector
and keeps growing1,2 [6], [7], [8]. Especially for a BitTorrent
DDoS attack [9] that emerged in 2007. It is still attacking by
spoofing victim IP in 2022 and keeps growing rapidly.3

Although we already have plenty of technical means to deal
with similar attacks, such as DNS verification and intrusion
detection systems (IDS), forwarding such malicious traffic
instead of filtering it out as early as possible may cause the
Internet to suffer from a severe waste of network resources.
Moreover, source address spoofing, a vulnerability at the
network layer, will likely result in new security challenges
for upper-layer applications. For example, [10], [11], and [12],
in these attacks, source address spoofing is used to impersonate
the victim server or client to accomplish DoS or side-channel
attacks.

The lack of source address validation (SAV) is a crit-
ical architectural limitation and the principal cause of the
above issues. To address this problem, the Internet Engi-
neering Task Force (IETF) has introduced source address
validation architecture (SAVA) and best current practices
(BCP) recommending that networks block IP packets with
spoofed source addresses [13], [14], [15], [16]. Although
SAV for edge networks has also made corresponding gains
for detecting spoofed and reflected traffic [17], inter-domain
schemes are still the primary mechanism for the Internet
to perform anti-spoofing due to better cost-effectiveness.
Several approaches have also been proposed to detect and
filter spoofed traffic [16], [18], [19], [20], [21], [22], [23],
[24]. These existing schemes use a consistent paradigm that
establishes a binding relationship between a specific source
IP address and detectable packet characteristics (e.g., routing
direction, number of hops, packet tag). When traffic arrives
with mismatched values, it is considered spoofed and fil-
tered out. However, with the large scale of the Internet,
practical implementation of SAV still faces several important
challenges:

1https://www.wired.com/story/github-ddos-memcached/
2https://krebsonsecurity.com/2016/09/the-democratization-of-censorship/
3https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3/

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5290-3023
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0001-8776-8730

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3127

1) Clear security benefits. Lack of clear security benefits
will prevent network operators from deploying SAV. For
instance, BCP 38 [15] only guarantees that no spoofed traffic
is generated in deployed ASes, but non-deployed ASes still
could spoof source addresses belonging to the deployed range.

2) Scalability of deployment. The efficacy of any source
address validation (SAV) system hinges on its ability to
excel across a spectrum of deployment scenarios. Ideally,
it should function seamlessly in environments with limited
nodes, while gracefully scaling to encompass the intrica-
cies of large-scale deployments. Moreover, it should provide
a smooth and reliable migration path from smaller setups
to their larger counterparts. Cryptography-based approaches,
while effective in guaranteeing end-to-end SAV by embedding
verifiable tags within packets, present significant challenges
in large-scale implementations. Maintaining packet signature
keys across numerous ASes becomes a non-trivial hurdle,
compounded by the overhead of global state synchroniza-
tion caused by dynamic membership changes. In contrast,
routing-based schemes, which leverage the inherent associa-
tion between source addresses and specific network interfaces,
boast minimal overhead. However, this efficiency comes at
the expense of compromised accuracy, particularly in smaller
deployments where the absence of collaborative detection
mechanisms hampers effectiveness.

3) Flexibility of verification granularity. The granularity
of source address validation (SAV) may be flexible to meet
different deployment requirements. For example, in some
countries or regions where ASN are not abundant, a single
AS often covers a large physical area, such as a city or
a group of different universities. In this case, the need for
SAV may be limited to a specific subnet within the AS,
such as a government department (due to public safety con-
cerns, it is necessary to ensure the authenticity of the source
address of the traffic interacting with it). For other inter-ISP
settlement scenarios, it could treat multiple ASes as a unit,
without concern for possible source address spoofing between
them.

As a result, the real-world deployment of SAV in the past
decades is far from being satisfactory [25], [26]. Providing
a practical SAV design remains one of the most challenging
issues in modern network architecture.

This paper proposes the design and implementation of a
practical Inter-domain anti-spoofing solution: Source Address
Validation Architecture eXternal (SAVA-X), where eXternal
refers to inter-domain. SAVA-X is a cryptography-based SAV
that guarantees the authenticity of packet source addresses
by maintaining verifiable packet tags between ASes in the
SAVA-X ecosystem. Meanwhile, unlike legacy AS-based
SAV designs, SAVA-X introduces the concept of Address
Domain (AD) to enable address validation in finer, prefix-level
granularity.

We worked with major equipment manufacturers and imple-
mented the complete SAVA-X solution on commercial routing
platforms (H3C CR16K and CR19K series, Huawei NE8000
series) and the P4 platform. The experiments indicate that
the hardware implementation of SAVA-X can achieve 98%
throughput on 100 Gbps links and close to the native IP

Fig. 1. Inter-domain source address spoofing scenarios addressed by
SAVA-X.

forwarding in per-packet overhead, with less than 10 microsec-
onds of additional processing latency.

The structure of this paper is as follows: in Section II,
we defined the security challenges and desired goals for
SAVA-X. In Section III, we give a detailed description of the
design of SAVA-X. In Section IV, we provide the complete
implementation of SAVA-X. In Section V, we evaluated the
hardware forwarding performance of SAVA-X and gave a
comparative analysis of the performance of SAVA-X on the
P4 platform. In Section VI, we investigate the scalability and
security of SAVA-X. After that, Section VII summarises the
related works. Finally, in Section VIII, we conclude the paper.

II. PROBLEM DEFINITION

In this section, we discuss the threat model for inter-domain
source address validation, the assumptions, and the design
goals of SAVA-X.

A. Threat Model

As shown in Figure 1, the threat model for inter-domain
source address validation can be described as follows.

Victim AS. Source AS A and destination AS B are intercon-
nected through an unreliable Internet region, and their border
routers cannot confirm the authenticity of the source addresses
in received packets.

On-path attacker. An attacker is on the forwarding path
of A and B. It can access all packets forwarded between A
and B, with packet header and payload tampering capabilities.
It generates traffic that spoofs the source address of A or B.

Off-path attacker. The attacker is outside the forwarding
path of A and B. It generates traffic that spoofs the source
address of A or B but cannot obtain information about the
packets forwarded between A and B.

B. Assumption

To address the above threat model, the design of SAVA-X
relies on the following assumptions:

1) There are global consistent mappings between an AS
and all its legal IP prefixes. We assume that all ASes that
join SAVA-X can effectively confirm each other’s legitimate
IP prefixes. This can be achieved through address assignment
authorities or existing Internet infrastructure (e.g., RPKI [27]).
Meanwhile, ASes joining the SAVA-X ecosystem are required
to deploy Ingress/Egress Filtering at their borders to filter

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

3128 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 2. Overview of SAVA-X. ADs with a hierarchical structure, packets carry Tags for replacement when forwarded across layers, and packet validation
is achieved between ADs through key-based packet Tags. The consensus infrastructure maintains global consistency to achieve dynamic management of
participants.

packets whose source address is not part of their own address
space.

2) There is a global AS authentication. The authentication
here refers to the digital certificates of AS. All the ASes
that join SAVA-X can verify each other’s identity through the
digital certificates between them (e.g., X.509 certificate of AS).

3) The ASes can authorize the sub-prefixes assigned (e.g.,
an end-entity certificate [28] containing public and private keys
derived from the AS). With this assumption, the ASes can
provide prefix authorization in finer granularity.

C. Design Goals

Based on the above assumptions, the design goals of
SAVA-X can be summarized as follows.

1) Linear security benefits. SAVA-X guarantees clear and
linearly increasing security benefits with deployment scope.

2) Low key maintenance cost. SAVA-X effectively limits
the number of Keys maintained between AD pairs and reduces
maintenance overhead.

3) High system scalability. Local changes (such as the
membership reconfiguration, the replacement of keys, etc.) do
not have a global impact on the SAVA-X ecosystem.

4) Early spoof detection. SAVA-X identifies, and filters
spoofed traffic close to the attacker.

5) Flexible verification granularity. SAVA-X provides
prefix-level validation and clarifies the security responsibilities
corresponding to IP address allocation authority.

III. DESIGN

In this section, we present the design of SAVA-X and high-
light how its hierarchical architecture addresses the problems
in the legacy source address validation approaches.

A. Building Blocks

Address Domains. SAVA-X splits or merges ASes into
different domains that have a set of prefixes. We call these sets

as Address Domains (ADs). Based on the above assumptions
defined in Section II-B, the SAVA-X ADs have the following
important features:

1) The mapping between AD and its IP prefixes is crypto-
graphically verifiable.

2) The AD has a globally consistent authentication derived
from the corresponding AS authentication mechanism.

Hierarchical Address Domains. A number of ADs can
form a new AD with a larger scope and a higher level of
hierarchy. We refer to the larger AD as the parent AD, the
smaller ADs contained within the parent AD as child ADs,
and the child ADs as siblings. There is no additional trust
required between brother ADs within the same parent AD. This
is because SAVA-X will utilize cryptographic mechanisms
to ensure that these ADs cannot forge each other’s source
addresses. However, child ADs need to trust their parent ADs
(usually a provider or an upper management organization).
Because all packets from child ADs sending to the outside
of their parent need to be further processed by the parent
AD. They need to trust the parent AD to perform this process
honestly. If ADs do not trust this parent AD, they can just
choose not to join it, at the cost of maintaining more packet
keys, which we will discuss later.

The hierarchical AD structure satisfies the following con-
straints.

1) Any AD belongs to at most one parent AD directly and
any parent AD contains at least one child AD.

2) The shape of a parent AD must be convex. The convex
ensures that packets forwarded inside an parent AD (from a
child AD to another parent AD) do not pass through an outside
AD. This is important to guarantee that the packet validation
logic is clear and concise (For further discussion, please see
Section VI-B).

3) An AD can have at most one parent AD, and its network
must be completely contained within the parent AD. Otherwise,
the AD cannot be added as a child AD to the parent AD. This

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3129

will ensure that after a packet is sent from a particular AD,
it will enter only one parent AD.

Inter-AD Consensus Infrastructure. the Inter-AD Consen-
sus Infrastructure is used to manage SAVA-X membership
(e.g., join or leave an alliance) and hierarchical structure of
ADs. The infrastructure does not bind any specific method
to achieve global consensus. The design of a consensus
mechanism is not in the scope of this paper. See Section IV
for more details about our implementation.

B. Overview

As shown in Figure 2, an AS can be divided into several
hierarchical SAVA-X ADs (e.g., AD1 and AD11). The legiti-
macy mapping between ADs and their prefixes are provided
by existing infrastructures such as RPKI [27], ROVER [29].
In this case, AD13 and 21 are border ADs of their parent ADs.
The border ADs are utilized for cross-layer validation and Tag
replacement(see Section III-E).

To explain the interactions between SAVA-X ADs, we will
discuss the steps when AD11 is trying to join the SAVA-X
alliance and communicate with AD22. It is assumed that all
other ADs, except AD1, are in their places.

Step1: AD11 sends a join message to Inter-AD Consensus
Infrastructure. After authentication, AD11 negotiates initial
Key and maintains packet Key with AD12 and AD13.

Step2: Host A in AD11 sends a packet, the border router
of AD11 adds a Tag of “AD11-AD13” and sends it to AD12.
The Tag is generated with the packet Key maintained between
AD11 and AD13. The detailed Tag generation process is
attached in Section IV-C.

Step3: AD12 receives the packet. Since AD12 is not a border
AD and the destination IP prefix of the packet does not belong
to AD12, the packet will be directly forwarded to AD13.

Step4: AD13 receives the packet and can determine that the
destination IP prefix is outside the parent AD1 and belongs
to AD2. The border router of AD13 will validate the Tag
“AD11-AD13” carried by the packet. After that, the router
will replace the Tag “AD11-AD13” with “AD1-AD2” and
send the packet to AD2.

Step5: AD21 receives the packet. Its border router will
validate the packet Tag “AD1-AD2”, determine that the desti-
nation IP prefix belongs to its brother AD22, and replace the
Tag “AD1-AD2” with “AD21-AD22”.

Step6: AD22 receives the packet. Its border router will
validate the legality of the Tag “AD21-AD22” and confirm
that the source address in AD11 is valid.

C. Hierarchical Key Maintenance

As shown in Figure 3, for any AD pairs in SAVA-X, they
only need to maintain a Key when:

1) They are brother ADs within the same parent AD, e.g.,
AD11, AD12 and AD13.

2) They are parent-child relationship, e.g., AD11 and AD111
or AD112.

An AD within a parent AD can leave at any time, e.g. lack
of trust in the parent AD or a change in the management
structure. In this case, the keys with other external ADs that

Fig. 3. Hierarchical AD Structure. Tag is maintained between AD pairs only
in the case of parent-child or brother-brother relationship.

were previously maintained by the parent AD need to be
additionally maintained by the AD itself. At the same time,
the AD will no longer maintain packet keys with other ADs
within the parent AD, and these internal ADs will no longer
be visible, and the parent AD as a whole will establish key
maintenance with the separated AD.

It is easy to see that the hierarchical AD can largely reduce
the total number of keys in SAVA-X. This will optimize
the system maintenance overhead, making supporting a larger
deployment range possible. Moreover, such a hierarchy will
block the external changes outside parent AD and provide
scalability in large-scale deployment. In this case, the mali-
cious traffic will also be filtered earlier in stub ADs to provide
better efficiency.

D. Management of Address Domains

The Inter-AD Distributed Consensus Infrastructure is used to
maintain the global consistency of SAVA-X membership and
AD configurations. When a new AD, such as AD11 in Figure 3,
joins SAVA-X, it needs to generate a request message to the
Inter-AD Consensus Infrastructure and gather the signatures
of the relevant ADs. The Inter-AD Consensus Infrastructure
will then perform the message checking and adjust SAVA-X’s
latest deployment structure (e.g., AD connection relationships
and keys’ maintenance). For example, AD11 to join the SAVA-
X ecosystem, a request message needs to be generated in the
following format:

Messagejoin

= SignrelativeAD{Type = ADjoin

∥ADNumber∥PublicKeyAD11

∥{AD 1(AD11[BorderServerIP](AD111, AD 112))}}

The first field Type indicates that the current message is used
to verify an AD’s join request. The second field is the ID of
the currently joined AD. The third field carries the public key
of the AD11, which could be generated by itself or derived
from RPKI’s X.509 certificates. The fourth field shows the
parent-child relationships of the currently joined AD. In this

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

3130 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 4. Segment validation and Tag replacement. Simplify the processing
logic of Tag replacement by virtual AD to decouple Tag replacement from
the forwarding path selection.

example, AD11 is a child AD of AD1. AD111 and AD112 are
both the child ADs of AD11.

After receiving an application message, the relevant ADs
verify and sign the message, and then send it to all par-
ticipating nodes through the Inter-AD Distributed Consensus
Infrastructure and perform consensus. AD 11 formally joins the
SAVA-X ecosystem when consensus is completed. Its public
key takes effect and it can negotiate the packet Key with
other ADs. The relevant ADs will be notified to make corre-
sponding adjustments, and the Inter-AD Distributed Consensus
Infrastructure will record the new AD structure. After Key
negotiation is completed, AD 11 starts to send traffic carrying
SAVA-X packet tags.

The Type field in the above message also supports exit,
merge, split, and other types. All AD structure change
messages require the tag of the associated ADs and a consen-
sus process through the Inter-domain Distributed Consensus
Infrastructure. The global consensus is used to ensure the
consistency of the AD structure in the SAVA-X ecosystem.

E. Segment Validation

In SAVA-X, ADs form an onion-like structure. Tag replace-
ment in SAVA-X should only require the structure information
of the ADs, independent of the actual forwarding path between.
To this end, SAVA-X adopted a design called virtual border
AD (Noted as V_AD). The virtual border AD is a logic AD
representing all the border ADs in a parent AD. This design
will bring two benefits to SAVA-X. First, routers support
SAVA-X only need to check if the destination IP prefix is
inside or outside their parent AD. If the destination IP prefix
is inside, add a Tag to the destination AD; if the destination
IP prefix is outside, add a Tag to the virtual border AD.
Second, The parent ADs handle member ADs that do not
support SAVA-X. It only requires all the border ADs to deploy
SAVA-X.

Take Figure 4 as an example. When AD11 sends a packet to
AD23, the SAVA-X router in AD11 will check the destination
IP prefix in the packet. The router will find that the destination
IP prefix is outside parent AD1. Therefore, the router will
add the Tag “AD11-V_AD1” indicating that the packet is
validated by a SAVA-X router in AD11. Therefore, this tagged
packet can be verified by other SAVA-X routers in parent
AD 1 (e.g., AD13 AD14), AD11 also does not need to be
aware of the actual subsequent forwarding path. The packet

Algorithm 1 Segment Validation
Input: AD A receives a packet with SIP ,DIP ,Tag,

Tagoutgoing ,Tagincoming

1 For the sake of clarity, all validation is considered
passed, and if not, the packet is dropped;

2 if A is a border AD in the parent AD then
3 if SIP is in this parent AD and DIP is out of the

parent AD then
4 Validation of Tag;
5 Replacement Tag with Tagoutgoing ;
6 Forwarding outside parent AD ;

7 if SIP is not in this parent AD and DIP is inside
of the parent AD then

8 Validation of Tag;
9 Replacement Tag with Tagincoming ;

10 Forwarding inside parent AD ;

11 Forwarding without validation;
12 else
13 if DIP is inside of A then
14 validation of Tag;
15 Forwarding to host;
16 else
17 Forwarding without validation;

will be forwarded without Tag-checking for routers that do
not support SAVA-X (e.g., AD12). After that, one of the
border ADs (e.g., AD13 AD14) will check and replace the
Tag with a new Tag “AD1-AD2” and send the packet out
of parent AD1. This Tag shows that the packet is already
verified by AD1. In Figure 4, if AD31 received this packet,
it will directly forward the tagged packet to AD2 without
validating the Tag, because the destination IP prefix does
not belong to AD31. When AD2’s border AD (e.g., AD21
or AD22) receives this packet, the Tag “AD1-AD2” will be
verified and replaced by “V_AD2-AD23”. Finally, AD23 will
receive the packet, no matter from which border AD, verify the
Tag “V_AD2-AD23”, and confirm that the packet is without
source address spoofing. The packet would be dropped if any
check fails.

The detailed segment validation algorithm is shown in
the Algorithm 1. In Algorithm 1, SIP is the source IP
address, DIP is the destination IP address, Tag is carried by
current packet, Tagoutgoing is maintained by virtual border
ADs between source AD and its parent AD, Tagincoming is
maintained by virtual border ADs between the destination AD
and its parent AD.

IV. IMPLEMENTATION

This section presents the implementation details of SAVA-X.
SAVA-X comprises two primary components: the AD Control
Server (ACS) and several AD Border Routers (ADBR) within
each AD. The ACS is responsible for managing the hierarchi-
cal AD structure and key management, while the ADBRs are
responsible for storing these keys and handling tag-processing
tasks.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3131

A. AD Control Server

We have developed a versatile AD Control Server (ACS)
capable of running on any POSIX-compliant platform. This
robust server facilitates the hierarchical organization of AD
layers, seamless management of AD information, hierarchical
key management, and efficient communication between ACS
instances and ADBR devices, enabling seamless AD informa-
tion distribution across the network.

1) Hierarchical AD Layers Division: In SAVA-X imple-
mentation, RPKI [27] serves as a prerequisite infrastructure,
establishing a hierarchical binding between AS and IP address
prefixes. However, the RPKI hierarchy doesn’t perfectly align
with SAVA-X’s layered AD structure. ADs act as logical
entities without disrupting existing routing policies or infras-
tructure. Network division into nested ADs is based on
diverse criteria such as routing policies, geography, culture,
economics, contracts, and legal considerations. To ensure
compatibility and enable flexible IP address prefix compo-
sition and decomposition, it is recommended to adhere to
existing routing policies, creating a layered AD structure. This
approach achieves scalability, encapsulates AD information,
and eliminates the need for higher layers to possess in-depth
knowledge of lower layers. SAVA-X could seamlessly coexist
with the current Internet infrastructure, providing hierarchical
management and encapsulation of AD information.

2) AD Information Management: The essential information
about an AD includes the AD number, IPv6 address prefix,
and public key. However, managing AD information becomes
more complex in a layered structure compared to a flat mode
where tag processing is straightforward like source adding,
destination verifying, and none of the business of forwarding
nodes. Each AD in SAVA-X has a unique parent AD, and
this parent AD number is stored to facilitate the identification
of ancestor ADs. SAVA-X maintains AD information in two
tables: the ADID-Info Table containing AD Number, parent
AD Number, and ACS Address and the ADID-Prefix Mapping
Table containing ADID, Prefix Length, and IPv6 Address. The
generation of the Public Key is crucial before communication
and should be securely stored. For a visual representation of
these tables, refer to Figure 6.

• AD Number (ADID) is a 32-bit integer that serves as the
unique identity within an AD.

• Parent AD Number (parent ADID) is also a 32-bit field
used for searching all the ancestor ADs of a specified
AD. It allows the Address Configuration Service (ACS)
to determine which ACS it should connect to.

• ACS Address is a 128-bit IPv6 address used for establish-
ing connections with other ACSes, with which the current
ACS maintains hierarchical keys.

• Prefix Length is an 8-bit field that specifies the length of
the IPv6 prefix.

• IPv6 Address is a 128-bit IPv6 address that determines
which packet should be checked and protected by ADBR.

• Public Key - The ACS generates a public/private key pair
for communication security. This key pair is protected by
the current Public Key Infrastructure system and should
be signed by the hierarchical Certificate Authorities [30].

3) Hierarchical Key Management: SAVA-X employs a
Time-based State Machine Key Generation mechanism
illustrated in Algorithm 2 to minimize network connection
and communication costs. ADs maintain synchronized state
machines that periodically generate keys for mutual source
address validation. Unlike the flat mode, SAVA-X doesn’t
require a full-mesh connection among all ADs. Instead,
ADs establish limited connections with essential counterparts
including its parent AD, brother ADs within the same parent
AD, and directly subordinate child ADs. When it starts, the
ACS initiates these connections immediately based on AD
information to configure the state machines. Two types of
keys are used in SAVA-X.V_AD key is generated by the
current AD’s state machine in conjunction with the parent AD
for cross-layer communication and direction-specific keys are
generated by separate state machine pairs for communication
with brother ADs. The State Machine Information includes the
following fields.

• Source ADID is an ADID that identifies the packets
received from.

• Destination ADID is an ADID that identifies the packets
sent to.

• State Machine Algorithm is an 8-bit field that spec-
ifies several predefined algorithms used to generate
keys. We now recommend and implement using the
One Time Password System based on the S/Key
system [31].

• Key Length is an 8-bit field that defines the length of
generated keys in octets.

• IS Length is an 8-bit field that specifies the length of
Initial State in octets.

• Initial State is the negotiated bit-string based on which
the state machine runs and generates keys periodically.
It’s a variable length field whose length relies on the IS
Length field.

• Interval is a 32-bit state transition interval that defines
the interval in seconds when the state machine transits
its states.

• Effecting Time is the time to start this state machine. This
is in the UNIX timestamp format.

• Expired Time is the time to stop this state machine. This
is in the UNIX timestamp format.

4) ACS-ACS Communication Functions: The communica-
tion between ACSes utilizes TCP [32] and SSL/TLS [33].
When an ACS establishes a connection with another ACS,
the ACS with a bigger ADID initiates the negotiation process
for the state machine. The peer ACS determines the state
machine information, as specified in Section IV-A3. Once
the negotiation is completed, both ACS systems activate the
state machine at the designated Effecting Time and terminate it
promptly at the Expired Time if it is already running. To ensure
continuous service availability, ACS should implement the
Keep-Alive mechanism. In the event of failure detection by
one ACS, the peer ACS is considered dead. Subsequently, the
ACS will re-establish the connection with the peer ACS and
report the failure after reaching the maximum number of retry
attempts.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

3132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Algorithm 2 Time-Based State Machine Key Genera-
tion Algorithm
Input: SourceADID, DestinationADID,

Algorithm, KeyLength, ISLength,
InitialState, Interval, EffectingT ime,
ExpiredT ime

1 State Machine SM is ready after ACSes negotiation.
2 Function startSM()
3 Sn = InitialState;
4 Keyn = None;
5 timeeffect = EffectingT ime;
6 wait until timeeffect <= NowTime;
7 do
8 if timeeffect <= NowTime then
9 Sn+1, Keyn+1 = Algorithm(Sn, Keyn);

10 Sn = Sn+1;
11 Keyn = Keyn+1;
12 timeeffect = timeeffect + Interval;

13 sleep 1 second;
14 while NowTime < ExpiredT ime;

B. AD Border Router

The AD Border Router (ADBR) is responsible for providing
prefix-checking and tag-processing functions. We have suc-
cessfully implemented these functions of ADBR in a series
of commercial backbone routers produced by major manufac-
turers. Additionally, ADBR needs to establish communication
with ACS to receive AD information and hierarchical keys.
ADBRs should be strategically positioned at the borders of
nested ADs to enable smooth communication and secure
data exchange between the different layers of the network
architecture.

1) ACS-ADBR Communication Functions: The ADBR
establishes connections with ACS using TCP and SSL/TLS
protocols. It incorporates the Keep-Alive mechanism with
ACS to maintain an active connection. ADBR maintains two
tables for SAVA-X. The ADID-Key Mapping Table stores
information about the corresponding AD, including the ADID,
two keys, and their Expiration Times. Due to the slight time
difference between devices on the Internet, NTP is used
to synchronize time, ensuring that both keys are updated
simultaneously. The newer key is used for adding and verifying
Tags, while the older one is only employed for verifying Tags.
The ADID-Prefix Mapping Table contains the IPv6 Prefix
information of the corresponding AD. Within the data plane,
the fields Level, ADs List, and Common Ancestor Level are
utilized to determine which key should be applied to packets
with specific source and destination IPv6 addresses.
• ADID, IPv6 Prefix, and Prefix Length are the same as

described in Section IV-A2.
• Level means the level of the corresponding AD. It starts

from 0 for root AD. A larger value means the AD is at a
lower level.

• ADs List is an array that lists all the ADIDs from the
current AD to its parent AD.

• The Common Ancestor Level serves a similar purpose to
the Level field, as it indicates the common ancestor level
between the corresponding AD and the AD where the
ADBR is located.

In SAVA-X, tags have directions, and they could be deter-
mined using the pair <Source ADID, Destination ADID>. The
ADID range is divided into two parts, and each AD has two
ADIDs in each part. The only difference between these ADIDs
is the reversal of their highest bits. An ADID with the highest
bit of 0 represents the AD itself. An ADID with the highest
bit of 1 is used for traversing the AD to its parent AD or
child ADs, which are virtual ADs explained in Section III-E.
A packet adopts the virtual ADID when crossing layers.

2) ADBR Interface Types: Prefix checking and tag process-
ing functions in an ADBR are determined based on the roles
of different ADBR interfaces. Each interface in an ADBR can
be categorized as either ingress, egress, or trust. The ingress
port is responsible for connecting to devices within the AD,
while the egress port connects to devices outside the AD.
The trust port serves as the link to the ADBR within the
same AD. To specify the level at which an interface sits in
the hierarchical ADs, a router command requires an egress
level field, i.e., LevelL. This manually assigned LevelL field
is utilized in packet processing operations.

3) Prefix Checking and Tag Processing: The packet pro-
cessing in an ADBR involves two modules: the inward
processing module and the outward processing module.
Algorithm 3 describes the process on ADBR.

Upon arrival at the ADBR, a packet enters the inward
processing module and undergoes classification based on its
destination address. If the destination address does not belong
to any SAVA-X deployed ADs, the ADBR directly forwards
the packet. However, if the destination address belongs to a
member AD, the ADBR further classifies the packet based
on the type of its arriving port. In the case of an ingress
port, the ADBR forwards the packet directly if its source
address is not associated with the AD where the ADBR
is located. Otherwise, the ADBR forwards the packet for
outward processing. For packets received from an egress port,
the ADBR determines the Common Ancestor Level (levelD)
between the destination address and the ADBR by consulting
the ADID-Prefix Mapping Table. The ADBR also obtains
the local egress port level (levelL). If levelL ≤ levelD, the
ADBR checks the packet’s tag for validation. The tag can be
accessed from the ADID-Key Mapping Table using levelL
to obtain the ADID from the ADs List in the ADID-Prefix
Mapping Table.

If the packet fails the tag validation, the ADBR drops
it. However, if the tag is correct, the ADBR determines
whether the packet needs a new tag based on the comparison
between the corresponding Level and Common Ancestor Level
in the ADID-Prefix Mapping Table. If Level == Common
Ancestor Level, a new tag is added to replace the old tag using
the ADID-Key Mapping Table with levelD + 1 to obtain
the ADID. Finally, the packet is forwarded to the outward
processing module.

In the outward processing module, before forwarding a
packet that has undergone inward processing, the ADBR

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3133

Algorithm 3 Process on ADBR
Input: Interface I of ADBR R of AD A receives a

packet with SIP , DIP , Tag
1 For the sake of clarity, the packet rises from and sinks

to two different ADs deployed with SAVA-X, and if
not, the packet is forwarded directly;

2 if I is a trust port then
3 Forwarding without checking and validation;
4 else
5 if Packet direction is Inward then
6 if I is an ingress port then
7 if SIP is inside of A and DIP is not inside

of A then
8 Adding Tag;

9 if I is an egress port then
10 if DIP is inside of A or A is the border

AD of parent AD then
11 Validation of Tag;

12 Forwarding to outward processing module;
13 else
14 if I is an ingress port then
15 if SIP is inside of A and DIP is not inside

of A then
16 Validation of Tag;
17 Removing Tag;

18 Forwarding to Host;

19 if I is an egress port then
20 if DIP is inside of A or A is the border

AD of parent AD then
21 Validation of Tag;
22 if DIP is not inside of A then
23 Replacement of Tag;
24 Forwarding out;
25 else
26 Forwarding to Host;

compares the Level (levelL) of the outgoing interface with
the Common Ancestor Level between the ADBR and either
the source address (levelS) or destination address (levelD).
If levelL > levelS&&levelL > levelD, the ADBR directly
forwards the packet without requiring a tag.

However, if levelS ≥ levelL and the packet is marked with
a tag, the ADBR verifies the tag by extracting the ADID
using levelS + 1 from the ADs List in order to determine
the validation key from the ADID-Key Mapping Table.
Subsequently, the packet is assigned a new tag generated
from the ADID-Key Mapping Table using levelL, and then
forwarded out.

C. Tag Generation

The tag generation mechanism in SAVA-X, inspired by
Passport [23] and DIA [24], involves placing the 64-bit tag

Fig. 5. Tag generation procedure.

in the IPv6 destination option header. The tag consists of
a 32-bit packet message authentication code (PktMAC, hash
digest), an 8-bit prefix length, and 24 reserved bits. This design
enables SAVA-X to protect address prefixes of various lengths
and authenticate full-length 128-bit IPv6 source addresses
when deployed on the access device. However, due to the
complexity of SAVA-X, it is generally recommended to use
a coarser-grained protection scope. The reserved 24 bits in
the tag can be utilized for future protocol extensions, such as
supporting special services or calibrating the security level of
authenticated source address traffic.

The PktMAC serves the purpose of ensuring the authenticity
of the packet source and the integrity of the packet itself.
It follows the existing cryptography-based inter-domain SAV
approach. Initially, the source AD generates a key between two
ADs by maintaining a state machine mechanism at the ACS.
By default, the generated key has a length of 64 bits, which
can be specified using the Key Length field during negotiation.
The 128-bit source address, 128-bit destination address, the
first n bytes of the packet payload (Data[n]), and the 8-bit
prefix length are combined and hashed using a hash function.
The appropriate folding algorithm is then applied, resulting in
the final 32-bit PktMAC. The hash function can be uhash or
CRC32, both of which produce a 32-bit output. Additionally,
other hash algorithms with longer output lengths, such as
SipHash, MD5, or SHA256, can be used by collapsing the
output to obtain the 32-bit PktMAC, given that the generated
keys’ length is adjusted accordingly.

Unlike some existing cryptographic schemes, such as using
AES to encrypt the hashed data in DIA, SAVA-X relies solely
on hash algorithms for tag generation. This choice strikes
a balance between security and performance in SAVA-X.
Although using only hash functions may increase the collision
probability, the focus in inter-domain forwarding scenarios is
more on minimizing performance loss. Experimental results
indicate that SAVA-X’s tag generation method and hierarchi-
cal AD design can support commercial routing platforms to
achieve high-performance forwarding capabilities.

D. Example of SAVA-X

In Figure 6, emAD1 is positioned at the same level as AD2.
Within AD1, we have AD3 and AD4, while AD5 is a direct
subordinate of AD2. Each AD contains its own ACS, ADBRs,
and several end hosts.

Initially, all ADs should be deployed with SAVA-X enabled
in their ADBRs. Subsequently, the ACS of each AD will ana-
lyze the ACSes with which it should maintain a state machine

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

3134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

and generate corresponding keys. As discussed earlier, the
state machine should be maintained by ADs at the same level
or in a direct parent-child relationship. The ACS will deliver
these keys, along with the ADs’ information, to their respec-
tive ADBRs to form the ADID-Prefix Mapping Table and
ADID-Key Mapping Table. Since keys are generated peri-
odically, the ACS will periodically deliver the keys, while
announcing only the updated part when referring to AD
information. Once these steps are completed, communication
can commence among the end hosts located in different ADs.

Communication between AD1 and AD2: AD1 and AD2 are
positioned at the same level, thus requiring the maintenance of
a state machine to generate keys. When the SAVA-X feature
is enabled, an end host H1 located in AD1 sends a packet to
an end host H2 located in AD2. The ADBR of AD1 receives
the packet sent by H1 and determines that the packet requires
a tag by checking if the source address belongs to AD1 and
if it is destined for AD2. Consequently, the outward interface
of AD1’s ADBR adds a tag “AD1-AD2” within the packet’s
destination option header. Then, AD1’s ADBR sends out the
packet. When AD2’s ADBR receives the packet, it identifies
that the packet carries a tag. It then determines which tag
the packet should have by checking the packet’s source and
destination addresses, as well as the inward interface level of
this ADBR. The ADBR compares the carried tag with the
expected tag and drops the packet if the comparison fails.
Otherwise, it removes the tag and forwards the packet to
the outward interface for further processing. As the outward
interface of AD2’s ADBR is an ingress port, it directly
forwards the packet.

Communication between AD3 and AD5: AD3 and AD5 are
located in different superior ADs, requiring tag replacement
when an end host H3 in AD3 communicates with an end
host H5 in AD5. When AD3’s ADBR receives the packet
sent by H3, it first checks the packet’s address to confirm
that the source address prefix belongs to AD3 and the des-
tination address prefix belongs to AD5, indicating that their
communication needs SAVA-X. It then determines that the
packet’s destination address is not within AD1, requiring
the tag attached to the packet to indicate that it will be
sent out of AD1. The tag “AD3-V_AD1” is used for this
purpose. The left ADBR of AD4 does nothing to the packet
since both the source and destination address prefixes do not
belong to AD4. The right ADBR of AD4 checks the carried
tag and replaces it with “AD1-AD2”. When AD2’s ADBR
receives the packet, it processes it as described in IV-D.
At this point, the packet sent from AD3 to AD5 is officially
terminated.

V. EVALUATION

In this section, we assess the forwarding performance of
SAVA-X using commercial inter-domain routers and P4 pro-
grammable switches, respectively.

A. Evaluation on Commercial Router

As mentioned in Section IV, the data plane of SAVA-X
is responsible for generating, verifying, and replacing tags.

Fig. 6. An Example of SAVA-X hierarchical deployment and packet tag
processing.

On the other hand, the control plane of SAVA-X is imple-
mented on a side-mounted server. The control plane manages
the AD structure, negotiates keys within the SAVA-X ecosys-
tem, and distributes keys to the data plane.

For our experiments, we focused on the H3C CR19K routers
depicted in Figure 7-d. We constructed a nested AD hierarchy
using nine routers following the pattern R1-R2-R3-R4-R5-
R6-R7-R8-R9, as shown in Figure 8. Each interface of these
routers has a capacity of 100 Gbps. By leveraging the hardware
virtualization capabilities of the H3C CR19K routers, R1-R4
were derived from one physical router with eight ports, while
R5-R9 were derived from another physical router with ten
ports. In this topology, R1 and R9 functioned as normal
ADs, R5 represented an independent AD3, and the remaining
routers served as border ADs in different layers. We organized
AD1, AD2, and AD3 as the tier 1 layer, establishing a sym-
metric network topology with four additional layers on each
side. To gather experimental data, we utilized traffic meters
to measure specific router connections within the topology.
This included 1-hop (R1-R2), 2-hops (R4-R5-R6), 4-hops
(R3-R4-R5-R6-R7), 6-hops (R2-R3-R4-R5-R6-R7-R8), and
8-hops (R1-R2-R3-R4-R5-R6-R7-R8-R9) scenarios.

The testing traffic is generated using an ISP’s real-world
Internet traffic statistics. In this dataset, over 85% of the
data packets have a size smaller than 500 bytes. The average
packet size is 424 bytes, and the median packet size is
280 bytes.

1) One-Way Delay With Different Packet Sizes in 1-hop:
One-way delay is a standard for IP performance measurement
defined in [34]. We measured the per-packet one-way delay
of SAVA-X and the baseline (native IP forwarding) on the
link between R1 and R2. The measurements were taken under
light load conditions, i.e. 10 Gbps, with no queuing, and the
results are depicted in Figure 7-a. From the figure, it can be
observed that the per-packet one-way delay under light load
exhibits a slight increase as the packet size increases. While
SAVA-X introduces additional processing overhead compared
to native IP forwarding, the resulting latency increase is
minimal. It is important to note that these increased latency

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3135

Fig. 7. a. One-way delay with different packet sizes in 1-hop. b. One-way delay of fixed packet size with different path lengths. c. One-way delay of mixed
packet size with different path lengths. d. The commercial router and experimental environment.

Fig. 8. Topology of Evaluation.

values are very small when compared to the typical end-to-
end latency of the Internet, which is usually in the tens of
milliseconds.

2) One-Way Delay With Different Path Lengths: Consider-
ing that SAVA-X requires per-packet processing, we measured
the one-way delay in two scenarios: fixed packet size and
mixed packet size. According to CAIDA’s measurement data,
the average Internet packet size is around 600 bytes.4 For
this experiment, we fixed the packet size to 512 bytes.
We measured the latency under different incoming traffic rates,
ranging from 1 Gbps to the maximum throughput, for each
topology. We recorded the average performance of SAVA-X
and the baseline (native IP forwarding). The results are shown
in Figure 7-b. In the 2-hop topology (i.e., R4-R5-R6), the
additional latency introduced by SAVA-X is minimal. This
is because AD1 and AD2 are in the same layer, eliminating
the need for segment validation. However, as the number of
hops increases to four (R3-R4-R5-R6-R7), there is a significant
difference between SAVA-X and the baseline. This is because
both R4 and R6 require segment validation. To evaluate the
performance using real-world traffic, we conducted a latency
test with mixed packet sizes on the 1-hop and 4-hop topolo-
gies. The results are presented in Figure 7-c. In the 1-hop
experiment, the additional latency introduced by SAVA-X
is only 7.79 µs. However, in the 4-hop experiment, which
requires two rounds of segment validation, the additional
latency introduced by SAVA-X reaches 31.88 µs.

4https://www.caida.org/catalog/datasets/passive_trace_statistics/

Fig. 9. Throughput with fixed packet size.

3) Throughput With Fixed Packet Size: This experiment
aims to evaluate the throughput variation of SAVA-X for
different packet sizes (ranging from 78 bytes to 2048 bytes)
and different hop counts (1-8 hops). As shown in Figure 9,
the experimental results show that the throughput rate of
SAVA-X increases rapidly as the packet size grows. It starts
from around 45 Gbps for the smallest packet size of 78 bytes
and reaches the maximum throughput of 98 Gbps at a packet
size close to 1500 bytes. Beyond this point, the throughput
remains constant at 98 Gbps without further changes with the
increase in packet size. For packet lengths below 256 bytes,
the throughput gradually decreases as the number of hops
in the test topology increases. For example, the throughput
decreases from 79 Gbps (1 hop) to 62 Gbps (8 hops) at
a packet size of 128 bytes. However, when the packet size
exceeds 256 bytes, the throughput no longer varies with the
number of hops. For instance, at packet sizes of 256 bytes,
512 bytes, 1024 bytes, and 1500 bytes, the throughput remains
stable at 91-92 Gbps, 95 Gbps, 97 Gbps, and 98 Gbps,
respectively, regardless of the number of hops. These findings
suggest that when the packet size is less than 256 bytes,
the high number of packets and the per-packet processing of
SAVA-X impose significant stress on the router. As a result,
each additional hop has a notable impact on the end-to-end
throughput. However, when the packet size exceeds 256 bytes,
the per-packet processing becomes less of a bottleneck and the
increase in hop count at this packet size does not significantly
affect the end-to-end throughput. The primary factor is the
additional 18 bytes added to each packet, which includes

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

3136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 10. Throughput with mixed packet size.

the standard destination options header (4B), tag length (1B),
reserved field (1B), Tag (8B), and source ADID (4B).

4) Throughput With Mixed Packet Size: This experiment
uses the dataset provided by the ISP to test the maximum
throughput that SAVA-X can achieve under real network
traffic. Corresponding to the latency experiment, we tested
the throughput of SAVA-X under 1-hop as well as 4-hop
topology conditions, and the experimental results are shown
in Figure 10. The experimental results show that SAVA-X
achieves the same throughput under 1-hop and 4-hop con-
ditions, and can continuously increase the output traffic
bandwidth as the incoming traffic bandwidth increases until
SAVA-X reaches the maximum throughput when the incoming
traffic reaches 94 Gbps. There is no difference in throughput
performance of SAVA-X between 1-hop and 4-hop, so we no
longer differentiate them in Figure 10. As a comparison, the
baseline can achieve 100 Gbps throughput. Combined with the
experimental results for fixed packet length, it can be found
that SAVA-X can reach a maximum throughput of 98 Gbps
regardless of the number of hops and packet size variations,
which means that about 2% of bandwidth is lost due to
the packet operations introduced by SAVA-X. In addition,
the additional bandwidth is consumed due to the increase of
18 bytes in packets. The average size of mixed packets is
424 bytes, and the increase of 18 bytes also causes about 4%
bandwidth loss, which, together with the about 2% bandwidth
lost by SAVA-X packet operation, is the origin of the 6%
bandwidth loss in this experiment.

B. Evaluation on P4 Switch

We compared the performance of SAVA-X and the state-of-
the-art source validation mechanism on the data plane using a
programmable switch (Barefoot Tofino programmable switch
S9180-32X). Considering that the forwarding path validation
mechanism can be used to a large extent to guarantee the
authenticity of source addresses, we selected the following
schemes for comparison, including OPT [35], a representa-
tive of early schemes, PPV [36] for probabilistic validation,
and EPIC [37] for hierarchical security, with native IPv6 as
baseline. We implement different hash algorithms on P4 to
meet the computational requirements of each mechanism for
packet tagging, including AES-128 for OPT, 2EM for EPIC
and PPV, and CRC32 for SAVA-X (in line with the commercial
router implementation). Considering the lack of comparison

Fig. 11. The computation delay with packet size of 512 Bytes on P4.

Fig. 12. The computation delay with packet size of 1024 Bytes on P4.

basis due to differences in design goals and implementation of
each mechanism in the control plane, the additional overhead
caused by key updates and other control plane management
is not considered in this experiment. Only the data plane
performance is compared. In experiments, SAVA-X, OPT, and
EPIC verify packets at each hop, and PPV is based on the
probability of 1/hops. We set the packet size to 512 and
1024 bytes and the forwarding path to 2, 6, and 10 hops to
measure the computation delay during end-to-end forward-
ing. The experimental results are shown in Figure 11 and
Figure 12.

The experimental results indicate that SAVA-X and EPIC
exhibit relatively lower data-plane forwarding overhead, with
minimal additional computational delay compared to the
baseline, about 1 µs. In this experimental setting, OPT
demonstrates a relatively larger computational delay due to
the S9180-32X programmable switch necessitating 4 recir-
culations to complete an AES-128 operation (10 rounds).
In contrast, OPT requires two AES operations per route.
Specifically, the 2EMs closely resembled native IP forwarding
on the experimental device. This results in a larger computa-
tional overhead for OPT compared to other schemes, and the
gap increases with path length. It should be noted that if exper-
iments are conducted with devices that have better support for
the AES algorithm, the computational overhead of OPT will
likely be significantly lower. PPV selects only two routers at
each hop for tagging, necessitating two 2EM operations for
each router. Regrettably, similar to OPT, the 12 pipelines on
the device in this experiment cannot simultaneously complete
two 2EM operations and require an additional recirculation.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3137

These additional recirculation processes slightly increase the
delay of PPV in comparison to EPIC and SAVA-X.

VI. ANALYSIS

In this section, we analyze the performance and security
properties in turn, to demonstrate that SAVA-X is a practical
SAV approach. The practicality here is reflected in maintaining
clear security benefits with lightweight overhead. The most
important characteristic of SAVA-X is that it only deploys on
the AD, the legacy end host could enjoy the benefit without
upgradation. In the following, we first analyze the qualitative
and quantitative overhead incurred by SAVA-X, to demonstrate
the feasibility of SAVA-X to be deployed in commercial
hardware. Then we analyze the security properties of SAVA-X,
to explain why SAVA-X could defend against attacks, such as
source spoofing and tag replay attacks, and further explain that
SAVA-X does not incur new attacks.

A. Performance Analysis

The evolution of the Internet has proven that SAV deploy-
ment is a long process. From this perspective, backward
compatibility, lightweight overhead, and scalability are crucial
features for the deployability of an SAV approach. We first
explain that SAVA-X is an SAV that keeps backward com-
patibility. Besides that, the key maintenance and per-packet
processing in SAVA-X is also lightweight. Furthermore, the
scalability could also be guaranteed by the hierarchical
ADs, to facilitate the evolution from partial to large-scale
deployments.

1) Backward Compatibility: SAVA-X is designed as a
segmented end-to-end cryptography validation scheme that
operates independently of the forwarding path. The virtual
AD ensures that SAVA-X achieves the validation with the
tag. Therefore, SAVA-X does not require routing information
and does not impact existing routing systems. One of the
advantages of SAVA-X is its end-to-end validation feature,
which allows packets to traverse networks where SAVA-X
is not yet deployed without compromising the validation
process. This means that even if SAVA-X is only deployed
in certain parts of the network, early adopters can still
benefit from the security provided by the validation scheme
without requiring a high deployment ratio across the entire
network.

2) Key Maintenance Overhead: The key is negotiated by
the ACS in each AD, and then each ADBR receives and locally
stores the keys.

We first analyze the number of ADs in SAVA-X. SAVA-X
is a hierarchical architecture, it splits the Internet into nested
ADs. As the logical topology of hierarchical structure is a
tree, suppose that there is N AD left after splitting the
whole Internet via criteria such as routing, culture, business
agreements, and so forth in the SAVA-X ecosystem. At the
ideal situation, excluding the lowest level, the ADs obey
uniform distribution, hence the logical structure of SAVA-X
is a complete M -ary tree whose height is L and each node
has M children nodes. The second lowest level AD would
equally divide the N leaves AD into

⌈
N

ML−1

⌉
. In this way, the

total number of ADs could be listed as Equation (1).

NUMAD = 1 + M + M2 + . . . + ML−2 + N (1)

Then we analyze the storage overhead in terms of AD infor-
mation. According to the CIDR report,5 there are 32527 ASes
running IPv6 with 201023 prefixes. L = 4 and M = 24 could
meet the requirement to contain all the ASes in SAVA-X. For
AD relationship information, each parent ADID takes 5B, each
ADID takes 5B, the located level of each AD takes 1B, each
local AD takes 1B, and the public key takes 128B, then the
total storage overhead is (5 + 5 + 1 + 1 + 128) × 32527 =
4.554MB. AD’s prefix information includes the IPv6 prefix
and its length (17B), the ADID (5B), the effective time (8B),
and the sequence of the hierarchical level (4×5 = 20B), so it
takes 10.051MB for 201023 prefixes. Therefore, the storage
overhead of AD information is sustainable.

Next, we introduce the storage overhead of keys in ADBR.
The implementation of SAVA-X uses a clock-synchronized
state machine. Considering the existence of small-time dif-
ferences and the bi-directions between the same source and
destination AD pairs, we should take 4 keys in effect simulta-
neously. Then each ADBR at least store 4× (M −1) keys for
M − 1 brother ADs at the same level, and 4× 1 keys for its
parent AD, 4× (M − 1) keys for M − 1 child ADs, thus has
4× (2M − 1) keys. In the extreme case, one ADBR is settled
at a whole different L+1 level boundary ADs, the key storage
overhead at most could be represented by Equation (2).

NUMkey = 4× ((L− 1)× (M − 1))

+ 4×
(⌈

N

ML−1

⌉
×

(⌈
N

ML−1

⌉
− 1

))
(2)

To negotiate the keys with each other, each ADBR at most
communicates with 4 ACSs with SSL/TLS, each communica-
tion takes 10KB, and each ACS at most communicates with
1 + 23 + 24 = 48 ACSes. Therefore, the storage overhead
for the secure communication of each ACS is 0.48MB, while
each ADBR takes 0.04MB, which is also sustainable.

3) Per-Packet Processing Overhead: As per-packet process-
ing overhead in ADBR is the most significant indicator of
an SAV scheme, we analyze the lightweight processing in
ADBR. Based on the key stored in local ADBR, the source
ADBR and the destination ADBR only process one PktMAC
for each packet, while in the transition ADBR, it will validate
the tag with one PktMAC and update the tag with another
PktMAC. As each PktMAC takes one CRC32 operation (or
another lightweight cryptographic operation [38]) in SAVA-X,
which satisfies the packet processing at line rate, the per-packet
processing overhead is sustainable with today’s commercial
hardware.

4) Expansion Management: Another characteristic of
SAVA-X is scalability. Hierarchical AD effectively isolates
structural changes outside the AD from internal nodes, mini-
mizing the impact of changes on the rest of the system. On the
other hand, SAVA-X can be implemented with any exist-
ing distributed consensus algorithm for Inter-AD Consensus
Infrastructure. It has no special requirements for the efficiency

5https://www.cidr-report.org/v6/as2.0/#General_Status

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

3138 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

of this process based on the assumption that AD informa-
tion does not change frequently. Therefore, the decentralized
maintenance approach can further reduce the management
complexity of the expansion.

B. Security Analysis

We first analyze the correctness of SAVA-X, and tag replay
attack does not hurt SAVA-X with the per-packet PktMAC.
Besides that, SAVA-X could also defend against attacks on
AD information and key negotiation.

1) Correctness: The correctness of SAVA-X relies on the
cryptography of PktMACs. The key for packet MAC is derived
from the key negotiation between ADs. The base for the
negotiated key comes from the public key exchanged during
consensus when the AD joins the SAVA-X ecosystem and the
corresponding private key held by the AD itself. The security
of distributed consensus algorithms and public key cryptosys-
tems is beyond the scope of this paper. With the protection
of the aforementioned process, the security of SAVA-X’s
packet tagging key can be ensured. However, to meet the
performance demands of inter-domain forwarding, SAVA-X
opts for a relatively simple hash algorithm. To strike a balance
between mechanism security and forwarding performance,
SAVA-X employs independently renewable keys (based on a
time-synchronized state machine). By significantly reducing
the key update period, higher security can be achieved at a
smaller cost of forwarding performance.

The ADBR generates the tag by hashing a five-tuple in the
packet as depicted in Figure 5. An attacker might attempt to
guess the tag and crack that key using brute force. Neverthe-
less, the tag is a 64-bit integer and the PktMAC is 32-bit long.
Therefore, the feasible solution space is approximately 232.
This makes it highly unlikely for attackers to achieve packet
falsification. As the five-tuple includes the source address and
payload, SAVA-X could effectively defend against various
attacks, such as source spoofing or other off-path attacks [11].

Moreover, similar to other tag-based mechanisms, SAVA-
X requires that the border routers of the participating parties
can perform packet inspection and tag processing honestly.
However, this requirement may not be satisfied in some special
cases. When an AD is intentionally evil, it can only harm itself
because it does not have the keys of other ADs. Even when it
cooperates with other malicious ADs, it can only spoof each
other and cannot affect the validation of normal traffic between
honest nodes. At this point, however, malicious ADs can
indeed spoof address prefixes in undeployed regions, which
may facilitate the deployment of SAVA-X. Unfortunately,
the threat is even more severe when an AD is intentionally
malicious, and it will likely spoof the traffic of all its sub-
ADs. However, as the upper layer AD, it is usually the network
provider or management organization of the lower layer AD.
The upper layer AD does not have the motivation to be evil
from the perspective of business interests or management
authority. What’s more, unlike end hosts and servers, the
connectivity of inter-domain routers and their special operating
systems make it very difficult for attackers to control them.
If the worst case happens and an attacker breaches all the
border routers of upper layer AD, it does cause traffic spoofing

to the sub-AD, which is the loss from the reduced management
overhead of the hierarchical structure.

2) Guaranteed convex AD: A non-convex AD implies that
the forwarding paths between internal ADs may have to cross
other ADs, which will not guarantee that no tag replacement is
required between ADs within the same parent AD. This might
result in tag validation failures among ADs. In engineering
practice, we ensure that ADs are convex by examining the
forwarding paths among all ADs within the same parent AD.
If the forwarding paths among all ADs in the same parent
AD only exist within the parent AD (with no ADs outside the
parent AD on the paths), we can confirm that the current AD
is convex. If the check fails, the relevant ADs should reject the
join request, and the joining AD should be divided into smaller
ADs. Importantly, if BGP hijacking or other path manipulation
causes the AD to no longer be convex, some of the ADs within
the same parent AD may fail validation. It’s worth noting that
failure does not necessarily mean dropping it; it can be flagged
as suspicious traffic. Additionally, this could potentially be a
way to detect path manipulation attacks.

3) Replay attack: The tag is tied to a specific partial
payload of the packet, giving each packet a unique tag, thus
preventing attackers from reusing the observed tag. Mean-
while, as SAVA-X’s keys have an expiration time, historical
packets that surpass this time cannot be utilized for replay
attacks, even if they are legitimate. But legitimate packets
within the expiration time can indeed cause replay attacks.
For off-path attackers, choosing a shorter key update period
based on the round-trip time (RTT) between the source and
destination is a viable option, but this method is not effec-
tive for on-path attackers. SAVA-X does not protect against
traffic amplification attacks by on-path nodes with legitimate
traffic. However, it is worth mentioning that experiments
show that SAVA-X has little impact on router throughput,
so attackers cannot exploit it to consume additional resources
of links or routing nodes. Moreover, attackers cannot arbi-
trarily choose the attack object or collocate specific attack
packets and must launch the above attack when there is
continuous legitimate traffic and fresh legitimate packets are
accessible.

4) Attacks towards AD information: In SAVA-X, the con-
sistency guarantee of AD information relies on distributed
consensus infrastructure among ADs. Therefore, the security
challenges encountered by existing consensus algorithms will
also be introduced into SAVA-X. However, the situation
in SAVA-X differs from the typical distributed consensus
scenario. Due to the hierarchical structure of SAVA-X, the
breakdown of consensus on local AD information does not
impact other non-adjacent ADs in the system. Simultaneously,
the updated AD information only requires the signature confir-
mation from its parent, brother, and child ADs, indicating that
an attack on the special node needs to hold specific resources,
thereby heightening the complexity of the attack.

5) Attacks towards initial status negotiation: We have
selected the clock-synchronized state machine to produce the
key, which will operate locally with the initial status. To thwart
SAVA-X, attackers could target the negotiation of the initial
status. However, when the ACS-ACS pair or ACS-ADBR pair

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3139

is about to connect, SSL/TLS will be employed to ensure
security in communication. SAVA-X can prevent attackers
from obtaining the initial status, even if they can eavesdrop
on the negotiation packet.

VII. RELATED WORK

Inter-domain source address validation has been a
long-standing problem in computer networking and related
areas. Existing mechanisms for handling IP spoofing traffic
are designed to create an expectation vector for each source,
containing specific traffic parameters. These approaches can be
categorized into routing-based, cryptography-based, and other
schemes based on different traffic parameters.

A. Routing-Based Schemes

Routing-based source address validations rely on BGP to
carry source address attributes on the forwarding path, includ-
ing AS-level information (e.g., AS path, path length, etc.)
to help ISPs validate their traffic. For example, Distributed
Packet Filtering (DPF) [39] describes the filter method by
constructing source address binding with the router’s port and
dropping packets whose source address is out of the binding
relationship. As a consequent mechanism, the Inter-domain
Distributed Packet Filter (IDPF) [21] uses BGP updates to
infer feasible paths between a source and a destination. While
this approach is only designed to mitigate the degree of IP
spoofing, it can successfully reduce the number of IP addresses
an attacker can spoof.

To prevent Inter-domain IP spoofing, IETF has recom-
mended ISPs deploy ingress/egress filtering, also known as
BCP 38 [15]. However, this approach has failed to provide
deployment incentives that make the ratio of deployment stay
at 80 percent now [26]. The Unicast Reverse Path Forwarding
(uRPF) [40], also known as BCP 84, introduces a design to
check the consistency between in and out ports as well as
the reachability of prefixes. This protocol assumes symmetric
inter-domain routing and utilizes this feature to detect spoofing
traffic. To reduce its false positive detection rate, the enhanced
feasible-path uRPF (EFP-uRPF) [16], [41] is then proposed
to enable better accuracy and flexibility. However, due to the
asymmetric and dynamic nature of inter-domain routing, the
detection accuracy of the above uRPF protocols is still far
from being satisfactory.

Therefore, ISPs should explore other high-accuracy options
like BGP Anti-Spoofing Extension (BASE) [19] and Source
Address Validity Enforcement (SAVE) [20]. The BASE pro-
tocol divides the deployed nodes into logical neighbors and
achieves more accurate filtering on the forwarding path.
On the contrary, SAVE constructs an independent interac-
tion protocol to share routing decisions. It also enables the
source router probe destination address space to learn valid
previous hops for the source prefixes. As a trade-off, these
protocols also require very high deployment rates to achieve
the desired security gain. While the consequent iSAVE [42]
improves the incremental deployment, the implementation of
iSAVE is still too complex. The elevating deployment cost
largely reduced their practicality in real-world inter-domain
networks.

Selection Notice (SN) [43] adds a BGP option to announce
the routers’ selection of a route to the destination address
prefix’s owner AS i.e. all the routers of the packet forwarding
path would know the packet sent from the source would pass
which path. Though this is a good idea, the coupling of SN and
BGP would make the dynamic routing affect the robustness
of SN deeply.

B. Cryptography-Based Schemes

To address accuracy and deployment issues, cryptography-
based source address validation has been widely recommended
in recent years. This method aligns with the classic end-to-
end design philosophy, where the end here refers to an AS.
Specifically, a secret key will be shared between each ordered
pair of ASes (e.g., AS s and AS d) before communication.
Subsequently, a mark will be generated based on the secret key
and applied to tag the traffic between s and d. When a tagged
packet arrives at the border routers of AS d, the attached
mark will be verified and used to detect possible spoofing
traffic.

Based on this design, some existing protocols, such
as IPSec [22], can be extended and adjusted to support
inter-domain source address validation. For example, when
IPSec AH [44] is used in tunnel mode, it will protect the
encapsulated inner IP packet, including the entire inner IP
header. Therefore, IPSec AH can be adopted to prevent
Inter-domain IP spoofing. Unfortunately, this protocol requires
the peer AS border routers to generate different secret keys,
making it hard to implement across Internet ASes due to the
maintenance of enormous keys. To reduce the maintenance
cost, the Spoofing Prevention Method (SPM) [18] is proposed
to construct a Trust Alliance System (TA) and allow ASes to
join voluntarily. The ASes joined to the TA will be respon-
sible for their egress traffic and checking the ingress traffic.
However, the centralized management of trust alliances also
brings severe deployment and collaboration challenges across
distributed governance ASes.

Passport [23] introduces a new path validation mechanism
to enable ASes to independently verify the source addresses.
Passport achieves this by utilizing message authentication
codes (MAC) computed with a secret key shared between the
source AS and ASes on the path, which offers strong security
and deployment incentives even in small-scale deployments.
Inspired by the MAC generation of Passport, the Deployable
Inter-domain Anti-spoofing (DIA) [24] offers an end-to-end
source address validation method. In this setup, a MAC
replaces the packet’s IP identification field. The MAC is
produced using symmetric keys and packet digests via the
UMAC algorithm [45]. Once verified, the MAC is replaced
with a random number and then sent to the destination host.
Both Passport and DIA are challenged with growing key
management overhead and struggled to handle large-scale
networks.

The source and path verification approach can also be
employed to safeguard the source address against spoofing.
OPT [35] utilizes DRKey for the distribution of host keys
and router keys, but the encryption of the entire path results
in significant overhead. On the other hand, PPV [36] utilizes

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

3140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

probabilistic marking to reduce computation and communica-
tion costs to just two MACs per packet, regardless of the path
length. EPIC [37] enhances verification efficiency by dividing
the verification granularity into four levels, namely L0-L3.

Based on the Cryptographically Generated Address (CGA),
Tan et al. have proposed a hierarchical technique SAV [46],
[47]. However, CGA is incompatible with the current routing
infrastructure, making it challenging to deploy.

C. Other Schemes

With the Time-to-live field of the IP header, Hop Count
Filtering (HCF) [48] can roughly estimate whether the source
address belongs to the correct region. It is ingenious but
hardly accurate. Moreover, the Time-to-live field still could
be spoofed as no router will check its correctness. Based on
the model of SN route selection, IPVF [49] could shrink the
size of filtering rules by referencing the hop limit of HCF.
But IPVF is still not high-precision. CatchIt [50] combines
the strength of SN and BASE. It announces route selection
via TCP connection at the deployment area. However, CatchIt
fails to provide guidelines for deployment in the long run.

Traceback is a series of post-disposal methods. It records
the path information when packet forwarding and tries to
backtrace the origin of the packet from the destination end.
These methods including SPIE [51] which records the path
information at the routers, iTrace-CP [52] which fully uses the
ICMP to record the path information, and PPM [53] which
directly uses the IP packet to record the path information.
However, the most significant deficiency of these methods is
that the algorithm of traceback is too heavy and complex.

VIII. CONCLUSION

IP spoofing poses a persistent and significant security
challenge, rooted in fundamental design limitations of the
internet architecture. Several source address validation mech-
anisms have emerged to address this vulnerability, yet their
widespread adoption and efficacy in real-world internet con-
ditions remain unsatisfactory. This paper introduces SAVA-X,
a practical, inter-domain Source Address Validation solution
designed for effective implementation.

Leveraging verifiable packet tags and a hierarchical address
domain structure, SAVA-X delivers the following key advan-
tages. Firstly, Linear Security Benefits. SAVA-X implements
cryptographic source address validation capabilities from
small-scale to large-scale deployments, proportionally enhanc-
ing security based on network size. This is achieved through
the scalability provided by the hierarchical design, signifi-
cantly reducing the maintenance overhead of traditional data
plane solutions. Secondly, Adaptable Resolution. The flexi-
bility of nested address domains enables diverse resolution
configurations, tailoring security measures to specific net-
work needs. The third one is Practical Scalability. Rigorous
evaluations on commercial routers and the P4 platform demon-
strate SAVA-X’s high efficiency, incurring negligible latency
increases and minimal throughput losses.

SAVA-X offers a compelling solution for mitigating IP
spoofing, its hierarchical architecture and adaptable features
align with the demands of diverse network environments.

REFERENCES

[1] S. M. Bellovin, “Security problems in the TCP/IP protocol suite,”
ACM SIGCOMM Comput. Commun. Rev., vol. 19, no. 2, pp. 32–48,
Apr. 1989.

[2] R. T. Morris, “A weakness in the 4.2 BSD unix TCP/IP software,”
Comput. Sci., AT T Bell Laboratories, Murray Hill, NJ, USA, Tech.
Rep. 117, 1985.

[3] W. M. Eddy, “TCP SYN flooding attacks and common mitigations,”
IETF RFC Editor, Tech. Rep., pp. 1–25, 2007, vol. 4987, doi:
10.17487/RFC4987.

[4] C. Morrow, “BLS fastaccess internal tech needed,” NANOG Arch., 2006.
[Online]. Available: http://www.merit.edu/mail.archives/nanog/2006-
01/msg00220.html

[5] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey,
you have a problem: On the feasibility of large-scale web vulnerability
notification,” in Proc. 25th USENIX Secur. Symp., T. Holz and S. Savage,
Eds. Austin, TX, USA, 2016, pp. 1015–1032.

[6] D. Anstee, D. Bussiere, G. Sockrider, and C. Morales, “World-
wide infrastructure security report,” Arbor Netw., Westford, MA,
USA, Tech. Rep., 2017. [Online]. Available: https://www.businesswire.
com/news/home/20170124005370/en/

[7] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti,
“Millions of targets under attack: A macroscopic characterization of the
DoS ecosystem,” in Proc. ACM IMC, S. Uhlig and O. Maennel, Eds.
London, U.K., 2017, pp. 100–113.

[8] E. Osterweil, A. Stavrou, and L. Zhang, “21 years of distributed denial-
of-service: A call to action,” Computer, vol. 53, no. 8, pp. 94–99,
Aug. 2020.

[9] K. E. Defrawy and M. Gjoka, “BotTorrent: Misusing BitTorrent to
launch DDoS attacks,” in Proc. 3rd Workshop Steps Reducing Unwanted
Traffic Internet, S. M. Bellovin, Ed. Santa Clara, CA, USA, 2007,
pp. 1–6.

[10] X. Feng et al., “PMTUD is not panacea: Revisiting IP fragmentation
attacks against TCP,” in Proc. NDSS, 2022, pp. 1–18.

[11] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path TCP exploits
of the mixed IPID assignment,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. 2020,
pp. 1323–1335.

[12] X. Feng et al., “Off-Path network traffic manipulation via revitalized
ICMP redirect attacks,” in Proc. 31st USENIX Secur. Symp., 2022,
pp. 2619–2636.

[13] J. Wu, G. Ren, and X. Li, “Source address validation: Architecture
and protocol design,” in Proc. IEEE Int. Conf. Netw. Protocols, 2007,
pp. 276–283.

[14] J. Wu, J. Bi, X. Li, G. Ren, K. Xu, and M. I. Williams, “A source
address validation architecture (SAVA) testbed and deployment experi-
ence,” IETF RFC Editor, Tech. Rep., RFC 5210, 2008, pp. 1–25, doi:
10.17487/RFC5210.

[15] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial
of service attacks which employ IP source address spoofing,” IETF RFC
Editor, Tech. Rep., 2827, 2000, pp. 1–10, doi: 10.17487/RFC2827.

[16] F. Baker and P. Savola, “Ingress filtering for multihomed networks,”
Tech. Rep., 2004, pp. 1–16.

[17] J. Wu, J. Bi, M. Bagnulo, F. Baker, and C. Vogt, “Source
address validation improvement (SAVI) framework,” IETF RFC Editor,
Tech. Rep., 7039, 2013, pp. 1–14, doi: 10.17487/RFC7039.

[18] A. Bremler-Barr and H. Levy, “Spoofing prevention method,” in Proc.
INFOCOM 24th Annu. Joint Conf. IEEE Comput. Commun. Societies,
Miami, FL, USA, Mar. 2005, pp. 536–547.

[19] H. Lee, M. Kwon, G. Hasker, and A. Perrig, “BASE: An incrementally
deployable mechanism for viable IP spoofing prevention,” in Proc.
ACM Symp. Inf., Comput. Commun. Secur., F. Bao and S. Miller, Eds.
Singapore, Mar. 2007, pp. 20–31.

[20] J. Li, J. Mirkovic, M. Wang, P. L. Reiher, and L. Zhang, “SAVE: Source
address validity enforcement protocol,” in Proc. IEEE INFOCOM 21st
Annu. Joint Conf. IEEE Comput. Commun. Societies, New York, NY,
USA, Jun. 2002, pp. 1557–1566.

[21] Z. Duan, X. Yuan, and J. Chandrashekar, “Controlling IP spoofing
through interdomain packet filters,” IEEE Trans. Dependable Secure
Comput., vol. 5, no. 1, pp. 22–36, Jan./Mar. 2008.

[22] S. T. Kent and K. Seo, “Security architecture for the internet proto-
col,” IETF RFC Editor, Tech. Rep., RFC 4301, 2005, pp. 1–101, doi:
10.17487/RFC4301.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.17487/RFC4987
http://dx.doi.org/10.17487/RFC5210
http://dx.doi.org/10.17487/RFC2827
http://dx.doi.org/10.17487/RFC7039
http://dx.doi.org/10.17487/RFC4301

WANG et al.: TOWARD PRACTICAL INTER-DOMAIN SOURCE ADDRESS VALIDATION 3141

[23] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and adopt-
able source authentication,” in Proc. 5th USENIX Symp. Networked Syst.
Design Implement., J. Crowcroft and M. Dahlin, Eds. San Francisco, CA,
USA, 2008, pp. 365–376.

[24] B. Liu, J. Bi, and Y. Zhu, “A deployable approach for inter-AS
anti-spoofing,” in Proc. 19th Annu. IEEE Int. Conf. Netw. Protocols,
Vancouver, BC, Canada, 2011, pp. 19–24.

[25] R. Beverly, A. W. Berger, Y. Hyun, and K. Claffy, “Understanding the
efficacy of deployed internet source address validation filtering,” in Proc.
9th ACM SIGCOMM Internet Meas. Conf. A. Feldmann and L. Mathy,
Eds. Chicago, IL, USA, 2009, pp. 356–369.

[26] M. J. Luckie, R. Beverly, R. Koga, K. Keys, and J. A. Kroll, “Network
hygiene, incentives, and regulation: Deployment of source address vali-
dation in the internet,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds. London,
U.K., 2019, pp. 465–480.

[27] R. Austein, G. Huston, S. T. Kent, and M. Lepinski, “Manifests for
the resource public key infrastructure (RPKI),” IETF RFC Editor,
Tech. Rep., pp. 1–19, 2012, vol. 6486, doi: 10.17487/RFC6486.

[28] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. T. Polk, “Internet X.509 public key infrastructure certificate
and certificate revocation list (CRL) profile,” IETF RFC Editor,
Tech. Rep., RFC 5280, 2008, pp. 1–151, doi: 10.17487/RFC5280.

[29] J. Gersch and D. Massey, “ROVER: Route origin verification using
DNS,” in Proc. 22nd Int. Conf. Comput. Commun. Netw., Nassau,
Bahamas, Aug. 2013, pp. 1–9.

[30] M. Nyström and B. Kaliski, “PKCS #10: Certification request syntax
specification version 1.7,” IETF RFC Editor, Tech. Rep., RFC 2986,
2000, pp. 1–14, doi: 10.17487/RFC2986.

[31] N. Haller, C. Metz, P. J. N. II, and M. Straw, “A one-time password
system,” IETF RFC Editor, Tech. Rep., pp. 1–25, 1998, vol. 2289, doi:
10.17487/RFC2289.

[32] W. M. Eddy, “Transmission control protocol (TCP),” IETF RFC Editor,
Tech. Rep., RFC 9293, 2022, pp. 1–98, doi: 10.17487/RFC9293.

[33] E. Rescorla, “The transport layer security (TLS) protocol version
1.3,” IETF RFC Editor, Tech. Rep., RFC 8446, 2018, pp. 1–160, doi:
10.17487/RFC8446.

[34] G. Almes, S. Kalidindi, M. J. Zekauskas, and A. Morton, “A
one-way delay metric for IP performance metrics (IPPM),” IETF
RFC Editor, Tech. Rep., RFC 7679, 2016, pp. 1–27, doi: 10.17487/
RFC7679.

[35] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in Proc. ACM
Conf. SIGCOMM, 2014, pp. 271–282.

[36] B. Wu et al., “Enabling efficient source and path verification via
probabilistic packet marking,” in Proc. IEEE/ACM 26th Int. Symp.
Quality Service (IWQoS), Jun. 2018, pp. 1–10.

[37] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “EPIC:
Every packet is checked in the data plane of a path-aware internet,” in
Proc. 29th USENIX Conf. Secur. Symp., 2020, pp. 541–558.

[38] L. Wang, H. Kim, P. Mittal, and J. Rexford, “Programmable in-network
obfuscation of traffic,” 2020, arXiv:2006.00097.

[39] K. Park and H. Lee, “On the effectiveness of route-based packet filtering
for distributed dos attack prevention in power-law internets,” ACM
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 15–26, 2001.

[40] W. Kumari and D. McPherson, “Remote triggered black hole filtering
with unicast reverse path forwarding (URPF),” IETF RFC Editor,
Tech. Rep., RFC 5635, 2009, pp. 1–15, doi: 10.17487/RFC5635.

[41] K. Sriram, D. Montgomery, and J. Haas, “Enhanced feasible-path unicast
reverse path forwarding,” IETF RFC Editor, Tech. Rep., pp. 1–17, 2020,
vol. 8704, doi: 10.17487/RFC8704.

[42] T. Ehrenkranz, J. Li, and P. D. McDaniel, “Realizing a source authentic
internet,” in Security and Privacy in Communication Network (Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering), vol. 50, S. Jajodia and J. Zhou, Eds.,
Singapore. Berlin, Germany: Springer, 2010, pp. 217–234.

[43] L. Wang, J. Wu, and K. Xu, “Bgp extension to support interdomain
distributed packets filtering,” J. Softw., vol. 18, no. 12, pp. 3048–3059,
2007.

[44] S. T. Kent, “IP authentication header,” IETF RFC Editor,
Tech. Rep., RFC 4302, 2005, pp. 1–34, doi: 10.17487/RFC4302.

[45] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway,
“UMAC: Fast and secure message authentication,” in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 1666,
M. J. Wiener, Ed. Santa Barbara, CA, USA. Berlin, Germany: Springer,
1999, pp. 216–233.

[46] P. Tan, H. Jia, Y. Chen, and J. Mao, “A hierarchical source address
validation technique based on cryptographically generated address,” in
Proc. IEEE Int. Conf. Comput. Sci. Automat. Eng., vol. 2, Jun. 2011,
pp. 33–37.

[47] T. Aura, “Cryptographically generated addresses (CGA),” IETF RFC
Editor, Tech. Rep., RFC 3972, 2005, pp. 1–22, doi: 10.17487/RFC3972.

[48] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed IP traffic
using hop-count filtering,” IEEE/ACM Trans. Netw., vol. 15, no. 1,
pp. 40–53, Feb. 2007.

[49] Z. Zhang, Y. Liu, J. Wu, G. Ren, and J. Bi, “An inter-AS path
vector filter: Towards elimination of false negatives,” in Proc. IEEE Int.
Workshop Local Metropolitan Area Netw., Beijing, China, Apr. 2015,
pp. 1–2.

[50] J. Li, J. Bi, and J. Wu, “Umbrella: A routing choice feedback based
distributed inter-domain anti-spoofing solution,” in Proc. 20th IEEE Int.
Conf. Netw. Protocols, Austin, TX, USA, Oct. 2012, pp. 1–2.

[51] A. C. Snoeren, “Hash-based IP traceback,” in Proc. ACM SIGCOMM
Conf. Appl., Technol., Architectures, Protocols Comput. Commun.,
R. L. Cruz and G. Varghese, Eds. San Diego, CA, USA, 2001, pp. 3–14.

[52] H. C. J. Lee, V. L. L. Thing, Y. Xu, and M. Ma, “ICMP traceback with
cumulative path, an efficient solution for IP traceback,” in Proc. Inf.
Commun. Secur., 5th Int. Conf. (Lecture Notes in Computer Science),
vol. 2836, S. Qing, D. Gollmann, and J. Zhou, Eds., Huhehaote, China.
Berlin, Germany: Springer, 2003, pp. 124–135.

[53] S. Savage, D. Wetherall, A. R. Karlin, and T. E. Anderson, “Practical net-
work support for IP traceback,” in Proc. ACM SIGCOMM Conf. Appl.,
Technol., Architectures, Protocols Comput. Commun., C. Partridge, Ed.
Stockholm, Sweden, 2000, pp. 295–306.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:19:00 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.17487/RFC6486
http://dx.doi.org/10.17487/RFC5280
http://dx.doi.org/10.17487/RFC2986
http://dx.doi.org/10.17487/RFC2289
http://dx.doi.org/10.17487/RFC9293
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.17487/RFC7679
http://dx.doi.org/10.17487/RFC7679
http://dx.doi.org/10.17487/RFC5635
http://dx.doi.org/10.17487/RFC8704
http://dx.doi.org/10.17487/RFC4302
http://dx.doi.org/10.17487/RFC3972

