
1266 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

SmartUpdater: Enabling Transparent, Automated,
and Secure Maintenance of Stateful Smart Contracts

Xiaoli Zhang , Yiqiao Song , Yuefeng Du , Chengjun Cai , Member, IEEE, Hongbing Cheng ,
Ke Xu , Fellow, IEEE, and Qi Li , Senior Member, IEEE

Abstract—Smart contracts in the Ethereum system are stored
tamper-resistant, complicating necessary maintenance for offer-
ing new functionalities or fixing security vulnerabilities. Previous
contract maintenance approaches mainly focus on logic modifica-
tion using delegatecall-based patterns. While popular, they fail to
handle data state updates (like storage layout changes), leading
to impracticality and security risks in real-world applications. To
address these challenges, this paper introduces SmartUpdater, a
novel toolchain designed for transparent, automated, and secure
maintenance of stateful smart contracts. SmartUpdater em-
ploys a hyperproxy-based contract maintenance pattern, where
the hyperproxy serves as a constant entry and ensures that
any state/logic modifications remain transparent to end users.
SmartUpdater automates the maintenance process in terms of
development streamlining, gas cost efficiency, and state migration
verifiability. In extensive evaluations, we show that SmartUpdater
can reduce gas consumption in contract maintenance compared
with actual maintenance approaches. The evaluations point
out the potential of SmartUpdater to significantly simplify the
maintenance process for developers.

Index Terms—Stateful smart contract, upgradable contract,
state migration, EVM.

Received 24 June 2024; revised 7 February 2025; accepted 1 March 2025.
Date of publication 6 March 2025; date of current version 18 April 2025.
This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62302452, Grant 62132011, Grant 62425201,
Grant 62072407, and Grant 62202398; in part by Zhejiang Provincial Nat-
ural Science Foundation of China under Grant LQ23F020019 and Grant
LZ24F020007; in part by the “Leading Goose Project Plan” of Zhejiang
Province under Grant 2022C01086 and Grant 2022C03139. Recommended for
acceptance by M. Kechagia. (Corresponding authors: Xiaoli Zhang; Hongbing
Cheng.)

Xiaoli Zhang is with the Department of Computer Science, Zhejiang
University of Technology, Hangzhou 310023, China, and also with the School
of Computer & Communication Engineering, University of Science and
Technology Beijing, Beijing 100083, China (e-mail: xiaoli.z@outlook.com).

Yiqiao Song and Hongbing Cheng are with the Department of Com-
puter Science, Zhejiang University of Technology, Hangzhou 310023, China
(e-mail: 201806062522@zjut.edu.cn; chenghb@zjut.edu.cn).

Yuefeng Du is with the Computer Science Department, City University of
Hong Kong, Hong Kong, SAR 999077, China (e-mail: yf.du@cityu.edu.hk).

Chengjun Cai is with the Computer Science and Information Technology
Center, City University of Hong Kong (Dongguan), Dongguan 523808, China
(e-mail: chengjun.cai@cityu.edu.cn).

Ke Xu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: xuke@tsinghua.edu.cn).

Qi Li is with the Institute of Network Science and Technology, Tsinghua
University, Beijing 100084, China (e-mail: qli01@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TSE.2025.3548730

I. INTRODUCTION

THE popularity of decentralized applications (DApps), par-
ticularly in decentralized finances (DeFi), has surged, with

the DApps market valued at $25.63 billion in 2022 and pro-
jected to reach $70.82 billion by 2030 [43]. These DApps
are fundamentally built on smart contracts, known for their
immutability – a feature that is critical for execution security
in blockchain systems. However, similar to traditional soft-
ware, smart contracts require maintenance after deployment
to address security vulnerabilities and functional requirements
(as a real-world example shown in Fig. 1). As indicated by
a study [54], as of 2022, 46% of smart contracts deployed
on Ethereum necessitate maintenance, reflecting a prevalent
practice.

In response to these problems, one research line aims to
develop flawless smart contracts [52], [59], yet is quite chal-
lenging due to the variety of defect types and the limited test-
ing capabilities for covering all possible scenarios [31], [60].
Instead, the other research field focuses on smart contract main-
tenance [14], [37], [44]. As shown in Fig. 2(a), one intuitive
solution is renewing entire contracts [36], but this approach
requires end users to use the new contract address to send
transactions. If the old contract’s address is mistakenly used,
it may trap funds and lead to financial losses [12]. To avoid
affecting user experiences, the call-based contract maintenance
pattern has been proposed [34] (see Fig. 2(b)). It decouples
execution logic (i.e., the code that implements the contract’s
functionality) and state variables (i.e., the data stored in the
contract’s storage) into separate contracts, and utilizes logic
contracts as a constant user entry point. This way, any modi-
fications to state contracts are transparent to end users. At the
same time, a delegatecall-based pattern [14] is proposed (see
Fig. 2(c)). It separates state and logic contracts and only allows
for user-transparent modifications to logic contracts by using
state contracts as the constant user entry point.

Prior contract maintenance approaches are not sufficient in
practice due to the following reasons. First, both state vari-
ables and the logic of contracts would change unpredictably
[17], yet prior approaches cannot always keep those changes
transparent to end users, i.e., the contract address that end
users assess would change. This problem possibly introduces
black-hole risks of deprecated contracts and leads to financial
losses [12]. Second, there are sophisticated state update re-
quirements that would change storage layout, e.g., adding new

0098-5589 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5255-2216
https://orcid.org/0009-0007-7662-0870
https://orcid.org/0000-0003-1091-6832
https://orcid.org/0000-0002-8045-4226
https://orcid.org/0000-0002-8504-1092
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0001-8776-8730
mailto:xiaoli.z@outlook.com
mailto:201806062522@zjut.edu.cn
mailto:chenghb@zjut.edu.cn
mailto:yf.du@cityu.edu.hk
mailto:chengjun.cai@cityu.edu.cn
mailto:xuke@tsinghua.edu.cn
mailto:qli01@tsinghua.edu.cn

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1267

OnePlanetToken
 v1

Submitted on 2020-02-06

OnePlanetToken
 v2

Submitted on 2020-10-25

String public ETHUSD;
String public tokenPrice;
mapping(address=>uint) balances;

function _getTokenAmount(uint256 amount)
returns(uint256){

uint256 temp
=safeMul(amount,parseInt(ETHUSD,2));

return temp;
}

function _getTokenAmount(uint256 amount)
returns(uint256){
- uint256 temp

=safeMul(amount,parseInt(ETHUSD,2));
+ uint256 temp=safeMul(amount,ethPrice);

return temp;
}

- String public ETHUSD;
String public tokenPrice;

+ uint public ethPrice;
mapping(address=>uint) balances;

Fig. 1. A real-world example of contract maintenance. The OnePlanetToken
contract updates its price management functionality in the new version
(0x73Ea...DA3b).

variables or removing or changing the types of the current state
variables, as shown in Fig. 1. These requirements account for
60% of all maintenance requirements with state update opera-
tions [50]. Unfortunately, existing approaches fail to guarantee
the correctness of state variables in these cases. For example,
as shown in Fig. 2(b) and 2(c), the call-based method faces
the problem of recovering values of unchanged variables while
the delegatecall-based solution would incur storage collision
between new and old state variables and lead to huge financial
losses (e.g., a $1.6 million loss is caused due to the incorrect
maintenance of Pike Finance contracts [13]). Therefore, a piv-
otal research question arises: “How can we devise a stateful
contract maintenance tool that can support both logic and
state modifications while keeping the maintenance process
transparent to end users?”

The SmartUpdater Design. In the paper, we introduce
SmartUpdater, a novel toolchain designed for user-transparent
maintenance of stateful smart contracts. SmartUpdater adopts
an innovative hyperproxy-based contract maintenance pattern,
which decouples logic and state contracts while leveraging a
“hyperproxy” contract managing logic/state updates and serv-
ing as the consistent entry for end users. Once user calls arrive,
as shown in Fig. 2(d), the hyperproxy dynamically routes the
calls to the appropriate underlying contracts. Therefore, any
changes to the logic or states would not affect the access ad-
dresses of end users, preserving a seamless user experience and
contract maintenance security.

Developing and deploying smart contracts that adhere to the
hyperproxy-based contract maintenance pattern faces several
practical challenges throughout the contract maintenance pro-
cess. First, adapting smart contracts with complex execution
logic and state variables to meet diverse maintenance require-
ments is often labor-intensive and prone to errors. To address
this, SmartUpdater introduces an intuitive development inter-
face featuring a Solidity-like domain-specific language (DSL),
allowing developers to streamline contract development and
maintenance. Second, in resource-expensive blockchain envi-
ronments, contract maintenance typically introduces expensive
gas costs due to massive contract deployment and state mi-
gration. To ensure minimal gas expenditure, we propose an
optimization-oriented contract generation module that strate-
gically divides a DSL-written contract into sub-contracts and

tries to make only the necessary components be modified in
each maintenance. Third, correctly recovering states in updated
contracts is necessary yet difficult as varied-type states are
stored in different manners and hard to collect. Regarding this,
we propose a publicly verifiable state migration method that
leverages the unique characteristics of different state types and
employs a SNARK-based approach to guarantee the correct
migration of sophisticated states.

We conducted extensive experiments using 1,355 real-
world contract maintenance cases. The experimental results
show that developers complete contract development using
SmartUpdater in under 10 minutes on average. Throughout
the whole contract maintenance process, 72% contracts suc-
cessfully reduce gas consumption compared to the usage of ac-
tual contract maintenance approaches, saving 711K gas ($78.5)
on average. Additionally, SmartUpdater’s refined SNARK-
based verifiable state migration design decreases on-chain ver-
ification costs from over 4300M gas to 1024K gas.
Contributions. In summary, the contributions are as follows:

• We introduce SmartUpdater, a novel toolchain for user-
transparent maintenance of stateful smart contracts. It particu-
larly devises a hyperproxy-based contract maintenance pattern
which leverages a hyperproxy contract as a constant entry for
end users while managing the updates of the logic and state
contracts.
• Considering the laborious, costly, and error-prone con-

tract development and deployment pipelines, SmartUpdater
includes an expressive programming module, an optimization-
oriented contract generation module, and a publicly verifiable
state migration module. Those modules work together to gen-
erate or maintain contracts following the hyperproxy-based
contract maintenance pattern, particularly with the features
of development-streamlining, gas-cost-efficiency, and state-
migration-verifiability.
• We carried out extensive experiments using 1,355 real-

world contract maintenance cases, demonstrating the effective-
ness and efficiency of SmartUpdater. We also released the
source code of SmartUpdater at Github [1].

II. BACKGROUND

This section provides a brief introduction to the necessary
background knowledge, organized into three parts:
Blockchain. We focus on the Ethereum protocol, which is
the first blockchain protocol supporting smart contracts. At
its core, the Ethereum blockchain operates as a decentralized
ledger, made up of a series of blocks. As shown in Fig. 3, each
block, symbolized as blk, carries a header, blkHead, housing
vital metadata like a hash pointer to the prior block and a
summary of transaction results through the Merkle Patricia tree
root. Outcomes of these transactions, termed receipts, capture
events during a smart contract’s execution and are chrono-
logically stored in the Logs array. Each receipt within Logs
contains the topic identifier, which facilitates efficient event
retrieval. To quickly confirm the occurrence of particular events,
a LogsBloom filter is embedded into both the block header and
the receipt.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

https://etherscan.io/address/0x73eacaa09d400eecd10b87784fd29d024505da3b

1268 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

Fig. 2. Comparison of existing smart contract maintenance approaches.

Fig. 3. Blockchain storage structure.

EVM Storage. Ethereum Virtual Machine (EVM) is engi-
neered for executing smart contracts. It boasts short-term mem-
ory for temporary data and persistent storage designed for
global states. This storage is conceived as a vast array, with
a capacity of up to 2256 slots. Each slot comprises 32 bytes.
According to the order of state declaration within a contract,
data is stored beginning from the inaugural slot [8]. Storage of
state variables follows two distinctive patterns:
Deterministic storage layout: Deterministic storage is straight-
forward in its approach: state variables are allocated to fixed
storage slots based on the order in which these state variables
are declared within the contract. EVM employs this type of
storage layout for basic data types such as integer, boolean, and
fixed-size arrays.
Dynamic storage layout: In contrast, the dynamic storage lay-
out manages state types whose size or structure might change
over time, like dynamic array and mapping. For these types, a
primary slot called the baseslot is initially designated according
to state declaration orders. Then, the actual storage location
of each data is computed based on baseslot and state types.
For a dynamic array, baseslot retains the array’s length and
the data elements are continuously stored starting from the slot
indexed by KEC(baseslot). For a mapping-type state, each data
is stored at the slot KEC(h(k) · baseslot) where · represents
concatenation and h is a type-dependent function applied to the
key k. Note that the keys are usually not stored in the storage,
rendering them inaccessible from the blockchain storage.
Verifiable Computation. Public verifiable computation (VC)
schemes verify complex computations without fully re-
executing them [39]. Within a set security framework, two

keys are generated for any computation F. One executes F and
the other verifies the result’s authenticity. When a computation
is performed, the outcome is paired with a cryptographic proof
of its validity, enabling clients to confirm correctness without
revisiting every step.

III. RELATED WORK

This section outlines some work related to smart contract
maintenance, contract vulnerability detection, and verifiable
computation in the blockchain.
Smart Contract Maintenance. Several studies have tackled
the challenge of smart contract maintenance [11], [29], [32],
[44]. Among them, EVMPatch [44] and Aroc [29] primarily
focus on the logic update in the smart contract and ignore how
to deal with data including assets and states. SolSaviour [32]
uses a TEE cluster for secure asset migration, but overlooks
states with complex types. Smartmuv [11], an automatic static
analysis tool, extracts states from the storage and approximates
the origin of the keys used in the mapping. However, its pre-
cision for mapping state extraction is only 95.7%. In contrast,
this paper presents an automated tool designed to adeptly handle
both state and logic updates, guaranteeing precise migration of
intricate state types.
Contract Vulnerability Detection. Existing contract vulner-
ability detection tools fall into three categories: symbolic ex-
ecution tools [25], [48], static analysis tools [45], [49], and
dynamic analysis tools [18], [24], [57]. For instance, DEFIN-
ERY [48] uses symbolic execution to analyze vulnerabilities
in smart contracts. Securify [49] is a static analysis tool that
can prove whether the contract behavior is safe with respect
to a given property. EVM-Shield [57] adopts a fine-grained
access control and monitors behaviors of transactions to protect
smart contracts in real-time. The above studies are orthogonal to
our focus.
Verifiable Computation in Blockchain. Numerous studies
have harnessed verifiable computation, such as zero-knowledge
proofs, to bolster security. These investigations predominantly
target dilemmas surrounding transaction trustworthiness [15],
[33], user privacy safeguards [46], [47], and interactivity issues
[55]. For instance, Shunli et al. [33] deploy a zero-knowledge
scheme to authenticate the legitimacy of transactions. Con-
versely, Zapper [47] underscores the preservation of user
anonymity, shielding both user identities and their correspond-
ing engagements. In a related vein, zkBridge [55] taps into

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1269

Fig. 4. The workflow of SmartUpdater.

zero-knowledge proofs to erect a secure cross-chain bridge.
Interestingly, the realm of verifiable computation has remained
untouched in the context of contract maintenance. Our study
aims to bridge this gap by leveraging such techniques to estab-
lish a tamper-resistant contract maintenance framework.

IV. DESIGN AND IMPLEMENTATION

This section introduces design goals, design overview, design
details of each component, and corresponding implementations.

A. Design Goals

User-transparent Contract Maintenance. The primary goal
is to keep the contract maintenance process invisible to the
end users, i.e., ensuring that end users’ access addresses remain
constant, regardless of any changes in the contract’s state vari-
ables or execution logic. This feature not only ensures seamless
user experience by preserving an unchanged contract address
and prevents accidental access to the deprecated contracts, but
also enhances contract composability with others1, improving
DApps’ compatibility and flexibility.
Streamlined Contract Development. When facing sophis-
ticated state/logic updating requirements for old contracts
with various state variables, streamlining the contract main-
tenance process is essential for boosting the adoption of a
contract maintenance toolchain and practices among developers
[42]. More specifically, an intuitive development interface that
can effectively integrate with popular contract language (e.g.,
Solidity) and adapt to developers’ diverse maintenance strate-
gies is highly desired.
Optimal Maintenance Cost. Contract maintenance typically
introduces expensive gas costs for deploying new contracts and
migrating states in the resource-expensive blockchain environ-
ment. For example, state migration for only 5,000 user accounts
in a smart contract would cost more than 60M gas costs ($6235)
[36]. The costs would grow significantly if frequent mainte-
nance is needed. Therefore, minimizing contract maintenance
gas costs—especially those related to contract deployment and
state variable migration—is necessary.
Correctness-guaranteed State Migration. Once new state
contracts are deployed, it is essential to ensure correct migration
of state variables from old contracts to new ones. This property

1Note that a contract can be externally accessed by end users and other
contracts. For simplicity, we do not distinguish them and use the term “end
user” throughout the paper.

must support the migration of all types of state variables, par-
ticularly those that are difficult to retrieve (e.g., mapping-type
state), ensuring state correctness and consistency throughout the
process.

B. Design Overview

We present a smart contract maintenance tool called
SmartUpdater that can support both state and logic updates
while maintaining uninterrupted access to the smart contract
for end users. Specifically, SmartUpdater introduces a novel
hyperproxy-based contract maintenance pattern (see Sec.
IV-C). As shown in Fig. 2(d), this pattern leverages a hyper-
proxy contract that is the constant entry for end users and
manages the underlying business contracts, such that any logic
and state updates are invisible to end users.

To implement the pattern while meeting the other design
goals, we describe the workflow according to two typical phases
in contract maintenance:

Initial Contract Deployment Phase: As depicted in Fig. 4,
SmartUpdater provides an expressive programming model for
contract developers to write smart contracts (see Sec. IV-D).
The domain-specific language (DSL) particularly integrates
with the popular contract language, Solidity, and supports easy
specification of logic/state update policies for streamlining con-
tract development and maintenance. Then, the DSL-written
contracts are processed by the optimization-oriented contract
generation module (see Sec. IV-E). By balancing the gas costs
of contract deployment and those of contract maintenance,
the contracts are automatically modularized into a set of sub-
contracts. Finally, this module also generates a specific hyper-
proxy contract to coordinate all these sub-contracts, which are
further deployed on the blockchain system.

Contract Maintenance Phase: During contract maintenance,
developers specify logic or state modification policies using the
DSL. These policies are processed by the optimization-oriented
contract generation module, which generates the corresponding
new sub-contracts required for maintenance. Once these new
sub-contracts are deployed, a publicly verifiable state migra-
tion module is activated to ensure the correct migration of any
types of state variables from the old to the new version in a
decentralized manner (see Sec. IV-F). It involves a helper com-
mittee to facilitate restoring sophisticated states with dynamic
storage layout, e.g., the mapping type.

In a nutshell, SmartUpdater is a toolchain that in-
cludes three modules: an expressive programming module,

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

1270 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

an optimization-oriented contract generation module, and a
publicly verifiable state migration module. To support user-
transparent logic/state updates, SmartUpdater generates con-
tracts following the hyperproxy-based contract maintenance
pattern.
Trust Assumptions. We outline our trust assumptions for key
components of SmartUpdater. We trust the blockchain system
for its integrity and availability [32]. Smart contracts deployed
on the blockchain system will operate as designed without any
risk of external interference. Meanwhile, our model assumes
that the contract developers are responsible for both the de-
ployment and any future maintenance of smart contracts. For
simplicity, we assume these developers are trustworthy, since
malicious developers, that might maliciously alter key parame-
ters for personal benefits such as stealing token increases, can be
defeated by existing decentralized contract governance methods
[24], [32]. Last, SmartUpdater’s reliability hinges on the pres-
ence of at least one honest node in the helper committee. The
honesty of the node is crucial for the accurate and uninterrupted
operation of the verifiable state migration process.

C. Hyperproxy-Based Contract Maintenance Pattern

To keep the contract maintenance process transparent to end
users, SmartUpdater employs an independent contract, i.e.,
hyperproxy contract, as the constant entry, which further for-
wards user requests to the backward business contracts. There-
fore, any logic/state updates are invisible to external users or
contracts. At the same time, to simplify the management of
states and logic of the business contracts, we follow the widely
adopted delegatecall-based patterns [14], [44] to partition the
logic and states of the business contracts and make the state
contracts delegate calls to the corresponding logic contracts.
Finally, when user transactions arrive, the hyperproxy con-
tract redirects the transaction to the appropriate state contracts,
which delegate the transactions to the logic contract for function
execution.

In more detail, the hyperproxy consists of three main com-
ponents: 1) a state-logic mapping that records the relationships
between the state contract addresses and external functions’
identifiers2 that can be accessed by transactions; 2) a contract-
setting function that is responsible for setting newly patched
contracts’ addresses in the above mapping; 3) a fallback-based
transaction-forwarding function that searches the matched un-
derlying contract from the above mapping based on the user
transactions and automatically redirects outside user calls to
the corresponding state contract. To prevent malicious access
to the state contract by bypassing the hyperproxy contract, the
transaction-forwarding function uses the call method to send
transactions to the state contracts. This ensures that state con-
tracts can directly verify whether the transactions they receive
originate from the hyperproxy.

Fig. 5 illustrates a hyperlayer, a new state contract that re-
places an old one, and a logic contract. When a user issues a

2Note that a function identifier in the context of smart contracts is also
called a function selector, which is the first four bytes of the hash of the
function signature.

Fig. 5. An example of how the hyperproxy contract manages updates of
state and logic contracts while keeping the changes transparent to outside
parties.

transaction to invoke a call function called Add by providing
its function selector (e.g., 0x67e06858) along with the hyper-
proxy’s address, the fallback function of the hyperproxy is
automatically executed. Thereafter, the hyperproxy searches the
mapping and forwards the user’s call to a specific state contract
that can access the function of Add in the logic contract. The
state contract in turn initiates a delegatecall to the target Add
function in the logic contract. During a state update, a new
state contract replaces the old one. Simultaneously, the contract-
setting function is triggered, updating the state-logic mapping
with the new state contract’s address in place of the old one. In
this way, despite state or logic contracts being replaced, users
can always interact with the constant address of the hyperproxy
contract.

Regarding who can perform contract maintenance, hyper-
proxy can use an admin address (e.g., the developer address)
or employ existing smart contract based voting schemes [24],
[32] for secure decentralized governance. Specifically, for each
smart contract, a committee consisting of eligible voters is
responsible for voting to either accept or reject a maintenance
requirement for the contract. If it is approved by the majority of
voters, the new contract address will be set for corresponding
function selectors in the mapping.

D. Expressive Programming Model

SmartUpdater’s programming model aims to streamline
the contract development and state/logic modification policy
definition for contract developers, especially in line with sub-
sequent optimization of maintenance costs. Although Solidity
is widely used for writing smart contracts, we still encounter
two challenges in maintaining stateful contracts: 1) State
storage characteristics, such as storage size, directly impact
future update costs, which are essential for optimal contract
deployment but can only be determined at runtime. 2) Dif-
ferent types of state variables require varying maintenance
actions, from simple renaming to complete data layout re-
construction, making it difficult to define precise maintenance
policies.

In response, SmartUpdater resorts to the domain-specific
knowledge of contract developers and enables them to esti-
mate and annotate storage features of various states before
deployment. Meanwhile, inspired by database operations [51],
SmartUpdater provides database-like update interfaces to sup-
port modifications of states of different types.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1271

Fig. 6. SmartUpdater’s capability in automatically generating modified
contract using the DSL-written contract and policy.

Contract Development With State Annotation. The DSL
provides an intuitive development interface, enabling develop-
ers to write smart contracts as if they were written in Solidity.
Particularly, it includes a grammar that allows developers to
declare state storage attributes, such as the approximate storage
size of one state. These attributes can be estimated by analyzing
contracts with similar usage patterns and are utilized by the
optimization-oriented contract generation module to determine
how states should be divided into different sub-contracts, min-
imizing contract deployment and maintenance gas costs. The
storage attributes for states with deterministic storage layout
(e.g., fixed-size array-type) can be easily obtained via static
analysis (details presented in Sec. IV-E). However, the storage
attributes for states with dynamic storage layout (e.g., dynamic

Fig. 7. Syntax of the logic/state modification policy in SmartUpdater’s
expressive programming model. + denotes the previous construction appears
once or multiple times.

array-type and mapping-type) are unpredictable and can only
be exactly determined at runtime, which is our estimation and
annotation focus.
SmartUpdater offers two inline annotation methods to spec-

ify storage attributes for states with dynamic storage layout:
single-state annotation and batch-state annotation. In the single-
state annotation, a developer can specify the state size using
a unique identifier @mag, as illustrated in line 10 of the ex-
ample program (Fig. 6(a)). Meanwhile, when multiple states
have a similar size, the batch-state annotation is employed via
another identifier @bat. For example, line 3 signifies that the
subsequent two states have an expected size of 100 slots in the
storage. In addition, to facilitate more efficient maintenance, de-
velopers can specify the state update probability via an identifier
@prob, such that variables with high update probability might
be placed separately to avoid frequent migration of unchanged
states. We notice that these annotations are only estimates and
are used for the estimation of contract maintenance gas con-
sumption.
Policy Definition With Database-like Update Interfaces.
In SmartUpdater, developers can use our DSL to spec-
ify logic/state modification policies of smart contracts, eas-
ily defining contract maintenance requirements. Following the
well-known EBNF grammer [40], the syntax of the policy
is defined in Fig. 7. To distinguish policy types—those for
modifying logic or state—the DSL provides two identifiers:
@LogicPolicy for logic updates and @StatePolicy for
state updates. Each policy is uniquely associated with a specific
smart contract address, ensuring the precise identification of the
contract that requires maintenance. In the logic modification
policy, SmartUpdater accommodates the direct submission of
the revised code to update smart contract logic under @Log-
icPolicy, similar to [44]. Under @StatePolicy identi-
fier, the state modification policy allows developers to easily
describe the state update operations for diverse state types. This

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

1272 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

policy is composed of multiple operation statements denoted
as Stmt, each comprising a modification type indicated by an
action keyword and a specified target state. The target state is
represented via four tuples, formally as (identifier, type, value,
modifier), and “-” means dummy. In the following, we illustrate
the five modification types in the DSL through a practical
example involving complex state modifications:

a) INSERT is used to insert new states into new contracts. As
an example shown in lines 3-4 of Fig. 6(b), two bool-type states
called isCandidate and hasVoted are inserted.

b) DELETE is specified when removing old states specified
with state identifiers. For example, “DELETE (iold, -, -, -)” de-
scribes that iold is deleted in the new contract.

c) UPDATE and AS are used to update old states’ attributes as
new states. Examples are shown in lines 8-9 of Fig. 6(b).

d) CREATE is to create a new struct-type state whose element
variables are set via INSERT. Lines 2-5 in Fig. 6(b) show an
example of creating a struct called Participant.

e) ALTER is used for refactoring structure-type states, which
would include the first three types of operations to specify how
internal elements are modified. As an example shown in lines 6-
10, we refactor the Election struct by inserting a new element
called userMap with the type of mapping, changing element
variables of candidate and userHasVoted to the isCandidate and
hasVoted fields in userMap.

E. Optimization-Oriented Contract Generation

In a resource-expensive blockchain system like the Ethereum
system, we face the following dilemma when designing optimal
contract maintenance strategies: putting all states into one con-
tract introduces small gas costs for contract deployment (a base
deployment cost of 53000 gas), yet requires heavy maintenance
costs due to the migration of all states even if only one state
needs to be updated. In contrast, putting a state into one single
contract would not incur extra state migration costs yet intro-
duce heavy gas costs for multiple contract deployment. Worse,
states are interdependent and cannot be arbitrarily divided into
different contracts. Therefore, balancing the contract deploy-
ment and maintenance costs while managing massive states is
a key challenge.

To tackle the challenge, we devise an optimization function
that determines which states are allocated into which state sub-
contracts to minimize the costs for overall contract deployment
and maintenance.
Optimal Contract Modularization. Let XNs×Nc

denote an
allocation matrix to record the relationships between states
and sub-contracts where Ns is the number of states in the raw
contract and Nc is the upper bound of the number of state sub-
contracts. Each element, e.g., Xij , is 0 or 1 which represents the
association of the i-th state si with the j-th state sub-contract
cj . In the optimization, we set each value of XNs×Nc

to be
random numbers within [0, 1] and try to obtain the deterministic
modularization results, i.e., 0/1 for state modularization. The
objective function is defined as:

min
X

Dini +

Ns∑

i=1

pi × (Di
upg + Mi

upg), (1)

TABLE I
SYMBOLS USED IN OPTIMAL CONTRACT MODULARIZATION

si i-th state
cj j-th state sub-contract
pi Probability of si update
Dini Deployment cost of the raw contract
Di

upg Deployment cost required for updating si

Mi
upg Total migration cost required for updating si

di Contract storage cost of si

ai Base cost and size-related cost of cj

mi Migration cost of si

subject to:

A� (X −XT) = T,Aij ∈ [0, 1] (2)

XC1 = C2 (3)

where:

Dini = IniDepCost(a,d, X) (4)

Di
upg = UpgDepCost(a,d, si, X), i ∈ [1, Ns] (5)

Mi
upg =MigrateCost(m, si, X), i ∈ [1, Ns] (6)

The optimization objective, as previously described, is to
minimize the overall costs of contract deployment and mainte-
nance. The former refers to the initial deployment costs while
the latter encompasses the costs of deploying newly amended
contracts and migrating states from the initial versions. Thus,
the objective function includes three parts which are weighted
by the hyperparameters (i.e., p = [p1, · · · , pNs

]) to accommo-
date different state update requirements, as shown in Equation
(1). Note that p represents the state update probability and each
value in it is defaulted to 1 if not specified by the developers in
the DSL-written contract.

Initial contract deployment cost term Dini: We estimate
deployment costs of all state sub-contracts before any main-
tenance in Equation (4). Note that the primary components of
a contract’s deployment cost comprise three aspects: the base
cost, the contract size-related cost, and the storage cost [53]. To
present more clearly, we denote the base cost and contract size-
related cost collectively by a= [a1, · · · , aNc

] and the contract
storage cost of each state is denoted asd= [d1, · · · , dNs

]. Thus,
the detail of initial contract deployment cost is as follows:

IniDepCost(a,d, X) =

Nc∑

j=1

(
aj +

Ns∑

i=1

Nc∑

t=1

Xit × di

)
(7)

New contract deployment cost term Di
upg: In Equation (5),

we explore the deployment costs incurred by updating the states
(e.g., si). Similar to the above term, for one sub-contract con-
taining a state waiting to be updated (e.g., si), there include a
base cost plus the contract size-related cost (e.g., Xij × aj) and
the storage costs (e.g., Xij ×Xtj × dt). Therefore, for all up-
dated states, the deployment costs can be formulated as follows:

UpgDepCost(a,d, si, X)=

Nc∑

j=1

Xij×
(
aj+

Ns∑

t=1

Xij×Xtj×dt

)

(8)

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1273

State migration cost term Mi
upg: Excluding the updating

states (e.g., si), other states in the same state sub-contract need
to be migrated to the new version. For each state sub-contract
containing si, we search the states (in addition to si) in it and
calculate the migration cost of these states. The migration cost
of each state is denoted as m= [m1, · · · ,mNs

]. For the state
with dynamic storage layout, the corresponding m is adjusted
based on its storage size specified in the provided DSL-written
contract. Thus, the total migration cost of updating the state si

in Equation (6) is expressed as follows:

MigrateCost(si,m, X)=

Nc∑

j=1

Ns∑

k=1

Xij×Xkj×mi, k �= i (9)

Besides the above three optimization terms, the storage
affinity constraints must be satisfied in the hyperproxy-based
contract maintenance pattern to ensure the correctness of the
modularization process. The states involved in the same func-
tion of a logic contract should be grouped into the same state
sub-contract. Additionally, states that exhibit interdependence
(i.e., one state is directly derived from another) should also
be grouped together. Building on those affinity features, we
introduce an affinity matrix (ANs×Nc

) where all its entries are
either 0 or 1. If states satisfy the aforementioned criteria, the
corresponding element in ANs×Nc

is 1, showing a high affinity
between them. Accordingly, X should fulfill a requirement
that the states with high affinity must be modularized into the
same state sub-contract, as shown in Equation (2) where � is
Hadamard (element-wise) product and T ∈ 0Ns×Ns

. To ensure
that each state is only allocated to one state sub-contract, X
should also satisfy the constraint in Equation (3) where C1 ∈
1Nc×1 and C2 ∈ 1Ns×1.

We formulate the optimization problem as a mixed-integer
program (MIP) problem [21] to derive an optimal allocation ma-
trix XNs×Nc

, which determines the allocation of states across
state sub-contracts following the optimal contract modulariza-
tion algorithm. Note that if developers do not specify storage
sizes, SmartUpdater defaults to consolidating all states into a
single state contract to minimize the deployment gas costs.
Contract Generation and Deployment. In the initial con-
tract deployment phase, SmartUpdater parses the DSL-written
contract through static analysis, extracting essential informa-
tion needed for the optimal contract modularization algo-
rithm. To achieve this, SmartUpdater parses the contract’s
abstract syntax tree (AST) to obtain the fundamental attributes
of each state variable. Moreover, it leverages the static an-
alyzer Slither [23] to extract precise relational information.
Specifically, SmartUpdater traverses all state variables by in-
specting “VariableDeclaration” nodes in the AST, determining
their types from the “typeName” field. For states with de-
terministic storage layout, especially for the fixed-size array-
type, SmartUpdater obtains their storage sizes according to
the “length” field. For the state with dynamic storage layout
(i.e., dynamic array-type and mapping-type), SmartUpdater
identifies the annotation (i.e., @mag and @bat) in the DSL-
written contract to acquire its storage size provided by the
developer. Moreover, SmartUpdater captures state update

probabilities specified by @prob annotations as hyperparame-
ters in the modularization algorithm. To determine the relational
information, SmartUpdater utilizes the Slither to transform
the entire contract to its internal representation language (i.e.,
SlithIR) to retrieve which states each function accesses and uses
static single assessment (SSA) to compute the interdependen-
cies between states.

With these extracted details (i.e., state attributes, their
interdependencies, and their association with functions),
SmartUpdater executes the optimal contract modularization
algorithm and determines contract modularization strategies.
Based on this strategy, SmartUpdater then generates pairs
of sub-contracts, each consisting of a state sub-contract and a
corresponding logic sub-contract that includes the functions
interacting with the states in its paired state sub-contract.
Finally, all sub-contracts are coordinated by the hyperproxy as
introduced in Sec. IV-C.

In the maintenance process, the developer provides the DSL-
written policies for SmartUpdater to precisely modify the state
or logic. SmartUpdater first determines the policy type by
analyzing the identifier @LogicPolicy or @StatePolicy,
and retrieves the target contract address associated with this
policy. In the logic modification policy, SmartUpdater ob-
tains the revised contract code. In the state modification policy,
SmartUpdater analyzes each operation statement to extract
the action keyword and four tuples (i.e., identifier, type, value,
and modifier) of the target state, obtaining the specific state up-
date requirements. Based on this information, SmartUpdater
generates the corresponding new sub-contracts. After deploying
these new sub-contracts, the target contract address stored in the
hyperproxy contract or relevant state sub-contracts is updated
to the new versions.

F. Publicly Verifiable State Migration

State contract maintenance usually needs to restore states
from the old state contract (i.e., state migration). Although all
information is public on the blockchain system, not all states in
one contract can be easily retrieved due to two reasons: 1) EVM
state modifier mechanisms [2] make states that are declared as
private and internal inaccessible for other external contracts; 2)
states of different types may not be retrieved merely via state
names. For example, keys are requisite to retrieve mapping-type
states, as described in Sec. II. Yet, they are usually determined
by user inputs and not stored on the chain.

To ensure correct state migration, we devise two components:
1) a hybrid state exposure method that customizes various re-
trieval interfaces according to state characteristics, such that
states of different types can be retrieved on-chain; 2) a publicly
verifiable state recovery method that employs an independent
updater contract, which is assisted by a helper committee us-
ing a SNARK-based mechanism, to correctly retrieve states
of arbitrary types from the blockchain system and initialize
them in the newly deployed contracts. We emphasize that com-
pared with prior call-based or delegatecall-based maintenance
patterns [14], [34], which do not address the challenges
of handling diverse states during migration, SmartUpdater

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

1274 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

significantly enhances state migration capabilities by support-
ing more complex state types, such as mapping-type states.
Hybrid State Exposure Method. According to different
state characteristics, SmartUpdater applies different expo-
sure methods to ensure states are accessible on-chain. Usually,
states with deterministic storage layout can be retrieved directly
using state names. In particular, SmartUpdater generates cus-
tomized getter functions for private and internal states as re-
trieval interfaces, such that the updater contract can recover the
state values after the corresponding new contracts are deployed.
Note that, to preserve the secure property of the private and
internal states, these customized interfaces only allow an au-
thorized address (i.e., the address of the updater contract) to
access.

For states with dynamic storage layout, including dy-
namic array-type and mapping-type (described in Section II),
SmartUpdater provides additional retrieval methods. For dy-
namic array-type states, SmartUpdater offers a function in-
terface to return its length, which is essential for retrieving all
values in the array. For mapping-type states, SmartUpdater
introduces a shadow on-chain record mechanism for off-chain
key inputs, such that all values of mapping-type states can be
retrieved according to the shadow key records. These shadow
key records are stored in the blockchain logs during contract
execution. Compared with native smart contract storage, logs
reside in transaction receipts of the blockchain (see Fig. 3) and,
more importantly, are usually used as a means of cheaper data
storage [31], [35].
SmartUpdater scrutinizes logic contracts and enables

the log-based shadow records for each mapping-type state.
Since EVM’s logging operations are enabled via events,
SmartUpdater declares an event with a specific topic identifier
(denoted as tm) for each mapping-type state. Then, it inserts
an event emitting operation (encoding the corresponding key)
for each write of a mapping-type state in the logic contract.
Therefore, once a new element belonging to a mapping variable
is inserted into the contract storage at runtime, an event with
the key is emitted which is stored in the logs. These processes
are automated during contract execution, ensuring the integrity
of these shadow keys and facilitating verifiable state recovery
(presented in the next subsection). Finally, these logs can be
efficiently collected by a bloom filter in block headers for
mapping-type state recovery, which will be described next.
Publicly Verifiable State Recovery. The updater contract, as-
sisted by a helper committee using SNARK-based mechanism,
is responsible for retrieving states of various types from the
previous state contract and initializing the associated states in
the newly patched contract. The correctness of all operations,
including the state retrieval and initialization, can be verified by
anyone independently.
Migrating non-mapping states: As illustrated in Algo. 1, the
updater contract uses the GeneralMig function to retrieve
states from the old state sub-contract through getter functions
(generated by SmartUpdater) with corresponding state identi-
fiers (see lines 4 in Algo. 1). The retrieved states are then initial-
ized in the new state contract according to the state identifiers
and types (see line 10 in Algo. 1).

Algorithm 1: The updater contract

1 Key := ∅; � keys of the mapping-type state
2 isVerified := ⊥;
3 procedure

GeneralMig(addrO, addrN , staOld, staNew) :
4 valOld ← addrO.staOld.getter();
5 if staOld.type �= staNew.type then
6 valNew← typeconversion(valOld);
7 else
8 valNew← valOld;
9 end

10 addrN .Initial(staNew, valNew);
11 end
12 procedure KeysVerify([p], [π]) :
13 if each π is verified then
14 Update Key according to the {km};
15 isVerified ← true ;
16 end
17 end
18 procedure

MappingMig(addrO, addrN , staOld, staNew) :
19 if isVerified = true then
20 for each k ∈Key do
21 valOld ← addrO.staOld.getter(k);
22 if staOld.type �= staNew.type then
23 valNew← typeconversion(valOld);
24 else
25 valNew← valOld;
26 end
27 addrN .Initial(staNew, k, valNew);
28 end
29 else
30 return ⊥ � tell the caller to wait
31 end
32 end

Migrating mapping states: There are two stages in migrating
mapping-type states: SNARK-based key collection that triggers
a helper committee to obtain all shadow records for keys along
with a SNARK proof for integrity guarantees; SNARK-based
mapping-type state recovery that restores mapping-type states
with desirable public verifiability. The details are as follows:

SNARK-based key collection. Nodes in a helper commit-
tee retrieve all keys for relevant mapping variables from the
blockchain system and produce a SNARK proof showing the
integrity of the retrieved results. Take as an example one map-
ping variable calledm[·] including a set of keys denoted as [km].
The events related to m[·] are identified by a topic tm, which
is contained in the log (see Section II). All of them reside in
the blockchain starting from the block where the contract is
deployed (denoted as blks) to the block where the contract is
locked (denoted as blke). The contract is locked once developers
provide the logic/state modification policy, which prevents any
changes in the state value during the contract maintenance.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1275

Following the log searching operations in the blockchain as
shown in Fig. 3, the nodes in the committee achieve SNARK-
based key collection via five steps: a) The node obtains all block
headers between blks and blke from blockchain full nodes. For
each block header, the node generates a proof to prove that it
is the correct one which sequentially follows its former. b) The
node filters out these block headers by explicitly checking the
logBloom field of each block header and creates a proof to
show whether it contains the log with topic tm. c) For each
remaining block header, the node downloads its all relevant
receipts and creates proofs of integrity. d) To further improve
efficiency, the node filters each of these receipts while generat-
ing proofs. e) The node traverses logs of each unfiltered receipt,
retrieves the keys identified by the topic tm, and generates a
proof as well.

SNARK-based mapping-type state recovery. Both the
KeysVerify and MappingMig functions in the updater contract
are used to migrate mapping-type states. KeysVerify is invoked
by the helper committee to provide keys (denoted as [km])
and relevant proofs (denoted as [π]) for a certain mapping
state. [km] is in the verification parameters [p] which includes
the input and the output of each step. If [π] are verified, it
indicates that the obtained [km] contains all keys of the target
mapping-type state, and the updater contract then updates and
maintains these keys (see lines 15-17 in Algo. 1). Since the
caller of this function is required to pay a fee, DoS attacks are
prevented.

The MappingMig function is called by the developer to
migrate mapping-type states. It retrieves values of mapping-
type states from the old state sub-contract based on its identifier
and verified key (see lines 23-24 in Algo. 1). Subsequently,
the updater contract calls the initial function of the new state
contract to initialize the value of the associated key (see line 30
in Algo. 1).

In practice, SmartUpdater employs a batching migra-
tion strategy within the updater contract, aiming to reduce
the gas costs incurred by migrating state with large storage
sizes like array-type and mapping-type states. Specifically,
SmartUpdater is configured to perform the migration of mul-
tiple state elements in a single transaction, rather than migrating
each element individually. To ascertain the most effective batch
size, we have conducted a detailed evaluation of the gas con-
sumption. The findings are presented in Sec. V-B.
SNARK Proof Refinement. The most computationally de-
manding part of the state migration module is the SNARK-
based proofs generation that the helper committee must do for
every block between the contract deployment block and the
contract locking block. Moreover, since Ethereum’s average
block time is 12s [20] and each block involves hundreds of
receipts, retrieving keys of every mapping-type state requires
a substantial number of proofs. Therefore, the major source
of overhead in the state migration is the verification costs in
the updater contract. To make the migration of mapping states
practical, our model proposes two ideas:

Proof generation time reduction with hash guarantee. We
observe that some of the circuits for SNARK-based key col-
lection are massive, especially in the stage of obtaining all

block headers and obtaining relevant receipts, causing a huge
amount of time on proving. To address the problem, one key
observation is that hash functions are widely used in block
constructions in blockchain. Therefore, the security properties
of the hash function, our module can directly verify whether the
correct preimage for a given Keccak-256 hash value is provided,
instead of proving the whole computation like constructing the
entire Merkle Patricia Tree. Take obtaining receipts and proving
their integrity in one block as an example. Since the property of
preimage resistance of the hash function, the helper committee
cannot get the correct input based on the known hash value.
Conversely, due to the collision resistance of the hash function,
it is guaranteed that the receipt in [ri] has not been maliciously
altered.

Smaller proof size with recursive verification. While ver-
ifying proofs on ordinary CPUs is very efficient, on-chain
verification is still costly, especailly for large proof size. To
further reduce the on-chain verification cost (computation and
storage), our module uses a 2-layer proof approach. The helper
committee invokes SNARK-based key collection to generate
proofs in the first layer. In the second layer, we use recursive
verification: the prover demonstrates that the previous proofs
from the first layer correctly validate the corresponding keys of
a mapping-type state. At a high level, we trade increased proof
generation time off-chain for much reduced on-chain cost: the
required computation reduces from an infeasible amount of gas
to 1024K gas which is an acceptable verification cost.

G. Implementation

We implemented SmartUpdater featured with the
hyperproxy-based contract maintenance pattern, the expressive
programming model, the optimization-oriented contract
generation module, and the publicly verifiable state migration
module. We developed a full-fledged compiler with the
following functions: 1) modularizing the DSL-written smart
contracts into sub-contracts based on MIP-based optimization
and exposing various states of sub-contracts; 2) generating a
hyperproxy contract and making it coordinate all sub-contracts;
3) translating the DSL-written policies into corresponding new
sub-contracts; 4) generating updater contracts according to the
policies. To implement all the functions, SmartUpdater first
uses the Solidity compiler [41] to compile the DSL-written
contract, ensuring the contract is free from compilation errors.
Moreover, SmartUpdater generates the contract’s abstract
syntax tree (AST) through the Solidity compiler and utilizes
a state-of-the-art static analyzer Slither [23] to further dissect
the DSL-written contract, as described in Section IV-E.
Furthermore, we solved the optimal contract modularization
algorithm by using Gurobi Optimizer [27] (implemented in
300+ lines).

In addition to the full-fledged compiler, SmartUpdater im-
plements SNARK proof circuits in the state migration module,
meticulously designed using Circom [28]. The first layer of
proofs can be implemented with any protocol (implemented
circuits in 800+ lines) and we opted for Groth16 [26] as our
second-layer SNARK protocol. This choice is motivated by

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

1276 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

its advantages: constant proof size, rapid verification times,
and compatibility with the BN254 curve natively supported by
Ethereum, optimizing on-chain costs. We implemented a recur-
sive verification circuit based on an open sourced verification al-
gorithm [10] to check the validity of the proofs in the first layer.
For each circuit, we assume that there will be a trustworthy third
party to perform the trusted setup phase. We envision a future
where the helper committee, pivotal to SmartUpdater’s veri-
fiable state migration, operates as a ubiquitous service within
the network. To simulate this, we evaluated the SNARK-driven
state migration in a controlled environment.

V. EVALUATIONS

In this section, we evaluate the overall performance of
SmartUpdater with its hyperproxy-based maintenance pattern
and the practicability of its key modules. The evaluation goals
are as follows:

• Goal 1: Assess whether SmartUpdater consumes smaller
gas costs for real-world maintenance cases throughout the
contract maintenance process, compared to actual contract
maintenance approaches (see Section V-B).

• Goal 2: Evaluate whether the optimization-oriented con-
tract generation module reduces gas costs in various
scenarios involving large-scale state migration (see Sec-
tion V-C).

• Goal 3: Examine whether the publicly verifiable state
migration module incurs acceptable proof sizes and on-
chain proof verification costs under varied state migration
scenarios (see Section V-D).

• Goal 4: Access whether SmartUpdater’s development in-
terfaces streamline development processes for real-world
smart contract maintenance cases, compared to existing
contract development tools (see Section V-E).

A. Evaluation Setup

Datasets. We constructed two datasets to reflect (1) real-world
contract maintenance cases and (2) extreme conditions with
gas-cost-intensive maintenance involving large-scale state mi-
grations. In the first dataset, we collected 149,164 real-world
smart contracts based on XBlock-ETH [58] which is widely
used and provides contract information of the Ethereum system.
Among these, we identified 4,621 contract maintenance cases
by grouping contracts with the same name and creator and ar-
ranging them chronologically. After analyzing their source code
and identifying state changes (i.e., state appends and storage
layout changes), we selected 1,355 maintenance cases as the
default dataset. Each case includes the original contract, its new
version, and their differences (e.g., varied state variable dec-
larations). Moreover, to assess SmartUpdater’s utility under
extreme conditions, we built specific maintenance cases involv-
ing massive state migrations. Using Etherscan [22], we ranked
ERC-20 contracts by the number of holders, which correlates
with the number of mapping-type state elements. We selected
four representative ERC-20 contracts with the highest number
of mapping elements. We chose the common states (i.e., name,

Fig. 8. The distribution of contract numbers with the rate of code size
increases.

decimals, totalSupply, and balance) from these ERC-20 con-
tracts as the targets for updates, to simulate scenarios involving
large-scale state migrations.
Experimental Setting. We used ECS G7A 16xlarge in-
stances equipped with the Intel(R) Xeon(R) Platinum 8275CL
CPU@3.00GHz and 256GB of RAM to conduct the experi-
ments. To offer a extensive perspective, we document both the
resource and monetary costs associated with our evaluations.
Following the threat assumption in Sec. IV, we assume one
honest node in the helper committee. We evaluate the perfor-
mance of SmartUpdater in depth based on the maintenance
conditions in those contracts. We set the hyperparameter p as
[1, · · · , 1] in the optimal contract modularization algorithm to
treat all states with the same updating probabilities for simplic-
ity. All experimental results are averaged after 10 independent
trials.

B. Overall Gas Consumption of SmartUpdater

We extensively evaluated the gas consumption caused
by SmartUpdater in comparison with actual contract
maintenance approaches when handling real-world contract
maintenance cases based on the default dataset. This evaluation
focuses on state updates and encompasses both the initial
deployment and contract maintenance process. Our analysis of
the default dataset indicates the actual contract maintenance
approaches employed in real-world contracts. These methods
include renewing contracts and leveraging the call-based
maintenance pattern. The delegatecall-based pattern, which
does not support storage layout changes, was not utilized in
any of the cases within the dataset. Due to the unavailability of
data regarding the storage size for states with dynamic storage
layout (e.g., mapping-type states), we standardize the size to
10 for evaluation (see Sec. V-C).
Gas Consumption in Initial Deployment. We evaluate the ad-
ditional gas consumption when using SmartUpdater for each
original contract in the maintenance cases. Because deployment
costs in the Ethereum system are proportional to the size of
the deployed contract [53], understanding the factors of addi-
tional code size inflation is critical. In SmartUpdater, inflation
primarily arises from the integration of a hyperproxy contract,
shadow-record emitting events, and some duplicated code like
delegatecall-based functions. The inflation size, expressed as
a percentage of the original code size, is termed the increase
ratio. Fig. 8 shows the distribution of contracts across various
increase ratio ranges, divided into 5% intervals. The results

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1277

Fig. 9. Comparison of maintenance costs with and without using
SmartUpdater.

indicate that the most common increase ratio falls within the
5% to 10% range, demonstrating that our proposed pattern
introduces relatively minimal code. Among these, the smallest
observed increase in gas consumption was 126,600 gas ($13.9).
The average increase ratio is 15%, equating to a gas consump-
tion of 169,331 ($18.7), which is considered acceptable given
the security enhancement provided by the pattern. Conversely,
approximately 3% of contracts exhibit significant code size
increases, exceeding 50%. In these cases, the highest observed
increase ratio was 196%, resulting in a maximum increase in
gas consumption of 494,600 gas ($54.6). These contracts are
primarily smaller in size and have fewer states. As a result, the
additional pattern features lead to a more substantial relative
increase in gas cost.

The size of shadow-record emitting events is determined
by its parameters. However, many token standards, like ERC-
203 and ERC-2234, require the inclusion of events to log in-
formation that includes the keys of the target mapping-type
state. This means that it is not necessary to introduce additional
duplicate events for those states. In our analysis of thirty ERC-
20 tokens with the highest number of holders, we identified 80
mapping variables, of which only 4 mappings are not followed
by the corresponding event to record the key. This reinforces
the validity of using the event to record keys in mapping-type
states.
Gas Consumption in Contract Maintenance. We evaluated
the gas consumption of contract maintenance, which includes
deployment costs of new contracts and state migration costs
from the old version. We further compare the gas costs of
contract maintenance between the actual approaches used in
the maintenance cases and SmartUpdater. As shown in Fig. 9,
SmartUpdater demonstrates significant improvements in gas-
cost efficiency. Specifically, 94% of contracts experience lower
gas costs when using SmartUpdater compared to the usage of
their actual maintenance approach, resulting in average savings
of 1.2 million gas ($132) per contract. These savings stem
from SmartUpdater’s optimization-oriented contract genera-
tion module, which enables the division of the contract to avoid
the migration of states that are not pertinent to the specific state
update. However, 6% of the contracts experience increased gas
consumption. This was typically due to the high affinity of state
variables within these contracts, which hindered effective mod-
ularization. Moreover, using SmartUpdater introduces a slight

3https://eips.ethereum.org/EIPS/eip-20
4https://eips.ethereum.org/EIPS/eip-223

Fig. 10. Gas cost with varying batch sizes.

Fig. 11. Migration cost of mapping-type state in selected contracts.

overhead due to the configuration of the new contract address,
yet the overall increase is marginal, approximately $0.6.

We also evaluate the gas costs of the batching migration
strategy for states with large storage sizes like array-type and
mapping-type. As depicted in Fig. 10, the unbatched approach
incurs a consistent gas cost of approximately 55000 gas ($5.7),
whereas the batched approach displays a descending trend in
costs as the batch size within the contract expands. We observe
that when the batch size is 16 or greater, the rate at which cost
reductions are achieved begins to decelerate. In other words,
increasing the batch size yields diminishing returns in terms
of cost efficiency at this point. Considering additional factors
such as transaction latency and block gas limits, as well as the
observed deceleration in cost benefits, we opt for a batch size
of 16 as a reasonable trade-off. We also evaluated the mapping-
type state migration cost of prevalent ERC-20 contracts with the
heaviest mapping elements in Fig. 11 and found that the use of
the batching strategy saves about 50% gas costs. This finding
highlights the performance of the batching technique, especially
for extensive state migrations.

Furthermore, we investigate the gas consumption throughout
the whole contract maintenance process under varied real-world
state update scenarios. In our default dataset, 27% of these real-
world contract maintenance cases only append states without
completely modifying the storage layout, while others change
the storage layout, e.g., via removing states or changing the
state type. In the scenario of simple state appends, 56% cases
save gas consumption throughout the whole contract mainte-
nance process when using SmartUpdater, compared to the
actual contract maintenance approach. The average savings is
630,105 gas ($69.6). In the scenario of storage layout modifi-
cations, 78% of those cases experienced lower gas costs with
SmartUpdater, resulting in an average reduction of 731,256
gas ($80.8). Other cases incur more gas costs (186,213 gas
on average, approximately $20.6) mainly due to the code size
inflation of using hyperproxy-based patterns. In summary, 72%

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-223

1278 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

Fig. 12. Storage size of mapping-type state which causes the different
modularization results.

of all real-world contract maintenance cases in our default
dataset demonstrate gas-cost-efficiency with SmartUpdater,
achieving an average saving of 711K gas ($78.5).

C. Evaluation of Optimization-Oriented Contract Generation

In this section, we leverage our datasets with deter-
mined update states to evaluate the gas cost efficiency
of SmartUpdater’s optimization-oriented contract generation
module. Firstly, we confirm that when using the modularization
algorithm of this module, the storage attribute predefined by
developers exerts little influence on the optimization accuracy.
Subsequently, we use our datasets to compare three modular-
ization algorithms: 1) MIP-based contract modularization al-
gorithm (i.e., the optimal contract modularization algorithm we
provided in Section IV-E); 2) Minimum-state modularization al-
gorithm that assigns each state sub-contract with states involved
in a single function; 3) Maximum-state modularization algo-
rithm that makes the state contract obtain all states. The latter
two modularization schemes commonly serve as benchmarks in
various research domains. Our analysis then focuses on specific
contract maintenance cases that incur massive state migrations,
evaluating whether the optimization-oriented contract genera-
tion module still performs gas-cost-efficiency in extreme cases.
Evaluation Under Different Storage Attributes. In this part,
we analyze the impact of optimization accuracy of contract
modularization with different storage attributes that the devel-
opers set in the programming model. This evaluation involves
varying the storage size of the states with dynamic storage
layout to observe changes in the modularization results. The
results, as depicted in Fig. 12, indicate that the majority of
contracts do not show any variation and the number of affected
contracts is relatively small. Specifically, when the storage size
is changed, only 85 contracts exhibit different modularization
outcomes. Notably, these changes occur within a narrow range
of storage sizes, with all critical transitions occurring at storage
sizes below 10. Therefore, the choice of storage size has a lim-
ited impact on the optimization accuracy of contract modular-
ization. However, it is also advisable for developers to configure
their contracts with larger storage sizes based on actual needs.
Evaluation On Large-scale Real-world Contracts. In this
part, we analyze the maintenance gas costs among different
modularization algorithms mentioned above. The results are
shown in Fig. 13 with the costs normalized to those of the MIP-
based modularization algorithm. Note that since the storage

Fig. 13. On-chain costs with various optimization algorithms normalized to
the MIP-based modularization algorithm.

Fig. 14. On-chain costs of notable states in various contracts.

size of each state with dynamic storage layout (e.g., mapping-
type state) is not accessible, we assume the quantity to be
10 to better present the comparison results. The MIP-based
modularization algorithm outperforms the others, reducing the
overall maintenance cost by up to 8.8 times. This suggests that
the more balanced modularization generated by the MIP-based
modularization algorithm can significantly save gas costs in
contract maintenance. Besides, we found that the maximum-
state modularization algorithm generally performs poorly. This
is because all states are stored in a single state contract, leading
to unnecessary migration of unrelated states during updates and
incurring extra costs.
Evaluation Under Massive State Migration. We utilize
the selected four ERC-20 tokens with the highest number
of mapping elements to demonstrate that SmartUpdater’s
optimization-oriented contract generation module still yields
optimal optimal contract modularization strategy and saves gas
costs in massive state migration cases. The customized update
states include name, decimals, totalSupply, and balance, with
types string, uint256, uint256, and mapping. We compare the
gas costs when using three different modularization algorithms
to update each state (normalizing to the MIP-based modu-
larization algorithm), and the evaluation results are reported
in Fig. 14.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1279

TABLE II
COMPLEXITY OF CORE TASKS

Verification Task # of Constraints

Block header continuity 617070
Bloom filter 158995
Receipts matching 152240
Data retrieval 1536

Compared to the maximum-state modularization algorithm,
it is evident that using the MIP-based modularization algorithm
consistently reduces gas costs for any state updates. The reduc-
tion in gas costs can be as significant as four orders of magni-
tude. Besides, the benefits of our design for some state variables
(like decimals in USDT) are not significant, because the mi-
gration of necessary yet heavy mapping-type states dominates
the overall costs. In contrast, the minimum-state modularization
algorithm has less gas costs than using the MIP-based modular-
ization algorithm in some update cases (like totalSupply in LPT)
due to no unnecessary state migration introduced. However,
the minimum-state modularization algorithm needs to preserve
state consistency across different state sub-contracts serving for
different functions, incurring an unquantifiable cost.

D. Evaluation of Publicly Verifiable State Migration

In this section, we assess the practicality of the publicly
verifiable state migration module focusing on proof sizes and
on-chain proof verification costs, in comparison with unrefined
SNARK protocols [28]. We selected real-world contracts from
our default dataset that have migration requirements of the
mapping-type state and follow the ERC-20 token standard,
which already uses events to record the keys of the mapping-
type state. We randomly choose three of them (i.e., XRT, ACNT,
and IBTC) as examples for the evaluation of the real-world
situation. There are only two mapping-type states, i.e., allowed
and transfer, that are migrated in contract maintenance. We
evaluate the costs for the allowed state with relatively smaller
members, as it is enough to show that the original SNARK
protocol already incurs prohibitive gas costs and our refined
design achieves constant overhead.
Succinct Proof Size. To provide further insight into the proof
generation costs, Table II tabulates the number of resultant
rank-1 constraint system (R1CS) constraints for every oper-
ation in the SNARK-based key collection mechanism (see
Section IV-F), which is proportional to the proof generation
time. The most resource-intensive operation is the validation
of header continuity, attributed to the intricate Keccak-256bit
hash function with voluminous inputs. Additionally, the task
of matching related receipts is slightly more efficient with the
same hash function, due to its smaller input size. Filtering
operations stand out in their efficiency, only necessitating an
O(1) complexity circuit. Furthermore, even if one single log’s
key retrieval is straightforward, the complexity escalates with
multiple logs and up to three topics in each.

Table III shows the different proof sizes under non-recursive
and recursive verification designs. For the ACNT contract

whose deployment and maintenance cross 20530 blocks, the
proof size is reduced from 83 MB (across 21288 proofs) to
55 KB (spanning 5 proofs) when using the recursive refine-
ment. Despite the longer generation time, the remarkable con-
traction in proof size—roughly a thousandfold—is undeniably
significant.
On-chain Proof Verification Cost. Table III shows that
the on-chain verification cost is constant (1024K) when using
the recursive refinement, which is roughly $105. If we select
ACNT contract, for instance, the verification cost becomes
$0.005 per block. In contrast, without our refinement, straight-
forwardly verifying these generated proofs on-chain would be
prohibitively expensive, costing more than $450000. Addition-
ally, for the selected four ERC-20 contracts with massive map-
ping elements, the blocks they span (over 10 million blocks)
and the number of receipts they record (more than 20 million)
far exceed those of the real-world contracts. As a result, the
verification cost would be significantly higher without our re-
finement, highlighting the benefits of our public verifiable state
migration module when dealing with the extreme scenario.

E. Developer Usability Study

In this section, we evaluate the effort required by developers
when using SmartUpdater’s development interfaces through-
out the whole contract maintenance process in real-world cases,
and compare it to the effort involved in manual implementation
and OpenZepplin [38].
Participant Recruitment. We conducted a thorough study with
nine professional developers, all recruited through the computer
science major of our university. Of them, two were under-
graduates, four were graduate students, and three were Ph.D.
candidates. The undergraduates had taken blockchain courses
and conducted relevant experiments with smart contracts. Other
participants had been involved in blockchain-related projects
and four of them (one graduate student and three Ph.D. candi-
dates) previously used the delegatecall-based pattern.
Study Methods. To ensure an exhaustive evaluation of diverse
maintenance scenarios, we provided developers with ten con-
tracts of varying complexity and maintenance requirements as
study samples. Among these, three contracts were created by us
as relatively simple examples, which include basic state (e.g.,
string or integer type) and straightforward logic (e.g., reading
or writing state value). These contracts were designed to in-
volve only logic update requirements. The remaining contracts
were selected from our default database which consists of real-
world maintenance cases. These contracts have larger code sizes
and more sophisticated logic functionalities. More importantly,
these contracts involve various state update requirements, such
as adding additional states (without changing storage layouts)
and modifying storage layouts.

We evaluated developer usability across three approaches:
manual implementation, OpenZeppelin, and SmartUpdater.
Developers were required to use these approaches to perform
two tasks: 1) converting smart contracts to follow certain con-
tract maintenance patterns; 2) implementing the new contracts
based on the provided maintenance requirement and recovering

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

1280 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

TABLE III
COMPUTATION AND STORAGE COSTS OF RECURSIVE VERIFICATION

Contract # of
blocks

of
receipts

Proof Size (KB) Verification Cost (Gas)
w/o RV w/ RV w/o RV w/ RV

XRT(0x9909...9568) 661888 1081 2651972 55 135784M 1024K
ACNT(0xedd4...b6fe) 20530 740 85152 55 4359M 1024K
IBTC(0xB7c4...7532) 2148051 67455 8867836 55 454048M 1024K

the unchanged states in the new contract. Since SmartUpdater
generates contracts using the novel hyperproxy-based con-
tract maintenance pattern and includes unique modules (e.g.,
optimization-oriented contract generation module), we as-
sumed that developers would be unaware of these details when
using baseline approaches. This assumption was made to pre-
vent overly complex task demands for developers. Developers
were required to produce the delegatecall-based patterns with-
out the need to consider contract modularization. For the con-
venience of state migration, we provided the values of all states
to be migrated, ensuring consistency across the three methods.
Result Collection. Following the evaluation methodologies
from state-of-the-art contract maintenance research [44], we
provided developers with a detailed study guide and structured
questionnaires. The study guide included step-by-step instruc-
tions for task completion, environment setup, and submission
guidelines. The questionnaires captured evaluation metrics, in-
cluding task completion time, developer-perceived confidence
level in task correctness, and developer-perceived task difficulty
ratings. The latter two metrics were assessed using a 7-point
Likert scale [30], with clear rating standards provided. Although
developers completed tasks independently, the study guide en-
sured consistent procedures across participants. To validate
the results, we required developers to submit all edited files
(e.g., smart contracts created during the tasks) alongside their
questionnaire responses. All results were anonymized to elim-
inate potential bias. We then conducted a manual code review
of the submitted contracts and compared them with those gen-
erated by SmartUpdater and other approaches.
Results of Task 1. The results of task 1 showed that developers
spent an average of 49.44 minutes on manual implementation
and only two developers successfully converted. It was also
reflected in a median difficulty level of 5 and a median con-
fidence level of 3 in the correctness of performing the task.
The main issue we observed was that developers overlooked
the storage collision, resulting in the converted contracts be-
ing broken by design. Using OpenZeppelin, conversion time
dropped to 35.22 minutes per contract, and six developers suc-
cessfully converted contracts. Additionally, the median level
of task difficulty and developers’ confidence changed to 4,
indicating that using OpenZeppelin facilitates contract devel-
opment following the contract maintenance pattern. In com-
parison, SmartUpdater requires no prior knowledge about
the contract contents, enabling developers to accurately con-
vert contracts following the hyperproxy-based contract mainte-
nance pattern within at most 6 minutes. Moreover, developers

generally agreed that using SmartUpdater strongly reduces the
conversion difficulty, and expressed high satisfaction with the
SmartUpdater, with a median satisfaction rating of 6. This
confirms that using SmartUpdater decreases developer efforts
to construct contracts with a maintenance pattern.
Results of Task 2. For contracts requiring only logic updates or
simple state appends, all developers successfully complete the
task in under 7 minutes, with minimal differences across using
three methods. For contracts with state update requirements
(i.e., storage layout changes), developers required an average of
32.22 minutes with manual implementation, while using Open-
Zeppelin reduced to 28.89 minutes. Particularly, most devel-
opers encountered storage collision issues during maintenance,
with only two developers successfully identifying and resolv-
ing the problem. When asked about retrieving mapping-type
states and their associated challenges, only three developers
recognized the importance of recording the keys. However, their
proposed solutions have shortcomings: 1) storing the keys of
mapping-type states in contract storage would increase resource
consumption [31] and result in high gas costs. 2) storing the
mapping-type state in an independent contract would add con-
tract complexity and incur additional gas costs during inter-
contract calls. These findings indicate a general lack of EVM
expertise of developers, as well as a limited awareness of how
to preserve data integrity in contract maintenance, particularly
for mapping-type states. In contrast, SmartUpdater stream-
lines the developers’ work in the contract maintenance process,
especially involving the storage layout changes. On average,
developers completed the maintenance tasks correctly in just
5.22 minutes. Moreover, developers considered contract main-
tenance with SmartUpdater to be easier (median difficulty
level of 2) than with the other two methods, which had a median
difficulty level exceeding 4.

VI. DISCUSSION

In this section, we present the principal findings, contribu-
tions to both practice and research, as well as limitations and
further directions.
Principal Findings. SmartUpdater achieves user-transparent
contract maintenance by introducing the hyperproxy-based pat-
tern. Although the hyperproxy contract increases initial de-
ployment gas costs, this overhead is effectively offset by
the gas-cost-efficient contract maintenance design enabled by
the optimization-oriented contract generation module. Our
study shows that while the initial deployment experiences an

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

https://etherscan.io/address/0x99092a458b405fb8c06c5a3aa01cffd826019568
https://etherscan.io/address/0xedd4941d09bb0fafd230100c86ffbbd7907b6fe
https://etherscan.io/address/0xB7c4A82936194FEE52a4E3d4cEC3415f74507532

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1281

average 15% gas increase, SmartUpdater significantly reduces
gas consumption during contract maintenance compared to the
actual maintenance approaches, making it particularly advanta-
geous for frequent contract maintenance.
Contributions To Practice. SmartUpdater allows devel-
opers to address diverse contract maintenance requirements,
including complex storage layout changes, via its domain-
specific language (DSL). By automating optimization-oriented
contract generation and correctness-guaranteed state migra-
tion, SmartUpdater decreases manual effort and developer
errors. Besides, SmartUpdater can integrate with patterns pro-
posed by Ethereum Improvement Proposals (EIPs), address-
ing delegatecall-based maintenance concerns such as storage
layout compatibility [4], [5], function selector collisions [3],
[9], and atomic maintenance [6]. For instance, the state sub-
contract in our hyperproxy-based contract maintenance pattern
can leverage a designated slot to record the corresponding logic
sub-contract address, ensuring storage layout compatibility.
Moreover, SmartUpdater can allow developers to define func-
tion groups within the DSL-written contract, enabling logical
separation and facilitating atomic maintenance.
Contributions To Research. SmartUpdater proposes a
hyperproxy-based contract maintenance pattern that first pre-
serves user-transparent access while enabling any state and
logic updates, contributing to smart contract design. At the
same time, by leveraging advanced techniques like SNARKs,
SmartUpdater ensures correctness in complex state migrations
with acceptable gas consumption, setting a foundation for se-
cure and efficient contract maintenance in resource-expensive
blockchain systems.
Limitations And Future Directions. We discuss the limita-
tions of SmartUpdater and propose potential solutions for our
future work in the following aspects:
Elimination of Potential Bias in Usability Study.We recruited
developers from the university, which may introduce familiarity
bias or social desirability bias. For instance, participants may
have been inclined to present themselves in a more favorable
light. To further eliminate biases, we will offer financial rewards
and recruit a more diverse and larger group of developers from
various developer forums in the future. To add more detailed
records of the study process, we plan to incorporate video
recordings of participants’ interactions during task completion.
This will allow us to compare written reports with real-time
actions observed in the video. By doing so, we can determine
whether the participants accurately recorded the evaluation met-
rics (e.g., developer-perceived task difficulty ratings).
Composition of Helper Committee. The helper committee can
operate in various capacities (e.g., as full nodes or using infras-
tructure like Infura [7]) to retrieve data and generate proofs.
Future work includes incentivizing participation through
rewards for validated proofs, inspired by incentive models like
[16], [56].
Testing of Contract Maintenance. SmartUpdater can take
a extensive testing approach to validate contract updates, en-
hancing future security. It can use developer-customized unit
tests and integrate specialized tools, like static and dynamic

analysis methods [18], [45] to detect vulnerabilities in the up-
dated contracts. We leave those as future work.
Support of More Contract Languages. Smart contracts are
being developed in various high-level languages like Solidity,
Vyper, and Go, and run on various blockchains like Solana
and Hyperledger Fabric. To make SmartUpdater universally
applicable, it can incorporate a language-agnostic Intermedi-
ate Representation (IR). This IR serves as a unifying layer
that standardizes the core functionalities of smart contracts,
irrespective of the original programming language. More-
over, SmartUpdater can adapt state migration methods to
the specific storage layout of different blockchains. Extending
SmartUpdater to other languages or even other blockchain
systems is an interesting future research.

VII. CONCLUSION

Smart contracts maintenance is a central challenge in
blockchain technology. Many maintenance approaches exist,
but none offers a transparent, automated, and secure toolchain
for both logic and state updates. We present SmartUpdater
that employs a hyperproxy-based contract maintenance pat-
tern to keep the maintenance process transparent to end users.
SmartUpdater proposes various techniques to make the en-
tire maintenance pipeline development-streamlining, gas-cost-
efficiency, and state-migration-verifiable. Our evaluation results
showcase SmartUpdater’s effectiveness and cost-efficiency
using 1,355 real-world contract maintenance cases. Moreover,
experimental results demonstrate SmartUpdater significantly
speeds up the maintenance process and integrates smoothly into
the developers’ workflow.

REFERENCES

[1] “Smartupdater.” Accessed: Nov. 1, 2024. [Online]. Available: https://
github.com/Ellen-syq/SmartUpdater

[2] “Visibility in solidity smart contracts.” Accessed: May 2023.
[Online]. Available: https://cryptomarketpool.com/visibility-in-solidity-
smart-contracts/.

[3] EIP-1538, “Transparent contract standard,” 2018. Accessed: Nov. 2024.
[Online]. Available: https://eips.ethereum.org/EIPS/eip-1538

[4] EIP-897, “The first real proxy,” 2018. Accessed: Nov. 2024.
[Online]. Available: https://ethereum-blockchain-developer.com/110-
upgrade-smart-contracts/07-eip-897-proxy/

[5] Eip-1967, “Proxy storage slots,” 2019. Accessed: Nov. 2024. [Online].
Available: https://eips.ethereum.org/EIPS/eip-1967

[6] “EIP-2535: Diamonds, multi-facet proxy,” 2020. Accessed: Nov. 2024.
[Online]. Available:https://eips.ethereum.org/EIPS/eip-2535

[7] “Infura: Ethereum & IPFS API.,” 2021. Accessed: Sep. 2023. [Online].
Available: https://infura.io/

[8] “Solidity documentation,” 2021. Accessed: May 2023. [Online]. Avail-
able: https://docs.soliditylang.org/en/latest/

[9] EIP-1822, “Universal upgradeable proxy standard (UUPS),” 2022. Ac-
cessed: Nov. 2024. [Online]. Available: https://eips.ethereum.org/EIPS/
eip-1822

[10] “0xPARC. circom-pairing.” 2022. Accessed: Aug. 2023. [Online]. Avail-
able: https://github.com/yi-sun/circom-pairing/

[11] M. Ayub, T. Saleem, M. Janjua, and T. Ahmad, “Storage state analysis
and extraction of ethereum blockchain smart contracts,” ACM Trans.
Softw. Eng. Methodol., vol. 32, no. 3, pp. 1–32, 2023.

[12] R. Behnke, “Explained: The lendhub hack,” 2023. Accessed: Oct. 2024.
[Online]. Available: https://www.halborn.com/blog/post/explained-the-
lendhub-hack-january-2023

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Ellen-syq/SmartUpdater
https://github.com/Ellen-syq/SmartUpdater
https://cryptomarketpool.com/visibility-in-solidity-smart-contracts/
https://cryptomarketpool.com/visibility-in-solidity-smart-contracts/
https://eips.ethereum.org/EIPS/eip-1538
https://ethereum-blockchain-developer.com/110-upgrade-smart-contracts/07-eip-897-proxy/
https://ethereum-blockchain-developer.com/110-upgrade-smart-contracts/07-eip-897-proxy/
https://eips.ethereum.org/EIPS/eip-1967
Available: https://eips.ethereum.org/EIPS/eip-2535
https://infura.io/
https://docs.soliditylang.org/en/latest/
https://eips.ethereum.org/EIPS/eip-1822
https://eips.ethereum.org/EIPS/eip-1822
https://github.com/yi-sun/circom-pairing/
https://www.halborn.com/blog/post/explained-the-lendhub-hack-january-2023
https://www.halborn.com/blog/post/explained-the-lendhub-hack-january-2023

1282 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 51, NO. 4, APRIL 2025

[13] R. Behnke, “Explained: The pike finance hack,” 2024. Accessed:
Oct. 2024. [Online]. Available: https://www.halborn.com/blog/post/
explained-the-pike-finance-hack-april-2024

[14] W. E. Bodell, III, S. Meisami, and Y. Duan, “Proxy hunting: Under-
standing and characterizing proxy-based upgradeable smart contracts in
blockchains,” in Proc. USENIX Secur., 2023, pp. 1829–1846.

[15] B. Bü, S. A. nz, M. Zamani, and D. Boneh, “Zether: Towards privacy
in a smart contract world,” in Proc. FC, 2020, pp. 423–443.

[16] D. Chen, H. Yuan, S. Hu, Q. Wang, and C. Wang, “BOSSA: A decen-
tralized system for proofs of data retrievability and replication,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 4, pp. 786–798, Apr. 2021.

[17] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum,” IEEE Trans. Softw. Eng., vol. 48,
no. 1, pp. 327–345, Jan. 2022.

[18] T. Chen et al., “Soda: A generic online detection framework for smart
contracts,” in Proc. NDSS, 2020, pp. 1–17.

[19] Y. Chen, Y. Wang, M. Goyal, J. Dong, Y. Feng, and I. D. Iş, “Synthesis-
powered optimization of smart contracts via data type refactoring,” Proc.
ACM Program. Lang., vol. 6, pp. 560–588, Oct. 2022.

[20] Corwintines, “Blocks,” 2023. Accessed: Sep. 2023. [Online]. Available:
https://ethereum.org/en/developers/docs/blocks/

[21] E. Danna, E. Rothberg, and C. L. Pape, “Exploring relaxation induced
neighborhoods to improve mip solutions,” Math. Program., vol. 102,
pp. 71–90, Jan. 2005.

[22] Ethereum, “Token tracker (ERC-20),” Accessed: Nov. 2024. [Online].
Available: https://etherscan.io/tokens

[23] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in Proc. IEEE/ACM WETSEB, 2019, pp. 8–15.

[24] C. F. Torres, M. Baden, R. Norvill, B. B. F. Pontiveros, H. Jonker, and
S. Mauw, “Ægis: Shielding vulnerable smart contracts against attacks,”
in Proc. ACM ASIACCS, 2020, pp. 584–597.

[25] J. Frank, C. Aschermann, and T. Holz, “ETHBMC: A bounded model
checker for smart contracts,” in Proc. USENIX Secur., 2020, pp. 2557–
2774.

[26] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Proc. EUROCRYPT , 2016, pp. 305–326.

[27] “Gurobi optimization.” Gurobi. Accessed: Aug. 2023. [Online]. Avail-
able: https://www.gurobi.com/

[28] “iden3,” Circom. 2023. Accessed: Aug. 2023. [Online]. Available:
https://github.com/iden3/circom, 2023.

[29] H. Jin, Z. Wang, M. Wen, W. Dai, Y. Zhu, and D. Zou, “AROC: An
automatic repair framework for on-chain smart contracts,” IEEE Trans.
Softw. Eng., vol. 48, no. 11, pp. 4611–4629, Nov. 2022.

[30] A. Joshi, S. Kale, S. Chandel, and D. Pal, “Likert scale: Explored and
explained,” British J. Appl. Sci. Technol., vol. 7, no. 4, pp. 396–403,
2015.

[31] “Challenges and common solutions in smart contract development,”
IEEE Trans. Softw. Eng., vol. 48, no. 11, pp. 4291–4318, Nov. 2022.

[32] Z. Li, B. Xiao, S. Guo, and Y. Yang, “Securing deployed smart contracts
and defi with distributed TEE cluster,” IEEE Trans. Parallel Distrib.
Syst., vol. 34, no. 3, pp. 828–842, Mar. 2023.

[33] S. Ma, Y. Deng, D. He, J. Zhang, and X. Xie, “An efficient NIZK scheme
for privacy-preserving transactions over account-model blockchain,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 2, pp. 641–651,
Mar./Apr. 2020.

[34] “Upgrading smart contracts,” MobinHajizadeh. 2023. Accessed:
May 2023. [Online]. Available: https://ethereum.org/en/developers/docs/
smart-contracts/upgrading/

[35] “Ethereum logs and events – what are event logs on the Ethereum
network?” Moralis. Accessed: Aug. 2023. [Online]. Available:
https://moralis.io/ethereum-logs-and-events-what-are-event-logs-
on-the-ethereum-network

[36] T. Bits, “How contract migration works.” Accessed: May 2023. [On-
line]. Available: https://blog.trailofbits.com/2018/10/29/how-contract-
migration-works/, 2018.

[37] “Opensea nft marketplace,” OpenSea. Accessed: Apr. 2023. [Online].
Available: https://opensea.io/, 2022.

[38] openzeppelin, “Upgrades plugins.” Accessed: Nov. 2024. [Online].
Available: https://docs.openzeppelin.com/upgrades-plugins

[39] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” Commun. ACM, vol. 59, no. 2,
pp. 103–112, 2016.

[40] “President and fellows of harvard college,” 2007. Extended Backus Naur
Form (EBNF), Accessed: Nov. 2024. [Online]. Available: https://www.
arp.harvard.edu/eng/das/manuals/EBNF.html.

[41] py-solc x., “Using the compiler,” Accessed: Aug. 2023. [Online].
Available: https://solcx.readthedocs.io/en/latest/using-the-compiler.html,
2020.

[42] A. Razzaq, J. Buckley, Q. Lai, T. Yu, and G. Botterweck, “A systematic
literature review on the influence of enhanced developer experience
on developers’ productivity: Factors, practices, and recommendations,”
ACM Comput. Surveys, vol. 57, no. 1, pp. 1–46, 2024.

[43] Virtue Market Research, “Decentralized application development
(DAPPS) market size,” 2023. Accessed: Apr. 2023. [Online]. Avail-
able: https://virtuemarketresearch.com/report/decentralized-application-
development-(dapps)-market.

[44] M. Rodler, W. Li, G. O. Karame, and L. Davi, “EVMPatch: Timely
and automated patching of ethereum smart contracts,” in Proc. USENIX
Secur., 2021, pp. 1289–1306.

[45] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “VERISMART: A highly
precise safety verifier for Ethereum smart contracts,” in Proc. IEEE SP,
2020, pp. 1678–1694.

[46] S. Steffen, B. Bichsel, R. Baumgartner, and M. Vechev, “ZeeStar:
Private smart contracts by homomorphic encryption and zero-knowledge
proofs,” in Proc. IEEE SP, 2022, pp. 179–197.

[47] S. Steffen, B. Bichsel, and M. Vechev, “Zapper: Smart contracts with
data and identity privacy,” in Proc. ACM CCS, 2022, pp. 2735–2749.

[48] P. Tolmach, Y. Li, and S.-W. Lin, “Property-based automated repair of
defi protocols,” in Proc. ASE, 2022, pp. 1–5.

[49] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proc. ACM CCS, 2018, pp. 67–82.

[50] Y. Wang, X. Chen, Y. Huang, H.-N. Zhu, J. Bian, and Z. Zheng, “An
empirical study on real bug fixes from solidity smart contract projects,”
J. Syst. Softw., vol. 204, no. 111787, 2023, Art. no. 111787.

[51] Y. Wang, J. Dong, R. Shah, and I. Dillig, “Synthesizing database
programs for schema refactoring,” in Proc. ACM PLDI, 2019.

[52] Z. Wang, H. Jin, W. Dai, K.-K. R. Choo, and D. Zou, “Ethereum smart
contract security research: Survey and future research opportunities,”
Frontiers Comput. Sci., vol. 15, pp. 1–18, Apr. 2021.

[53] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[54] G. Wu, H. Wang, X. Lai, M. Wang, D. He, and S. Chan, “A compre-
hensive survey of smart contract security: State of the art and research
directions,” J. Netw. Comput. Appl., vol. 226, 2024, Art. no. 103882.

[55] T. Xie et al., “zkBridge: Trustless cross-chain bridges made practical,”
in Proc. ACM CCS, 2022, pp. 3003–3017.

[56] C. Ying, H. Jin, J. Li, X. Si, and Y. Luo, “Incentive mecha-
nism design via smart contract in blockchain-based edge-assisted
crowdsensing,” Frontiers Comput. Sci., vol. 19, no. 3, 2025,
Art. no. 193802.

[57] X. Zhang et al., “EVM-shield: In-contract state access control for
fast vulnerability detection and prevention,” IEEE Trans. Inf. Forensics
Security, vol. 19, pp. 2517–2532, 2024.

[58] P. Zheng, Z. Zheng, J. Wu, and H.-N. Dai, “XBLOCK-ETH: Extracting
and exploring blockchain data from Ethereum,” IEEE Open J. Comput.
Soc., vol. 1, pp. 95–106, 2020.

[59] H. Zhu, L. Yang, L. Wang, and V. S. Sheng, “A survey on security
analysis methods of smart contracts,” IEEE Trans. Services Comput.,
vol. 17, no. 6, pp. 4522–4539, Nov./Dec. 2024.

[60] W. Zou et al., “Smart contract development: Challenges and oppor-
tunities,” IEEE Trans. Softw. Eng., vol. 47, no. 10, pp. 2084–2106,
Oct. 2019.

Xiaoli Zhang received the Ph.D. degree from Tsinghua University, China,
under the supervision of Prof. Jianping Wu, in 2020. Currently, she is
an Associate Professor with the School of Computer & Communication
Engineering, University of Science and Technology Beijing, China. Her
research interests include trusted computing, verifiable computation, cloud
security, and network security.

Yiqiao Song is currently working toward the M.E. degree with Zhejiang
University of Technology, Hangzhou, China. Her research interests include
blockchain, cryptography, and information security.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

https://www.halborn.com/blog/post/explained-the-pike-finance-hack-april-2024
https://www.halborn.com/blog/post/explained-the-pike-finance-hack-april-2024
https://ethereum.org/en/developers/docs/blocks/
https://etherscan.io/tokens
https://www.gurobi.com/
https://github.com/iden3/circom
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://moralis.io/ethereum-logs-and-events-what-are-event-logs-on-the-ethereum-network
https://moralis.io/ethereum-logs-and-events-what-are-event-logs-on-the-ethereum-network
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works/
https://blog.trailofbits.com/2018/10/29/how-contract-migration-works/
https:// opensea.io/
https://docs.openzeppelin.com/upgrades-plugins
https://www.arp.harvard.edu/eng/das/manuals/EBNF.html
https://www.arp.harvard.edu/eng/das/manuals/EBNF.html
https://solcx.readthedocs.io/en/latest/using-the-compiler.html
https://virtuemarketresearch.com/report/decentralized-application-development-(dapps)-market
https://virtuemarketresearch.com/report/decentralized-application-development-(dapps)-market

ZHANG et al.: SMARTUPDATER: ENABLING TRANSPARENT, AUTOMATED, AND SECURE MAINTENANCE 1283

Yuefeng Du received the B.S. (First Class Hons.) and Ph.D. degrees from
the City University of Hong Kong, in 2018 and 2022, respectively. Currently,
he is a Lecturer and Researcher with the City University of Hong Kong. His
research interests include secure system design, network security, blockchain,
and more broadly application of cryptography.

Chengjun Cai (Member, IEEE) received the Ph.D. degree in computer
science from the City University of Hong Kong, in 2021. Currently, he is
a Research Fellow with the City University of Hong Kong (Dongguan). His
research interests included applied cryptography, data security and privacy,
and blockchain.

Hongbing Cheng received the Ph.D. degree from Nanjing University of Posts
and Telecommunications. Currently, he is a Professor with the College of
Computer Science, Zhejiang University of Technology. His research interests
include blockchain, cryptography, privacy preserving and information security,
computer communications, and cloud computing security.

Ke Xu (Fellow, IEEE) received the Ph.D. degree from Tsinghua University,
Beijing, China. Currently, he is a Full Professor with the Department of Com-
puter Science, Tsinghua University. He has published more than 200 technical
papers and holds 11 U.S. patents in the research areas of nextgeneration
internet, blockchain systems, the Internet of Things, and network security.
He serves as the Steering Committee Chair for IEEE/ACM IWQoS. He has
guest-edited several special issues for IEEE and Springer journals. He is an
Editor of IEEE INTERNET OF THINGS JOURNAL.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University. Currently, he is an Associate Professor with the Institute for
Network Sciences and Cyberspace, Tsinghua University. His research interests
include internet and cloud security, mobile security, and big data security. He
is an Editorial Board Member of the IEEE TRANSACTIONS ON DEPENDABLE

AND SECURE COMPUTING and DTRAP (ACM).

Authorized licensed use limited to: Tsinghua University. Downloaded on April 27,2025 at 03:18:33 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

