
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Privacy-Preserving and Lightweight Verification of
Deep Packet Inspection in Clouds

Xiaoli Zhang , Wei Geng, Yiqiao Song, Hongbing Cheng , Member, IEEE,
Ke Xu , Senior Member, IEEE, Member, ACM, and Qi Li , Senior Member, IEEE

Abstract— In the trend of network middleboxes as a service,
enterprise customers adopt in-the-cloud deep packet inspection
(DPI) services to protect networks. As network misconfigurations
and hardware failures notoriously exist, recent efforts envision
to ensure the execution integrity of DPI services in untrusted
clouds. However, they either require enterprise customers to
know proprietary DPI rulesets of cloud providers or intro-
duce forbidden overhead in the network context. In the paper,
we propose a privacy-preserving and lightweight verification
scheme that efficiently checks whether in-the-cloud DPI services
run correctly without leaking private DPI rulesets. Particu-
larly, our design introduces one trusted third party to perform
privacy-preserving and trustworthy ruleset evaluation and DPI
execution verification. Meanwhile, it devises a novel DPI ruleset
authentication method that enables tamper-proof DPI operations
and facilitates fast proof generation. The proofs can be verified
without requiring the verifier to always maintain all rulesets.
To further reduce the verification costs while resisting cloud
cheating behaviors like bias treatments of packets, it employs a
commitment-based delayed sampling mechanism which requires
the DPI services to first demonstrate that all packets have
been processed before receiving sampling decisions. Moreover,
extensive experiments are conducted based on Click modules.
The results show that the proposed scheme is practical and only
incurs the real-time overhead of 10-20 microseconds.

Index Terms— Middlebox verification, cryptographic proto-
cols, network security, computer network reliability.

Manuscript received 16 November 2022; revised 12 April 2023;
accepted 19 May 2023; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor Y. Liu. This work was supported in part by NSFC
under Grant 62072407, Grant 62132011, and Grant 61825204; in part by
the Zhejiang Provincial Natural Science Foundation of China under Grant
LQ23F020019; in part by the “Leading Goose Project Plan” of Zhejiang
Province under Grant 2022C01086 and Grant 2022C03139; in part by the
National Key Research and Development Program of China under Grant
2022YFB2701400; and in part by the Beijing Outstanding Young Scientist
Program under Grant BJJWZYJH01201910003011. (Corresponding authors:
Qi Li; Hongbing Cheng.)

Xiaoli Zhang, Yiqiao Song, and Hongbing Cheng are with the Depart-
ment of Computer Science, Zhejiang University of Technology, Hangzhou
310023, China (e-mail: xiaoli.z@outlook.com; 201806062522@zjut.edu.cn;
chenghb@zjut.edu.cn).

Wei Geng is with the Department of Computer Science and Technology,
and the Institute of Network Science and Technology, Tsinghua University,
Beijing 100084, China (e-mail: gengw21@mails.tsinghua.edu.cn).

Ke Xu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: xuke@tsinghua.edu.cn).

Qi Li is with the Institute of Network Science and Technology, Tsinghua
University, Beijing 100084, China (e-mail: qli01@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNET.2023.3282100

I. INTRODUCTION

MODERN enterprise networks heavily rely on middle-
boxes like network intrusion detection systems [1], [2]

and web application firewalls [3], [4] to defeat ubiquitous
network security threats [5], [6]. Those middleboxes perform
deep packet inspection (DPI) tasks, namely, checking packets’
payloads against malicious signatures. As indicated by a recent
report [7], DPI devices have led to a market valued at about
$19B in 2023 and would take an increasingly important role
in the future.

With the prevalence of cloud computing and network
function virtualization (NFV) [8], enterprises usually rent in-
the-cloud DPI services rather than deploying in-house middle-
boxes [5], [9], [10], so as to offload local maintenance burdens
and hardware capital costs. In practice, an enterprise customer
pays for DPI services in terms of service level agreements
(SLAs) and interested DPI rulesets. In turn, the cloud provider
initializes those services with the specified rulesets and guar-
antees SLAs by allocating resources dynamically according to
real-time traffic changes. Usually, DPI rulesets are important
intellectual properties of cloud providers, because they include
valuable signatures of the latest attacks, malware infections,
policy violations, and other exposures.

Despite the benefits of in-the-cloud middlebox services,
enterprise customers cannot ensure whether those DPI services
run as expected due to the following reasons. First, the
customers lose direct control over those computation-intensive
DPI services, rendering the cloud provider chances to cheat via
setting up simple network rulesets for economic profits [11],
[12]. Second, unexpected hardware failures, software bugs,
and network misconfigurations inevitably occur in the cloud
environment [13]. All of these problems would lead to SLA
violations and further incur tremendous losses to enterprises,
especially for those deploying middlebox services on critical
paths of QoS-sensitive or security-sensitive applications [14].
Therefore, it is highly desired for enterprise customers to
ensure that network traffic is correctly processed by remote
middlebox services.

In the paper, we aim to devise a verification scheme to
check the execution integrity of remote DPI services with
the following design objectives. 1) The proposed scheme
should be able to evaluate the quality of the rulesets and

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5255-2216
https://orcid.org/0000-0002-8504-1092
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0001-8776-8730

2 IEEE/ACM TRANSACTIONS ON NETWORKING

confirm that the rulesets installed in the middlebox services
are indeed enterprise-bought ones. 2) It should have the
ability to detect the packet processing correctness of DPI
services. That is, it should guarantee that the whole packet
payloads are inspected by DPI services with the intended DPI
ruleset. 3) It should also preserve the privacy of the rulesets
against enterprises, because the rulesets are critical intellectual
property of cloud providers. 4) The verification process should
be efficient in terms of real-time computation overhead and
communication overhead. 5) The proposed scheme should be
agilely developed in a minimally intrusive manner.

Unfortunately, existing research efforts cannot achieve the
above design goals simultaneously as shown in Table I. Specif-
ically, some cryptographic primitives like zero knowledge
proof protocols are designed to verify the integrity of remote
generic computations while preserving the privacy of some
input information [15]. However, their proof generation is typ-
ically thousands of times slower than native execution. Blind
signatures enable a user to obtain a signature from a signer
without revealing the message to be signed [20]. Anonymous
credential schemes allow an individual to prove possession
of certain attributes (such as age or nationality) without
leaking their identity [21]. While providing privacy-preserving
properties, those techniques cannot be applied to check the
computation integrity of remote DPI services. Authenticated
data structure constructions guarantee the operation integrity
of outsourced databases [16], [17]. Unfortunately, they not
only reveal data knowledge in verification, but also introduce
large query latency (about two orders of magnitude higher than
the original queries).

Besides cryptographic designs, some prior arts leverage
TEE (Trusted Execution Environment), e.g., Intel SGX [22],
to attest to the computation integrity [18], [19]. Their extra
assumption of trusted hardware goes against our agile deploy-
ment goal, i.e., Goal 5). Other research advancements involve
duplicated execution for verification [11], [12]. They usually
replay packets at local middleboxes and generate proof ref-
erences to check the execution correctness of middleboxes in
the cloud. Inevitably, they require that enterprise customers
have knowledge of DPI rulesets, thus violating the Goal 3).
Additionally, these efforts cannot estimate the value of remote
rulesets while preserving their privacy.

The analysis above motivates us to build a full-fledged
verification scheme that satisfies all design goals. Unfortu-
nately, it is a non-trivial task because of the following three
challenges. Firstly, it is challenging to implement ruleset eval-
uation and DPI execution verification without the knowledge
of the rulesets. Second, constructing execution proofs for
DPI services is difficult, since the operations of DPI services
are sophisticated that not only examine packet headers but
also inspect packet payload. Traditional middlebox verification
methods that generate proofs based on packet headers or for-
warding ports like [12] cannot be adopted. The third challenge
is how to perform the verification in an efficient and attack-
resistant manner. Sampling-based verification approaches can
achieve the goal of high efficiency (Goal 4)), yet fail to defeat
untrusted clouds with biasing behaviors (e.g., only processing
sampled packets).

To overcome the first challenge, we introduce a trusted
third party based on the trusted execution environment (TEE),
e.g., Intel SGX [22], as the starting point. The SGX-based
third party is responsible for evaluating the value of rulesets
and checking the execution integrity of DPI services without
leaking the privacy of DPI rulesets. Different from existing
TEE-based solutions [18], [19], our scheme requires only
one SGX-enabled device and thus can be agilely deployed
in the current cloud infrastructure. To address the second
challenge, we devise a lightweight authentication method for
DPI rulesets. With authenticated DPI rulesets, any operations
can be directly recorded in a tamper-proof manner, facilitating
fast proof generation. The proofs can be further verified by
checking whether these operations are consistent with packet
payloads without requiring the verifier to maintain the entire
ruleset. In addition, we propose a commitment-based delayed
sampling approach that requires the cloud to bind succinct exe-
cution assurances, i.e., commitments, with packets at runtime.
Proofs for sampled packets can then be efficiently verified
afterward while resisting potential cloud cheating behaviors.

In summary, our contributions are three-fold:
• We propose a privacy-preserving verification framework

to ensure the execution integrity of DPI services in clouds
without revealing DPI rulesets. Especially, it leverages one
trusted third party to perform privacy-preserving and trustwor-
thy ruleset evaluation and DPI execution verification.
• Our scheme is lightweight and secure. It introduces a

lightweight authentication method for DPI rulesets to achieve
fast proof generation and verification. Meanwhile, it employs
a commitment-based delayed sampling technique to reduce
overall verification costs while resisting the cloud cheating
behaviors.
• We theoretically analyze the security of the proposed

scheme and implement a prototype system based on Click
modules. The experimental results with real traffic show that
our scheme introduces negligible real-time overhead of about
10-20 microseconds.

II. RELATED WORK

Verifiable middlebox execution. With the advent of net-
work functions as a service, recent proposals explored how
to ensure the execution correctness of outsourced middle-
boxes. Some researchers envision porting remote middlebox
services into trusted execution environments based on trusted
hardware [18], [19], e.g., Intel SGX. The heavy depen-
dence on trusted hardware would incur sophisticated develop-
ment/deployment overhead and possible performance degrada-
tion, making the solution hard to be adopted by real businesses.
Contrastly, we use only one TEE-enabled server which can
be easily deployed in the existing cloud infrastructure. Other
research arts [11], [12] verify the execution correctness of
remote middlebox services by duplicating middlebox execu-
tion in local environments. Unfortunately, they would leak the
privacy of DPI rulesets. Another work called vSFC [23] checks
the correctness of the outsourced path traversal in the network
layer, yet fails to ensure whether middlebox applications that
deal with L7 protocols run faithfully.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY-PRESERVING AND LIGHTWEIGHT VERIFICATION OF DPI IN CLOUDS 3

TABLE I
COMPARISON OF REPRESENTATIVE SOLUTIONS FOR COMPUTATION VERIFICATION

Cryptographic verification methods. Researchers from
the cryptographic community propose a series of primitives
to achieve common verification, including zero knowledge
proof (ZKP) protocols [15], blind signatures [20], anonymous
credential schemes [21], and authenticated data structures [16],
[17]. ZKP protocols [15] can verify generic computations
while preserving the input privacy. However, they cannot be
applied in the network context due to huge proof generation
costs (several orders of magnitude higher than the original
execution). Blind signatures [20] obtain signatures without
leaking the messages to be signed, and anonymous credential
schemes [21] achieve privacy-preserving identification of some
identity statements. However, they cannot check the compu-
tation integrity of middlebox services. Another primitive of
authenticated data structures can ensure the correct execution
of pattern-matching queries over outsourced databases [16],
[17]. While the scheme proposed by Papadopoulos [16] only
supports single-pattern matching, Zhou et al. [17] focus on
verifying the correctness of multi-pattern matching operations,
which is more relevant to our work. However, both of them
incur high computation and communication overhead and thus
fail to be applied in the network context.

Network-wide invariant verification. A line of work veri-
fies whether configurations of network elements are compliant
with network-wide invariants like network reachability or iso-
lation. VMN [24] models various network elements, including
routers and middleboxes, as a forwarding model with a set of
abstract packet classes. To facilitate fast and scalable network
verification, VMN divides a network into several subnetworks
and verifies invariants in each subnetwork. Besides the above
static verification of network configurations, Buzz [25] is
proposed to test the correctness of network policies with
middleboxes via probing packets. However, these efforts work
in trusted network environments. In contrast, we focus on
bringing execution assurance of DPI services deployed in the
untrusted cloud.

Privacy-preserving middleboxes. Some research advance-
ments protect the privacy of enterprise traffic when using
in-the-cloud middleboxes. BlindBox [26] develops encrypted
token matching to enable privacy-preserving DPI services.
Embark [9] supports a wide spectrum of middlebox services
like load balancers and firewalls. PrivDPI [27] further reduces
the setup delay in achieving privacy-Preserving encrypted
traffic inspection. These studies are somewhat orthogonal to
our work that aims to verify the computation integrity of
outsourced middlebox services.

Security and privacy countermeasures in cloud comput-
ing. Cyber security threats have drawn widespread attention
in the area of cloud computing [28] and mobile networks [29].
At the same time, related mitigation and defense techniques
are proposed to confront a wide variety of security and privacy
challenges. Almaiah et al. [30] devise a new hybrid encryption
method using the elliptic curve cryptosystem and hill cipher
algorithm to achieve secure data exchange over a mobile
ad hoc network. Adil et al. [31] introduce a lightweight
anonymous authentication technique to guarantee the authen-
ticity of operational devices and resolve black-hole attacks in
dynamic wireless sensor networks. In addition to the method
of excluding malicious nodes in networks [31], Al Hwaitat
et al. [32] improve the Particle Swarm Optimization (PSO)
algorithm to enhance the detection of jamming attack sources
over randomized mobile networks. The above studies are
orthogonal to our focus.

III. PROBLEM STATEMENT

A. System Setting

In the paper, we study a network service scenario where
enterprises adopt in-the-cloud DPI middleboxes to secure their
network with reduced capital and operational costs. Usually,
the cloud shows available DPI network services equipped with
different ruleset qualities, peak traffic processing capabilities,
etc. The enterprise specifies a deployment topology of remote
DPI services with desired SLAs. In particular, the enterprise
sets up a gateway (GW) in its own network, similar to [5],
[9], [11]. The GW is responsible for directing its traffic to the
cloud and performing related operations for subsequent DPI
verification.

B. Threat Model

Untrusted cloud. The cloud is not fully trusted by enter-
prise customers [9], [11]. A wide range of abnormities may
affect the correctness of DPI execution. First, potential net-
work misconfigurations, unreliable software implementations,
and unpredictable hardware failures may result in network
errors [33]. Second, the cloud may deliberately make traffic
bypass desired DPI functions due to economic incentives.
For example, it may obtain profits with minimal resource
consumption or conceal sudden network failures. More impor-
tantly, we study a strong attack model where the cloud
may confound any detection or verification methods of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

enterprise. It may launch coward attacks and only process
special packets that are used for detection.

Honest-but-curious enterprises. The GW in the enterprise
customer is trusted. It faithfully performs verification-related
operations. However, it may try to steal rulesets installed in
the remote DPI services. For instance, network attackers may
pretend to be normal customers to probe DPI rulesets and
further launch stealthy network attacks. In addition, as DPI
rulesets are critical intelligence properties of the cloud, a busi-
ness competitor may be motivated to obtain the rulesets to
further improve its own DPI rulesets.

Therefore, our security objective is to verify the execution
integrity of in-the-cloud DPI services against untrusted clouds
while preserving the privacy of DPI rulesets against curious
enterprise customers. We assume that the cloud has no incen-
tive to make any deviation after faithfully performing DPI
functions. Other network attacks that lead to packet traversing
deviations are not our focus and can be orthogonally addressed
by existing path validation protocols [23].

C. Preliminaries

DPI services. We briefly look at how DPI services pro-
cess packets. DPI devices like network intrusion detection
systems (NIDSs) [1], [2] inspect packet payloads and apply
multi-pattern string matching based on DPI rulesets to discover
malicious patterns in network flows. As the most popular
string-matching algorithm, Aho-Corasick (AC) algorithm [34]
has been widely applied in contemporary DPI services, includ-
ing Snort [1], Suricate [2], ModSecurity [3], and CloudFlare’s
Web Application Firewall [4]. It constructs a deterministic
finite automaton (DFA) based on the pattern ruleset and
outputs all matched strings when scanning the query string
over the DFA.

In detail, the DFA is built in two phases. First, a trie tree
is a prefix tree where each pattern string is denoted as a path
from the root to a node and each node from the root shows
the common prefix. All edges appended in the current stage
are named as forward transitions. Meanwhile, two types of
additional edges, called failP and suffixP pointers, are added
to each node. Specifically, failP pointers are used to achieve
an efficient transition from a longer suffix to a shorter one,
when there is no eligible edge in the forward transition. The
suffixP pointer of a node represents the longest suffixes of the
node contained in the ruleset. That means, if the node v is
traversed when searching the matched prefixes for the query q
on the trie, we can efficiently derive all suffixes for the string
along the path from the root to v by backtracing from v along
the suffixP pointer until the root is visited.

Figure 1 shows an example of the AC automaton for the
pattern set {“eds”, “d”, “ti”, “tied”, “tic”}. The AC automaton
traverses the tree from the root and takes one character from
the query string in order. For each input character, if the current
node has an eligible edge, the automaton moves along the edge
to the child node and outputs the matched patterns at present
by iteratively backtracing along suffixP pointers. If there is no
such edge, it visits the failP pointers to discover a node that

Fig. 1. An example of AC automaton for the ruleset {“eds”, “d”, “ti”, “tied”,
“tic”}. All patterns end with a gray node. The black lines show the forward
transitions, the blue lines represent failP pointers, the red lines denote suffixP
pointers.

maintains the edge corresponding to the character for further
traversal. Finally, all matched patterns are derived once the last
character in the query is processed. Take a query string “stieds”
as an example. The traversing nodes and corresponding output
patterns are v0 () → v5 () → v6 (“ti”) → v7 () → v8 (“tied”,
“d”) → v3 (“eds”).

As for regular expression matching, DPI devices usually
extract patterns from the regular expressions and perform the
exact string as the first step. In our work, we focus on
the exact multi-pattern matching process based on the AC
automaton, which will also be useful for the verification of
regular expression matching.

SGX. Intel Software Guard Extension (SGX) offers integrity
and confidentiality protection for user-level code and data
while merely trusting on-chip security engines [22]. Con-
cretely, SGX is a set of secure instructions integrated by
specific Intel CPUs such as Skylake or Icelake, which can
build a trusted execution environment called enclave. Any
access to enclave memory is forbidden. Meanwhile, one core
technique for SGX is the remote attestation that attests whether
the software in the enclave is faithfully initialized and runs.

For the sake of simplicity, we follow the formal SGX model.
There is an attestation key pair (skTEE, pkTEE) generated by
an enclave instance and an existentially unforgeable signature
scheme named Σ. An enclave can compute a digital signature
σ = Σ.Sign(skTEE, Φ, out) as the attestation proof. The
attestation can be further verified via Σ.Veri(pkTEE, σ, Φ, out)
to demonstrate that the output out is indeed produced by the
software Φ launched in the enclave.

Cryptographic accumulator. A cryptographic accumulator
combines a large set of values into one succinct value [35],
[36]. In the literature, there are a number of cryptographic
constructions, each with varied functionalities and security
properties. Known cryptographic accumulators are constructed
based on Merkle hash trees [37], RSA [38], and bilinear
maps [39]. They are called dynamic cryptographic accumu-
lators, since they support both additions and deletions of
elements. Meanwhile, they can generate a witness or proof
of membership to prove that an element belongs to the set.
They basically provide two security properties: 1) correctness
meaning that an honest witness can always prove membership
for every element in the accumulator; 2) soundness denoting

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY-PRESERVING AND LIGHTWEIGHT VERIFICATION OF DPI IN CLOUDS 5

Fig. 2. The workflow of the proposed scheme.

that no valid witness can be constructed to prove membership
for every element not in the accumulator. They are broadly
applied in many applications like membership revocation in
ID escrow systems. In the paper, we customize cryptographic
accumulators according to our specific design requirements
(see Sec. V-B).

IV. DESIGN OVERVIEW

In this section, we introduce a practical scheme that verifies
the execution correctness of in-the-cloud DPI services while
meeting all goals specified in Section I. One intuitive solution
is that the GW first randomly selects a small subset of
packets and then verifies the execution proofs returned from
remote DPI services via local duplicated execution. However,
to simultaneously achieve all goals, we face the following key
challenges:

Challenge 1: There is a natural conflict between the require-
ments of enterprise customers and the cloud. As for the enter-
prise customers, they need to estimate the value of rulesets
and detect whether the desired rulesets are used to process
traffic. Moreover, middlebox execution proofs usually need to
include the knowledge of DPI rulesets [11], [12]. However,
these requirements inevitably breach the ruleset privacy from
the perspective of the cloud.

Challenge 2: It is challenging to construct proofs for the
execution of complex DPI services in a lightweight manner.
Existing efforts either require the verifier to store the whole
rulesets [11], [12], or introduce unacceptable overhead [17].
For example, the work most related to us [17] verifies the cor-
rectness of queries on authenticated AC automaton. It incurs
huge processing latency (about two orders of magnitude higher
than the latency of original queries) and a big proof size (about
ten times larger than the size of one packet).

Challenge 3: The sampling-based checking method is nec-
essary to reduce verification overhead yet would be disturbed
by the cloud cheating behaviors. The untrusted cloud may
treat packets preferentially, for instance, only perform sampled
packets. While researchers proposed the delayed-exposure
technique to defeat the sampling bias of merchant routers [40],
it cannot successfully resist the malicious cloud with unlimited
computation and storage power [12].

To overcome the above challenges, our scheme introduces
three types of entities: the cloud that runs DPI services,

enterprise customers that use remote DPI services and deploy
one gateway for verification, and one SGX-based trusted
third party that verifies DPI execution in a privacy-preserving
manner. Assuming that we have established secure channels
between the three entities, the high-level workflow of our
scheme consists of three stages:

Firstly, we propose a privacy-preserving verification frame-
work to guarantee the execution integrity of in-the-cloud DPI
services without leaking ruleset privacy. In particular, we intro-
duce a trusted third party, as shown in Fig. 2. It is developed
based on the technique of Intel SGX and is responsible for
ruleset evaluation and DPI verification in a privacy-preserving
and trustworthy manner (see Fig. 2(a) and Fig. 2(c)). Thus,
only evaluation and verification results are returned to the
enterprise without leaking the privacy of DPI rulesets. Related
details are described in Sec. V-A.

Secondly, we devise a lightweight DPI ruleset authenti-
cation algorithm, as depicted in Fig. 2(b). Before deploy-
ment of DPI services in the cloud, DPI rulesets are
authenticated by the SGX-based third party for security
and efficiency. The authenticated AC automaton accumu-
lates all matched patterns for each node in a tamper-proof
manner, enabling it to securely record any query opera-
tions. Therefore, DPI execution proofs can be efficiently
constructed by directly collecting all traversing nodes in
each query. Besides, the authentication method effectively
avoids the verifier always maintaining the whole rulesets
(see Sec. V-B).

Thirdly, to further reduce verification costs while defeat-
ing possible cheating behaviors of the cloud, we develop
the method of commitment-based DPI execution verification
as depicted in Fig. 2(c). Before the exposure of sampling
decisions, the cloud has to generate a commitment to prove
that all packets have been processed. Thus, our scheme not
only achieves efficient sampling-based verification, but also
prevents the cloud from performing bias treatments according
to which packets are sampled. All design details are presented
in Sec. V-C.

V. DESIGN DETAILS

In this section, we present the design details of our
scheme, including privacy-preserving and trustworthy rule-
set evaluation, lightweight DPI ruleset authentication, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE II
KEY NOTATIONS

commitment-based DPI execution verification. Table II lists
the key notations used in this paper.

A. Privacy-Preserving and Trustworthy Ruleset Evaluation

We leverage an SGX-based third party for ruleset evaluation,
so as to prevent the cloud from tampering with rulesets
when running DPI services. Since rulesets are transmitted
via a secure channel from the cloud to the enclave, the
privacy of rulesets is protected in the network. Meanwhile,
the rulesets’ privacy would not be leaked on the SGX platform
due to enclave memory encryption and isolation. We do not
focus on the side-channel attacks that may compromise the
data confidentiality of the enclave [41], because they can
be orthogonally addressed by existing side-channel defense
schemes like [42].

In detail, we perform a RuleEvaluation function in the
enclave to evaluate the ruleset values. It takes rulesets as input
(i.e., RuleSet), then generates a unique identifier RuleID and
evaluates the value of the ruleset denoted as RuleMeta (i.e.,
the ruleset metadata). In particular, RuleID is calculated using
a cryptographic hash function (SHA256) based on the ruleset
contents as follows:

RuleID = Hash(RuleSet) (1)

RuleMeta is calculated by counting the number of malicious
signatures. In addition, for the purpose of subsequent rule
verification, we also generate a key sk for the ruleset. All the

Algorithm 1 RuleEvaluation Function in the Enclave
Input: RuleSet
Output: RuleID ,RuleMeta, σSGX−e

1 RuleID = Hash(RuleSet);
2 sk = RNG(1λ);
3 RuleMeta = CountPatterns(RuleSet);
4 Store < RuleID ,RuleMeta, sk >;
5 σSGX−e = ΣSGX.Sign(Menclave,RuleID ||RuleMeta)

Algorithm 2 RuleSetup Function for Ruleset Authen-
tication in SGX Enclave

1 function RuleSetup(RuleSet ,RuleID ′):
2 if RuleID ′ ̸= Hash(RuleSet) then return err ;
3 Retrieve < RuleID , sk >;
4 Construct AC automaton T ;
5 rT .acc = AccGen(ϕ);
6 Let Q be a queue;
7 Q.Enqueue(rT);
8 while Q ̸= ∅ do
9 n = Q.Dequeue();

10 if pn is a pattern then
11 n.acc = AccUpdate(wsuffixP .acc, pn);
12 else
13 n.acc = n.wsuffixP .acc;

14 n.σn = HMAC(sk , n.nid||{n.w}||n.acc);
15 for all child nodes of n do
16 Q.Enqueue(n.w);

17 σSGX−s = ΣSGX.Sign(MRuleSetup, T);
18 return (T , σSGX−s);

information (i.e., RuleID , RuleMeta , sk) is securely stored
in the SGX platform via the SGX sealing technology [22].
Finally, the enclave signs the output RuleID and RuleMeta
to prove the trustworthiness of the evaluation results without
leaking ruleset privacy. The pseudocode of RuleEvaluation
function is shown in Algorithm 1.

B. Accumulator-Based Lightweight Ruleset Authentication

The ruleset authentication is performed by the trusted third
party for further proof construction and verification of DPI
execution. The third party first constructs the initial AC
automaton and then authenticates each node in the trie tree by
recording corresponding matched patterns in a tamper-proof
manner. Consequently, all nodes in a traversal path can be used
to construct proofs to demonstrate whether the DPI function
faithfully inspects packet payloads and outputs all matched
patterns in the ruleset. The whole authentication process is
shown in Algorithm 2.

To authenticate the AC automaton, each node stores a
tuple:(nid , {wi}i∈Σ∪{failP,suffixP}, acc, σn). nid is the iden-
tifier of each node, wi is the child node for the edge with a
character i, Σ is the set of all possible characters for the edges
in the AC automaton. wfailP and wsuffixP denote the nodes

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY-PRESERVING AND LIGHTWEIGHT VERIFICATION OF DPI IN CLOUDS 7

pointed via two special pointers failP and suffixP , respec-
tively. acc is the cryptographic accumulator of all suffixes of
the word represented by the path from the root to the current
node. This information is used to check the integrity of the
matched patterns for a query string. σn is a signature over the
information of the node, so as to prevent the cloud or other
attackers from tampering with the AC automaton. Note that,
acc of the root node (denoted as rT) is NULL, {wi} for the
leaf node (i.e., the node without child edges) is NULL as well.

Before authenticating the AC automaton, our scheme first
verifies whether the DPI ruleset is tampered with after the
ruleset evaluation. It recalculates the hash value based on
the ruleset and determines whether it is consistent with the
corresponding identifier securely stored in the SGX machine.
Then, it authenticates the AC automaton via a breadth-first
search approach. For each node, e.g., n, it retrieves the node
pointed by the suffixP pointer and gets its corresponding
accumulator, i.e., n.wsuffixP .acc. Then, it sets the accumulator
of the node according to whether the string from the root to
the current node (denoted as pn) is a pattern in the ruleset,
namely:

n.acc=

{
AccUpdate(n.wsuffixP .acc, pn), if pn ∈ RuleSet ,
n.wsuffixP .acc, if pn /∈ RuleSet .

(2)

The function AccUpadate is to update an accumulator by
adding an element (which will be described in the next
paragraph). Finally, it performs an HMAC function with sk
as the secret key to authenticate the node content:

σn = HMAC(sk , nid||{w}||acc). (3)

After finishing the traversal of the AC trie, the trusted third
party sends the authenticated AC automaton T along with
SGX signatures to the cloud.

Cryptographic hash based accumulator. We use cryp-
tographic accumulators to succinctly represent all matched
suffixes for a word from the path to a certain node. Below we
propose our accumulator construction with two key require-
ments and compare it with existing accumulator algorithms.

Our accumulator construction: In the paper, two proper-
ties for accumulators are desired: 1) efficiency; 2) collision
resistance. The former says the generation and verification
of an accumulator are efficient. The latter means that given
an accumulator (e.g., accS) for a set of values denoted
as S, no probabilistic polynomial-time (PPT) adversary can
construct another set (e.g., S′) with the same accumulator
accS . Thus, to realize these, we construct a cryptographic
hash-based accumulator scheme including three algorithms:
AccGen, AccUpadate, and AccVerify. Assume a list of values
denoted as S = {s1, s2, · · · , sn}, AccGen generates the
corresponding accumulator as:

AccGen({si}n
i=1) = Hash(Hash(Hash(s1||s2)|| · · ·)sn). (4)

AccUpdate updates the accumulator (e.g., acc) by adding a
new element (e.g., si) as:

AccUpdate(acc, si) = Hash(acc||si). (5)

AccVerify verifies whether the accumulator (e.g., acc) is
consistent with a member list (e.g., {s1, s2, · · · , sn}).

AccVerify(acc, {si}n
i=1) =

{
1, if AccGen({si}n

i=1) = acc,

0, if AccGen({si}n
i=1) ̸= acc.

(6)

Comparison with related methods: We notice that there
are extensive cryptographic accumulator constructions in
academia like RSA-based accumulators [38], bilinear-pairing-
based accumulators [39], and (dynamic) Merkle-tree-based
accumulators [37]. Although these accumulators provide
rich functions like proving membership and supporting ele-
ment addition and deletion as described in Sec. III-C, they
either incur forbidden computation overhead or huge storage
costs in the network context. For example, when using the
bilinear-pairing-based algorithm without a trapdoor, one recent
scheme [17] consumes 183ms when querying a sequence of
1000 letters in a ruleset containing 104 patterns, which is about
two orders of magnitude higher than the packet processing
latency of DPI services. The Merkle-tree-based solution has
to store internal nodes for verification. When using the ruleset
of Snort v3.0 [1], the maximum number of matched suffixes
of one node in AC automaton is about 32, and thus the storage
overhead for a single node would be log(32+1)×32B = 160B.

Compared with the above accumulator approaches, our
cryptographic hash-based accumulator construction in the
paper incurs small computation overhead (due to merely
conducting efficient hash functions) and constantly negligible
storage overhead for each node (due to using a hash value as
the accumulator). The property of collision resistance is held
by the cryptographic hash algorithms. Note that our construc-
tion achieves high efficiency (demonstrated in experiments in
Sec. VII-D) at the cost of a lack of rich functions like witness
generation in the accumulators [37], [38], [39]. Fortunately,
those functions are not required here.

C. Commitment-Based Efficient Verification of DPI Execution

This part describes how our scheme efficiently verifies the
integrity of the DPI execution while resisting cloud cheating
behaviors. Briefly, packets are first randomly sampled at the
enterprise gateways, then directed to the in-the-cloud DPI
services. The cloud outputs packets along with a commitment
message to prove that all packets have been processed. Then,
verification requests (i.e., sampled packets) are sent to the
trusted third party, which performs the verification via the
commitment and specific proofs from the cloud. Finally, only
trustworthy verification results are sent to enterprises without
leaking the privacy of DPI rulesets. Below we present the
design details at enterprise gateways, clouds, and the third
party, respectively. We end by introducing how to deal with
middlebox service chains.

1) Packet Sampling at Enterprise Gateways: The enterprise
GW redirects enterprise traffic to the cloud and randomly
samples a small set of packets for verification. Facing the
continuous streaming traffic, we divide packets into each batch
according to the packet arriving timing and the batch size.
Meanwhile, we conduct the verification at the granularity

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. The customized packet headers for verification. The first two octets show meta information of the option field, and the last one octet represents the
end of entire field. The intermediate subfields marked blue are leveraged by our design.

of network flow, since DPI functions inspect the network
payloads at the flow level.

In detail, GW inserts four contents into unused header fields
of packets, namely, 16-bit BatchID as the unique identifier of
a batch, 16-bit FlowID as the flow identifier in a batch, 2-
bit Type indicating the type of packets, and 256-bit Proof pkt

representing the succinct proof for a packet e.g., pkt , generated
from the previous middlebox for verification (which will be
used in Sec. V-C.4). The detailed customized packet header
for verification is shown in Fig. 3. The type of “00” represents
normal data packet denoted as Data, “01” shows the special
packets indicating the end of a batch called BatchEND, and
“10” depicts packets triggering the verification denoted as
Request. It is worth noting that we set the sizes of these
fields so that they can accommodate practical scenarios. For
example, in an OC-192 link (10 Gbps) with up to 107 packets
per second, 16-bit BatchID and 16-bit FlowID can label every
packet uniquely, even in the extreme case where small flows
dominate.

Assuming a batch includes R network flows, GW per-
forms the GWProcess function as shown in Algorithm 3.
To determine the flow samples, GW maintains BatchIDnow
denoting the current batch identifier, FlowSet representing
a mapping between the flow identifier FlowID and corre-
sponding five-tuple values (i.e., source IP address, destination
IP address, source port, destination port, and the protocol
number), a counter r recording the number of flows in the
batch, the sampled flows {s1, s2, · · · , sm}(si ∈ [1, R]). When
receiving a packet, GW assigns a FlowID to the packet
based on its five-tuple values and checks whether the flow
information is in FlowSet (lines 5-11 in Algorithm 3). Then,
GW samples packets and caches the selected ones (lines 14-
15 in Algorithm 3). Finally, GW embeds BatchID , FlowID ,
and Type into the packet and forwards it to the cloud. Note
that, at the end of the batch, GW sends a special packet, i.e.,
BatchEND, to the cloud.

2) Proof Generation at in-the-Cloud DPI Devices: DPI
services process packets and follow a two-stage proof gen-
eration. First, the DPI services efficiently generate a succinct
commitment message (denoted as ζ) to indicate that a batch
of packets are honestly inspected by DPI services at runtime.
Second, they produce detailed proofs (denoted as π) for the
delayed verification requests.

Succinct commitment construction. The commitment
message is used to prevent the cloud from evading detection
via merely processing sampled packets. To achieve the goal,
we employ a widely applied structure, i.e., Merkle hash

Algorithm 3 GWProcess Function at GW

1 function GWProcess(pkt, {s1, s2, · · · , sm}):
2 FlowID = Find(FlowSet , pkt.(5-tuple));
3 if FlowID = NULL then
4 r + +;
5 if r > R then
6 Send BatchEND;
7 BatchIDnow + +;
8 Clear FlowSet ;
9 FlowID = r = 1;

10 Store < pkt.(5-tuple),FlowID > in
FlowSet ;

11 Re-generate {s1, s2, · · · , sm};

12 FlowID = r;
13 Store < pkt.(5-tuple),FlowID > in FlowSet ;

14 if FlowID in {s1, s2, · · · , sm} then
15 Store pkt;

16 Embed BatchIDnow, FlowID and Type in pkt;
17 Forward pkt;

tree [43], as a case study. It produces a digest for a set of
data by building a complete binary tree from the bottom up
with a one-way hash function. Thus, by leveraging leaf-to-root
nodes, it supports membership tests with logarithmic costs.

As shown in Algorithm 4, when a data packet arrives, the
DPI device inspects its payloads and detects malicious patterns
by traversing the AC automaton. In particular, in order to
produce the commitment, it first generates proofs for flows
and then constructs a Merkle tree with these proofs as leaf
nodes. The proof for a flow demonstrates that the DPI service
has honestly traversed the authenticated AC automaton along
the payloads of all packets in the flow, which is constructed
as:

Proof f = Proof f + Proof pkt · rp, (7)

rp is a pseudo-random number generated by a pseudo-random
function U(e), e is the seed of this pseudo-random function
and is bound to the packet content. Proof pkt records query
operations for a packet pkt as:

Proof pkt = Hash({ni}||{{pj}i}). (8)

{ni} is a sequence of nodes when traversing the authenticated
AC automaton according to the packet payload. Note that it
does not include the nodes pointed by the suffixP pointers

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY-PRESERVING AND LIGHTWEIGHT VERIFICATION OF DPI IN CLOUDS 9

Algorithm 4 DPIProofGen Function at in-the-Cloud
DPI Devices

1 function DPIProofGen(pkt):
2 if (pkt is a Data packet) then
3 Let N, P be arrays;
4 str = pkt.payload ;
5 n = rT ;
6 for (i = 1 to Len(str)) & !(Stopping

condition) do
7 while (n.w(str[i]) = null) & (n ̸= rootT)

do
8 N.Insert(n);
9 n = n.w(failP);

10 if (n.w(str[i]) = null) & (n = rootT)
then

11 N.Insert(n);
12 Continue;

13 n = n.w(str[i]);
14 N.Insert(n);
15 P .Insert(tracePatterns(n));

16 Proof(pkt) = Hash(P ||N);
17 rp = U(e);
18 Proof(pkt.FlowID)+ = Proof(pkt) · rp;
19 Forward or Drop pkt;

20 if (pkt is a BatchEND packet) then
21 Construct Merkle hash tree MHT ;
22 Send ζ = rMHT to GW;

in the traversing path. {pj}i denotes output patterns when
arriving at the node ni. The authenticated node information
is later used to check the integrity of returned patterns.

When receiving the BatchEND packet, the DPI device
generates a commitment ζ based on the Merkle hash tree
(lines 20-22 in Algorithm 4). The leaf nodes of the hash tree
are the hash values of the flow-level DPI execution proofs.
By constructing a binary tree with a hash function from the
bottom up, the value of the root node is the DPI execution
commitment ζ which is further sent to the enterprise customer.
Note that, the cloud could only store all leaf nodes and
remove internal nodes in the Merkle tree after sending the
commitment, so as to avoid extra storage consumption.

In practice, one remote DPI function would be launched
as multiple instances for load balance. In this case, packets
belonging to the same batch may be directed into dif-
ferent instances, making the commitment generation diffi-
cult. Regarding this, we can follow the idea proposed by
Zhang et al. [12] and develop a two-tier commitment scheme.
Here, each DPI instance generates a local commitment for the
received flows as usual. Then a controller is set to generate the
global commitment by building a Merkle tree with all local
commitments as leaves. The key observation behind is that the
verification is performed at the granularity of network flows,
meanwhile, the packets belonging to one flow are forwarded
to the same instance.

Detailed proof generation for delayed verification
requests. When the cloud receives a delayed verification
request (denoted as reqFlow), it produces detailed proofs
as follows. Take the flow f as an example. The remote
DPI service feeds all packets of the request flow (e.g.,
{pkt1, pkt2, · · · pktk}) to the AC automaton to obtain the
packet-related proof information. For each packet (e.g., pkti),
the detailed proof denoted as dProof pkti consists of all
nodes during the traversal of AC automaton while excluding
those accessed via the suffixP pointers and the correspond-
ing output patterns at each node. That is, dProof pkti =
{(n1, {px}1), (n2, {py}2), · · · , (nt, {pz}t)}. Via such a
detailed proof, we can concatenate all nodes in order and
corresponding matched patterns in order, so as to generate
Proof pkt (see Eq.(8)) and further produce Proof f (see Eq.(7))
in verification.

After finishing the traversal on the AC automaton, the
cloud returns the auxiliary information Aux to achieve
the verification of the commitment. Aux includes the leaf
node corresponding to the reqFlow in the hash tree and
the sibling nodes on the path from the requested leaf
node to the root node, denoted as {Γ1, Γ2, · · · , Γt}. Finally,
the detailed proof information π for the sampled flow f
is (dProof pkt1 , dProof pkt2 , · · · , dProof pktk , Aux). All the
information is sent to the trusted third party via a secure
channel. It is obvious that the above procedures are performed
after all packets are processed and thus do not affect the
real-time packet processing capability of DPI services.

3) DPI Verification at Trusted Third Party: The SGX-based
third party verifies the execution integrity of in-the-cloud DPI
services after the detailed proofs from the cloud.

The verification proceeds as follows: 1) The third party
retrieves the key sk for the ruleset used by the DPI services
and verifies the authenticity of each node in the detailed proof
via the node signature (see Eq. (3)). 2) It verifies whether
the traversal path on the AC automaton is consistent with the
flow payloads. Since all nodes include a set of child pointers,
we can easily check the correctness of the traversal path for the
specific flow payloads. 3) It checks the integrity of the matched
patterns for each packet. To achieve this, it accumulates
all output patterns of each node in the detailed proof and
compares the result with the accumulator of each node (see
Equation (6)). 4) It verifies the proof information for the
sampled flow. With all verified proofs for packets, we construct
the flow-level proof as shown in Eq. (7), then compare its hash
value with Γ1 in the auxiliary proof Aux. 5) We check the
correctness of the commitment ζ to ensure that the packets
are indeed processed by the cloud at runtime. Specifically, the
trusted third party uses the auxiliary information Aux in π
to recompute the root node of the Merkle hash tree (e.g., ζ ′

shown in Eq. (9)) and compare it with the commitment ζ.

ζ ′ = Hash(Hash(Γ1||Γ2) · · · ||Γt) (9)

Finally, the trusted third party returns the verification results
to the enterprise user along with the corresponding SGX sig-
nature. Since the entire verification process is only performed
by the SGX-based third party, the privacy of the remote ruleset
would not be leaked.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. An example of a middlebox service chain.

Note that, if an enterprise customer requests to check
multiple network flows in the same batch, the proof infor-
mation returned by the cloud can be further de-duplicated
to reduce the communication overhead. For example, the
traversed nodes along with the matched suffixes are stored only
once , while other identical node traversals can be represented
using indexes. Also, the auxiliary proofs for different requests
may share the same nodes in the Merkle hash tree. The shared
information would be transferred only once for efficiency.

4) Verification of Middlebox Service Chain : In practice,
enterprise customers deploy a middlebox service chain to
initiate an ordered sequence of network functions that must
be applied to a certain class of packets. As illustrated in
Fig. 4, packets from one GW are sequentially processed by a
web application firewall, an intrusion detection system, and a
traffic analysis system. Regarding this, we extend our design
to ensure the integrity of chained middlebox services.

We need to check the execution sequence of multiple
middleboxes for each batch of packets besides the execu-
tion integrity of individual middleboxes. To achieve this,
we employ a technique of hash chaining. That is, proofs
generated from one individual MB on the chain encode the
proofs of the former MB via a cryptographic hash function as
follows:

Proof pkt
t+1 = Hash({ni}||{{pj}i}||Proof pkt

t), (10)

where Proof pkt
t+1 means the proof generated by MBt+1 for a

packet pkt, Proof pkt
t is the proof of MBt. To facilitate the

above computation, Proof pkt
t is embedded in the header of

the packet p as shown in Fig. 3. These packet-level proofs
are used to update the corresponding flow-level proofs, e.g.,
Proof f

t+1. Finally, the commitment, e.g., ζt+1, is generated by
the middlebox service, e.g., MBt+1, via all proof-level proofs
(e.g., Proof f

t+1(·)) in a batch as described before.
When the trusted third party is going to verify whether a

middlebox chain faithfully runs, it sequentially checks proofs
for each individual middlebox. For one middlebox and one
sampled flow, e.g., MBt+1 and f , it performs the verification
as illustrated in Sec. V-C.3. The only difference is that, in step
three, it constructs the proof references for each packet based
on the matched patterns, the nodes in the traversal path on the
AC automaton of MBt+1, and the proof references generated
by the previous middlebox, e.g., MBt. Therefore, we can
ensure that the packets are correctly processed by the expected
MB chain.

Remark: In the paper, we focus on verifying the execution
integrity of the AC algorithm for remote DPI services, since
it is the most popular string-matching function and has been
applied in many network applications like intrusion detec-
tion systems (Snort [1] and Suricata [2]) and Web applica-

tion firewalls (Modsecurity [3] and CloudFlare’s WAF [4]).
We notice that several research efforts have been attempted
to optimize the performance of string pattern matching for
network applications [44], [45]. For example, DFC [44] is a
memory-efficient and cache-friendly data structure to deliver
high-performance string pattern matching. Hyperscan [45]
devises a fast multi-pattern regex matcher with graph-based
regular expression decomposition. How to deal with these
efficient pattern-matching algorithms in DPI verification is an
interesting topic in the future.

VI. SECURITY ANALYSIS

We theoretically analyze how the proposed scheme defeats
both the untrusted cloud operators and the honest-but-curious
enterprise customers.

Security against untrusted cloud providers. We ana-
lyze the correctness and then the soundness of the scheme.
The correctness of the scheme follows the correctness of
the authenticated AC automaton. If the remote DPI service
faithfully inspects the packet payloads over the authenticated
AC automaton, it can derive the desired output patterns and
traversal paths on the trie for each packet. Thus, it can
construct the expected packet-level proofs and further produce
the correct flow-level proofs. Moreover, if the DPI services
honestly process all network flows in a batch, it is able to
build the intended Merkle tree and produce the valid auxiliary
proofs for the delayed verification requests.

In turn, the correctness of the proof is guaranteed as follows:
1) HMAC-based signatures ensure the authenticity of nodes
in AC automaton since the HMAC function is performed
by the SGX-based third party and is collision-resistant; 2)
verification of the traversal path on the trie according to the
flow’s payloads guarantees the expected inspection of DPI
services; 3) the integrity of matched patterns is ensured via
the collision-resistant accumulators of nodes in the detailed
proof; 4) the consistency between the derived flow-level proof
with the value of the leaf node of the Merkle tree and the cor-
rectness of the commitment guarantee that packet processing
is completed at run-time.

The soundness of our scheme is said by detecting adversar-
ial behaviors with high probability. It is determined by the
sampling probability and the security of the cryptographic
hash function. In the scheme, for a sampled flow, the cloud
provider has to ensure that the list of nodes in the detailed
proof is consistent with the payloads of the requested flow.
Otherwise, the scheme directly rejects the incorrect proofs. All
other verification processes (including checking signatures of
nodes, accumulators, and commitment) rely on the security of
the cryptographic hash function.

In terms of the integrity of processing all packets, we ana-
lyze the soundness error of our scheme incurred by the
sampling-based verification strategy. We consider a strong
adversary that is aware of our verification strategy and adap-
tively processes a portion of flows in a batch. Assume that
the ratio of the number of network flows correctly processed
by the in-the-cloud DPI device in a batch is γ. For any
sampled flow, the probability of obtaining the correct proof
is (γ + (1 − γ)q), where q is the probability of successfully

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY-PRESERVING AND LIGHTWEIGHT VERIFICATION OF DPI IN CLOUDS 11

guessing the proof. Thus, for a batch including f network
flows, the probability of the adversary evading the verification
is:

Prevade = (γ + (1− γ)q)f ·p, (11)

where p is the sampling probability of the enterprise customer.
Obliviously, the soundness error (i.e., Prevade) is tunable ,
which is negatively related to the sampling probability p and
positively related to the honest ratio γ and the successfully
guessing probability q. Take an example to understand the
soundness of the proposed scheme where 80% of flows are
faithfully processed , and q is 10%. Only sampling 35 flows
in a batch with any size can guarantee that the soundness error
is about 0.1%.

Security against honest-but-curious enterprise cus-
tomers. Our scheme successfully preserves the privacy of in-
the-cloud DPI rulesets, because only commitment messages
(from the cloud) and boolean results (from the third party) are
sent to the customers. Other ruleset-related information is pro-
tected in an end-to-end manner. Namely, the in-transmission
data privacy is ensured via encrypted channels, meanwhile, the
in-use and at-rest data privacy is guaranteed via the SGX-based
third party.

VII. IMPLEMENTATION AND EVALUATION

A. Implementation and Experimental Setup

We implement a prototype system including an SGX-based
third party, an enterprise gateway, and a DPI function. Both
the gateway and the DPI function are written in C++ and built
as Click instances [46] with customized elements based on
the Crypto++ library. All enclave functions of the SGX-based
third party are implemented in C++ with the Crypto++ library.
The communication channels among the above three entities
are built via TCP sockets.

We deploy the enterprise gateway and the DPI function in
the AWS EC2 t2xlarge instances in Ubuntu Server 16.04 LTS
(4 vcpus and 16 GB memory) in the same region. Meanwhile,
all enclave functions of the third party are developed using
Intel SGX SDK 2.6 and run on an Intel Core i5-8500 Skylake
3.0GHz CPU with 16GB RAM and SGX enabled. All C++
algorithms are compiled in the same optimization level (-O2).

To evaluate the effectiveness and efficiency of the prototype,
we conduct the following comparison experiments:
• Baseline denotes the original AC automaton without

augmenting our verification-related functions.
• VeriDPI depicts the relevant functions for the AC automa-

ton with the proposed verification scheme.
Besides, we use two open-source rulesets: Snort v3.0 [1]
(abbreviated as Snort) and Emerging Threats Open1 (abbre-
viated as ET-Open). Snort represents a small ruleset with
3459 patterns, while ET-Open is a large ruleset with 26763 pat-
terns. Both real traffic2 and synthetic traces are used. The
latter traffic is generated with various packet sizes of 400B,

1Emerging Threats: Open Source Signatures, online at
https://rules.emergingthreats.net/open/snort-2.9.0/rules/

2m57-Patents Scenario: A public trace file released by an IDS system Bro,
online at http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario

TABLE III
PERFORMANCE OF DIFFERENT RULESET EVALUATION

TABLE IV
PERFORMANCE OF DIFFERENT RULESET AUTHENTICATION

800B, and 1200B. Especially, since the performance of the DPI
function is related to the content of packet payloads, we con-
struct malicious traffic by selecting different percentages of
packets (25%, 50%, 100%) from the synthetic network streams
and inserting random pattern strings from rulesets into them.
Besides, to facilitate the construction of the Merkle tree, we set
up a batch of traffic with 1024 network flows.

B. Performance of Ruleset Evaluation and Authentication

We estimate the performance of ruleset evaluation and
authentication for both Snort and ET-Open. Since the compu-
tation overhead of the hash function is positively related to the
input size, directly concatenating and hashing all the contents
of the ruleset may introduce significant overhead. Therefore,
we perform per-line compression of the ruleset contents before
hashing rules, similar to [47].

As shown in Table III, the latency of ruleset eval-
uation increases with the size of the ruleset. This is
because the hashing time grows linearly with the input
size. While the evaluation latency for the ET-Open rule-
set is 0.49 seconds, such pre-processing overhead is one-
time and would not affect the real-time performance of DPI
services.

As for the performance of ruleset authentication, we com-
pare both the original AC trie construction algorithm (as
the baseline) and the ruleset authentication algorithm (i.e.,
Algorithm 2). Both of them are performed outside and inside
the enclave. We measure the authentication performance of
various rulesets and compare it with the baseline. As shown
in Table IV, the latency of the AC automaton setup increases
with the size of the rulesets. Compared with the baseline, AC
automaton authentication in the proposed scheme introduces
extra computation overhead due to the generation of crypto-
graphic accumulators and signatures, resulting in the additional
latency of 0.09s for Snort and 0.77s for ET-Open. Besides,
the latency of both the baseline and our scheme grows when
running them in the enclaves. For a large ruleset ET-Open, the
proposed scheme takes about 1.72s to authenticate the ruleset
inside the enclave. Such overhead is acceptable since these

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Processing latency at the gateway without and with our scheme for
real trace.

operations incur one-time overhead and would not affect the
real-time packet processing capability of DPI functions.

In addition, we evaluate the extra storage space introduced
by the AC authentication scheme. From Table IV, we can see
that the additional storage overhead increases with the size of
the rulesets. As expected, the additional overhead is positively
proportional to the number of nodes in the AC automaton. For
the rulesets Snort and ET-Open, the extra overhead is 2MB and
21MB, respectively.

C. Gateway Performance

In our scheme, GW simply preprocesses packets. It embeds
customized identifiers in packets and stores sampled ones.
We evaluate both processing delay and storage overhead intro-
duced at GW for a batch of packets. Figure 5 shows that over
95% of packets experience less than 9µs in GW. Meanwhile,
our scheme increases the packet processing latency at the
gateway by about 2µs compared with the latency for merely
packet forwarding (i.e., baseline). Besides, it is marginal com-
pared with the end-to-end transmission latency (see Fig. 13
and Fig. 14).

In addition, the storage overhead at the gateway is insignif-
icant, as it only keeps a small portion of the traffic. When
experimenting with the real traffic, the gateway randomly
caches 35 network flows in order to verify the integrity of
DPI execution with a 0.1% soundness error. For a batch of
the traffic of 8.52MB, the storage overhead of the gateway is
only 120KB, accounting for 1.5% of the total traffic size.

D. Performance of Verifiable in-the-Cloud DPI Services

We assess the impact of the proposed verification scheme
on the performance of in-the-cloud DPI services in terms
of processing latency, throughput, end-to-end latency, and
storage costs. We set the query performance of the original
AC automaton as the baseline.

Processing latency. We first experimentally evaluate the
impact of our scheme on the packet processing latency of
DPI functions with varied packet sizes and different malicious
traffic ratios. Figure 8 and Figure 9 describe the processing
latency of DPI functions using the rulesets Snort and ET-
Open, respectively. We can see that the processing latency
increases as the percentage of malicious traffic increases. The
reason for the phenomenon is that when the packet payloads

Fig. 6. Processing latency of DPI services for real traffic using the Snort
ruleset.

Fig. 7. Processing latency of DPI services for real traffic using the ET-Open
ruleset.

contain malicious pattern strings, the DPI service conducts
more operations, such as retrieving matched pattern strings via
suffixP pointers and generating proofs for them. Meanwhile,
the processing latency gradually grows with the increasing
size of packets. When using the ET-Open ruleset, the packet
processing latency is much longer than that based on the
Snort ruleset. This is because the ET-Open ruleset would
match more packet payloads which lead to longer processing
latency. In addition to the aforementioned trends, the proposed
scheme introduces an additional processing delay of about
10 ∼ 20µs. The delay of the microsecond level is basically
negligible compared with the packet transmission delay of the
millisecond level in the whole link.

We also evaluate the performance of DPI functions on real
traffic. Figure 6 and Figure 7 show the results with Snort and
ET-Open installed, respectively. Similar to the synthetic traffic,
the processing latency for real traffic increases as the packet
size grows. Especially, the processing latency on real traffic is
less than 10µs on average. The possible reason is that the real
traffic generally does not match malicious pattern strings in
the ruleset and thus introduces less computational overhead.

Throughput. To further estimate the impact of our scheme
on DPI processing capacity, we measure the throughput of the
DPI services without and with the proposed scheme on both
synthetic and real traffic. Figure 10 depicts the throughput
of the DPI functions with the Snort ruleset installed when
processing different sizes of packets with different malicious
traffic ratios. The results illustrate that the throughput of the
DPI functions decreases slightly as the percentage of malicious
traffic increases. At the same time, the throughput of the DPI
services increases slightly with the growing size of packet
payloads. Especially, Figure 10 (b) shows that our scheme

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY-PRESERVING AND LIGHTWEIGHT VERIFICATION OF DPI IN CLOUDS 13

Fig. 8. Processing time of DPI services without and with our scheme for varied synthetic traffic (using Snort).

Fig. 9. Processing time of DPI services without and with our scheme for varied synthetic traffic (using ET-Open).

Fig. 10. Throughput of DPI services without and with our scheme for varied synthetic traffic (using Snort).

Fig. 11. Throughput of DPI services without and with our scheme for varied synthetic traffic (using ET-Open).

has less impact on the throughput of the DPI services when
processing traffic with 50% malicious flows. The possible
reason is that, compared with the other two types of synthetic
traffic, this synthetic traffic matches fewer strings or matches
shorter strings, thus increasing the efficiency of the DPI

services. Figure 11 depicts the throughput of DPI functions
with the ET-Open ruleset installed under various synthetic
traffic. The results are similar to those with the Snort ruleset.
Comparing the Snort ruleset-based DPI function with the ET-
Open ruleset-based DPI function, we find that the throughput

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 12. Throughput of DPI services without and with our scheme for real
traffic.

Fig. 13. End-to-end transmission delay of DPI services for real traffic with
Snort installed.

of the latter is much smaller than that of the former. The
reason is that inspecting packets based on the ET-Open ruleset
may match more pattern strings due to the larger ruleset size,
which would introduce more operations (such as string copy)
and thus reduce the DPI throughput. On average, our scheme
degrades the DPI throughout by about 15% ∼ 25% when the
Snort or ET-Open ruleset is installed.

In addition, the impact of our scheme on the throughput
of DPI services for real traffic is experimentally evaluated ,
and the results are presented in Figure 12. The throughput
degradation introduced by our scheme is about 11.3% and
20.3% with Snort and ET-Open installed, respectively. From
the above experimental results, our scheme inevitably pro-
duces a negative impact on the throughput of DPI services.
To achieve similar throughput performance to the baseline,
enterprise customers can deploy more DPI instances to handle
massive network flows. While such a solution introduces
additional overhead (due to buying more instances), a recent
study [5] demonstrated that even deploying twice as many
DPI instances in the cloud would result in much less deploy-
ment and maintenance overhead than the original in-the-house
deployment.

End-to-end delay. To demonstrate the overall performance
of our scheme in the network environment, we measure the
end-to-end delay, i.e., the time taken by a packet to traverse
from the GW to the DPI function and finally back to the
GW. All packets are sent by the GW at the rate of 10Mbps.
Figure 13 reports the end-to-end transmission delay of real
traffic in the network when the Snort ruleset is deployed in the

Fig. 14. End-to-end transmission delay of DPI services for real traffic with
ET-Open installed.

DPI function. From the figure, it can be seen that our scheme
does not significantly affect the end-to-end transmission delay.
Meanwhile, the packet size also negligibly affects the end-
to-end transmission delay. Figure 14 depicts the end-to-end
transmission delay of DPI services for real traffic with the ET-
Open ruleset. The experimental results are similar to those with
Snort. Therefore, we can conclude that the proposed scheme
is lightweight and the introduced processing latency of DPI
functions would not significantly affect the packet transmission
in the network.

Storage costs. To facilitate verification, in-the-cloud DPI
services not only store authenticated AC automaton, but also
cache the flow-level DPI execution proofs or the Merkle tree
for an unverified batch of traffic. Since the former is evaluated
in Sec. VII-B, we assess the latter storage costs here. More
specifically, we study the space required for DPI verification
of one batch. In theory, the maximum storage overhead is
max(x · |Proof f |, 32 · (2x−1)), because the cached execution
proofs would be removed once the tree is constructed. Note
that x is the number of network flows in a batch, and |Proof f |
is the size of one flow-level DPI execution proof. In the real
setting with a batch including 1024 flows, we set |Proof f |
as 36B equal to the accumulation of 32-byte packet-level
proofs multiplying 4-byte randomness. The maximum storage
overhead introduced by our scheme is about 64KB which is
dominated by the storage associated with the Merkle tree.
Supposing that there are 1000 batches concurrently verified,
the storage overhead is near to only 64MB in the worst case.

E. Communication Overhead

Our scheme introduces both the in-band communica-
tion overhead and the out-of-band communication overhead,
respectively. The in-band overhead is mainly introduced by
the 290-bit customized headers for verification, including a
16-bit BatchID field, a 16-bit FlowID field, a 2-bit Type field,
and a 256-bit Proof pkt field. The overhead is only relevant
to the number of packets transmitted in the network and is
negligible compared to the total size of the real traffic. For
example, in a network link with a bandwidth of 1 Gbps, the
number of packets transmitted per second is about 8.3× 104

(each packet size is denoted as 1500B). The additional in-band
communication overhead is about 2.42% of the bandwidth of
the total link.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: PRIVACY-PRESERVING AND LIGHTWEIGHT VERIFICATION OF DPI IN CLOUDS 15

The out-of-band communication overhead introduced by the
proposed scheme mainly consists of the end-of-batch identi-
fication packets BatchEND, the DPI execution commitment
ζ, and the DPI execution proof for each stream π. In the
experiment, we set the number of network flows in a batch as
1024 and the number of sampled flows as 35. When replaying
the real traffic, the total size of a batch of traffic is 8.52MB ,
and the total size of the sampled flows’ payloads is 120KB.
The out-of-band communication overhead for verification is
about 8.28MB, approximately equal to the traffic size of the
batch. Note that the theoretical analysis in Section VI yields
that the soundness error ϵ is only related to the number of
sampled flows in a batch. Therefore, we can make each batch
contains more network streams in practice, so as to reduce
the proportion of the out-of-band communication overhead.
For example, when a batch contains 104 network flows, the
out-of-band communication overhead is about 1% of the total
traffic size of the batch.

VIII. CONCLUSION

This paper presents a privacy-preserving and lightweight
verification scheme to ensure the correct execution of DPI ser-
vices in clouds. To protect the privacy of remote DPI rulesets
against enterprise customers, we employ a trusted third party to
perform privacy-preserving and trustworthy ruleset evaluation
and DPI verification. Meanwhile, we devise a lightweight DPI
ruleset authentication method to achieve fast proof generation
and efficient verification without requiring the verifier to
always maintain the entire rulesets. Moreover, we develop a
commitment-based secure sampling scheme to further reduce
verification overhead while defeating the cheating behaviors of
cloud providers. In the end, we implement a prototype using
Click modules. Extensive experimental results with real traces
demonstrate the feasibility and efficiency of our scheme.

In the future, we will explore the emerging blockchain
technology for building a decentralized trusted third party [48],
[49], [50]. One key challenge is how to address privacy
concerns raised by the transparency characteristic of the
blockchain.

REFERENCES

[1] (1998). Snort: Open-Source Intrusion Detection and Prevention System.
[Online]. Available: https://www.snort.org/

[2] (2009). Suricata: High Performance, Open Source Network Analysis and
Threat Detection Software. [Online]. Available: https://suricata.io/

[3] (2021). Modsecurity: Open-Source Web Application Firewall. [Online].
Available: https://github.com/SpiderLabs/ModSecurity

[4] C. Ueland. (2021). Scaling Cloudflare’s Massive WAF. [Online]. Avail-
able: https://www.cloudflare.com/waf/

[5] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,” in Proc. ACM SIGCOMM, 2012, pp. 13–24.

[6] C. Wang, X. Yuan, Y. Cui, and K. Ren, “Toward secure outsourced
middlebox services: Practices, challenges, and beyond,” IEEE Netw.,
vol. 32, no. 1, pp. 166–171, Jan. 2018.

[7] Research and Markets. (2019). World Deep Packet Inspection
Market—Opportunities and Forecasts 2017–2023. [Online]. Avail-
able: https://www.researchandmarkets.com/reports/3773051/world-deep-
packet-inspection-market/

[8] European Telecommunications Standards Institute (ETSI). (2012).
Network Functions Virtualisation. [Online]. Available: http://portal.
etsi.org/NFV/NFV_White_Paper.pdf

[9] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in Proc. NSDI, 2016,
pp. 255–273.

[10] China Telecom. (2022). Protect Your Network From DDoS Attacks
With Proactive Real-Time Traffic Mitigation. [Online]. Available:
https://www.ctamericas.com/products-services/internet/anti-ddos/

[11] X. Yuan, H. Duan, and C. Wang, “Assuring string pattern matching
in outsourced middleboxes,” IEEE/ACM Trans. Netw., vol. 26, no. 3,
pp. 1362–1375, Jun. 2018.

[12] X. Zhang, H. Duan, C. Wang, Q. Li, and J. Wu, “Towards verifiable
performance measurement over in-the-cloud middleboxes,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Apr. 2019, pp. 1162–1170.

[13] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the per-
formance interference of co-located virtual network functions,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Apr. 2018, pp. 765–773.

[14] N. Shalom. (2019). Amazon Found Every 100 ms of Latency Cost Them
1% in Sales. [Online]. Available: https://blog.gigaspaces.com/amazon-
found-every-100ms-of-latency-cost-them-1-in-sales/

[15] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,” 2018.
[Online]. Available: https://eprint.iacr.org/2018/046

[16] D. Papadopoulos, C. Papamanthou, R. Tamassia, and N. Triandopoulos,
“Practical authenticated pattern matching with optimal proof size,” Proc.
VLDB Endowment, vol. 8, no. 7, pp. 750–761, 2015.

[17] Z. Zhou, T. Zhang, S. S. M. Chow, Y. Zhang, and K. Zhang, “Efficient
authenticated multi-pattern matching,” in Proc. 11th ACM Asia Conf.
Comput. Commun. Secur., May 2016, pp. 593–604.

[18] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren,
“LightBox: Full-stack protected stateful middlebox at lightning speed,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 2351–2367.

[19] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “SafeBricks: Shielding
network functions in the cloud,” in Proc. NSDI, 2018, pp. 201–216.

[20] R. del Pino and S. Katsumata, “A new framework for more efficient
round-optimal lattice-based (partially) blind signature via trapdoor sam-
pling,” in Proc. CRYPTO. Cham, Switzerland: Springer, 2022.

[21] J. Doerner, Y. Kondi, E. Lee, and L. Tyner, “Threshold BBS+ signatures
for distributed anonymous credential issuance,” in Proc. IEEE SP, 2023,
pp. 773–789.

[22] Intel Corporation. (2014). Intel Software Guard Extensions
Programming Reference. [Online]. Available: https://software.intel.
com/sites/default/files/managed/48/88/329298-002.pdf

[23] X. Zhang, Q. Li, Z. Zhang, J. Wu, and J. Yang, “VSFC: Generic and
agile verification of service function chains in the cloud,” IEEE/ACM
Trans. Netw., vol. 29, no. 1, pp. 78–91, Feb. 2021.

[24] A. Panda, O. Lahav, K. J. Argyraki, M. Sagiv, and S. Shenker, “Verifying
reachability in networks with mutable datapaths,” in Proc. NSDI, 2017,
pp. 699–718.

[25] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “Buzz: Testing
context-dependent policies in stateful networks,” in Proc. NSDI, 2016,
pp. 275–289.

[26] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep
packet inspection over encrypted traffic,” in Proc. ACM Conf. Special
Interest Group Data Commun., Aug. 2015, pp. 213–226.

[27] J. Ning, G. S. Poh, J.-C. Loh, J. Chia, and E.-C. Chang, “PrivDPI:
Privacy-preserving encrypted traffic inspection with reusable obfus-
cated rules,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2019, pp. 1657–1670.

[28] R. A. Nafea and M. Amin Almaiah, “Cyber security threats in cloud:
Literature review,” in Proc. Int. Conf. Inf. Technol. (ICIT), Jul. 2021,
pp. 779–786.

[29] M. A. Almaiah, A. Al-Zahrani, O. Almomani, and A. K. Alhwaitat,
“Classification of cyber security threats on mobile devices and appli-
cations,” in Artificial Intelligence and Blockchain for Future Cyber-
security Applications. Berlin, Germany: Switzerland: Springer, 2021,
pp. 107–123.

[30] M. A. Almaiah, Z. Dawahdeh, O. Almomani, A. Alsaaidah,
A. Al-Khasawneh, and S. Khawatreh, “A new hybrid text encryption
approach over mobile ad hoc network,” Int. J. Electr. Comput. Eng.,
vol. 10, no. 6, pp. 6461–6471, 2020.

[31] M. Adil et al., “MAC-AODV based mutual authentication scheme for
constraint oriented networks,” IEEE Access, vol. 8, pp. 44459–44469,
2020.

[32] A. K. A. Hwaitat et al., “Improved security particle swarm optimization
(PSO) algorithm to detect radio jamming attacks in mobile networks,”
Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 4, 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

[33] S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes),” in
Proc. ISOC NDSS, 2012, pp. 1–17.

[34] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340,
Jun. 1975.

[35] N. Fazio and A. Nicolosi, “Cryptographic accumulators: Definitions,
constructions and applications,” New York Univ., 2002. [Online]. Avail-
able: https://www.cs.nyu.edu/nicolosi/papers/accumulators.pdf

[36] F. Baldimtsi et al., “Accumulators with applications to anonymity-
preserving revocation,” in Proc. IEEE Eur. Symp. Secur. Privacy,
Apr. 2017, pp. 301–315.

[37] T. Dryja, “Utreexo: A dynamic hash-based accumulator opti-
mized for the bitcoin UTXO set,” 2019. [Online]. Available:
https://eprint.iacr.org/2019/611

[38] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials,” in Proc. Annu.
Int. Cryptol. Conf., 2002, pp. 61–76.

[39] L. Nguyen, “Accumulators from bilinear pairings and applications,” in
Proc. Cryptographers’ Track RSA Conf., 2005, pp. 275–292.

[40] K. Argyraki, P. Maniatis, and A. Singla, “Verifiable network-
performance measurements,” in Proc. 6th Int. Conf., Nov. 2010,
pp. 1–12.

[41] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2019, pp. 1–19.

[42] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee, “OBFUS-
CURO: A commodity obfuscation engine on Intel SGX,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[43] R. C. Merkle, “A certified digital signature,” in Proc. CRYPTO, 1989,
pp. 218–238.

[44] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han, “DFC: Accelerating
string pattern matching for network applications,” in Proc. NSDI, 2016,
pp. 551–565.

[45] X. Wang et al., “Hyperscan: A fast multi-pattern regex matcher for
modern CPUs,” in Proc. NSDI, 2019, pp. 631–648.

[46] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
pp. 263–297, Aug. 2000.

[47] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc.
ASIACRYPT, 2008, pp. 90–107.

[48] M. A. Almaiah, “A new scheme for detecting malicious attacks in
wireless sensor networks based on blockchain technology,” in Artificial
Intelligence and Blockchain for Future Cybersecurity Applications.
Berlin, Germany: Springer, 2021, pp. 217–234.

[49] A. Ali et al., “An industrial IoT-based blockchain-enabled secure search-
able encryption approach for healthcare systems using neural network,”
Sensors, vol. 22, no. 2, p. 572, Jan. 2022.

[50] A. I. Siam et al., “Secure health monitoring communication systems
based on IoT and cloud computing for medical emergency applications,”
Comput. Intell. Neurosci., vol. 2021, pp. 1–23, Dec. 2021.

Xiaoli Zhang received the Ph.D. degree from Tsinghua University in
2020 under the supervision of Prof. Jianping Wu. Currently, she is a Lecturer
with the College of Computer Science, Zhejiang University of Technology.
Her research interests include trusted computing, verifiable computation, cloud
security, and network security.

Wei Geng received the B.Eng. degree from Tsinghua University in 2020,
where he is currently pursuing the M.E. degree with the Institute of Network
Science and Cyberspace. His research interests include the IoT security and
cloud security.

Yiqiao Song is currently pursuing the M.E. degree with the Zhejiang
University of Technology, Hangzhou, China. Her research interests include
blockchain, cryptography, and information security.

Hongbing Cheng (Member, IEEE) received the Ph.D. degree from the
Nanjing University of Posts and Telecommunications. He is currently a
Professor with the College of Computer Science, Zhejiang University of
Technology. He has published numerous research papers in high-quality inter-
national journals and conferences. His research interests include blockchain,
cryptography, privacy-preserving and information security, computer commu-
nications, and cloud computing security. He served as an invited editor for
several international journals and conferences. He has been invited to give
keynote speeches and chairs committee, where he reviewed papers for many
international journals and conferences.

Ke Xu (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University, Beijing, China. He is currently a Full Professor with the Depart-
ment of Computer Science, Tsinghua University. He has published more
than 200 technical articles and holds 11 U.S. patents. His research interests
include next generation internet, blockchain systems, the Internet of Things,
and network security. He is a member of ACM. He serves as the Steering
Committee Chair for IEEE/ACM IWQoS. He has guest-edited several special
issues for IEEE and Springer journals. He is an Editor of IEEE INTERNET
OF THINGS JOURNAL.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University. He is currently an Associate Professor with the Institute for
Network Sciences and Cyberspace, Tsinghua University. His research interests
include internet and cloud security, mobile security, and big data security. He is
an Editorial Board Member of the IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING and Digital Threats: Research and Practice
(ACM).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 22,2023 at 10:29:11 UTC from IEEE Xplore. Restrictions apply.

