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Abstract—Recently, collaborative learning is proposed to amor-
tize massive computation costs of highly sophisticated artificial
intelligence (AI) tasks. To attract lots of participants, researchers
investigate blockchains’ economic incentives with proof of use-
ful work (PoUW) consensus protocols to motivate substantial
numbers of miners in a mining pool to complete AI tasks.
However, participants might be untrusted and defraud rewards
with as less as possible efforts. In the paper, we propose a
robust and efficient proof of learning scheme called RPoL that
enables pool managers to verify the training integrity of pool
workers for secure pooled mining. Specifically, we devise an
address-encoded model and employ a commitment-based secure
sampling method to prevent malicious participants from abusing
well-trained models or evading the sampling-based verification.
Besides, we optimize RPoL via locality-sensitive hashing (LSH)
to achieve communication-efficient verification while tolerating
inherent reproduction errors of AI tasks. Furthermore, we
conduct theoretical analysis and extensive evaluations. The results
demonstrate that RPoL preserves high model performance against
adversaries with acceptable costs and thus helps the pool win the
mining competition among consensus nodes.

Index Terms—Proof of learning, training integrity, collabora-
tive learning, mining pool, PoUW consensus protocols

I. INTRODUCTION

Deep neural networks (DNN) have revolutionized artificial
intelligence (AI) recently and significantly impacted various
tasks such as image recognition and robotics. Starting from
the invention of GPT-3 [1], a major trend of deep learning
is that both the models’ sizes and the datasets are growing
very fast. Training large-scale models like foundation mod-
els [2] requires massive computational resources, data, and
engineering efforts. A recent report [3] stated that it might
soon be out of reach for almost any single research institution
in the world. Thus developing novel ways to train AI models
in a collaborative manner [4], [5] by many parties and wisely
assigning the credits to the parties who contributed to the
training becomes an urgent research problem.

Public blockchain systems inherently provide attractive eco-
nomic rewards to incentivize miners to join and run consensus
protocols like proof of work (PoW) in the Bitcoin network [6].
While PoW is notorious for serious energy-wasting issues
caused by massive hashing operations without real meaningful
purposes [7], proof of useful work (PoUW) [8] has drawn
widespread attentions from academia and industry [9]–[12].

∗Both authors contributed equally to this research.
§Hongbing Cheng is the corresponding author.

It recycles energy originally consumed by PoW by executing
some useful work on available resources, such as biomedical
image segmentation [10] and model training [11]–[13]. These
efforts build asymmetric puzzles based on non-convex DNN
optimization. Namely, training a DNN model to a target
accuracy is computation-intensive, yet testing its accuracy is
relatively easy.

Since one miner is hard to complete extremely complex AI
tasks with limited resources individually, mining pools like
AntPool [14] in Bitcoin are proposed to combine many inde-
pendent computation powers and increase the probability of
gaining the mining rewards [15]–[17]. Usually, mining pools
enable individuals to join with no restrictions. In this work,
we leverage the idea of PoUW and mining pools to incentivize
lots of (possibly untrusted) entities to collaboratively train
complex models. Specifically, the pool manager acquires a
DNN training task from blockchains and starts distributed
learning among pool workers. Finally, it distributes mining
rewards proportionally to workers’ contributions, once their
trained model is agreed in the network. However, participants
in the mining pool are motivated by attractive economic
incentives and may cheat for more revenue with less effort.
Therefore, it is critical to verify the integrity of workers’ local
training to secure mining pools in PoUW-based blockchains.

Unfortunately, there are few studies addressing this issue.
Several research efforts of AI-based PoUW protocols either
only focus on linking adjacent blocks securely via functional
encryption scheme [12] or aim to protect data privacy by
homomorphic encryption [11]. None of them appear suffi-
cient to address the above integrity problem inside mining
pools. Another line of work that verifies computation integrity
still cannot be directly applied in our scenario. Computation
verification schemes (e.g., zk-SNARK based protocol [18])
and TEE (trusted execution environment) techniques like Intel
SGX [19] are able to verify the integrity of DNN training yet
incur huge computation overhead or are limited to CPU per-
formance (compared with GPUs). Replay-based verification
solutions check proofs by re-executing the computation [4],
[20]. However, machine learning models are hard to be exactly
reproduced due to hardware parallel computation or low-level
libraries [21]. The difference between original training results
and re-executed ones is called reproduction error, which
exists even with identical model initialization and batching
strategies [20]. Current replay-based solutions either cannot



tolerate such errors [4] or are not secure [20] due to their
design flaws [22].

In this work, we propose a robust and efficient proof of
learning scheme called RPoL. It enables pool managers to
ensure the DNN training integrity of pool workers and thus
secure the mining tasks against dishonesty. Following the idea
of replay-based verification, we reproduce the trained model
weights according to the initial model and relevant dataset
for verification. As entirely retraining is expensive, sampling
is applied to trade-off between the confidence of verification
with the overhead.

Though promising, implementing the above idea with the
guarantees of security, efficiency, and robustness at the same
time is still a non-trivial task. First, shrewd workers in the
pool may directly steal the global model and claim mining
rewards in blockchains, consequently damaging the interests
of all entities in the pool. Second, lazy workers may only
perform the sampled training steps or use old results to evade
the verification. Third, inherent reproduction errors of DNN
tasks increase the difficulty of robust and efficient verification
in the distributed networks. Because they have to be tolerated
in verification by checking the distance between remote model
weights and re-executed ones for robustness, which inevitably
introduces massive communication overhead. Worse, the errors
may vary across different GPUs or training epochs.

In the paper, to overcome the first issue, we devise an
address-encoded DNN model that enables the pool man-
ager to encode its own blockchain address into the model.
Meanwhile, the address cannot be tampered with such that
the mining rewards would be correctly distributed to the
addresses embedded in the models of the winning blocks.
As for the second problem, we employ a commitment-based
delayed sampling scheme that exposes sampling decisions
after workers attested to the completion of local training via
commitments, similar to [4], [23]. Furthermore, we optimize
RPoL by employing a fuzzy matching technique, locality-
sensitive hashing (LSH), to reduce communication overhead
while tolerating inherent reproduction errors of DNN training.
More importantly, we propose an adaptive LSH setting strategy
to automatically tolerate the constantly changing reproduction
errors in multifarious training settings. The strategy practically
achieves 0 false negatives, guaranteeing rewards for honesty.
Our contributions can be summarized as follows:

• We propose RPoL, a robust and efficient proof of learning
scheme for secure pooled mining. RPoL motivates individual
workers with economic incentives to join a mining pool while
efficiently guaranteeing their training integrity.

• RPoL is secure against shrewd pool workers. It develops
an address-encoded DNN model to prevent workers from
defrauding rewards via abusing the well-trained models in net-
works. Meanwhile, it implements a commitment-based secure
sampling scheme to defeat biasing behaviors of adversaries.

• We further optimize RPoL by integrating locality-sensitive
hashing to reduce communication costs with the robustness
guarantees under DNN training reproduction errors. Addition-
ally, the LSH setting is determined in an adaptive manner so

as to automatically tolerate unpredictable reproduction errors
of various DNN training tasks.
• We conduct theoretical analysis with an economic view

that shows RPoL achieves high-confidence training assurance
with sparse sampling. We perform thorough evaluations to
demonstrate that RPoL preserves high model accuracy under
various attack settings with acceptable costs, thus helping the
pool win the mining competition among consensus nodes.

II. PRELIMINARIES

A. Distributed Machine Learning

Distributed machine learning is a key tool to resolve large-
scale machine learning problems in practice [1], [24]. Its distri-
bution strategies include model and data parallelism with either
synchronous or asynchronous model updating strategies. This
work focuses on data-parallelism-based distributed learning
with synchronous model updating in a mining pool. How to
support other learning paradigms will be studied in the future.

In detail, there is one manager denoted as M and lots of
workers denoted as W . The entire dataset D is randomly
shuffled and equally divided into sub-datasets Dw for each
worker. The global model θ is trained iteratively. At each
iteration, e.g., t-th epoch, a worker w (w ∈ W) retrieves the
latest global model θt along with hyper-parameters from M,
then computes the local model updates Lw

t over local sub-
dataset. Finally, M updates the global model as:

θt+1 = θt + η
∑
w∈W

|Dw|
|D|

Lw
t , (1)

where η is the global learning rate, |D| donates the data size.
The next training iteration proceeds until the trained model
achieves a target training/testing accuracy.

B. Reproducibility of Neural Network Models

Deep neural network models are hard to be completely
reproduced due to the entropy growth of the training pro-
cess [20]. A training step usually updates the weights via the
algorithm of stochastic gradient descent [25] as follows:

θt+1 = θt − η∇F (θt) + ϵt, (2)

where ϵt represents the random noises that lead to inherent
reproduction errors of DNN training. The errors are slight
and arise from the hardware or low-level libraries like cuDNN
which cannot be easily removed [21]. We will investigate the
reproducibility of DNN models in detail later.

C. Locality Sensitive Hashing

The locality-sensitive hashing (LSH) technique hashes sim-
ilar inputs into the same buckets with a high probability. It has
been widely applied in various scenarios [26]. The definition
of an LSH family is as follows [26]:

Definition 1. A family H = {h : X → Y } is called
(d1, d2, p1, p2)-sensitive for a distance measure Dis if for any
v, q ∈ X ,
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Fig. 1. The relationship between LSH matching probabilities and data
distances under varied LSH parameters. The green and red lines show the
upper and lower bounds of similar data and dissimilar data, respectively.

• if v ∈ Dis(q, d1) then PrH[h(q) = h(v)] ⩾ p1,
• if v /∈ Dis(q, d2) then PrH[h(q) = h(v)] ⩽ p2,

where p1 > p2 and d1 < d2. Dis(q, di) depicts the set of points
whose distance from a point called q is not greater than di.

There are various LSH constructions using different distance
measurement methods [26]. We choose the LSH construction
based on p-stable distributions because it measures Euclidean
distances that can evaluate the distance of high-dimensional
DNN model weights. Briefly, there are l groups, each with
k hash functions that map a vector x into a set of integers.
The hash functions are ha,b(x) = ⌊a·x+b

r ⌋, where a is a
vector randomly sampled from p-stable distributions, b is a
real number selected uniformly from the range [0, r], r is a
tunable parameter. The LSH matching probability for vectors
with Euclidean distances c is Prlsh(c, r, k, l) = 1− (1− pk)l,
where p is the collision probability for one hash function. In
the end, LSH parameters are {r, k, l}. They should be carefully
tuned based on suitable upper and lower bounds to control the
matching probabilities for similar data and dissimilar data (see
Fig. 1), respectively.

III. PROBLEM STATEMENT

A. System Setting

As shown in Fig. 2, we consider a PoUW-based blockchain
system where both individual miners and mining pools are
consensus nodes [9], [12]. At a high level, the consensus
nodes in the system are identified by the blockchain addresses
and compete with each other to propose blocks for revenue.
They first pull DNN training tasks from a task pool in stage
A, then train DNN models with a training dataset in stage
B, and finally propose a block with the trained model in
stage C (within a time limit). The block also contains the
address of the proposer for further determining the ownership
of mining rewards. Finally, the block including the model with
the best generalization performance on a test dataset is agreed
by other consensus nodes, which further triggers the mining
rewards distribution to the block owner. Note that, to prevent
the miner/mining pool from directly training models on the test
dataset, the test dataset is published in the blockchain system
only when a number of trained models are proposed. More
details refer to the work [12].

In contrast to individual miners, a mining pool includes
two types of entities: a pool manager M and a set of pool
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Fig. 2. System architecture and high-level workflow of RPoL.

workers W . Usually, pool workers have limited computation
and communication resources and join the mining pool so as
to obtain a relatively steady stream of revenue than individual
mining [16]. The manager is responsible for coordinating pool
workers W to solve sophisticated DNN tasks. Essentially,
the manager starts an iterative distributed learning procedure
among workers. It first initializes the training task, for ex-
ample, randomly shuffles the dataset and divides them into
sub-datasets for pool workers (see the step ① in Fig. 2). At
each training iteration, e.g., t-th epoch, pool workers retrieve
the latest global model and some auxiliary parameters from
the manager, generate local model updates (i.e., the step ②),
then send the results to M for model aggregation (i.e., the
step ③). If the global model achieves the target training
performance, M publishes the model and triggers the further
consensus process. Finally, the mining revenues are sent to the
pool manager via the blockchain address, once the proposed
block is agreed. The manager further distributes rewards to
the workers according to their contribution.

B. Threat Model

In a mining pool, we consider the threat model as follows:
• The pool manager M is considered to be honest from

the perspective of gathering computation resources from pool
workers for mining profits. Inside the mining pool, he faith-
fully coordinates the DNN tasks among pool workers without
any malicious disruptions for the purpose of proposing a
winning block. We emphasize that the pool manager might
still take dishonest behaviors, similar to individual miners
in PoUW-based blockchains. The rational incentives of pool
managers include reporting more work than actually per-
formed [9], stealing honest miners’ models as their own [27],
selfish mining [28], tampering with an old block to launch
double spending attack [12], and so on. All those threats are
addressed by existing PoUW consensus mechanisms [9], [12],
[27], which is complementary to our focus.
• The pool workers W in the pool are dishonest and have

economic incentives to defraud rewards with as less as possible
efforts. For example, they may perform less training, directly
fabricate model updates, or upload previous results (i.e., replay
attacks). Worse, they may steal the collaboratively trained
model and propose the block individually, Thus, our security
objective is to prevent dishonest pool workers from receiving
more or equal revenues by investing less effort than honest



ones. Additionally, the concerns regarding data privacy or data
quality are not our focus and can be orthogonally addressed
via existing privacy-preserving solutions [11], [29], [30].

IV. DESIGN OVERVIEW

We propose a robust and efficient proof of learning scheme
under mining pool environments. It ensures the training in-
tegrity of pool workers efficiently while tolerating inherent
DNN reproduction errors. To verify the remote computation,
we follow the line of duplicated execution [4], [20]. Briefly,
given the initial model weights, final weights, and a dataset, a
pool worker needs to offer a sequence of intermediate model
weights to prove the training integrity (in step ② in Fig.2).
Accordingly, the manager verifies the proofs by repeating each
step of gradient descent from the initial weights to the final
results (in step ③). Since full re-execution involves expensive
computation overhead, the pool manager only checks a small
portion of the training steps of pool workers to obtain tunable
confidence of verification.
Challenges. Though the idea of duplicated execution for
verification is not sophisticated, making it work with the guar-
antees of security, efficiency, and robustness is challenging:
• The global model may be abused by pool workers to

claim rewards in PoUW-based blockchains. Such misbehaviors
would harm the interests of all involved parties in the pool.
Regarding this, the traditional countermeasure in PoW-based
blockchains is to include the address of the pool manager in
the hashing puzzles, yet fails to work in DNN training tasks.
In the paper, we develop an address-encoded DNN model to
secure the collaborative learning based mining. Here, when
initializing the training task in the pool, the pool manager
appends a non-trainable address-encoded mapping layer in
front of the original model. The layer incurs no information
loss for preserving model performance theoretically. More
importantly, it is tamper-resistant and can be verified by
consensus nodes in networks based on the blockchain address
of the pool manager (see Sec. V-A).

• Directly exposing sampling decisions would lead to dis-
honest workers passing the verification by merely executing
sampled steps or using old results. To tackle the issue, we
adopt the “commit-and-prove” paradigm for secure sampling.
Essentially, workers require to publish a succinct commitment
demonstrating all training steps are executed, before receiving
sampling decisions from the manager. Meanwhile, we em-
ploy a mini-batch stochastic-yet-deterministic gradient descent
algorithm to defeat replay attacks. Randomly chosen data
constitute a batch to compute the gradients as the traditional
stochastic gradient descent algorithm does [25]. Especially, our
data selection method not only makes the results of different
training steps differentiable, but also is deterministic which
can be checked by the manager (see Sec. V-B).

• The inherent DNN reproduction errors increase the dif-
ficulty of robust and efficient verification in the context of
distributed networks. Intuitively, to tolerate slight reproduction
errors for benign training, the verification requires checking

distances between remote results with re-executed ones. How-
ever, transferring both the input and output model weights for
each sample incurs huge communication costs, especially in
wide-area networks. To optimize the process, we introduce the
LSH technique to hash over model parameters and leverage
LSH-based fuzzy matching to tolerate reproduction errors
efficiently. In this way, a worker only sends the input model
weights and the LSH hash of the output for each sample,
consequently reducing communication overhead by nearly
50%. Furthermore, we provide an adaptive LSH calibration
strategy that constantly tunes LSH parameters by taking both
system performance and security into account. The design
achieves experimentally 0 false negative, guaranteeing rewards
for honesty (see Sec. V-C).

V. DESIGN DETAILS

In the section, we introduce the design details of RPoL that
enable a pool manager to ensure the training integrity of pool
workers in a secure, efficient, and robust manner.

A. Address-encoded DNN Model

To prevent pool workers from stealing the global model, we
design an address-encoded mapping layer whose neural net-
work weights are deterministic functions of the pool manager’s
address. Thus, the manager’s identifier associated with the
submitted model is publicly verifiable by all consensus nodes
in blockchains. More importantly, it preserves the original
information in the input data without any loss and resists
address-replacing attacks.

In detail, each consensus node (e.g., the pool manager in
a mining pool) generates an address-encoded mapping layer
(AMLayer) based on its blockchain address and adds it in front
of the model task before training. AMLayer is created as a
one-layer neural network and is first initialized by a pseudo-
random function with the address as the seed.

A main challenge of embedding a layer with non-trainable,
predefined neural network weights is that the layer may cause
information loss, making the upper layers unable to perform
their jobs. To overcome this issue, we make the layer an
invertible 1-1 mapping. More precisely, we set the layer as a
residual layer and impose the constraint that AMLayer satisfies
Lipschitz continuity with the theoretical guarantee of negligibly
impacting performance [31]. Namely, for any input data pair
x1 and x2, the inequality holds:

||AMLayer(x1)− AMLayer(x2)||2 ≤ c||x1 − x2||2, (3)

where ||·||2 denotes the 2-Norm and c < 1 is a scaling
coefficient. To achieve this, the consensus node adjusts the
weights of AMLayer by estimating the maximum singular
value σ̃ of the weights via the power iteration [32] and
performing spectral normalization as follows:

W̃ =

{
cW/σ̃ c/σ̃ < 1

W c/σ̃ ≥ 1
(4)



With a well-set AMLayer, the consensus node begins to
train the model while keeping AMLayer fixed. Once the model
achieves the target performance, it submits the model (along
with c) to the blockchain network. Finally, other consensus
nodes can verify the correctness of the model owner by re-
calculating the AMLayer’s weights based on the blockchain
address of the entity that submitted the model. The mining
rewards would be sent to the address encoded in the model.

B. Commitment-based Secure Sampling

Given an address-encoded DNN model, we describe how
to defend against pool workers’ various cheating behaviors.
Briefly, a pool worker is required to train the model using the
mini-batch stochastic-yet-deterministic gradient descent algo-
rithm to avoid replay attacks. Then, it sends the local results
with a commitment indicating that all training steps have
finished. Finally, the manager exposes sampling decisions and
verifies the proofs for samples, thereby preventing adversaries
from evasion via sampling bias.
Mini-batch stochastic-yet-deterministic gradient descent
algorithm. Before local training starts, the worker w retrieves
from M the latest global model weights, e.g., θt, the train-
ing hyper-parameter ζt, and a nonce Nw

t , where t denotes
the training epoch. In each training step, e.g., m, w uses
a pseudo-random function PRF with the nonce Nw

t , i.e.,
PRF(Nw

t × m + n)mod|Dw|, to select the n-th data from
the sub-dataset Dw. Such a deterministic selection guarantees
that identical data can be picked by M in verification. Finally,
all selected data are fed into the gradient descent algorithm to
optimize the model.
Proof and commitment generation. To construct proofs
and the commitment for local training, w stores raw model
parameters every i training steps as training proofs (denoted
as proof) in each epoch. Notably, i represents the checkpoint
interval, which is tunable to decrease storage overhead. At the
end of the t-th epoch, w generates the commitment denoted as
commit which satisfies two requirements: 1) commit includes
the proofs of all checkpoints; 2) arbitrary proofs can be verified
via commit. Therefore, commit can be constructed via a set of
hash values of training proofs in order, or the root of a Merkle
hash tree where leaf nodes are training proofs in order [33].
Here, we adopt the former construction as an example.
Verification. Once receiving commitments from pool workers,
the manager samples the training checkpoints and requests the
related proofs for all checkpoint samples from the workers
for verification. For each sampled checkpoint, e.g., ci, the
requested proof (e.g., proofci ) is the input and output model
weights for the checkpoint (e.g., {θci , θci+1}).

As an example, the verification for the sampled checkpoint
ci proceeds in two steps: 1) M checks the validity of model
parameters in poofci by calculating their hash digests and
comparing with those in commit; 2) M re-executes the mini-
batch stochastic-yet-deterministic gradient descent function
based on the model initialized via θci and compares whether
the distance between the re-calculated results (e.g., θ′ci+1

) and
those (e.g., θci+1

) in proofci is less than a predefined threshold

(for the purpose of tolerating the DNN slight reproduction
errors). Other sampled checkpoints are verified in the same
manner. Finally, if all sampled checkpoints are successfully
verified, the manager ensures the worker has honestly per-
formed the sub-task in the epoch with high confidence.

C. LSH-based Optimization

We optimize RPoL by leveraging LSH-based fuzzy matching
for reduced communication costs with the tolerance of DNN
slight reproduction errors. We first illustrate how to apply LSH
in verification for efficiency and robustness, then analyze how
to set LSH configurations by taking system performance and
security into consideration, and finally elaborate an adaptive
calibration strategy to handle unpredictable changes of repro-
duction errors in the iterative learning process.
Applying LSH in verification. To avoid always transferring
both input and output model weights for each sample, we
leverage the LSH technique to generate the hash digests of
proofs in the commitment. Essentially, for one sampled check-
point, only the input model weights are sent to the manager.
The manager then checks the consistency between the LSH
value of the local outputs with that in the commitment, thus no
longer always retrieving the output weights from the worker.

Note that the LSH technique only achieves probabilistic
fuzzy matching as described in Sec. II-C and might lead to
mismatched LSH digests between original weights and those
with marginal reproduction errors. To prevent false negatives
incurred by LSH, we develop a double-check strategy in which
M requests one more time from w the raw model weights for
the LSH-unmatched checkpoints and compares the distance of
two weights. Such a double-check strategy effectively reduces
false negatives (due to LSH fuzzy matching) yet at the cost
of additional communication overhead. We emphasize that it
is an important feature of mining pools in order to guarantee
rewards for honesty. Fortunately, we find that the double-check
strategy is rarely triggered for benign results in Sec. VII-D.
Below we describe how to set LSH parameters in the system.
Setting LSH under considerations of RPoL performance
and security. As shown in Fig. 1, LSH settings are determined
by acceptable upper and lower distance bounds for similar
data and dissimilar data, respectively. Here, we represent the
former as α, i.e., the distance threshold for tolerating most
reproduction errors. The latter is denoted as β, called the
distance threshold for differentiating unrelated models. The
inequality holds: α < β. We identify the submitted results with
reproduction distances in the range [0, β) as benign results,
while those in the range [β,∞) are spoofing weights.

Because of the LSH feature of fuzzy matching, there remain
LSH matching fail for remote benign model weights with
reproduction distances in [0, β) (denoted as false negatives
incurred by LSH) and LSH matching pass for remote spoofing
weights with spoof distances in [β,∞) (represented as false
positives caused by LSH). FNRlsh/FPRlsh are defined as
the expectations of LSH matching fail/pass rates for hon-
est/dishonest participants, respectively:



{
FNRlsh =

∫ β

0
prepr(c)(1− Prlsh(c, r, k, l))dc,

FPRlsh =
∫∞
β

pspoof (c)Prlsh(c, r, k, l)dc,
(5)

where prepr(c) and pspoof (c) are the probability density
function (PDF) for varied reproduction and spoof distances,
respectively. Prlsh(c, r, k, l) is the LSH matching probability
for two vectors with distance c, {r, k, l} are LSH parameters.

The goal of setting LSH is to make max(FNRlsh) and
max(FPRlsh) as small as possible under the constraint of
acceptable computational costs (denoted as Klsh). To find
max(FNRlsh) and max(FPRlsh), we consider a near worst
case where all honest workers’ reproduction errors are equal to
α. The setting works under the assumption that the probability
of reproduction errors falling between α and β is near 0. The
assumption is rational via further experimental validation (see
Fig. 5). Meanwhile, spoof distances are set to be equal to β
(as the worst case). Consequently, we derive the following
multi-objective optimization goal for LSH setting:

 min
r,k,l

1− Prlsh(α, r, k, l),

min
r,k,l

Prlsh(β, r, k, l),
Constraint: k · l ≤ Klsh. (6)

Given α and β, we can employ a simple additive weighting
method [34] to obtain the optimal LSH parameters.
Adaptive strategy for LSH calibration. The estimation of
α and β depends on the maximum DNN reproduction error.
We conduct extensive experiments in Sec. VII-C to investigate
reproduction errors with varied GPU models, training datasets,
optimizers, and training epochs. From the experiments, we
found that reproduction errors exist even for the same tasks
on the same GPUs and increase as GPU performance im-
proves. Interestingly, reproduction errors for tasks using i.i.d
sub-datasets are near and follow a normal distribution on
the same GPU hardware. Additionally, the errors vary for
different epochs or optimizers, yet the above results still hold
for the same optimizer and the same epoch. More detailed
experimental results will be given in Sec. VII-C.

Given the above empirical evidence, α and β (used to set
LSH for all sub-tasks) can be estimated by measuring the
maximum reproduction error of a sub-task training on the i.i.d
dataset in each epoch. As an example, α is set as the measured
maximum reproduction error plus the standard deviation in the
normal distribution. Since β is used to differentiate unrelated
models, we set β by enlarging α, e.g., β = x×α+y, where x
and y are tunable for the pool manager. The effectiveness of all
relevant configurations is thoroughly validated in Sec.VII-D.
The experiments demonstrate that with a proper magnification
of α (near to the maximum error) to determine β, we achieve
0 false negative, guaranteeing the rewards for benign workers.

We devise an adaptive strategy for the pool manager to
continuously calibrate LSH parameters, because reproduction
errors of DNN training vary across different epochs. In detail,
M equally partitions the whole dataset into (n+1) i.i.d sub-
datasets and maintains one sub-dataset locally, n is the number

of pool workers. Before starting one epoch, M executes the
sub-task twice on the current top-2 best-performant GPUs, so
as to try to get as large reproduction errors as possible. Note
that such GPU information can be obtained from pool workers’
registration information. Then, M calculates the reproduction
errors for all checkpoints of the current sub-task and further
determines α and β according to the measured maximum
error. Finally, M generates the optimal LSH parameters and
distributes them to pool workers for producing LSH-based
commitment.

VI. SECURITY ANALYSIS

We analyze the correctness and soundness of RPoL.

Theorem 1 (Correctness). For all training epochs (e.g., t),
all model updates Lt and corresponding proofs P(Lt) pro-
duced by honest workers, our verification procedure obtains
Verify(θt,Lt,P(Lt)) → 1.

Proof. The correctness of RPoL follows from the double-
check strategy that guarantees verification success for honest
training. ■

Theorem 2 (Soundness). For all DNN models θ, all dataset
D, all training epochs (e.g., t), all model updates Lt

A and
proofs P(Lt

A) generated by an adversary A, the following
inequality holds,

Pr(Verify(θt,Lt
A,P(Lt

A)) → 1) < Prerr, (7)

where Prerr is the soundness error.

Proof. For one sampled checkpoint, the probability that an
attacker passes verification is p1attacker ≤ hA+(1−hA)Pr

A
lsh,

where PrAlsh is the probability of LSH matching pass for A and
PrAlsh ≤ Prlsh(β) (see Sec. V-C). hA is the honesty ratio equal
to the proportion of honestly trained checkpoints. Accordingly,
for q randomly sampled checkpoints, the evasion probability
(also called the soundness error Prerr) is pqattacker ≤ (hA +
(1−hA)Prlsh(β))

q . Thus, to maintain a given soundness error
Prerr, we can set the number of samples as:

q ≥ logPrerr
log(hA + (1− hA)Prlsh(β))

. (8)

When Prerr = 1% and Prlsh(β) = 5%, we need 3 and 47
samples for hA = 10% and hA = 90%, respectively. ■

Actually, all workers join the mining pool because of
economic benefits. We further formalize the soundness goal
from an economic view and investigate what settings can
diminish the benefits of attackers.

Theorem 3 (Soundness from an economic view). For all hA,
there exists a valid q (q ≥ 1) such that GA ≤ 0 holds, where
q is the number of randomly sampled checkpoints, GA is the
expected economic net gains of A for one submission.

Proof. GA equals the total rewards minus total computation
and communication costs (including those incurred by the
double-check strategy). We define the following parameters:



1) the reward for one successfully verified submission of each
epoch is 1; 2) the computation costs for one honest submission
is Ctrain; 3) the computation costs of spoofing attacks in an
epoch is Cspoof ; 4) the communication costs for one set of
model weights is Ct. We derive GA as:

GA ≤ pqattacker − {hA · Ctrain + Cspoof + q · Ct+

q · Ct · (hA · (1− Prlsh(α)) + (1− hA)(1− Prlsh(β)))}.
(9)

To keep GA ≤ 0 always true, it suffices to ensure: max(GA) ≤
0. We observe that, for any Prlsh(α), Prlsh(β), and hA, the
inequality ∂GA

∂Ct
< 0 always holds where ∂GA

∂Ct
= −q · (2 −

Prlsh(β)−hA · (Prlsh(α)−Prlsh(β))). Thus, GA reaches the
maximum when Ct = 0. We fix Ct = 0 in Eq. (9) as:

max(GA) = pqattacker − hA · Ctrain − Cspoof ≤ 0

⇒ logp1
attacker

pqattacker ≥ logp1
attacker

(hA · Ctrain + Cspoof )

(10)

Finally, we derive the lower bound for q:

q ≥ log (hA · Ctrain + Cspoof )

log (hA + (1− hA)Prlsh(β))
(11)

As an example, we set Prlsh(β) = 5%. According to
a report [7] that states the ratio of electricity costs to the
total Bitcoin incomes for miners is 88% in 2022, we set the
Ctrain as 0.88 while the reward of one successful submission
is 1. Since Cspoof is negligible compared with Ctrain and
negatively correlated with q, we set Cspoof = 0 for obtaining
a larger q. In this case, if hA = 10%, we require 2 samples;
if hA = 90%, we need 3 samples at least. Note that, when
q = 3, the soundness error is about 74.12% which is relatively
high according to Theorem 2. However, for an attacker, the
probability of winning the mining rewards is only 0.74, while
the computation costs are larger than 0.9 times those of one
honest worker. Thus, such a sampling strategy effectively
makes the net gains of attackers lower than honesty, shattering
the attacker’s motivations. ■

VII. IMPLEMENTATION AND EVALUATION

In this section, we prototype RPoL and estimate its effec-
tiveness and efficiency via extensive experiments. In particular,
the experiments include the following four aspects:

1) We evaluate the performance of the address-encoded de-
sign in terms of its influence on model performance and
its ability against address-replacing attacks. (Sec. VII-B)

2) We estimate various factors affecting DNN reproduction
errors, which provide important insights into configuring
LSH as specified in Sec. V-C. (Sec. VII-C)

3) We evaluate how the adaptive LSH calibration strat-
egy affects the performance and security of RPoL.
(Sec. VII-D)

4) We evaluate the impact of RPoL on the ability to propose
winning blocks for mining pools and assess the system
overhead both inside mining pools and in the blockchain
system. (Sec. VII-E)
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Fig. 3. Testing accuracy curves of DNN tasks with and without AMLayer.

A. Implementation and Setup

Pool worker side: We implement all modules at the pool
worker side using Python: 1) we use Pytorch 1.111 to imple-
ment the p-stable LSH with support of GPU acceleration for
high computational efficiency; 2) we slightly modify the model
training algorithms by performing stochastic-yet-deterministic
data selection and adding the operations of saving checkpoints
and calculating their LSH values at certain intervals.

Pool manager side: We prototype RPoL at pool manager
side using Python. The distributed machine learning is imple-
mented using Pytorch. We develop the following modules: 1)
address-encoded DNN model generation; 2) LSH calibration
(including the estimation of α and β and calculation of opti-
mal LSH parameters); 3) commitment-based verification with
double-check strategy. The communication channels between
the manager and workers are established via TLS.

We build a prototype of a mining pool as one consensus
node in the blockchain. It includes one manager and 10 work-
ers to collaboratively perform the AI mining task, all equipped
with NVIDIA GeForce RTX 3090 GPU (abbreviated G3090).
We sample 3 checkpoints in each epoch to offset the benefits
of attackers as demonstrated in Sec. VI. In the experiment, we
mainly perform two DNN tasks, i.e., ResNet182 on CIFAR-103

and ResNet50 on CIFAR-100. Both CIFAR-10 and CIFAR-
100 include images with the size of 32× 32× 3. By default,
the ResNet18 is trained for 40 epochs, while the ResNet50
(as a more complex task) is trained for 200 epochs. The batch
size is 128. The optimizer is SGDM with the learning rate as
0.1, momentum as 0.9. The checkpoint interval at the worker
side is 5. Unless otherwise stated, the above default settings
are used in our experiment.

B. Performance of Address-encoded DNN Model

We evaluate whether AMLayer affects model performance,
and meanwhile, whether it can effectively defend against
address-replacing attacks. In front of each model, an AMLayer
is added with the scaling coefficient c as 0.5. In particular,
AMLayer is generated as a residual block with one convolu-
tional layer. Its input channels are 3, output channels are 64,
kernel size is 3×3, padding and stride are 1. We demonstrate
the effectiveness of AMLayer via comparison experiments
using the above two DNN tasks with and without AMLayer.

1https://pytorch.org
2https://doi.org/10.1109/CVPR.2016.90
3https://www.cs.toronto.edu/∼kriz/cifar.html



TABLE I
PERFORMANCE EVALUATION OF AMLAYER WITH TWO TASKS:
A(RESNET18 ON CIFAR-10), B(RESNET50 ON CIFAR-100)

Task One-epoch
training time Accuracy Accuracy

(w Attack)

A Origin 31.43s 92.67% -
AMLayer 32.54s 92.33% 24.54%± 5.13%

B Origin 60.00s 79.38% -
AMLayer 60.75s 78.95% 6.23%± 2.92%

Impact on model performance: As shown in Fig. 3, the
testing accuracy curves with and without AMLayer are near
for both ResNet18 and ResNet50. Meanwhile, Table. I shows
that the final model accuracy with AMLayer for ResNet18
and ResNet50 is 0.34% and 0.22% less than that without
AMLayer, respectively. Such differences are negligible. More
importantly, since all PoUW miners require to use the AM-
Layer in the consensus process, the small reduction in model
accuracy is inevitably introduced for all miners and thus would
not influence their competition in proposing winning blocks.

Additionally, we measure the one-epoch training time with
and without AMLayer. As shown in Tab. I, the average one-
epoch training time with AMLayer is only magnified by 3.5%
for ResNet18 and 1.2% for ResNet50.

Ability against address-replacing attack: To evaluate the
security of AMLayer, we replace the original AMLayer of
a well-trained model with other AMLayer’s encoding other
addresses (denoted as address-replacing attacks), and estimate
the predictive accuracy of the attack models. In the experiment,
we use some random addresses and generate 10 AMLayer’ for
each model.

Table I records the average inference accuracy of the attack
models and presents the standard deviations. We can see
that the accuracy drops significantly for both ResNet18 and
ResNet50, reducing by about 67.79% and 72.72%, respec-
tively. That means if an attacker wants to steal a well-trained
model by tampering with the AMLayer using his address, he
would lose the mining competition compared with the honest
consensus node.

In conclusion, AMLayer only introduces a marginal reduc-
tion in model accuracy and is lightweight without significant
inflation on training time. Besides, AMLayer can effectively
resist address-replacing attacks.

C. Estimation of Reproducibility of DNN training

We analyze the factors, including GPUs, optimizers, training
epochs, checkpoint intervals, and DNN models. All repro-
duction errors are calculated using the Euclidean distance of
two model weights. Besides the two AI tasks on G3090, we
estimate the impact of different GPU hardware on training
reproducibility via three other widely used hardware envi-
ronments: 1) Alibaba ECS gn7i-c8g1.2xlarge instance with
A10 GPU, abbreviated GA10; 2) Alibaba ECS gn5-c4g1.xlarge
with P100 GPU, abbreviated GP100; 3) Alibaba ECS gn6i-
c4g1.xlarge with T4 GPU, abbreviated GT4. These GPUs are

dataset GT4 GP100 GA10 G3090

0.030(±0.009)0.032(±0.007)0.087(±0.006)0.087(±0.014)
0.032(±0.006)0.043(±0.007)0.077(±0.015)0.091(±0.019)
0.030(±0.009)0.036(±0.010)0.090(±0.012)0.094(±0.014)
0.029(±0.006)0.038(±0.010)0.084(±0.010)0.093(±0.013)
0.029(±0.007)0.039(±0.006)0.081(±0.011)0.100(±0.006)
0.037(±0.008)0.014(±0.005)0.074(±0.011)0.084(±0.013)
0.025(±0.012)0.019(±0.010)0.076(±0.004)0.078(±0.006)
0.031(±0.010)0.024(±0.007)0.082(±0.014)0.082(±0.007)
0.037(±0.013)0.023(±0.004)0.089(±0.012)0.083(±0.005)
0.037(±0.005)0.016(±0.011)0.081(±0.011)0.088(±0.008)
0.087(±0.016)0.090(±0.017)0.059(±0.006)0.103(±0.013)
0.078(±0.009)0.083(±0.010)0.054(±0.010)0.087(±0.007)
0.076(±0.012)0.080(±0.015)0.052(±0.008)0.089(±0.010)
0.074(±0.010)0.077(±0.006)0.051(±0.006)0.083(±0.004)
0.076(±0.016)0.078(±0.018)0.054(±0.010)0.090(±0.010)
0.088(±0.013)0.090(±0.013)0.091(±0.017)0.060(±0.010)
0.089(±0.009)0.085(±0.014)0.091(±0.021)0.051(±0.006)
0.084(±0.015)0.082(±0.009)0.086(±0.006)0.061(±0.007)
0.078(±0.006)0.077(±0.006)0.084(±0.007)0.057(±0.005)
0.082(±0.009)0.084(±0.013)0.088(±0.006)0.058(±0.004)
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Fig. 4. Influences of varied GPU models and training dataset on reproduction
errors when training ResNet18 on CIFAR10.

sorted in a descending order in terms of GPU performance
of FP32 computing capacity4, concretely, G3090 with 35.7TF,
GA10 with 31.2TF, GP100 with 10.6 TF, and GT4 with 8.1TF.

We first assess the influences of varied GPU models, train-
ing dataset, and optimizers on training reproduction errors in
one epoch, then estimate the errors in different training epochs.

We randomly shuffle the dataset (CIFAR10) and divide
them into five groups for every 10, 000 elements (denoted
as Di, 1 ≤ i ≤ 5) to obtain i.i.d sub-datasets. We train
ResNet18 on different GPU models using these sub-datasets
and archive checkpoints for each task. The checkpoint interval
is 5. Note that, for each task on each GPU pair (e.g., GT4 and
GP100), we calculate the mean plus standard deviation of all
checkpoints’ reproduction errors as the maximum value. We
define the same tasks by those training the same model with
the same dataset.

Observing Fig. 4, we can see the following results. 1)
Reproduction errors exist even for the same tasks on the same
GPUs, meanwhile, these errors seem to slightly increase as
GPU performance improves. 2) Reproduction errors are larger
for the same tasks on the different GPUs, compared with
those on the same GPUs. Interestingly, the reproduction error
appears to be largest when using two different GPUs with the
top-2 performance (i.e., G3090 and GA10 in our evaluations).
3) On the same GPUs (or GPU pairs, e.g., G3090 and GA10),
reproduction errors for tasks using i.i.d sub-datasets are near,
and more importantly, they follow a normal distribution. The
latter feature is determined by the Kolmogorov-Smirnov test5,
which is used to statistically test whether samples follow
a specific distribution. Moreover, we repeat the experiments
using other popular optimizers (RMSprop6, and Adam7) and
under various training epochs. We find that the errors are
different for different optimizers and also vary for various
training epochs, yet the above results still hold inside each
epoch with the same optimizer. Additionally, we evaluate the
relationship between checkpoint intervals and reproduction

4https://cpu-compare.com/benchmark/fp32
5https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov test
6https://pytorch.org/docs/1.11/generated/torch.optim.RMSprop
7https://pytorch.org/docs/1.11/generated/torch.optim.Adam



errors. The results show the errors increase linearly as the
checkpoint interval grows. The results based on ResNet50
training task are similar to those using ResNet18. Due to space
limitations, we omit the related experimental details.

D. Evaluation of Adaptive LSH Calibration

We measure how the adaptive LSH calibration affects the
system performance and security via FNRlsh (proportion
of honestly trained checkpoints failing in LSH matching)
and FPRlsh (proportion of the spoofed checkpoints passing
LSH matching), respectively. Besides the two tasks illustrated
in Sec. VII-A, we also train ResNet18 on CIFAR-100 and
ResNet50 on CIFAR-10 for a thorough evaluation.

To simulate the procedure of LSH setting as described in
Sec. V-C, we separate the dataset into two i.i.d sub-dataset,
the one for estimating α and β on the manager’s behalf, the
other for simulating behaviors of honest/dishonest workers.
At the manager side, we use G3090 and GA10 (i.e., the top-
2 best performant GPUs in our experiments) to measure as
large reproduction errors as possible. α is set as the mean
plus standard deviation of all checkpoints’ reproduction errors
in one epoch. Meanwhile, β is 5α to identify malicious models
as an example. Additionally, we use G3090 to verify workers’
training and set the LSH parameters with Klsh = 16. At the
honest worker side, we train the model with the sub-dataset on
GA10 that may produce the larger reproduction errors with that
on G3090 (used in verification), so as to estimate the FNRlsh

in a near worst case.
At the adversary side, we consider a strong attacker Adv

to evaluate the FPRlsh in the pessimistic case. We assume
the attacker simulates the existing DNN optimizers with little
computation overhead [25]. It employs momentum to update
models via weighted previous model updates heuristically.
Essentially, it has honestly generated i checkpoints’ model
weights in one epoch, denoted as {c1, c2, · · · , ci}, and tries
to spoof weights for the (i+ 1)-th checkpoint as:

ci+1 = Spoof(ci, ci−1, · · · , c1)

= ci +

∑i−2
j=0 Kj(ci−j − ci−j−1)∑i−2

j=0 Kj

,
(12)

where Kj is the coefficient of the differences between ci−j and
ci−j−1. Here, we set the coefficients via exponential descent,
i.e., Kj = λj , as an example. Note that λ ∈ [0, 1] is an
adjustable parameter. In the experiment, we first honestly train
4 different tasks for 40 epochs using GA10 under the default
settings. Then, we spoof the last two third checkpoints in each
epoch using the above attack strategy.

Evaluation results: Figure 5 records the maximum reproduc-
tion error and minimum spoof distance among all checkpoints
in each epoch. We can see that the reproduction errors and
spoof distances vary with different tasks or epochs. The spoof
distances decrease as DNN models are trained toward conver-
gence. More importantly, even with the above strong spoofing
strategy, the measured reproduction errors using GA10 and
G3090 are still far less than the spoof distances.
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Fig. 5. The measured maximum reproduction errors, the spoof distances of
Adv, the settings of α and β, and FPRlsh and FNRlsh for different tasks.

(a) ResNet18 CIFAR10 (b) ResNet50 CIFAR100

Fig. 6. Testing accuracy curves when training ResNet18 on CIFAR-10 and
ResNet50 on CIFAR-100 for 40 epochs under different attack settings.

With the measured reproduction errors, we obtain the cor-
responding settings of α and β as shown in Fig. 5. Then,
we derive the optimal LSH configurations with the theoretical
guarantees of Prlsh(α) = 95% and Prlsh(β) = 5% (see
Fig. 1). Furthermore, we repeat the experiments 50 times and
use the above LSH configurations to evaluate FNRlsh and
FPRlsh among all honestly trained and spoofed checkpoints,
respectively. As shown in Fig. 5, both measured FNRlsh and
FPRlsh are lower than the theoretical value of 5%. More
importantly, β is always higher than the measured maximum
reproduction errors for both ResNet18 and RetNet50 tasks in
varied epochs. Thus, our adaptive strategy rarely triggers the
double-check strategy for honest submissions in practice and
achieves empirically 0 false negative via β. As for security,
even if FPRlsh is not 0, our sampling-based verification will
further reduce the evasion possibility of attackers. Future work
to evaluate error rates of RPoL is necessary for highly complex
models like GPT-3 [1].

E. Evaluation of RPoL Overall Performance

In the PoUW-based blockchain system, the probability of
winning mining rewards increases as the model performance
trained in a given time interval grows [11], [12]. Therefore,
we evaluate how RPoL affects the mining competition via two
evaluation metrics: 1) the inference performance of the global



model with and without RPoL under different proportions of
adversaries in the pool; 2) the one-epoch training time of
collaborative learning with and without RPoL in the pool. Note
that the lower the one-epoch training time, the more training
iteration in time duration, thus the more model performance or
the faster block production speed. Furthermore, we measure
the overhead of RPoL in terms of computation, communication,
and storage resources.

In our experiment, there is one manager with a bandwidth
of 10Gbps and 10 workers each with a 100Mbps bandwidth
in a wide-area network setting. The models in the evaluation
are ResNet18, ResNet50, and VGG168. The datasets used
include CIFAR-10, CIFAR-100, and ImageNet9, all are equally
distributed to pool workers. α and β are tuned via the method
described in Sec. VII-D (i.e., Prlsh(α) = 95%, Prlsh(β) =
5%, Klsh = 16). According to the design, we set up two
verification schemes: RPoLv1 (with verification yet without
using LSH), and RPoLv2 (with verification using LSH). The
comparison experiments vary with the different evaluation
metrics, which will be described below. Additionally, we
extrapolate some results for a setting of 100 workers to better
analyze the overall overhead of RPoL.

Impact of RPoL on the model inference performance: We
conduct comparison experiments by building two types of
adversaries: Adv1 that directly submits the previous global
model without local training in each epoch, and Adv2 that
trains only 10% of the training steps in each epoch and
fakes the model updates via the spoofing strategy as specified
in Eq. (12). There are two baselines without verification:
BL Adv1 including the first type of adversaries and BL Adv2

containing the second type of adversaries. All workers’ re-
sults are aggregated in BL Adv1 and BL Adv2. In contrast,
submissions from dishonest workers successfully detected by
RPoLv1 or RPoLv2 are not aggregated into the global model. In
the experiment, we conduct two tasks, i.e., ResNet18 trained
on CIFAR-10 and ResNet50 on CIFAR-100, all trained for
40 epochs (due to resource limitation). We evaluate model
accuracy with and without our verification under different
settings where the proportion of dishonest workers in the pool
varies from 10% to 90%.

As shown in Fig. 6, RPoLv1 and RPoLv2 under different at-
tack settings always obtain better inference accuracy compared
with the baselines without verification. Meanwhile, although
RPoLv2 may incur false positives theoretically (caused by
LSH), it experimentally obtains the same inference accuracy
with RPoLv1. Besides, even in the setting with only 10%
adversaries, RPoLv1 and RPoLv2 generate slightly better per-
formant models than those without verification. Such a small
advantage in term of model accuracy can still help the mining
pool with RPoL win the mining competition against those
without verification. Furthermore, the differences in model
accuracy between RPoL and baselines increase as the number
of attackers grows. This demonstrates that RPoL is significantly

8https://arxiv.org/abs/1409.1556
9https://doi.org/10.1109/CVPR.2009.5206848

TABLE II
ONE-EPOCH TRAINING TIME OF DIFFERENT SCHEMES

Task # of workers Baseline (Insecure) RPoLv1 RPoLv2

ResNet50 10 307s 369s 348s
100 37s 99s 78s

VGG16 10 282s 548s 429s
100 66s 332s 212s

TABLE III
PERFORMANCE OVERHEAD WHEN TRAINING RESNET50 WITH IMAGENET

FOR ONE EPOCH WITH 100 WORKERS

Overhead Baseline (Insecure) RPoLv1 RPoLv2

Comp. M 0 s 180s 240s
W 30s 30s 30s

Comm. M&W 8.8GB 62GB 35.6GB

Storage W 0.09GB 4.5GB 5.9GB

Capital Cost - $2.13 $8.49 $5.46

important for realistic mining pools, because workers would
behave dishonestly if attackers can get rewards as well. Note
that, the final accuracy is low for the task of ResNet50 in
Fig. 6 because we only train the model for 40 epochs with
limited resources. We believe that the accuracy will increase
for more epochs.

Impact of RPoL on the one-epoch training time: To assess
the overall costs, we simulate heavy AI tasks by training
ResNet50 and VGG16 on ImageNet with 1, 281, 167 images.
All images are equally distributed to workers in the pool.
We compare RPoLv1, RPoLv2, and baseline (insecure version
without verification) under the settings of 10 and 100 workers.

As shown in Tab. II, the one-epoch training time decreases
as the mining pool size grows from 10 to 100, especially
for the baseline version. This is because the subtask at the
worker side takes less time as the mining pool size grows.
For ResNet50 with a size of 90.7MB, the computational cost
contributes to a large portion of the epoch time, hence the
LSH optimization only slightly improves the overall perfor-
mance. However, in the training of VGG16 with a size of
527MB, because the communication overhead dominates the
total costs, RPoLv2 accelerates the one-epoch training by about
36% compared to RPoLv1 while achieving the same security
goal as RPoLv1. This acceleration becomes more prominent
as the number of workers grows, and directly facilitates the
speed of block proposing in PoUW blockchain systems. Note
that the performance can be further boosted with parallel
processing on the manager side. In reality, in order to train a
very large model, the difficulty level (test set accuracy) should
be adjusted to accommodate a reasonable block production
time, which is an interesting topic in future work.
RPoL verification overhead: We estimate verification over-

head incurred by RPoL in mining pools consisting of 100 work-
ers. Each worker trains ResNet50 on a subset of ImageNet.

Table III shows the evaluation results. At the pool manager



side, the computation overhead of RPoLv1 is higher than
the insecure baseline due to the verification. Besides, the
computation overhead of RPoLv2 is about 30% higher than
RPoLv1, since M needs to train a local subtask twice for
setting LSH in RPoLv2. Note that, the subtask is not useless
work whose results can also be aggregated into the global
model. At the pool worker side, the computation overhead
is dominated by training. Other calculations like LSH-based
hashing are very fast (e.g., about 250ms for calculating 50
checkpoints of ResNet50).

Compared with RPoLv1, RPoLv2 is more communication-
efficient and about 42% lower than v1. Especially, if excluding
the baseline communication costs, RPoLv2 optimizes the com-
munication costs for verification by about 50%. The double-
check strategy is not triggered in experiments. In terms of
storage overhead, both RPoLv1 and RPoLv2 stores checkpoints
for verification, thus incurring more storage overhead than
the baseline. Compared with RPoLv1, the storage overhead of
RPoLv2 is about 30% higher than v1 due to additional storage
for LSH-related parameters.

We further estimate the capital cost of computation, commu-
nication, and storage in the mining pool. Assume the mining
pool is deployed in the Alibaba cloud10 where the price for
the computation resource of GA10 is $1.33/h (G3090 is not
supported in the cloud), for the wide-area communication cost
is $0.12/GB, and for the storage cost is $5/100GB per month.
The total cost of RPoLv2 is about 35% lower than RPoLv1
since RPoLv2 reduces expensive communication costs. Note
that the overhead for verification is acceptable compared with
the mining rewards (near $133000 in Bitcoin in 1/202311).

In summary, RPoL helps the pool wins the mining com-
petition via effectively detecting adversaries and preserving
high model accuracy with acceptable costs. Additionally, LSH-
based optimization reduces the total overhead by about 35%
without affecting overall model performance.

VIII. RELATED WORK

PoUW consensus. Recent advances apply useful tasks in
PoUW consensus protocols of blockchains. REM [9] allows
any entity to execute a useful workload in mining and lever-
ages SGX to offer trustworthy reporting on CPU cycles for se-
curity. PoLe [12] studies a proof-of-learning based consensus
protocol and prevents block tampering attacks via a functional
encryption scheme. PoFL [11] investigates proof of federated
learning in mining pools and proposes a privacy-preserving
model verification scheme for data privacy. PoNAS [35] at-
tempts to apply the neural architecture search as the PoUW
workload in mining pools. Our work is complementary to
theirs, as we focus on building training assurance of untrusted
participants in a mining pool.
Verification of DNN tasks. Both zk-SNARK based proto-
col [18] and TEE (trusted execution environment) [36] like
Intel SGX [19] can verify the integrity of general computation

10https://www.aliyun.com/price
11https://www.blockchain.com/explorer/assets/btc

yet with huge overhead or subtle security issues [37]. Li et.
al [38] check the quality of outsourced training via well-crafted
training tasks, yet fail to ensure the training integrity in the
iterative learning process. PoT [39] verifies the ownership of
a well-trained model by carefully checking the properties of a
chain of intermediate checkpoints saved during training, which
might be insufficient in the collaborative learning scenario.
PoL [20] is technically most similar to our work. It builds
proof of learning and tolerates reproduction errors via slack
parameters. However, PoL incurs huge communication costs
for transferring all raw intermediate results. More importantly,
PoL only verifies the largest model updates, which can be
easily evaded by attackers with deliberately spoofing results.
PoL is also demonstrated not secure by a recent work [22].
Secure and robust collaborative learning. Collaborative
learning is fragile to model poisoning or backdoor attacks
launched by bad participants [40]–[43]. TrustFL [4] requires
each participant to equip with TEE so as to guarantee faith-
ful executions. However, it only works for specific models
without reproduction errors. Other research studies either
detect anomalies via unsupervised learning [40], or perform
byzantine-robust federated learning [42], or recover an accu-
rate model by removing discovered anomalies [41]. In contrast,
our work ensures the integrity of (possibly lazy) pool workers
with various training tasks, which are complementary to the
above solutions.

IX. CONCLUSION

We propose a robust and efficient proof of learning scheme
called RPoL to verify the training integrity of workers in
a mining pool under PoUW-based blockchain systems. To
defeat various adversaries in the pool, RPoL develops an
address-encoded DNN model and a commitment-based secure
sampling method. Meanwhile, RPoL leverages LSH-based
fuzzy matching for robust and communication-efficient ver-
ification. We conduct both theoretical analysis and extensive
experiments. The results show RPoL can preserve high model
accuracy against adversaries with acceptable overhead, thereby
facilitating winning the mining competition for the pool.

In the future, we plan to leverage smart contracts to achieve
fair exchange between the manager and workers inside the
mining pool. Meanwhile, decentralized verification will be
implemented to enable multiple workers to securely accelerate
the verification in parallel.
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