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Abstract—Unmanned aerial vehicles (UAVs) can be deployed
as flying base stations to provide wireless communication and
machine learning (ML) training services for ground user equip-
ments (UEs). Due to privacy concerns, many UEs are not willing
to send their raw data to the UAV for model training. Fortunately,
federated learning (FL) has emerged as an effective solution
to privacy-preserving ML. To balance efficiency and wireless
security, this paper proposes a novel secure and efficient FL
framework in UAV-enabled networks. Specifically, we design
a secure UE selection scheme based on the secrecy outage
probability to prevent uploaded model parameters from being
wiretapped by a malicious eavesdropper. Then, we formulate
a joint UAV placement and resource allocation problem for
minimizing training time and UE energy consumption while
maximizing the number of secure UEs under the UAV’s energy
constraint. Considering the random movement of the eaves-
dropper and UEs as well as online task generation on UEs
in practical application scenarios, we present the long short-
term memory (LSTM)-based deep deterministic policy gradient
(DDPG) algorithm (LSTM-DDPG) to facilitate real-time decision
making for the formulated problem. Finally, simulation results
show that the proposed LSTM-DDPG algorithm outperforms the
state-of-arts in terms of efficiency and security of FL.

Index Terms—Deep reinforcement learning, federated learning,
physical layer security, resource allocation, unmanned aerial
vehicle.
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IT is expected that sixth-generation (6G) networks will
support ubiquitous network connectivity and artificial in-

telligence (AI) services [1]. Due to the unique advantages of
flexible deployment and rapid mobility, unmanned aerial vehi-
cle (UAV) has been envisioned as an indispensable technology
to provide ubiquitous communications for user equipments
(UEs), in the absence of ground infrastructures or limited
infrastructure coverage such as disasters, remote areas and hot
spots [2]. Besides, along with the dramatic developments of AI
applications such as augmented reality and face recognition,
massive data generated by UEs can be used to train various
machine learning (ML) models with the assistance of UAVs,
where UAVs are deployed as flight BSs to flexibly collect data
and perform ML model training [3]. However, this centralized
training manner inevitably causes privacy disclosure, so it is
unrealistic for UEs to transmit their raw data to UAVs [4].

Fortunately, federated learning (FL) has emerged as a
promising distributed ML paradigm with privacy preservation
[5], which enables UEs to collaboratively train ML models
and only upload model parameters rather than raw data to
the server. By adopting FL, UAVs can assist ground UEs in
performing distributed model training without prejudice to data
privacy. To be specific, UAVs work as FL servers to aggregate
local models uploaded from UEs, and then broadcast the
aggregated global model to all UEs for the next learning round.
This process is repeated until the global model converges.

In UAV-enabled FL networks, communication capacity can
be enhanced and UEs’ dropout rate can be reduced during
FL training, by exploiting the beneficial line-of-sight (LoS)
propagation of the UAV [6]. Despite these promising benefits,
there still exist some critical issues to be solved.

1) Security: Due to the broadcast nature of the UAV-
UE channel, malicious eavesdroppers can easily intercept the
uploaded model parameters and infer sensitive information of
users (e.g., age, gender, occupation and location). The common
secure schemes for achieving confidential communications in
FL are the upper-layer encryption techniques such as secure
multi-party computation and homomorphic encryption [10],
which often inevitably add extra computational or communi-
cation overheads to the resource-limited UAV and UEs. In con-
trast, physical layer security (PLS) exploits wireless channel
characteristics to protect UAV communications from malicious
eavesdroppers, and it does not need complex encryption and
decryption operations. Thus, leveraging PLS to guarantee the
security of FL in UAV-enabled networks is worth studying.

2) Efficiency: The efficiency of FL is mainly reflected in
both training time and energy consumption. On the one hand,
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the training time required to converge to a target accuracy
level is one of the most important performance metrics of FL,
which depends on the computation latency for model training
on UEs and communication latency for transmitting model
parameters between the UAV and UEs. On the other hand, the
iterative training process of FL leads to considerable energy
consumption of UEs (communication and computation) and
UAV (propulsion), which raises great challenges to the battery
constrained UAV and UEs. Thus, it is essential to reduce
training time and energy consumption of FL.

To sum up, it is crucial to simultaneously optimize training
time, energy consumption and security of FL in UAV-enabled
networks. However, this research is very challenging and has
not yet been carried out. First, it is worth noting that leveraging
PLS to achieve secure FL in UAV-enabled networks is still
in its infancy. In [15], secrecy rate is used to measure the
security of one UE for model transmission, which is a metric in
PLS, defined as the difference between the transmission rates
of legitimate channels and wiretap channels. The greater the
secrecy rate of one UE, the more secure it is. However, the se-
crecy rate cannot intuitively reflect the possibility of UEs being
eavesdropped. Thus, how to accurately evaluate the security
of UEs is a key issue. Second, to improve the security of FL,
the UAV location can be adjusted to enhance the capacity of
legitimate channels, and the UEs can also reduce their transmit
power to weaken wiretap channels, but at the cost of higher
communication delay. To improve the efficiency of FL, system
resources (e.g., bandwidth, CPU frequency, transmit power)
can be optimized to minimize training time [17], [18], energy
consumption [20], [21] and trade-off between them [24], while
secrecy performance may be reduced. Thus, training time,
energy consumption and security of FL conflict with each
other, and how to optimize UAV placement and resource
allocation to strike a trade-off among these three conflicting
objectives is quite difficult. Third, in practical scenarios, the
random movement of eavesdroppers and UEs and online task
generation on UEs pose great challenges to the optimization
of UAV-enabled FL.

Driven by the above challenges, this paper proposes a
secure and efficient FL framework in UAV-enabled networks
to simultaneously optimize training time, energy consumption
and security of FL systems, under the practical dynamic
environments. The main contributions of this paper can be
summarized as follows.

• We design a secure UE selection scheme based on the se-
crecy outage probability (SOP), where SOP is derived to
obtain the probability of UEs being eavesdropped. Then,
only the secure UEs whose SOP meets a target security
requirement can participate in FL training because their
model parameters can be securely transmitted to the UAV.

• We define a trade-off objective function called Security-
Efficiency Cost (SEC) to simultaneously reduce training
time and UE energy consumption, as well as increase
the number of secure UEs. Then, we formulate a long-
term SEC minimization problem by jointly optimizing
the transmit power and CPU frequency of UEs, uplink
bandwidth and UAV placement under the UAV’s energy
budget constraint. The problem is difficult to address

due to the three conflicting objectives and environment
dynamics. Thus, we reformulate the problem as a markov
decision process (MDP) and exploit deep reinforcement
learning (DRL) technique to find an optimal solution.

• We present the long short-term memory (LSTM)-based
deep deterministic policy gradient (DDPG) algorithm
(LSTM-DDPG) to make real-time decisions, where the
LSTM-based actor network and critic network are de-
signed to capture the temporal correlation of state features
for improving the state representation ability.

• Simulation results demonstrate that the proposed LSTM-
DDPG algorithm has good convergence performance,
and outperforms the state-of-arts in training time, energy
consumption and security of FL.

The remainder of this paper is organized as follows. Section
II reviews some related works. Section III presents the system
model and problem formulation. Section IV presents the
proposed algorithm. Section V describes the simulation results.
Finally, Section VI concludes the paper.

II. RELATED WORK

Recently, many research efforts have been conducted to
improve efficiency and security performance of FL. These
studies can be divided into two main research directions.
One mainstream direction is to design learning algorithms for
FL performance boost. For example, Luo et al. [7] analyzed
how to optimally choose the essential control variables in
FL to minimize the total efficiency cost. Shen et al. [8],
[9] proposed the novel split federated learning (SFL) scheme
that integrated FL with a model split mechanism to enhance
training efficiency while maintaining data privacy. Another
mainstream direction is to optimize resource allocation of FL
systems, which studies how the computation and communica-
tion resources can affect the training time, energy consumption
and security of FL. In this paper, we focus on achieving secure
and efficient FL in UAV-enabled networks from the perspective
of resource allocation. To avoid being out of the scope of this
work, we will present related works on resource allocation
in terrestrial/aerial FL systems, and divide the related works
into: (i) security performance optimization, (ii) training time
minimization, (iii) energy consumption minimization, and (iv)
weighted sum minimization of training time and energy con-
sumption.

Security performance optimization. The security issue of
FL has aroused extensive concern from both academia and
industry. The common privacy-preserving schemes such as
secure multiparty computation, homomorphic encryption and
differential privacy have been widely applied on top of FL
to prevent potential security and privacy threats [10]–[12].
Recently, the works in [13], [14] considered the security of FL
in UAV networks and introduced the blockchain technology
to ensure secure model transmissions. However, the above
approaches are computationally expensive (i.e., homomorphic
encryption and blockchain) or add up communication burdens
(i.e., secure multiparty computation and differential privacy),
which may pose challenges for the UAV and ground UEs
with limited hardware resources. In this case, Yao et al.
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[15] adopted the physical layer security (PLS) technology
to achieve secure FL in fog-aided internet of drones and
investigated the maximization problem of system secrecy rate
by optimizing the transmit power of all drones.

Minimizing training time. Considering FL over terrestrial
wireless networks, Chen et al. [16] optimized UE selection and
wireless resource allocation to reduce the total communication
delay for training. In [17], Do et al. studied UAV-assisted wire-
less powered FL networks, and applied the DDPG algorithm to
optimize UAV placement and resource allocation with the goal
of minimizing training time. Different from above works that
considered UAVs as FL clients, Yang et al. [18] adopted UAVs
as FL servers and proposed an asynchronous advantage actor-
critic (A3C)-based algorithm to minimize the weighted sum
of training time and learning accuracy by jointly optimizing
device selection, UAVs placement and resource management.

Minimizing energy consumption. In [19], Yang et al. stud-
ied the energy-efficient FL over terrestrial wireless networks,
where computation and communication resources were opti-
mized to minimize the sum of all UEs’ energy consumption
under a latency constraint. Considering deploying UAV as a
FL server, Jing et al. [20] used the successive convex approx-
imation (SCA) approach to minimize UE energy consumption
via jointly optimizing UAV location and resource allocation
under the constraints of learning accuracy and training latency.
In UAV-aided wireless powered networks, Pham et al. [21]
designed an energy-efficient FL framework to minimize the
total energy consumption of the UAV server and UEs, and
proposed a joint resource allocation scheme based on an
iterative algorithm.

Minimizing weighted sum of training time and energy
consumption. Tran et al. [22] proposed first-of-its-kind “FL
over wireless networks” problem design to study the trade-off
between training time and UE energy consumption by using
the Pareto efficiency model. In [23], Zhou et al. optimized
bandwidth, transmission power and CPU frequency of UEs to
minimize the weighted sum of training time and UE energy
consumption. Different from the above works that focused on
FL efficiency over terrestrial wireless networks, Tang et al.
[24] considered the implementation of FL in UAV networks,
and adopted the DDPG algorithm to optimize the bandwidth
and CPU frequency of UAV clients aiming at minimizing
training time and UAV energy consumption.

In summary, existing works only cover one or two of
the three significant factors regarding security, training time
and energy consumption, which hinders the deployment and
application of FL. In addition, few studies have considered the
impact of environment dynamics on the FL performance. In
real scenarios, the locations of the eavesdropper and UEs as
well as the training tasks on UEs are time-varying. Thus, it
necessitates the design of online algorithms for making real-
time decisions. The DRL has recently achieved remarkable
successes in making continuous online decisions. Liu et al.
[25] adopted the double deep Q-network (DDQN) algorithm to
optimize UAV trajectory according to the locations of mobile
UEs, aiming at maximizing the long-term system reward.
However, DDQN can only deal with discrete action cases.
Samir et al. [26] formulated an online optimization problem

TABLE I
SUMMARY OF KEY NOTATIONS

Notions Description
K, K, k Set, number and index of UEs
T , T , t Set, number and index of rounds/time slots

St Set of secure UEs at time slot t
Ks,t Number of secure UEs at time slot t
Nlocal Number of local iterations in FL
τcmp
k,t Local computing time of UE k

τupk,t Transmission time of local model at UE k

qqqu,t, qqqk,t, qqqe,t Locations of UAV, UE, eavesdropper
bk,t Bandwidth allocated to UE k
pk,t Transmit power of UE k

Rk,sec
t secrecy rate of UE k at time slot t
P out
k,t Secrecy outage probability of UE k

Dk,t Data size of UE k at time slot t
Ck,t Number of CPU cycles required by UE k
fk,t Computing capability of UE k
M Data size of local model parameters

with hybrid discrete-continuous action space, and leveraged
the proximal policy optimization (PPO) algorithm to find the
best policy. To achieve online decision-making for a multi-
objective joint optimization problem, Yu et al. [27] proposed
an extended DDPG algorithm with multi-dimensional reward.
Nevertheless, DDPG with fully-connected deep neural net-
works lacks the representative ability for accurate state infer-
ence. Thus, we are motivated to study secure, low-latency and
energy-efficient FL in UAV-enabled networks under dynamic
environments. Then, we propose the LSTM-DDPG algorithm
to obtain the optimal UAV placement and resource allocation
strategy in real-time, aiming at reducing training time, energy
consumption while enhancing FL security.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a FL network with a
rotary-wing UAV acting as a parameter server, K ground
UEs indexed by the set K ≜ {k = 1, 2, . . . ,K} and an
eavesdropper. In particular, each UE trains a local model
using its own dataset Dk∈K = {xk,n, yk,n}Dk

n=1, and then
sends its local model parameters to the UAV for global model
aggregation. During the uplink transmission, the eavesdropper
attempts to wiretap the uploaded model parameters from UEs
to the UAV. The main notations in this paper are summarized
in Table I.

A. FL Framework Design in UAV-Enabled Networks

In this subsection, we first introduce the basics of FL, and
then present the FL framework in UAV-enabled networks.

1) FL Basics: In FL, the ML model trained on each UE
is called local model, while the model generated at the UAV
server by aggregating all received local models is called global
model. The goal of the FL training process is to derive the
global model wwwg to minimize the global loss function:

min
wwwg

L(wwwg) ≜
K∑

k=1

Dk

D
Lk(wwwg), (1)

where Dk = |Dk| represents the number of data samples for
UE k. D =

∑K
k=1 Dk represents the total number of data
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Fig. 1. Federated learning in UAV-enabled wireless networks.

samples from all UEs, and Lk(wwwg) is the local loss function
of UE k on its own dataset Dk, i.e.,

Lk(wwwg) =
1

Dk

Dk∑
n=1

l(wwwg, xk,n, yk,n), (2)

where l(wwwg, xk,n, yk,n) is the loss function of UE k with one
data sample.

2) FL Framework: The entire training process of FL is
periodic with T global rounds, while each round t ∈ T ≜
{t = 1, 2, . . . , T} consists of the following three steps:
Step 1. Secure UE Selection: The UAV selects secure UEs

to participate in FL training, which will be elaborated
in Section III.C. The selected UEs can securely send
their model parameters without being wiretapped by
the eavesdropper.

Step 2. Local Model Training and Upload: Each partici-
pating UE trains a local model on its own dataset by
solving the following local optimization problem:

min
hhh

(t)
k

Gk

(
www(t)

g ,hhh
(t)
k

)
≜ Lk

(
www(t)

g + hhh
(t)
k

)
−
(
∇Lk

(
www(t)

g

)
− δ∇L

(
www(t)

g

))T

hhh
(t)
k ,

(3)
where δ is the step size, www(t)

g is the global model at
round t, and hhh

(t)
k is the difference between the global

and local model for UE k at round t. Then, UE k
uploads its updated local model (i.e., www(t)

g + hhh
(t)
k ) to

the UAV for aggregation.
Step 3. Global Model Aggregation and Download: After

collecting local models from all participating UEs, the
UAV server aggregates them to produce a new version
of the global model based on a certain aggregation
principle. Then, the UAV will broadcast the new
global model www

(t+1)
g to all UEs for optimizing the

local models in the (t+ 1)-th round.

The above three steps are iterated until a desired accuracy
is achieved. To achieve a global accuracy ϵ0 for the global
model, the solution www

(t)
g of problem (1) means that

L(www(t)
g )− L(www∗

g) ≤ ϵ0

(
L(www(0)

g )− L(www∗
g)
)
, (4)

where www∗
g is the optimal solution of problem (1). Similarly, the

solution hhh
(t)
k of problem (3) with a local accuracy η means that

Gk

(
www(t)

g ,hhh
(t)
k

)
−Gk

(
www(t)

g ,hhh
(t)∗
k

)
≤ η

(
Gk

(
www(t)

g ,000
)
−Gk

(
www(t)

g ,hhh
(t)∗
k

))
,

(5)

where hhh
(t)∗
k is the optimal solution of problem (3).

According to [19], assuming that Lk(·) is Lipschitz contin-
uous with parameter L and strongly convex with parameter µ,
the minimum number of local iterations Nlocal for each global
round to reach the local target accuracy η and the minimum
global learning rounds T to reach the global target accuracy
ϵ0 can be derived as follows:

Nlocal =
2

(2− Lδ)δµ
log

1

η
, (6)

T =
2L2

µ2ξ(1− η)
log

1

ϵ0
, (7)

where the hyper-learning parameters δ < 2
L and ξ ≤ µ

L .

B. Mobility Model of UEs, Eavesdropper and UAV

Without loss of generality, we consider a three-dimensional
Cartesian coordinate system. The UAV flies at a fixed altitude
H and its horizonal location is denoted by qqqu,t = (xu,t, yu,t).
Moreover, for practical reasons, the locations of the eaves-
dropper and UEs are considered to be time-varying. The
locations of the eavesdropper and UEs are assumed to be
known by the UAV.1 The locations of the k-th UE and the
eavesdropper at time slot t are denoted by qqqk,t = (xk,t, yk,t)
and qqqe,t = (xe,t, ye,t), respectively.

1) Mobility Model of UEs and Eavesdropper: We assume
that all UEs and the eavesdropper, denoted by the set I ≜
{i = 1, . . . ,K, e}, follow the Gauss-Markov mobility model
[34]. Specifically, the velocity vi,t and the direction θi,t of
UE/eavesdropper i in the t-th time slot are derived as

vi,t = η1,ivi,t−1 + (1− η1,i)v̄i +
√
1− η21,iΩ1,i, (8)

θi,t = η2,iθi,t−1 + (1− η2,i)θ̄i +
√
1− η22,iΩ2,i, (9)

where 0 ≤ η1,i, η2,i ≤ 1 represent the memory level. v̄i and
θ̄i represent the average velocity and direction, respectively.
Ω1,i and Ω2,i are random variables following two independent
Gaussian distributions, which reflect the randomness of the
eavesdropper and UE movement.

1We assume that the eavesdropper acts as a passive receiver who always
stays silent. The passive eavesdropper can be detected due to its inevitable
power leakage of the local oscillator [29]. Moreover, it has been demonstrated
that the UAV can use on-board optical cameras or synthetic aperture radars
to obtain the location information of the eavesdropper and UEs [30]–[33].
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2) UAV Mobility Model: The flight control of the UAV
is described by flight speed vt ∈ [0, Vmax] and direction
θt ∈ [0, 2π]. Moreover, the UAV can only move within the
served rectangle-shaped area, whose side lengths are denoted
as Xmax and Ymax. While flying, the propulsion power
consumption can be calculated as follows [35]:

P fly
t (vt) = P0

(
1 +

3v2t
U2
tip

)
+ P1

(√
1 +

v4t
4v40
− v2t

2v20

) 1
2

+

+
1

2
d0ρs0Av3t ,

(10)
where P0 and P1 represent the blade profile power and derived
power of the UAV in the hovering state, respectively. Utip

is the tip speed of rotor blade, and v0 is the mean rotor
induced velocity under the hover condition. d0, ρ, s0 and A
represent the fuselage drag ratio, air density, rotor solidity and
rotor disc area, respectively. Accordingly, the hovering power
consumption is Phover = P0 + P1 by setting vt = 0.

C. Secure UE Selection

In this subsection, we first present the channel models of
UAV-UE and UE-eavesdropper links, and then elaborate the
SOP-based secure UE selection scheme.

1) Channel Model: For the legitimate channel from the k-
th UE to the UAV, we adopt the practical probabilistic LoS
channel model [36]. The LoS and NLoS path loss between
the UAV and UE k at time slot t can be given by

Lk,t =

{
α0(d

k,u
t )−β0 , if LoS link,

µNLoSα0(d
k,u
t )−β0 , if NLoS link,

(11)

where α0 represents channel power gain at the reference
distance of 1 m, and β0 represents the path loss exponent.
µNLoS is the additional attenuation coefficient of NLoS links.
In the communication model, the LoS probability between the
k-th UE and the UAV at time slot t can be expressed as

PLoS
k,t =

1

1 + a exp
(
− b(θk,t − a)

) , (12)

where a and b are constant values that depend on the
communication environment. θk,t = 180

π sin−1
(

H

dk,u
t

)
is the

elevation angle from the UAV to UE k in degree, and
dk,ut =

√
(xu,t − xk,t)2 + (yu,t − yk,t)2 +H2 is the distance

between the UAV and UE k. Accordingly, the probability of
non-LoS (NLoS) can be given by PNLoS

k,t = 1 − PLoS
k,t . Thus,

the channel power gain between the UAV and UE k at time
slot t can be given by

hk,u
t =

(
PLoS
k,t + µNLoSPNLoS

k,t

)
α0(d

k,u
t )−β0 . (13)

We assume the frequency domain multiple access protocol
is applied for uplink channels. The transmission rate of the
k-th UE at time slot t can be expressed as

Rk,u
t = bk,t log2

(
1 +

pk,th
k,u
t

σ2
u

)
, (14)

where bk,t is the bandwidth allocated to UE k at time slot
t, and

∑K
k=1 bk,t ≤ B. B is the system bandwidth. pk,t is

the transmit power of UE k at time slot t, and σ2
u = bk,tNu,

where Nu is the noise power spectrum density at the UAV.

For the ground wiretap channel from the k-th UE to the
eavesdropper, both large-scale path loss and small-scale fading
are considered. Then, the channel gain between the k-th UE
and the eavesdropper at time slot t is given by

hk,e
t = α1(d

k,e
t )−β1 h̃k,e

t , (15)

where α1 is the channel power gain at the reference distance
of 1 meter, and dk,et = ∥qqqk,t − qqqe,t∥ is the distance between
the eavesdropper and UE k at time slot t. β1 is the path loss
exponent of the terrestrial link. h̃k,e

t is the Rayleigh fading
following exponential distribution with unit mean.

Accordingly, the data leaking rate from the k-th UE to the
eavesdropper at time slot t is given by

Rk,e
t = bk,t log2

(
1 +

pk,th
k,e
t

σ2
e

)
, (16)

where σ2
e = bk,tNe is the noise power at the eavesdropper, and

Ne is the noise power spectrum density at the eavesdropper.

2) Secure UE Selection Based on SOP Metric: In PLS,
secrecy rate is used to measure the security of wireless
communication. The secrecy rate of UE k can be calculated
as the non-negative difference between the transmission rates
of the legitimate channel and wiretap channel [37], i.e.,

Rk,sec
t =

[
Rk,u

t −Rk,e
t

]+
, (17)

where [x]+ = max(x, 0). The secrecy outage probability
(SOP) is defined as the probability that the instantaneous
secrecy rate Rk,sec

t falls below a secrecy rate threshold Rth

[38]. Accordingly, the SOP can be expressed as

Pout
k,t = Pr

(
bk,t log2

(
1 + pk,th

k,u
t /σ2

u

1 + pk,th
k,e
t /σ2

e

)
< Rth

)
. (18)

Then, we define the received SNRs for the legitimate
and wiretap channels as γk,u

t = pk,th
k,u
t /σ2

u and γk,e
t =

pk,th
k,e
t /σ2

e , respectively.2 Therein, γk,e
t follows the expo-

nential distribution with mean λk,e
t = pk,tα1(d

k,e
t )−β1/σ2

e .

2For the legitimate UAV-UE channel, it is assumed that the perfect
channel state information (CSI) can be obtained by using channel estimation
techniques [39]. For the wiretap channel, we assume the availability of
statistical CSI, due to the inadvertent signal leakage from the eavesdropper
[40]. Moreover, SOP only requires to know the statistical information about
the wiretap channel (i.e., the statistical mean and variance), which relaxes the
assumption of knowing the eavesdropper’s perfect CSI [41].
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Therefore, the SOP is given as follows:

Pout
k,t = Pr

(
bk,t log2

(
1 + γk,u

t

1 + γk,e
t

)
< Rth

)

= Pr

(
1 + γk,u

t

1 + γk,e
t

< 2Rth/bk,t

)

= Pr

(
γk,e
t >

1 + γk,u
t

2Rth/bk,t
− 1

)

=

∫ ∞

γk,e
t =β

f(γk,e
t )dγk,e

t

=

∫ ∞

γk,e
t =β

1

λk,e
t

exp

(
−γk,e

t

λk,e
t

)
dγk,e

t

= exp

(
−β
λk,e
t

)
,

(19)

where β =
1+γk,u

t

2Rth/bk,t
− 1.

Accordingly, we define the UEs satisfying the constraint
Pout
k,t ≤ ϵe as secure UEs, where ϵe is the maximum allowable

value of SOP. The secure UEs St ⊆ K will be selected to
participate in FL training, which is given by

St = {k ∈ K|Pout
k,t ≤ ϵe}. (20)

D. Computation and Transmission Model

During FL training, the latency and energy consumption of
each UE in a global round mainly comprise two parts, i.e.,
local model computing and uploading.

1) Local Computing Model: We denote the training task
generated by UE k at time slot t as (Dk,t, Ck,t), where Dk,t

is the number of task data samples and Ck,t (cycles/sample)
is the number of CPU cycles required by UE k to process one
sample data. Let fk,t denote the computing capability of UE k
at time slot t. Note that the number of local training iterations
is Nlocal, so the local computing time of UE k at time slot t
can be given by

τ cmp
k,t = Nlocal

Ck,tDk,t

fk,t
. (21)

Accordingly, the energy consumption of UE k for local
computing can be written as

Ecmp
k,t = NlocalζkCk,tDk,tf

2
k,t, (22)

where ζk is the coefficient of UE k’s chip.
2) Transmission Model: The data size of the transmitted

model parameters for each UE is the same, denoted as M .
For the k-th UE, the transmission time for uploading its local
model to the UAV at time slot t is given by

τupk,t =
M

Rk,u
t

. (23)

Accordingly, the communication energy consumed by UE
k for model uploading is given by

Eup
k,t = τupk,tpk,t. (24)

E. Problem Formulation

The global model aggregation latency and broadcast latency
are very small and can be neglected [23]. Thus, one-round
training time for UE k includes the local computing time and
model uploading time, which can be expressed as

τk,t = τ cmp
k,t + τupk,t. (25)

Note that synchronous FL is considered in this paper, which
is still currently the most commonly used FL approach because
of good convergence properties [42]. Thus, the training time
of one learning round is determined by the slowest UE, i.e.,

τt = max
k∈St

τk,t. (26)

In addition, the total energy consumption of all UEs in the
t-th round is given by

Et =
∑
k∈St

Ecmp
k,t + Eup

k,t. (27)

Given the above system model, we aim to minimize train-
ing time and UE energy consumption while maximizing the
number of secure UEs by joint optimizing UAV placement,
and communication as well as computation resource allocation
under the UAV’s energy budget constraint. Thus, we define a
system Security-Efficiency Cost (SEC):

κt =
λτt + (1− λ)Et

Ks,t
, (28)

where Ks,t = |St| is the number of secure UEs at round t, and
λ ∈ [0, 1] is a constant weight parameter that is used to balance
the one-round training time τt and UE energy consumption
Et. Accordingly, we consider a long-term SEC minimization
problem, which can be formulated as follows:

P1P1P1 : min
{vt,θt,bbbt,ffft,pppt}

T∑
t=1

κt (29a)

s.t. vt ∈ [0, Vmax], ∀t, (29b)
θt ∈ [0, 2π], ∀t, (29c)
0 ≤ xu,t ≤ Xmax, 0 ≤ yu,t ≤ Ymax, ∀t, (29d)
K∑

k=1

bk,t ≤ B, bk,t > 0, ∀t, (29e)

fmin
k ≤ fk,t ≤ fmax

k , ∀k, ∀t, (29f)

pmin
k ≤ pk,t ≤ pmax

k , ∀k, ∀t, (29g)
T∑

t=1

Eu,t ≤ Emax, (29h)

where bbbt = [b1,t, · · · , bK,t], fff t = [f1,t, · · · , fK,t] and
pppt = [p1,t, · · · , pK,t]. (29b)-(29d) limit the UAV’s movement.
(29e)-(29g) are the bandwidth resource constraint, computing
resource and transmit power constraints for UE k, respectively.
(29h) indicates that the long-term energy consumption of
the UAV should not exceed the energy budget Emax, where
Eu,t = P fly

t (vt)+Phoverτt is the UAV’s energy consumption
for flying and hovering in the t-th round. The non-convex
problem P1P1P1 cannot be solved in an offline manner since
it requires real-time decision-making based on the current
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Fig. 2. Overall framework of LSTM-DDPG.

environment information. Thus, we reformulate the problem
as an MDP and design an online DRL algorithm.

IV. PROPOSED SOLUTION

In this section, we first give the definitions of state, action
and reward of MDP. Then, we introduce the proposed DRL
algorithm named LSTM-DDPG for solving problem P1P1P1.

A. State, Action, and Reward

• State: The state of the environment at time slot t is de-
fined as ssst = {qqqk,t, qqqe,t, qqqu,t, Dk,t, Ck,t, Ẽu,t, Nf,t}k∈K,
where qqqk,t, qqqe,t and qqqu,t are the locations of UEs, the
eavesdropper and UAV, respectively. (Dk,t, Ck,t) is the
training task of UE k. Ẽu,t = Emax −

∑T
t=1 Eu,t is the

current remaining energy of the UAV, and Nf,t is the
cumulative number of times that the UAV flies out the
target area by the time t.

• Action: The action is defined as aaat = {vt, θt, bbbt, pppt, fff t},
where vt and θt denote the flying speed and direction of
the UAV, respectively. bbbt, pppt and fff t denote the bandwidth,
transmit power and CPU frequency of UEs, respectively.

• Reward: According to the objective function in (29a),
the immediate reward can be defined as

rt = −κ̃t +∆penlty
1 +∆penlty

2 , (30)

where κ̃t = λτt+(1−λ)Et

Ks,t/K
, i.e., the enhancement of FL

security is measured by the proportion of secure UEs
Ks,t/K. ∆penlty

1 and ∆penlty
2 are the negative penalty

constants when the UAV flies out of the target area or
runs out of the energy budget, respectively. That is, (29d)
or (29h) is not satisfied.

B. Overall Framework

The overall framework of our proposed LSTM-DDPG al-
gorithm is presented in Fig. 2. LSTM-DDPG consists of a
LSTM-based actor network and a LSTM-based critic network.
Both the LSTM-based actor and critic networks are further
composed of one online network and one target network. By
applying the policy gradient method, the actor network can
generate a deterministic action according to states observed
from the environment. The critic network interacts with the
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Fig. 3. The structure of LSTM-based actor-critic networks.

actor network and learns the Q-function by minimizing the
loss function to accurately evaluate the action derived from
the actor. The target actor and critic networks are respectively
copies of the online actor and critic networks, which are used
to improve the training efficiency and stability. Moreover,
the experience replay buffer stores the historical transition
tuples. Then a mini-batch of transitions are randomly sampled
from replay memory to train the neural networks, which can
effectively decrease data correlation. The details of LSTM-
based actor-critic networks are described as follows.

C. LSTM-Based Actor-Critic Networks

In the traditional DDPG algorithm, the actor-critic archi-
tecture consisting of an actor network and a critic network
is adopted, where both the actor and critic networks employ
fully-connected deep neural networks (DNNs) to extract state
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and action features. However, the fully-connected DNNs fail
to capture the temporal pattern of environment dynamics (e.g.,
user mobility and time-varying UE tasks), resulting in inac-
curate state inference. In order to exploit the temporal pattern
of states and continuously adapt to environment dynamics,
we design the LSTM-based state characterization layer in
actor-critic networks. As a modified type of recurrent neural
network, LSTM introduces a memory cell to capture long-
term dependencies from input sequence data. Therefore, it has
been successfully used to deal with various sequential tasks
like time series prediction and translation.

The structure of LSTM-based actor-critic networks is il-
lustrated in Fig. 3(a). We first construct a state sequence
St = [ssst−seq+1, . . . , ssst−1, ssst], which includes the state of the
current time slot t and the historical states of the previous
seq − 1 time slots. Then, the states of seq time steps are
fed into LSTM cell one by one (one at each time step).
As shown in Fig. 3(b), the LSTM cell contains the forget
gate ft, input gate it and output gate ot, which can control
the extent of memorizing new information and forgetting
historical information. Formally, the relationships between
different parts of the LSTM cell can be expressed as follows:

hhht = ooot ◦ tanh(CCCt), (31a)
ooot = σ(WWW o · [ssst,hhht−1] + bbbo), (31b)
CCCt = fff t ◦CCCt−1 + iiit ◦ tanh(WWW c · [ssst,hhht−1] + bbbc), (31c)
fff t = σ(WfWfWf · [ssst,hhht−1] + bbbf ), (31d)
iiit = σ(WWW i [ssst,hhht−1] + bbbi), (31e)

where WWW o, WWW c, WWW f , WWW i, bbbo, bbbc, bbbf and bbbi are the parameters
of the neural networks. σ(·) and tanh(·) are sigmoid and
tanh activation functions, respectively. Notation ◦ denotes the
Hadamard product. Then, the hidden state hhht at the last time
step as the output of the LSTM layer, is fed into the fully-
connected neural networks (dense layers) to further extract
state features for achieving a proper fitting effect. Afterwards,
the output layers with different activation functions are em-
ployed in the actor network to generate the corresponding
policies. Finally, we concatenate all the results of the output
layers with the concatenation operator “⊕” to obtain the action
aaat. The critic network adopts a similar structure to the actor,
but the output of the dense layer that takes the state sequence
as input is concatenate with the output of another dense layer
that takes the action generated by the actor network as input.
The concatenated result is mapped into a Q-value via a dense
layer and an output layer, which is used to evaluate the
effectiveness of action generated by the actor network.

D. Training Process

As illustrated in Algorithm 1, the proposed LSTM-DDPG
algorithm operates as follows.

At the beginning of training, we initialize the LSTM-
based online networks in the actor µ(·) and the critic Q(·)
with random weights θθθµ and θθθQ, respectively (Line 1). The
parameters of the target actor network µ′(·) and critic target
network Q′(·) are copied from the online networks, i.e.,
θθθµ

′ ← θθθµ and θθθQ
′ ← θθθQ (Line 2). Meanwhile, we initialize

Algorithm 1 Training Process of LSTM-DDPG Algorithm
1: Initialize the LSTM-based actor online net θθθµ and LSTM-

based critic online net θθθQ;
2: Initialize the LSTM-based actor target net θθθµ

′
and LSTM-

based critic target net θθθQ
′
;

3: Initialize the experience replay buffer B;
4: for each episode do
5: Initialize environment and observe initial state sss0;
6: for time slot t = 1, 2, · · · , T do
7: Observe state ssst and construct the state sequence

St = [ssst−seq+1, . . . , ssst−1, ssst] as input of the LSTM-
based actor and critic networks;

8: Select action aaat according to the actor network and
carry out it;

9: Obtain immediate reward rt, observe new state
ssst+1, and construct the new state sequence St+1 =
[ssst−seq+2, . . . , ssst, ssst+1];

10: Store transition (St, aaat, rt,St+1) into B;
11: if update then
12: Randomly sample a mini-batch of transitions from

the replay buffer B;
13: Calculate the target Q-value by (32);
14: Update the critic network by minimizing the critic

loss defined in (33);
15: Update the actor network by using the policy

gradient defined in (34);
16: Update the target networks according to (35);
17: end if
18: end for
19: end for

the experience replay buffer B = ∅ (Line 3). In the exploration
phase (Lines 4-10), the UAV agent first receives the initial
state sss0 at the beginning of each episode. In each time slot t,
the agent observes state ssst and constructs the state sequence
St = [ssst−seq+1, . . . , ssst]. Then, the state sequence is input into
the actor network to generate action aaat. After executing the
action aaat, the corresponding reward rt can be obtained accord-
ing to the reward function (30), and the next state ssst+1 as well
as the new state sequence St+1 = [ssst−seq+2, . . . , ssst, ssst+1] are
updated. Next, the transition (St, aaat, rt,St+1) will be stored
in the experience replay buffer B. In the update period (Lines
11-16), a mini-batch of transitions are randomly sampled from
B to train DDPG networks. According to the sampled data,
the online critic network is used to calculate the estimation Q-
value with the inputs of St and aaat, i.e., Qeva = Q(St, aaat;θθθQ),
while the target Q-value is calculated by

Qtar = rt + γQ′
(
St+1, aaa

′
t+1;θθθ

Q′
)
, (32)

where γ is the discount factor for balancing the future reward
and the immediate reward, and aaa′t+1 is generated by the target
actor network. Note that aaa′t+1 is only used to update the
network and will not be executed. Then, we use the gradient
descent method to minimize the loss function of the critic
network, which is defined as follows:

L(θθθQ) = E
[
(Qeva −Qtar)

2
]
. (33)
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Similarly, the policy gradient for updating the actor network
can be expressed as

∇θθθµJ =E St∼ϱ [

∇aaaQ
(
sss,aaa;θθθQ

)
|sss=St,aaa=µ(St;θθθµ)∇θθθµµ (sss;θθθµ) |sss=St

]
,

(34)

where ϱ denotes the distribution of St. Finally, the target critic
and actor networks are updated by a soft update method:{

θθθµ
′ ← (1− τ)θθθµ

′
+ τθθθµ,

θθθQ
′ ← (1− τ)θθθQ

′
+ τθθθQ,

(35)

where τ ∈ [0, 1] is the step size of soft update.

V. SIMULATION RESULTS

In this section, extensive experiments are conducted to
evaluate the effectiveness of our proposed LSTM-DDPG algo-
rithm in improving FL performance. Simulation setup is first
illustrated, followed by results and discussions.

A. Simulation Setup

We consider that the UAV serves ground mobile UEs in a
200 m × 200 m area. The eavesdropper and UEs follow the
Gauss-Markov mobility model with the average speed v̄i =
1 m/s, direction θ̄i = [0, 2π) and memory level η1,i = η2,i =
0.4. The number of training data samples for each UE (i.e.,
Dk,t) is uniformly distributed in [400, 600], and the number
of CPU cycles required for computing one sample data (i.e.,
Ck,t) is uniformly distributed in [1, 3]×104. The UAV flies
at the fixed height H = 80 m with maximum flight speed
vmax = 25 m/s. Moreover, we assume that the loss function
Lk(·) is L-Lipschitz and µ-strongly convex, and further set
the parameters L = 4, µ = 2, δ = 1

4 , ξ = 1
4 , η = 0.5 and

ϵ0 = 10−3, respectively.
For the LSTM-DDPG algorithm, the actor network consists

of one LSTM layer with 800 neurons, one shared dense layer
with 512 neurons, three-branch dense layers with 256 neurons
and three-branch output layers. Each of the three-branch output
layers is also the dense layer, whose structure is determined
by its corresponding action dimension. The critic network
consists of one LSTM layer with 800 neurons, two-branch
dense layers with 256 neurons, one shared dense layer with
256 neurons and one output layer with 1 neuron. In actor and
critic networks, the length of the state sequence input to the
LSTM layer is 3. We adopt the Adam optimizer to train the
actor and critic with the same learning rate 0.001. Moreover,
we set the discounted factor to 0.9, the batch size to 32, the
size of replay buffer to 10000, and the soft update parameter
to 0.001. Other simulation parameters are listed in Table II.

To evaluate the performance of our proposed LSTM-DDPG
algorithm, we compare it with the following approaches:

• PPO [26]: It is a highly stable state-of-the-art model-free
DRL algorithm for obtaining the online control policy for
UAV locations and resource allocation.

• DDPG [27]: It learns the online control policy of the UAV
and shows excellent performance in the multi-objective
optimization problem.

TABLE II
SIMULATION PARAMETERS

Parameter Symbol Value
Number of UEs K 10
Model size M 500 Kb
CPU frequencies of UEs fk,t [0.1, 2.0] GHz
Effective capacitance coefficient ζk 10−28

Environmental parameters a, b 11.95, 0.136
Reference channel gain α0, α1 -40 dB, -60 dB
Path loss exponent β0, β1 2.3, 3
Communication bandwidth B 3 MHz
Noise power spectral density Nu, Ne -174 dBm/Hz
Transmit power of UEs pk,t [5, 100] mW
Weight parameter λ 0.6
Air density ρ 1.225 kg/m3

Tip speed Utip 120 m/s
Blade profile power P0 79.86 W
Derived power P1 88.63 W
Body resistance ratio d0 0.6
Robustness of the rotor s 0.05
The area of the rotor disk A 0.503m2

Mean rotor induced velocity v0 4.03 m/s
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Fig. 4. Training convergence comparison of different DRL algorithms.

• Uniform-FA: The location of the UAV and the trans-
mit power of UEs are fixed, while the bandwidth re-
sources are equally allocated to each UE [17]. The CPU-
frequency allocation decisions of UEs are learned by
using the proposed LSTM-DDPG algorithm.

• Uniform-PC: The UAV’s location and the CPU frequency
of UEs are fixed, while the bandwidth resources are
equally allocated to each UEs and only the transmit power
of UEs is optimized, which is inspired by [15]. Similarly,
we use the proposed LSTM-DDPG algorithm to learn
power control decisions.

B. Results and Discussions

1) Training Convergence: In Fig. 4, we show the conver-
gence performance of different DRL algorithms over training
episodes. Specifically, the average rewards are represented
by solid curves and the standard deviations are represented
by shaded areas. All average reward values are obtained by
applying the moving average method with a window of 100
episodes. It can be seen that LSTM-DDPG attains not only
the higher average reward but also the lower variance than the
PPO and DDPG algorithms, which indicates that our proposed
LSTM-DDPG algorithm outperforms PPO and DDPG on both
FL system performance and learning stability. Moreover, we
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numbers of UEs.
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Fig. 6. UAV locations and secure UE selection obtained by LSTM-DDPG for a scenario of a moving eavesdropper and 20 moving UEs.

can observe that the training stability of PPO is significantly
better than that of DDPG. However, the average reward and
convergence speed of DDPG are slightly better than those
of PPO at first about 400 episodes, but DDPG undergoes a
performance deterioration in later training. In view of this,
we choose DDPG as the starting point of our design, and then
leverage the LSTM networks to exploit the potential of DDPG.
Overall, the results confirm the effectiveness of our designed
LSTM-DDPG algorithm, which can better learn environment
dynamics to train DDPG more stably and accurately.

Fig. 5 illustrates the convergence performance of the pro-
posed LSTM-DDPG algorithm with different numbers of UEs.
Therein, the changes of accumulated reward, FL training time,
UE energy consumption and the number of secure UEs over
time during training are shown in Fig. 5(a), Fig. 5(b), Fig.
5(c) and Fig. 5(d), respectively. First, we can observe from
Fig. 5(a) that all the learning curves fluctuate violently at the
beginning because the policy learned by the agent is incorrect,
which leads to a large loss in actor-critic networks. Afterwards,

the accumulated rewards of all the learning curves gradually
grow as training progresses and then converge steadily at a
high level. In addition, it can be seen from Fig. 5(b), Fig.
5(c) and Fig. 5(d) that our algorithm can explore and learn
a better policy over time, which can simultaneously reduce
the training time and UE energy consumption as well as
enhance FL security. Finally, the LSTM-DDPG algorithm can
converge quickly and stably under different numbers of UEs,
which demonstrates that our algorithm has good convergence
performance.

2) UAV Placement and Secure UE Selection: Fig. 6 shows
the UAV trajectory and secure UE selection polices learned by
LSTM-DDPG, under time-varying task arrivals of UEs as well
as random movement of the eavesdropper and UEs. Therein,
the blue pentagrams and transparent pentagrams respectively
represent the current locations and previous locations of the
UAV, the triangles and transparent circles respectively rep-
resent the current locations and previous locations of the
eavesdropper and UEs, the solid triangles represent secure
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Fig. 7. (a) Security-Efficiency Cost (SEC), (b) FL training time, (c) UE energy consumption and (d) proportion of secure UEs versus number of UEs.
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Fig. 8. (a) Security-Efficiency Cost (SEC), (b) FL training time, (c) UE energy consumption and (d) proportion of secure UEs versus training model.

UEs that will be selected to participate in FL training, and the
hollow triangles represent insecure UEs that are not selected
to participate in FL training. In Fig. 6(a), we can see that
only 50% of secure UEs can participate in FL training at
the beginning. The UEs who are close to the eavesdropper
(abbreviated as Eav) and far away from the UAV, are insecure
and vulnerable to eavesdropping threats. As shown in Fig.
6(b)-(f), in order to enhance FL security, the UAV gradually
moves to the locations near the insecure UEs to improve their
secrecy capacities. It can be observed from Fig. 6(f) that 17
secure UEs can participate in FL training in the eighth time
slot, that is, the proportion of secure UEs increases from 50%
to 85%. Furthermore, we can analyze the location distribution
and movement trend of the UAV in a longer time period from
Fig. 6(g) and Fig. 6(h). First of all, we can find that when there
are some insecure UEs who are vulnerable to eavesdropping
risks, the UAV tends to chase the moving eavesdropper and
then move back and forth in its nearby area. The UAV can also
fly closer to the insecure UEs to improve their secrecy rate,
thus increasing the number of secure UEs. Accordingly, the FL
security performance is enhanced. Secondly, in order to reduce
the training time and UE energy consumption, the UAV tends
to fly to locations with high UE distribution density or fly to
locations which most users will move to in the near future.
These observations indicate that the proposed LSTM-DDPG
algorithm can well adapt to the changing new environments,
and make wise decisions with foresight to simultaneously
improve the efficiency and security of the FL system.

3) Performance Comparison Versus Number of UEs: Fig.
7 shows the performance comparison for different algorithms
with various numbers of UEs. First of all, we can find that

Uniform-FA achieves the minimization of training time and
the maximization of UE energy consumption, while Uniform-
PC achieves the minimization of UE energy consumption and
the maximization of training time. The reasons are as follows:
(1) The Uniform-FA algorithm only optimizes computing re-
sources related to computation latency and computation energy
consumption. Because the uploaded model size is small, the
training time mainly depends on computation latency rather
than communication delay. In order to reduce the training
time, the CPU frequency of all UEs increases, so UE energy
consumption increases. Since the training time accounts for a
larger weight, Uniform-FA will mainly optimize the training
time to maximize the system reward. (2) The Uniform-PC
algorithm only optimizes transmit power of all UEs related
to communication energy consumption and system security
performance. Since the transmit power optimization has a
greater impact on UE energy consumption than that on security
performance, the optimal strategy of Uniform-PC is to control
the transmit power of all UEs to be very low. Thus, UE energy
consumption is greatly reduced, training time is significantly
increased, and security performance is not optimized. Thus,
we can approximately regard the training time obtained by
Uniform-FA as the optimal value and UE energy consumption
obtained by Uniform-PC as the optimal value, to evaluate the
performance of the proposed algorithm in achieving multi-
objective optimization.

From Fig. 7(a), we can observe that LSTM-DDPG con-
sistently outperforms all baseline approaches in terms of
Security-Efficiency Cost (SEC). On average, for SEC, LSTM-
DDPG significantly improves 9.5%, 12.7%, 15.8% and 42.5%
over PPO, DDPG, Uniform-FA and Uniform-PC, respectively.
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Fig. 9. Accuracy comparison versus number of global rounds.

We can observe from Fig. 7(b) that the FL training time
increases with the increase of UEs. It is easy to understand
that since the UAV server needs to wait for all selected
UEs to complete and upload their local model updates at
each round, the limited bandwidth resource and the increasing
number of UEs will exacerbate the communication bottleneck
of FL, resulting in consuming longer time for global model
aggregation. As shown in Fig. 7(c), there is no doubt that
the total energy consumption of all UEs increases with the
increase of UEs. In Fig. 7(d), as the number of UEs increases,
the bandwidth allocated to each UE decreases, so the SOP
increases and the number of secure UEs decreases. We can also
observe that the proportion of secure UEs in the Uniform-FA
and Uniform-PC schemes is the same, because neither of them
optimizes security performance. In addition, it can be seen that
the training time of LSTM-DDPG is approximately equal to or
very close to that of Uniform-FA, and UE energy consumption
of LSTM-DDPG is approximately equal to or very close to
that of Uniform-PC. On average, the LSTM-DDPG algorithm
can save 4.0%, 7.8% of training time and 20.6%, 28.4% of
UE energy consumption compared with the PPO and DDPG
algorithms, respectively. It can also be observed from Fig. 7(d)
that LSTM-DDPG achieves superior security performance. For
20 UEs, LSTM-DDPG improves the proportion of secure UEs
by 4.8%, 2.7%, 10.5% and 10.5% compared with PPO, DDPG,
Uniform-FA and Uniform-PC, respectively. In summary, the
above results show the necessity of jointly optimizing UAV
placement, bandwidth allocation, CPU frequency and transmit
power of UEs for reducing the FL training time and UE energy
consumption and enhancing FL security. In addition, our
proposed LSTM-DDPG algorithm can make better decisions
for UAV placement and resource management, thus achieving
excellent performance in FL efficiency and security.

4) Performance Comparison Versus Training Model:
Fig. 8 presents the Security-Efficiency Cost (SEC), training
time, UE energy consumption and proportion of secure UEs
achieved by different algorithms under different training mod-
els. In this simulation, the two-layer Convolutional Neural
Network (2-CNN), Lenet [43], four-layer CNN (4-CNN) and
SqueezeNet [44] models are respectively trained with Fash-
ionMNIST dataset. The classic FedAvg is used as the FL
algorithm, and the number of global learning rounds is set

to 300. The number of UEs is set to 10, and only secure
UEs are selected to participate in FL training. From Fig.
8(a), it can be seen that LSTM-DDPG consistently outper-
forms all baseline approaches in terms of the key metric,
SEC (the lower the better). On average, for SEC, LSTM-
DDPG significantly improves 6.8%, 11.2%, 14.9% and 23.7%
over PPO, DDPG, Uniform-FA and Uniform-PC, respectively.
From Fig. 8(b) and Fig. 8(c), we can see that the training time
and UE energy consumption successively increase on the 2-
CNN, LeNet, 4-CNN and SqueezeNet models. This is because
the model sizes of 2-CNN, LeNet, 4-CNN and SqueezeNet
are in increasing order, which are 0.083, 0.462, 1.165 and
2.776 MB, respectively. When the model size becomes larger,
each participating UE needs to spend more time transmitting
its local model or use a higher transmit power, resulting in
longer training time and more energy consumption of UEs. In
addition, it can be observed that the proposed LSTM-DDPG
algorithm outperforms other baseline approaches in terms of
efficiency and security performance. On average, the LSTM-
DDPG algorithm can reduce 4.8%, 7.7% of training time and
11.7%, 30.0% of UE energy consumption compared with the
PPO and DDPG algorithms, respectively. It can also be seen
from Fig. 8(d) that the proportion of secure UEs for the LSTM-
DDPG algorithm is the highest. This is mainly because LSTM-
DDPG can capture temporal correlation of state sequences to
better explore actions with high rewards. In contrast, DDPG
with the fully-connected DNNs fails to accurately learn the
environment dynamics due to lacking the state representative
ability. Since PPO is an on-policy DRL algorithm without
a replay buffer to integrate previous experience, it is always
difficult to converge at an optimal point.

C. Accuracy Comparison Versus Global Round

In this subsection, we compare the test accuracy of FL
versus the number of global rounds under different approaches.
In the simulation, we employ FedAvg model aggregation
mechanism and a 2-CNN model is trained with FashionM-
NIST. The number of UEs is set to 20. As shown in Fig. 9,
in the LSTM-DDPG, PPO and DDPG algorithms, FL requires
about 200, 270 and 230 global rounds to achieve an accuracy
of 88%, respectively. In the Uniform-FA and Uniform-PC
algorithms, FL requires about 250 global rounds to achieve
an accuracy of 87%. To sum up, LSTM-DDPG achieves the
best FL performance with the highest accuracy and the fastest
convergence, and DDPG’s FL performance is comparable to
LSTM-DDPG. The reason is that the number of secure UEs of
the LSTM-DDPG and DDPG algorithms is more than that of
PPO, Uniform-FA and Uniform-PC. In other words, LSTM-
DDPG and DDPG can select more UEs to participate in the FL
model aggregation, thus achieving higher accuracy and faster
convergence speed.

VI. CONCLUSION

In this paper, we investigate the problem of designing a
secure and efficient FL framework in UAV-enabled networks.
Specifically, we propose a secure UE selection scheme based
on SOP to prevent the uploaded model parameters from
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being wiretapped by a malicious eavesdropper. Then, we
formulate a joint UAV placement and resource allocation
problem to reduce training time and UE energy consumption
while enhancing FL security, subject to the UAV’s energy
budget constraint. Considering the random movement of the
eavesdropper and UEs as well as online task generation on
UEs, we present a LSTM-based DDPG algorithm to solve
this problem, which makes full use of historical state infor-
mation and replaces the fully-connected neural networks with
LSTM, so as to capture the complex temporal correlation of
environment states. Simulation results show that the proposed
algorithm achieves superior performance in terms of training
time, energy consumption and security of FL.
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