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Abstract—Recent years have seen increasing attention on
building High-Speed Railways (HSR) in many countries. Trains
running on the railways have a top velocity of up to over
300 km/hour. This makes it become a scenario with unstable
connection qualities. In this paper, we propose a novel model
that can accurately estimate the mobility status on HSR based
on the changing patterns of network latency. Though various
impact factors make the prediction complex, we however argue
that the recent advance of deep learning applies well in our
context, and further we design a neural network model that
can estimate the moving velocity based on monitoring network
latency’s changing patterns in a short period. In this model,
we use a new variable called Round Difference Time (RDT) to
describe latency’s changing patterns. We also use the Fourier
Transform to extract the hidden time-frequency and use the
generated spectrum for estimation. Our data-driven evaluations
show that with suitable parameters, this model can get an
accuracy of up to 94% on all three lines.

Index Terms—velocity estimation, high-speed railway, Recur-
rent Neural Network

I. INTRODUCTION

Recent years have seen increasing attention on building
High-Speed Railways (HSR) in a wide range of countries to
accommodate large-scale population migration given its com-
fortable and convenient traveling service. While with the rapid
development of smart devices [1] and Internet of Thing (IoT)
technology [2], demands of mobile communication with high
quality are also growing. Therefore, many researchers focus on
the HSR scenarios and propose many creative schemes [3]–[5]
to improve the servicing quality of network connections.

Toward this goal, there however exists a first and foremost
step, i.e., content providers need to distinguish the moving
states of clients before providing services, which are naturally
ignored by existing approaches. To solve this problem, servers
can simply ask clients to provide their locational information,
which further raises another two problems. On one side, this
solution requires these clients to have the capacity of acquiring
current locational information. It is easy for a portion of smart
devices with GPS support (like smartphones) to report their
locational information. Yet it is difficult for those IoT devices

without GPS support due to the consideration of energy-saving
and cost. On the other side, even if servers can obtain clients’
current locational information, such schemes highly rely on
cross-layer technology and only work in limited scenarios.
Therefore, we need some new technology to help to determine
current moving states without specific hardware support.

Fortunately, network connections between devices and re-
mote servers provide rich information that can be used for
mobility reasoning. Many researchers have realized that there
has some associations between mobility and some metric
indicators, like delivery rate, on HSR scenarios [6]–[14]. Yet
because there are a lot of non-network factors that also affect
these indicators, it is hard to decide how these relationships
work. Different types of applications also have different ex-
pressions on the same indicator. Therefore, there still exists
a huge gap between mobility understanding and rich network
connections, with few research efforts focused on it.

In this paper, based on previous measurement works, we
investigate several indicators that may be helpful for exploring
the relationship. Some of them, like delivery rate, have strong
relevance to current application types, and the others, like
network latency, are closely related to the transmitting paths.
From all these indicators, we find out that the change patterns
of network latency in a short period is a suitable choice. On
one side, network latency includes network propagation delay
and queueing delay. For connections with a low delivery rate,
it is almost impossible to introduce new congestion into the
network. Network propagation delay has little relation with
current application types. Therefore, for these mice streams,
network latency is irrelevant to the application types and its
standard deviation in a time window also has nothing to do
with service types. On the other side, although network latency
has a strong dependency on the transmitting path, we can view
the latency spending on the wired paths in several seconds
is constant. Hence in a short period, the change patterns
of network latency only rely on the wireless paths. Such
aforementioned characteristics make it a suitable indicator to
explore the implicit relationship.

To explore the potential relationship and analyze how it978-0-7381-3207-5/21/$31.00 © 2021 IEEE



works, we design a measurement experiment on HSR scenar-
ios. We choose the Beijing-Tianjin inter-city railway (BTR)
routes to analyze network latency with traveling. We conduct
this by sending packets to remote servers. The payload of
each packet is low so that it will not introduce any new
network congestion. The transmitting latency of these packets
is captured as samples to represent the network latency. In
our experiment, we derive some key observations based on the
analysis of the HSR scenarios. In the 300 kilometer journeys,
smart devices experience handovers for every 30 seconds. The
network latency also oscillates sharply, with a maximum value
of up to 10 seconds, and it seems to have no patterns. But
because bullet trains always run on the known railway routes
under the same running standard, their moving velocity is
strongly related to their location. Meanwhile, relative to the
railways, geographical distributions of basestations in a certain
location are also fixed. When trains run in the same areas,
smart devices have a higher probability to experience similar
cellular networks, which makes network latency have similar
changing patterns. If network latency always has similar
patterns, we can use these to infer its moving velocity based
on a similar location.

We also design a new model to verify this relationship,
which can be used to estimate mobility based on the change
patterns of network latency. In this model, we use a new
variable called Round Difference Time (RDT) to describe
the changing patterns. Because many other factors(like terrain
information) also have an impact on the patterns, we need to
extract useful information according to these factors. Fourier
transform is a classic and widely used method that can be
applied to extract frequency features from sequential data. We
use the Short-Time Fourier Transform (STFT) method to do
this and generate a spectrum with a given set of samples in a
short time window. Recurrent Neural Network (RNN) is used
to estimate the mobility with a given spectrum. Our trace-
driven evaluations show that this model has an accuracy of at
least 94% on each route. In summary, the contributions of this
paper can be summarized as follows.

• We define a new metric, called Round-Difference Time
(RDT). RDT has a strong relationship with wireless paths,
and we use RDT to extract information related to high-
speed scenarios.

• We conduct extensive field measurement on high-speed
rails. Our measurement results show that handovers have
a major impact on latency. The handovers happen often
with the increasing N/P ratio. We also find out that
with higher traveling speed, handover happens more
frequently, in which burst increment and continuous
decrement often happen together. This can be used to
determine the current running status.

• We use Short Time Fourier Transform (STFT) to extract
hidden information from the RDT series and an LSTM-
based model is used for estimating. Our evaluations
show that this model can achieve at least 94% accuracy.
We evaluate performance with different configuration

combinations and the number of hidden neurons and the
selection of time windows has an outstanding impact on
the final accuracy.

The rest of this paper is organized as follows. We discuss
how we select the indicator in Section II. In Section III we
will analyze the potential relationship between network latency
and mobility. Then we propose the new model in Section IV to
verify this relationship and evaluate its performance in Section
V. Next, we discuss how it works with the 5G network in
Section VI. Lastly we introduce related work in Section VII
and conclude the whole paper in Section VIII.

II. MOTIVATION AND METRIC

The rapid development of constructing high-speed rails in
many countries brings a growing requirement for mobile com-
munications. Due to the complexity of the rails’ context and
potential advancement of serving quality, many researchers
start to focus on this scene and propose various schemes
on improving the performance of mobile communications.
Some of them propose new creative schemes to improve the
performance of various services. However, although there are
some achievements in this area, few of them have been used in
practice. Because of lacking locational information, it is hard
for the ISPs to determine whether the current served client is
on a moving train or not. This makes the ISPs preferring to
use traditional schemes, which are designed for static or low-
speed scenes. They have good performance in these scenes,
while they meet performance issues in HSR scenarios.

If ISPs can acquire locational information directly from the
served customers, they could use this information to select
the best scheme for each customer to get better performance.
The simplest way is asking customers to send their positional
information to the ISPs so that they can make a decision
on a suitable scheme. However, more and more people try
to protect their privacy, by hiding their location or providing
fake information. This makes this method does not work. In
addition, the locational information is often acquired in the
physical layer, while most optimization schemes are realized
in-network or transmitting layers. Acquiring and utilizing the
movement information needs cross-layer technology support,
which further limits the deployment of this method.

Using the normal delivery traffic is another way to estimate
the speed. A previous study shows that the delivery latency
has some relation with the trains’ speed. But they do not
point out how the speed affects the delivery. Many delivery
metrics are affected by the train’s running like the delivery
rate is more unstable, and more packets meet out-of-time in
a short period. There are many metric indices that can be
used here, like delivery rate, network latency, packet loss rate,
and so on. Many researchers have shown that these metrics
behave differently from those in static or low-speed scenarios.
However, these indices cannot be directly used, for some of
them are related to other factors that could also affect them.
To choose a suitable metric index, several conditions should
be met.



1) Relevent to the delivery path: The selected metric should
be related to the delivery path. It also should have a
high correlation with the wireless paths, while has less
relationship with the wired ones.

2) Irrelavent to other services: Other service applications
that share the same wireless paths should not have a
prominent impact on the selected metric.

The whole connection can be divided into two parts, wired
and wireless paths. Previous research shows that the network
metrics are mainly affected by the wireless paths. Thus, the
first condition guarantees the selected metric contains some
information about the users’ location, while it is not affected
by the wired path.

Because most users share the same frequency band to use
cellular networks under the coverage of the same base station,
other users’ network behaviors could also affect some metrics.
The second condition makes sure that the selected metric is
not affected by other users.

The delivery rate cannot be used here, because they rely
not only on the wireless paths but also on the wired paths.
The packet loss rate is a good metric to evaluate the status of
wireless paths, while most connections meet few loss events
due to the settings of the huge buffer. We start from the
network latency because it only relies on the delivery paths,
and other users have less impact on it. The common latency
(T ) usually contains three parts, the latency on wired (Td) and
wireless paths (Tl), and the latency on processing packets (Tp).

T (t) = Td(t) + Tl(t) + Tp(t) (1)

To exclude the affection caused by the wired path, we
observe the network latency in a short time slot. The time for
servers to process each packet is similar, and the wired paths
are the same, which makes the twired also be similar. Thus, we
define a new metric, called Round-Difference Time (RDT), as
the metric. RDT can be defined by the latency difference in a
short time slot (τ ) by

RDT (t) = T (t)− T (t− τ) (2)

Although there are a bunch of articles talking about estimat-
ing the One-Way Delay (OWD), we here still use the Round-
Trip Time (RTT) as the latency metric. RTT is an accurate
metric, and it is easy to get from daily use.

III. HSR MEASUREMENT

We conduct a measurement experiment on HSR routes.
Based on the observation of the network transmissions, there
are no clear mathematical connections between the network
latency and the mobility status, which renders the traditional
model-based methods ineffective. The unique characteristics
of bullet trains running on HSR routes provide an alterna-
tive perspective to understand such correlations. Specifically,
various impact factors, such as cellular network coverage and
handovers between two basestations, reveal rich information
that can be utilized to infer the correlations between network
latency and mobility.
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Fig. 1: Distributions of the RDT over three routes. We only
show the distributions of RDT samples in the range of (-50,
50).

TABLE I: High-Speed Rails routes in the measurement ex-
preiment

Route No. End Stations Middle Station Running Time

A1 BJ-TJ - 30 minutes
A2 BJ-TJN - 30 minutes
B1 BJ-TJ WQ 42 minutes

A. Measurement Deployment

We select the Beijing-Tianjin Inter-City Railway (BTR) to
do the measurement. BTR is a famous route in China, as it
connects two well-developed cities. As of 2019, it has provided
rapid and comfortable inter-city traveling service for over 280
million people. One of the main reasons we choose BTR
routes is that it has good cellular network coverage, which
is an essential element in our experiment. Illustration of BTR
routes is shown in Table I. BTR includes three routes, one is
between Beijing South Railway Station and Tianjin Railway
Station, and another is the same route with a docking station
called Wuqing Station. The last one is between Beijing South
Railway Station and Tianjin West Railway Station. To simplify
the description, we call routes between Beijing South Railway
Station and Tianjin Railway Station with and without docking
station as Route A1 and A2 and call the other one as Route
B1. Trains running on all three routes have a top velocity
of about 350 km/hour (about 97 m/sec) and they need about
30 minutes running on route A1 and B1, and additional 12
minutes on route A2.

A laptop is used to send packets to public servers and
record their transmitting latency. Instead of using TCP, we
select ping command to do this. The main reason of using
ICMP packets is that TCP transmissions will introduce new
interference caused by other factors, like congestion control
algorithms [15] and acknowledgment aggregation problem
[16]. Each ICMP packet has a size of 64 bytes and this
constructs a byte stream with a delivery rate of about 6 KB/sec,
which we believe cannot introduce new network congestion.
This satisfies previous requirements.



Fig. 2: Illustration of the proportions of positive and negative
samples in static and high-speed rails scenes. The yellow circle
represents the initial latency sample. The green and blue circles
are the positive and negative samples, respectively.

We use a smartphone to share the cellular network with
the laptop by the USB sharing function. Here, the reason that
we select USB sharing instead of WiFi sharing is that there
is also WiFi service supplying by the trains. This will cause
WiFi contentions. Furthermore, we also use the smartphone
to collect both mobile information like moving velocity and
physical information like handover information.

B. Relationship Between RDT and Handover

When we observe the collected latency samples, we find
out that each route has a serious heavy-tail problem, in which
the maximum latency is over 5 seconds for one packet trans-
mitting. But if we only look at the RDT samples falling into
the range between -50 msec to +50 msec, which contains over
98% samples in each route, we find out that their distributions
are similar, as shown in Figure 1.

Then we count the proportions of the positive and negative
samples in each route. In the static scenes, delivery latency
should fluctuate around its propagation latency, which is
its minimum value [17]. Thus, the number of positive and
negative RDT samples should be similar. However, in our
measurement, we find out that in each route, there are about
40% positive samples and about 56% negative samples. This
shows two patterns of delivery latency in high-speed scenes.
One is burst increment, in which delivery latency has a burst
increment. The other is continuous decrement, where the
latency of continuous packets is in descending order. Figure
2 shows the differences between these two kinds of latency
fluctuation. The yellow circles represent the delivery latency of
the initial packet. If the latency of the received packet is larger
than that of the previous one, then we use a green positive
mark to represent it, while a blue negative mark on the other
side.
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Fig. 3: Illustration of the relationship between N/P ratio and
handovers. The grey baseline means the numbers of positive
and negative samples are equal. Each red bar represent a
basestation handover.

A reasonable explanation of this phenomenon is the base
station handovers. In order to make it clear, we define the
ratio between the numbers of the negative and positive samples
as the N/P Ratio, and a larger ratio means more negative
samples. When smartphone experiences handover, packets are
temporary stored in the cache of the base station. After the
handover finishes, the cached packets are sent to the devices.
The prior packets experience a higher queueing latency, which
results in a burst increment. Subsequent packets spend less
time in queueing, which shows a continuous decrement. An
example is shown in Figure 3, the blue line shows the trend of
N/P ratio with the train’s traveling, and each red bar represents
a base station handover event. In most cases, handover always
happens with the increment of the N/P ratio.

To simplify the description of the next, we make definitions
of these two patterns. In a period d, a burst increment happens
if the delivery latency of the current packet is α (α > 1)
times the minimal latency. If the delivery latency of β (β ≥
4) continuous packets is in descending order, then we say a
continuous decrement happens. α and β are called the degree
of the patterns.

C. Relationship Between RDT and Traveling Speed

While we have found some relationship between RDT and
base station handovers, the connection between RDT and
train’s traveling speed has not been built. Previous study [6]
shows that smartphones experience base station handovers
more frequently at high speed, and this can help us to construct
a connection. Based on the definition of the Physical Cell
Information (PCI), we can estimate handover according to the
PCI records. PCI is an encoding method to give each base
station a unique identifier in a given area. The PCI can be
computed by

PCI = 3× CellGroupID + CellNumber (3)

and we can use PCI to classify inner-handover, in which
handover happens between two cells belonging to the same



A1 A2 B1
0

20

40

60

80

100

120

140

160
Av

er
ag

e 
In

te
rv

al
LS Inner
LS Inter
HS Inner
HS Inter

Fig. 4: Interval between two handovers. LS and HS represent
low-speed and high-speed, respectively.

base station, and inter-handover, in which handover happens
between two different base stations. We count the number
of each kind of handover and calculate the average interval
between two handovers. The result is shown in Figure 4. Either
in low-speed or in high-speed scenarios, the intervals between
two inter-handovers are similar, but inner-handover happens
more frequently in high-speed scenarios.

Next, we consider the burst increment pattern. Suppose there
are two burst increments with degree α1 = 2 and α2 = 5.
Although either in low-speed or in high-speed, burst increment
often happens with the base station handover, we find out that
the pattern of degree α2 happens more in high-speed. In other
words, in high-speed scenarios, burst increment behaves more
seriously than that in low-speed scenarios. The continuous
decrement pattern has a similar result, a pattern with a higher
degree is more likely to happen in high-speed scenarios.

However, even though we find some weak connections
between RDT and train movement, we still have several
challenges to solve. The first one is how to determine the value
of α and β. These two values can reveal the base station han-
dover, and this can be used for determining current movement
status. An overlarge value makes it hard to find, while a tiny
value brings noise that can influence the estimation accuracy.
The other challenge is how to extract other hidden information
from the RDT series. More information can help us to get a
better estimation.

IV. ESTIMATION MODEL

Our measurement results show that the trains’ running speed
can be estimated based on the two patterns of the RDT
series. However, there are still some challenges. One is how
to extract other information from the RDT series to make a
better estimation. The other one is how to determine the value
of the hyperparameters α and β. To solves these two problems,
we use Fourier Transform to turn the series of RDT from the
time domain into the frequency domain. Besides, instead of
deciding certain values of these two parameters, we use the
LSTM model for estimation.

A. RDT Spectrum

In our measurement study, we find out that there are possi-
ble more burst increment and continuous decrement patterns
when trains run at a higher speed, especially when handover
happens. But only relying on these two patterns cannot help us
to directly estimate current speed. To get a better estimation,
we need more information. A common way to do this is using
Short-Time Fourier Transform (STFT) or Wavelet methods.
These methods transfer time series data into the frequency
domain to get more information. Here, we use the STFT
method to process the RDT series, and their results are called
RDT spectrums. Burst increment patterns contain more infor-
mation in the high-frequency area, making a hot spot shown in
the high-frequency area on the spectrum. A higher intension
means a higher increment of the delivery latency. On the other
side, a continuous decrement contains more information on the
low-frequency area, due to it has a longer duration. Besides,
because continuous decrement patterns usually happen after
burst increment patterns, it shows high intension on the low-
frequency area.

[6] shows that delivery latency behaves differently within
different trains’ running speeds, thus we also analyze the
delivery latency with different running speeds. In Figure 5
and 6, we show three examples of RDT series and their
corresponding RDT spectrum in static, low-speed, and high-
speed scenes. The data in the static scenes are collected when
trains stop in the stations. Besides, the data with a train’s
running speed of 150 km/hour is used as the example in the
low-speed scene, and the one collected with a speed of 300
km/hour is used as the example in the high-speed scene.

In Figure 5, the delivery latency fluctuates in a larger range
with a higher running speed. Meanwhile, with a higher running
speed, RDT series have more burst increment and continuous
decrement, and there are more patterns with higher degrees.
In Figure 6, we show the RDT spectrum corresponding to the
RDT series in different scenes, respectively. In the static scene,
because the delivery latency fluctuates in a normal range, and
it has few burst increments and continuous decrement patterns,
the hot areas mainly concentrate on the low-frequency areas
with low intention. But when the trains run, because there are
the delivery latency is much more unstable, spectrums show
hot spots in high-frequency areas, which corresponds to the
burst increment patterns. In low-frequency areas, there are also
some hot spot areas, which is resulted from the continuous
decrement pattern. The degrees of patterns also are shown in
these spectrums. For the burst increment patterns, both the
intension and the corresponding frequency bands show their
degree, and for the continuous decrement patterns, a high
intension means that there are a long series of packets having
the delivery latency in descending order.

B. LSTM Model

Although we use the RDT spectrum to extract the hidden
information from the original latency series, there is still a
challenge of the selection on the hyperparameters α and β.
Selecting suitable values for these parameters is important,
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Fig. 5: Examples of the RDT series captured in various scenes. The delivery latency fluctuates with a low range, while with
a larger range in movement scenes. In high-speed scenes, there are much more burst increment and continuous decrement
patterns, making the latency be more unstable.
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Fig. 6: Examples of RDT spectrum captured in static, low-speed, and high-speed scenarios. Because the delivery latency
fluctuates in a larger range, there are more hot spots in the RDT spectrums.

because the real high-speed rails scenarios are complicated,
and it is difficult to determine these values. Undersized val-
ues selection makes false recognition to the normal latency
fluctuation as the two patterns, while it is difficult to capture
these patterns when choosing oversized values. Besides, it is
difficult to estimate the trains’ running speed when several
patterns are captured.

Instead of choosing certain values for the hyperparameters,
we use the time-related information for estimation. Each row
of the spectrum can be treated as a feature vector. The fluctua-
tion of the delivery latency creates hot spots on the spectrums,
and if the continuous areas of hot spots are observed, then we
can estimate that the train is running at a high speed.

Based on this estimation method, Recurrent Neural Net-
work (RNN) is a good selection, for it utilizes the statistical
information to make an accurate estimation. Because the
traditional RNN faces the gradient vanishing problem, we here
use the Long-Short Term Memory (LSTM) as the model for
estimation. LSTM shows good performance on estimation for
a given time-series data, and our evaluations show that this
model works well on estimation.

C. Speed Level

In our estimation model, we classify the speeds into 10
levels, and the speed range in each level is shown in Table
II. The main reason we use speed level instead of directly
estimating the speed is that an accurate estimate of current
speed is not necessary. Previous study shows that the trains’
speed does have an impact on the delivery latency, while a little

TABLE II: Speed level and its corresponding speed range.

Level Speed Range (m/sec) Level Speed Range (m/sec)

0 [0, 10) 5 [50, 60)
1 [10, 20) 6 [60, 70)
2 [20, 30) 7 [70, 80)
3 [30, 40) 8 [80, 90)
4 [40, 50) 9 [90, 100)

TABLE III: Structure of the LSTM model.

Layer Name Input / Output Dimension

1 LSTM 65 / 128
2 ReLU 128 / 128
3 BatchNorm2d 128 / 128
4 LSTM 128 / 128
5 ReLU 128 / 128
6 BatchNorm2d 128 / 128
7 FC 128 / 128
8 BatchNorm1d 128 / 128
9 FC 128 / 10

change in the trains’ speed does not have a great difference
in the delivery latency. Thus only estimate the current speed
level is enough for the servers to make a decision on the
served clients. In our measurement experiments, we find out
that using a range of 10 m/sec is good enough to satisfy the
requirement.

D. Estimation Model

The whole process is shown in Figure 7. Captured series of
delivery latency is used as the raw input. It firstly processes



Fig. 7: The whole estimating process to estimate the train’s
speed level with a given series of delivery latency.

the series of latency into series of RDT, and it calculates
the corresponding RDT spectrums. The spectrums are then
passed into the LSTM model, and the model estimates the
matching speed level. The structure of the LSTM model is
shown in Table III. Here, we use a two-layer LSTM model to
extract information. We use ReLU as the activation function
for each layer, and we also add normalization operations
after activating. Two full-connection layers are used for final
estimation. The model outputs the estimation for the speed
level.

V. EVALUATION

In this section, we evaluate the performance of the esti-
mation model. Our model is developed by the Pytorch [18].
We use a normal computer, with one CPU of Intel Core i7-
3770 and a video card of GeForce GTX 1080 to accelerate
the training process. This video card has 2560 CUDA cores
for accelerating.

To have a better result from Fourier Transform, we choose a
step size of one microsecond in the interpolation process. For
the transform, we choose a window size of 128 samples with
an overlap of 50% samples. Therefore, in the training process,
each turn has an input vector with a length of 65 values. We
train models for each route. For data collected on each route,
we use 99% of them to train the model and the rest for testing.
Finally, we use the estimating accuracy to evaluate the model’s
performance.

A. Number of hidden neurons

We choose GRU as the default network and compare
the model’s performance with a different number of hidden
neurons. Results of each route are shown in Figure 8a. We test
the model’s accuracy with 32, 64, and 128 hidden neurons on
the testing dataset. The lowest accuracy is over 80% and the
highest accuracy of about 98% is achieved on route A2 with
128 hidden neurons. This result shows that the designed model
does have the ability to estimate current movement velocity.
Even with only 32 hidden neurons, these models can also have
an accuracy of over 80%. With more hidden neurons, these
models can gain better performance.

Besides, in the training process, we find out that for each
2000 training samples, the training time has an increment of
about 12.5% with the number of hidden neurons increasing
from 32 to 64, and about 11.1% with the increasing from 64
to 128. Therefore, increasing the number of hidden neurons
does not make the training time increase too much but can
effectively increase the accuracy of the trained models.

B. RNN model selection

Then we evaluate the accuracy of the designed model
with different RNN model selections. We mainly evaluate the
performance of two famous and traditional RNN models: GRU
and LSTM models. The configurations for these models have
128 hidden neurons, the linear interpolation method, and a
time window of 3 seconds. The result is shown in Figure 8b.
Both RNN models have similar estimating results of over 95%
accuracy, but GRU performs better than the LSTM model on
routes A2 and B1. However, comparing with their running
time, we find out that the LSTM method needs another about
7.4% training time. We believe this is caused by the number
of parameters in a single RNN neuron. A traditional LSTM
neuron needs three different gates to select useful information
to remember while a GRU neuron only needs two gates.
Therefore, GRU neurons consume less training time than that
using LSTM neurons. Theoretically, LSTM neurons spend
more time to gain better results. But in our case, its advantage
is not obvious, while on some routes, it even has worse
performance.

C. Interpolation methods

Next, we evaluate the impact of the interpolation method
selection on the final accuracy. We choose linear and step
functions as the interpolation functions to do this. The step
function is widely used to illustrate network latency, but it
loses gradient information. This introduces some noise into the
spectrum generated by the STFT method. On the other side,
the linear function can reserve most gradient information and
reduce noise.

The result is shown in Figure 8c. We use GRU as default
with 128 hidden neurons, a time window of 3 seconds. We find
out that using the linear method for interpolation is better than
that using the step method. Among them, the model on route
A1 has little accuracy advantage on using the step function,
while on the other two lines, the step function has about a
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Fig. 8: Accuracy of models on each route with different configurations.

2% accuracy gap with those using the linear method. We
think this is that the linear method can reverse some gradient
information, which can help the model to improve the final
accuracy. Using the step method will generate horizontal lines
with a burst when latency changes. But for Fourier transform,
horizontal lines are hard to decompose, which makes the
generated spectrum be useless for further training.

D. Time window

Lastly, we evaluate the results with different time window
selections. We test the final accuracy with five different time
window sizes on all three lines, including 1, 2, 3, 5, and 10
seconds. The result is shown in Figure 8d. With a longer
time window size, we can have a better accuracy result. When
we select a time window of one second, the best final result
is achieved on route A1, with a value of lower than 90%.
However, when we choose a longer time window, the final
accuracy also keeps growing. When we select a time window
of 10 seconds, the model can have an accuracy of up to 99.9%.

At the same time, adding the time window size also in-
creases the time for processing in both Fourier Transform and
testing process. When we use a time window of one second,
the running time is about 40 seconds for each 2000 training
sample. However, when we turn the time window into ten
seconds, the running time increases to up to 300 seconds for
each 2000 training sample.

VI. FURTHER DISCUSSION

Nowadays, the 5th generation (5G) cellular network has
been started to be built in some countries. Therefore, a new
question that how this model deal with the 5G network. We
think the 5G network will not highly impact this model for
two reasons. On one side, some countries just start to build
the 5G network. Because the 5G network has a much smaller
coverage range than that of the LTE network, deployment of
the 5G network is mainly done in the central urban areas. But
in suburban areas, due to the limitation of the basestations
cost, it needs a long period for the carriers to deploy the 5G
network, which results in a long period of using LTE network
in these areas.

On the other side, also because of the consideration of the
deployment cost, carriers prefer to use both Standalone (SA)
and Non-StandAlone (NSA) schemes for the deployment of
the 5G network. In areas covered by the 5G network with
using NSA schemes, handovers of smart devices suffered on

the traveling are much like those with LTE network. Therefore,
even though in the 5G network, if it is using the NSA
scheme to update the LTE network into the 5G network, the
relationship between velocity and network latency still remains
similar. Therefore, our model can still be used in the future.

VII. RELATED WORK

There is some measurement research on HSR routes. [8]
introduce the using LTE in HSR scenarios and challenges it
faces [6]–[10], [19]. [6] measures the performance of using
Multi-Path TCP [20], which is used for solving poor efficiency
of using wireless transmitting bandwidth. [7] measures the
performance of traditional TCP transmitting and tries to find
out the relationship between handovers and TCP transmis-
sion’s performance. [9] tries to model the delivery rate of TCP
transmitting using the Reno congestion control algorithm on
HSR routes. However, these measurements are mainly focused
on TCP transmitting. Because there are plenty of factors that
may affect its performance, including in both wireless and
wired transmitting, it is hard to understand the reason how
trains running on HSR affect the network latency.

There are also some works focusing on improving the
performance of network transmitting. [12] proposes a new
architecture to improve the performance of TCP transmitting.
It uses multiple devices to relay transmitting packets and thus
increases the robustness of transmissions. [13] proposes a new
MPTCP schedule to improve performance with a high packet
loss rate. [14] also designs a new MPTCP scheduler to be
aware of lost packets. These schemes are helpful for improving
transmitting performance on HSR routes. These works mostly
focus on improving network transmission service, while our
work well complements them in bridging the gap between
mobility prediction and services.

With the rapid development of machine learning, especially
deep learning methods, more and more researchers use ma-
chine learning methods to solve problems faced in daily life.
[21] uses WiFi signals to recognize keystroke. [22] designs
a method to extract 3D information using data from public
resources. [23] proposes a method to capture hands’ moving
traces only based on WiFi signals. [24] designs a new method
to estimate human behaviors based on WiFi signals. It also
analyzes the relationship between signals and behaviors and
proposes a formula to explain their relationship. However,
because these methods highly rely on Doppler Effect, they



are mainly used in direct link scenarios like WiFi connections
and are not suitable in our context.

There is also some research trying to construct connections
between transmitting signals and moving states. [25] only
uses the information of network transmissions to estimate the
current location. The only thing it relies on is the delivery
rate when sending songs from servers to smart devices. A
limitation of this work is that it can only be used on fixed
moving routes. However, in HSR scenarios, this is not a
problem because trains always run on the same routes.

VIII. CONCLUSION

In this paper, we design a series of measurement experi-
ments on HSR scenarios to explore the relationship between
the network latency and the bullet train’s velocity. Our mea-
surement results show us that network latency does have some
relation with current velocity by the features of the bullet
train’s running. Based on this result, we design a new model
that can be used to estimate current velocity only based on a
measurement of network latency in a short time window. Our
model uses Fourier transform to get useful information and
use the recurrent neural network to get the final estimation.
Our evaluations show that the selection of parameters does
have some impact on the final result, but this model can gain
up to at least 94% accuracy on all three routes.
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