This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NETWORKING

AutoRec: Accelerating Loss Recovery for Live
Streaming in a Multi-Supplier Market

Tong Li"“, Member, IEEE, Xu Yan"”, Bo Wu", Cheng Luo, Fuyu Wang, Jiuxiang Zhu", Haoyi Fang, Xinle Du,

and Ke Xu

Abstract—Due to the limited permissions for upgrading dual-
side (i.e., server-side and client-side) loss tolerance schemes from
the perspective of CDN vendors in a multi-supplier market,
modern large-scale live streaming services are still using the
automatic-repeat-request (ARQ) based paradigm for loss recov-
ery, which only requires server-side modifications. In this paper,
we first conduct a large-scale measurement study with up to
50 million live streams. We find that loss shows dynamics and
live streaming contains frequent on-off mode switching in the
wild. We further find that the recovery latency, enlarged by
the ubiquitous retransmission loss, is a critical factor affecting
live streaming’s client-side QoE (e.g., video freezing). We then
propose an enhanced recovery mechanism called AutoRec, which
can transform the disadvantages of on-off mode switching into an
advantage for reducing loss recovery latency without any mod-
ifications on the client side. AutoRec allows users to customize
overhead tolerance and recovery latency tolerance and adaptively
adjusts strategies as the network environment changes to ensure
that recovery latency meets user demands whenever possible
while keeping overhead under control. We implement AutoRec
upon QUIC and evaluate it via testbed and real-world commercial
services deployments. The experimental results demonstrate the
practicability and profitability of AutoRec.

Index Terms—QUIC, loss recovery, on-off traffic pattern,
multi-supplier market.

Received 11 January 2025; revised 3 July 2025 and 30 September 2025;
accepted 23 November 2025; approved by IEEE TRANSACTIONS ON NET-
WORKING Editor A. Balasubramanian. This work was supported in part by the
National Natural Science Foundation of China under Grant 62572473, Grant
62202473, Grant 62441230, and Grant 62272466; in part by the Science Fund
for Creative Research Groups of the National Natural Science Foundation of
China under Grant 62221003; in part by the Key Program of the National Nat-
ural Science Foundation of China under Grant 61932016 and Grant 62132011;
in part by the National Science Foundation for Distinguished Young Scholars
of China under Grant 62425201; and in part by the Tencent Basic Platform
Technology Rhino-Bird Focused Research Program. (Corresponding author:
Bo Wu.)

Tong Li, Xu Yan, Jiuxiang Zhu, and Haoyi Fang are with the Key
Laboratory of Data Engineering and Knowledge Engineering, School
of Information, Renmin University of China, Beijing 100872, China
(e-mail: tong.li@ruc.edu.cn; yanxu2@ruc.edu.cn; jiuxiangzhu@ruc.edu.cn;
2021201680@ruc.edu.cn).

Bo Wu, Cheng Luo, and Fuyu Wang are with the Department
of Cloud Architecture and Platform, Tencent Technologies, Shenzhen
518057, China (e-mail: wubl4@tsinghua.org.cn; lancelotluo@tencent.com;
ivanfywang @tencent.com).

Xinle Du is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: xinledul8.thucsnet@
gmail.com).

Ke Xu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and also with Zhongguancun
Laboratory, Beijing 100094, China (e-mail: xuke @tsinghua.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TON.2025.3642008, provided by the authors.

Digital Object Identifier 10.1109/TON.2025.3642008

, Fellow, IEEE

I. INTRODUCTION

NTERNET live services such as Youtube Live, TikTok

Live, and Twitch have gradually become a fundamental
element for enriching daily life and work [1], [2]. This
underscores the critical need to enhance live streaming trans-
mission performance The ubiquitous packet loss is an essential
factor affecting client-side quality-of-experience (QoE) [3],
[4], which will introduce head-of-line (HOL) blocking and
even incur long-time video freezing if the available frames in
the player buffer are all consumed. Therefore, loss tolerance
control matters in live-streaming services.

The existing loss tolerance schemes mainly focus on
designing dual-side (i.e., service-side CDN and client-side
application) control policies, including Forward Error Correc-
tion (FEC) [5], [6], [7], [8], multi-path retransmissions [9],
[10], semi-reliable transmissions [11], [12], and application-
level controls [13], [14], [15]. However, as shown in Fig. 1,
live-streaming application operators (e.g., TikTok Live) usu-
ally apply the Multi-Supplier Strategy [16] in the CDN market
(see § II-A). As a result, it is the CDN vendor’s duty that
optimize the transmission performance (e.g., loss tolerance),
according to which the application operators will choose the
better-performed CDN vendors to carry more traffic (i.e.,
larger market share). In this case, only server-side sending
policies can be adjusted by the selected CDN vendors, which
lack the proper authority to synchronize client-side control
rules. Thus, the aforementioned loss tolerance schemes face
significant deployment challenges in a multi-supplier CDN
market.

In this case, most modern CDN vendors only apply the
automatic-repeat-request (ARQ) paradigm [17], [18] to control
loss tolerance as the commercial solution, which retransmits
only one replica of the lost packet when a loss is detected.
However, we find that the legacy ARQ-based loss recovery is
far from satisfactory according to our performed large-scale
measurements. For example, the proportion of connections
with maximum retransmission times of two or more exceeds
43%. Among them, a considerable portion of the connections
has certain packets that are retransmitted even more than 10
times (§ III-A). The retransmission loss enlarges the loss
recovery latency by 123.2 ms on average and 279.3 ms in the
worst case. This enlarged recovery latency further increases the
probability of empty buffer space on the client side, thereby
increasing the risk of video freezing (§III-C). Thus from a
philosophical standpoint, it is worth asking: Can we accelerate
loss recovery solely through CDN servers without modifying
clients? How can it be addressed with controllable overhead?

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6805-9565
https://orcid.org/0009-0002-8060-739X
https://orcid.org/0000-0002-3914-2415
https://orcid.org/0009-0007-3571-4723
https://orcid.org/0000-0003-2587-8517

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Performance: Medium Low

CDN:[Vendor 1] [Vendor 2] [Vendor 3]

N/s //6

Internet

Market share:

Application: [User 1][User 2][User 3][User 4] [User 5][User 6]

Fig. 1. An example of a multi-supplier market for CDN vendors in large-scale
live streaming services.

Our key insight is that the on-off mode switching ubig-
uitously occurs in current live streams (§ III-B), where the
bandwidth during the “off” periods is not fully utilized. Our
measurements show that each live stream spends 464 ms
in off-mode per second and enters off-mode 20 times per
second on average. It is well-studied that the on-off traffic
pattern is not conducive to transmission control [19], [20],
[21], [22], [23], [24]. However, we argue that it can act as an
advantage for the loss tolerance control of live streaming. In
this paper, we present Aut oRec. This enhanced loss recovery
mechanism can transform the disadvantages of frequent on-off
mode switching into an advantage of loss tolerance control in
live streaming.

A naive implementation of AutoRec is to directly reinject
a fixed number of replicas of loss packets upon entering the
off-mode. However, this approach faces two challenges. First,
the fixed settings of redundant replicas cannot adapt well
to the dynamics of packet loss, while excessive reinjection
of packets results in non-trivial recovery overhead. Second,
according to our testbed experiments, the off-mode can be
unevenly distributed throughout an entire live session, and the
sending of replicas might be delayed without timely off-mode
entry. To tackle these issues, we propose a two-step solution:
Redundancy Adaption and Reinjection Control.

Redundancy Adaption intelligently determines how many
replicas of the lost packets should be reinjected.It sets the
number of replicas based on the user-customizable overhead
tolerance, recovery latency tolerance, and the network envi-
ronment.This assures loss recovery is accelerated to meet
user demands whenever possible while keeping the overhead
controllable.

Reinjection Control determines when to retransmit the repli-
cas. Generally, it enables the replica reinjection during the
off-modes. AutoRec further adopts the opportunistic rein-
Jjection to trigger loss reinjection even lacking the desired
opportunity of off-mode. This assures that each replica can
be reinjected in time even under uneven distribution of
off-modes.

We implement the AutoRec prototype in the user-space
QUIC protocol and deploy it on both testbed and real-network
CDN proxy for 6 months. The experimental results demon-
strate the practicability and profitability of AutoRec, in which
the average times and duration of client-side video freezing
can be lowered by 10.10% and 4.74%, respectively.

The rest of the paper is organized as follows: § background
introduces the multi-supplier CDN market and its impact on
CDN vendors’ accelerating loss recovery. § III motivates our
work with a large-scale measurement study. Then, the high-
level architecture and design details of AutoRec are depicted
in § IV and § V, respectively. § VI describes the detailed

IEEE TRANSACTIONS ON NETWORKING

implementation of AutoRec. § VII gives the experimental eval-
uations of AutoRec. § VIII presents a discussion of AutoRec’s
overhead and its interaction with QUIC’s native mechanisms.
§ IX overviews the related work and § X concludes the paper.

II. BACKGROUND

In this section, we first introduce the Multi-Supplier Strategy
in the modern CDN market (§ II-A). We then discuss the
appeal of accelerating loss recovery (§ I1I-B), along with the
restriction on the loss recovery mechanism (§ II-C) from
the perspective of CDN vendors in the multi-supplier CDN
market.

A. Multi-Supplier CDN Market

Live-streaming application operators typically subscribe to
multiple CDN vendors simultaneously and periodically eval-
uate the performance of these vendors’ services based on
weighted QoE metrics, then reallocate subscription shares
accordingly. For example, as shown in Fig. 1, a live-streaming
application operator subscribes to the services of three CDN
vendors: Vendor 1, Vendor 2, and Vendor 3. In the previous
performance evaluation period conducted by the live-streaming
application operator, Vendor 1 had the highest performance,
Vendor 2 had medium performance, and Vendor 3 had the
lowest performance. Therefore, the live-streaming application
operator will allocate 1/2 of all service requests to Vendor 1,
1/3 to Vendor 2, and 1/6 to Vendor 3. For live-streaming appli-
cation operators, the Multi-Supplier Strategy not only allows
for a comparative analysis of different CDN vendors’ service
performance, facilitating the selection of higher-performing
CDN vendors but also continually drives CDN vendors to
enhance their service performance, leading to better CDN
services for the operators themselves. Thus, live-streaming
application operators are motivated to adopt the Multi-Supplier
Strategy, leading to the formation of a multi-supplier CDN
market where multiple CDN vendors serve the same video
live-streaming application operator.

B. Appeal of Accelerating Loss Recovery

Loss recovery influences video freezing. Live streaming is
highly sensitive to data timeliness, as traffic that fails to reach
receivers on time results in video freezing, thereby affecting
client-side QoE. Video freezing occurs when the player buffer
becomes empty, that is, when no video frame can be uploaded
before all cached frames have been consumed. One important
reason for the player buffer becoming empty is that the lost
data cannot be recovered in time, causing longer intra-stream
HOL blocking time, especially in the common designs of
TCP and QUIC protocol. This paper focuses on enhancing
the timeliness of loss recovery to reduce video freezing.

Video freezing influences profit. In the multi-supplier CDN
market, for CDN vendors, improving their QoE metrics can
lead to a larger share of subscriptions, resulting in higher
profits. The video freezing metrics (i.e., video freezing times
per 100 seconds and video freezing duration per 100 sec-
onds) are important QoE indicators for evaluating the service
performance of CDN providers. Thus, the CDN vendors are
motivated to optimize video freezing metrics.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: AutoRec: ACCELERATING LOSS RECOVERY FOR LIVE STREAMING

14 2.8 14 2.8
Freezing times per 100s
8 Freezing duration per 100s

(s)

—s— Freezing times per 100s
—— Freezing duration per 100s

8
o
IS

Y
RS
ation

Video freezing durati
5

N
AR
o o

°
&

9
Video freezing duration (s)

S o
5 r @ N
Video freezing times
°
®

o o
=
°
®

2 .4
00:00 0400 0800 12:00 16:00 20:00 24:00

(a) Area-variant video freezes (b) Time-variant video freezes

Fig. 2. The times and duration of L7-player freezes.

The current video freezing is suboptimal. We conduct
large-scale measurements and collect one-year values of video
freezing metrics from a famous live platform in four areas
(i.e., Southeast Asia, Latin America, the Middle East, and a
selected country).Fig. 2(a) presents the spatial variations of
video freezing metrics across different regions, while Fig. 2(b)
depicts their temporal variations in Area 1. As shown in
Fig. 2(a), over each 100 s interval,! clients experience on
average more than 1.3 s of video freezing (up to ~2.5 s in
Area 4), where even a single freeze event can significantly
degrade user experience. Furthermore, Fig. 2(b) indicates that
video freezing events exceeding 2 s or occurring more than
twice are frequently observed after 20:00.

C. Restriction on the Loss Recovery Mechanism

In the multi-supplier CDN market, CDN vendors face
difficulties in deploying loss recovery mechanisms that require
modifications on both ends, which poses challenges for the
universal deployment of mechanisms like FEC in produc-
tion networks. The live-streaming client software is designed
and developed by the live-streaming application operators
themselves, which includes proprietary information, so its
source code is prohibited from being accessed or modified
by CDN vendors. Therefore, loss recovery mechanisms that
require modifications on both ends need the cooperation
of live-streaming application operators. In a multi-supplier
market, developing adaptations for a specific CDN vendor
may compromise the generality of their software proto-
cols, pose interaction risks with other vendors, and increase
operational costs. Consequently, live-streaming application
operators have no incentive to develop adaptations for the
mechanism upgrades of a specific CDN vendor.

III. MEASUREMENT STUDY

In this section, we conduct large-scale measurements? to
motivate our work, in which the characteristics of loss (§ II1I-A)
and live streaming (§ I1I-B) in the wild are further explored.We
then analyze the performance of live streaming in the presence
of packet loss, particularly retransmission loss (§ III-C).

A. Characteristics of Loss

We analyzed the characteristics of loss using real-world logs
spanning up to two weeks. These logs documented specific
details related to packet loss, including the frequency of loss
events and the magnitude of each loss. Our measurements
cover over 200,000 connections across diverse application
scenarios and geographic regions.

'The average QUIC connection lifetime of each live stream is 99.6 s.

The large-scale measurements are performed on the server side that runs
NGINX architecture with QUIC BBR.

0.8

0.6

CDF

0.01 0.4
0.005
0.0025

0.00125

0.2

PDF
°
°
S

© TR

10 To 12 8 9 10

EE 7
Retransmission times

(b) CDF

Fig. 3. The maximum retransmission times in the wild.

1 5.

s _as
240
2

535

23.0
S

—
¢
’__
’.
+

| 25

2.
Brazil Indonesia Japan Argentina UK 0 4 8 12 16 20 0 4

Region Time (h)

(a) Loss distribution in different re-
gions.

(b) Loss dynamics over time.

Fig. 4. Examples of loss dynamics in the wild.

Observation #1: Retransmission loss is ubiquitous.
A packet may undergo multiple retransmissions before the
receiver correctly receives it. The number of retransmissions
per packet before successful reception can be further analyzed.
For any given connection, the maximum retransmission times
can be calculated as the highest count of retransmissions
across all packets within that connection. Fig. 3 illustrates the
distribution, i.e., PDF (Probability Density Function) and CDF
(Cumulative Distribution Function) of the maximum retrans-
mission times in the production network. The results show
that the proportion of connections with maximum retrans-
mission times of two or more exceeds 43%. Among them,
a considerable portion of the connections have certain packets
that are retransmitted even more than 10 times. Traditional
ARQ mechanism focuses solely on promptly retransmitting
lost packets after each loss event, but it overlooks the total
number of retransmissions and the total time required for the
retransmitted data to be successfully received by the receiver.
Therefore, the traditional ARQ mechanism hardly meets the
timeliness requirements for data in certain scenarios (e.g., live
streaming).

Observation #2: Loss shows dynamics. We then inves-
tigate the distribution of the loss rate (every 5 minutes) for
each connection across various global regions. The results
are depicted in Fig. 4(a). While some regions exhibit similar
average loss rates, their packet loss rate deviations differ, as
indicated by the shapes of the violin plots. For instance, both
Brazil and Japan have an average loss rate of 3.78%, but Japan
has the highest packet loss rate of 7.1% while Argentina has
5.7%. Fig. 4(b) further illustrates how the packet loss rate
evolves. Specifically, the loss rate is dynamic, varying between
2% and 5% over 24 hours. This confirms that packet loss
exhibits dynamic behavior in real-world scenarios. This also
reveals that an adaptive loss tolerance scheme should adapt to
differentiated conditions and the dynamic nature of networks.

B. Characteristics of Live Streaming

Unlike video-on-demand or file traffic, the current live
streams frequently and extensively reveal off-mode, in which

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Live data
¥

Live data\ r_- Live data
[Video/Audio Encoder |

—

Sending packets Sending packets
t, t t t; t, tstime
" On-mode " Off-mode ! On-mode |

Fig. 5. The sketch of on-off mode in live streams.

27
7 2.4] —*— Off-mode duration
=, 1| —=— Detected loss amount

Off-mode times
ESS Off-mode duration

>

c
E 521

Off-mode times
BN
5 8 R

Cumulative amount

a
du
B IR

o » @

Avg. Sth- 10th- 25th- 50th- . 1s 25 35 4s 55 65

(b) Off-mode distribution.

3,

(a) Off-mode times and duration.

Fig. 6. On-off mode measurements and experiments.

a sender’ temporarily has no data (i.e., becomes application-
limited [21], [25]) for continuous transmissions after sending
one or more frames. On the one hand, the new generation
rate of live data might be slower (e.g., than the sending
rate), requiring senders to wait until their sending queues are
replenished. For CDN vendors, the data generation rate reflects
the traffic transmission rate from anchors to servers, which
can be easily affected by real-time network status. On the
other hand, the live data will be encoded into video or audio
frames based on selected frame rate(s) and bitrate before its
transmission, which can also introduce time intervals between
adjacent frames. If one frame has been sent out while the
follow-up frame has not yet been encoded, the CDN sender
enters off-mode.

As Fig. 5 shows, the data of live streaming is encoded (by
video/audio encoder) into frame i which is delivered to the
sending queue (from ¢y to ¢;) and is sent out before ¢5. In
this case, the sender must wait (from ¢o to t3) for frame i+1
which will be encoded based on the follow-up live data.In this
paper, the on-off mode that appears on the sender side can be
recognized with the following conditions.

e On-mode: A mode that occurs when enough data exists
in the sending queue (i.e., ty ~ to and t3 ~ t5 in Fig. 5),
which can be sent by a sender at the subsequent time.

e Off-mode: A mode that occurs when no data can be
obtained for traffic transmissions (i.e., to ~ t3 in Fig. 5),
making senders have to wait for the follow-up frame.

We make large-scale measurements and gain the follow-
ing observations to further explore the on-off mode of live
streaming.

Observation #1: The on-off mode switching commonly
exists in live streaming. Fig. 6(a) presents our measurements
of the duration each stream spends in off-mode every second,
as well as the frequency of each stream entering off-mode on
a per-second basis, indicating that more than 95% of the live
streams can be in off-mode for 394 ms per second and enter
off-mode 17 times per second. On average, each live stream

3Since we collect and analyze data as well as conduct experimental
evaluations all from the CDN edge server, without special instructions, the
term “sender” refers to the CDN edge server instead of the original streaming
source.

IEEE TRANSACTIONS ON NETWORKING

t
R ; \
3—7‘
tO

recovery latency n
tt; ts Time

t
/_.

Lt Time

t
R 11‘\
S —f
t

(a) Loss recovery (K= 1). (b) Loss recovery (K = 2).

Fig. 7. Loss recovery between sender (S) and receiver (R).

spends 464 ms in off-mode per second and enters off-mode
20 times per second.

Observation #2: The off-modes can be unevenly dis-
tributed throughout the live-streaming lifetime. Fig. 6(b)
depicts the cumulative values of both off-mode duration and
detected loss amount in a connection of our testbed experi-
ments. We can find (i) off-mode mainly occurs after 2 s while
only 2 out of 7 packets are detected lost during this period;
(i1) most packet losses (5 of 7) occur with minimal off-mode
exposure within the first second of the measured stream, during
which the stream remains in on-mode when the 4th to 6th
losses are detected.

C. Live Streaming Performance Under Loss

Live streaming requires high data timeliness which can
affect client-side QoE. Due to the characteristics of packet loss
and the limitations of traditional ARQ (§ III-A), the timeliness
issues caused by packet loss in live streaming are critical. We
introduce recovery latency to measure the timeliness of packet
loss recovery and conduct large-scale measurements on live
streams in real production networks.

Recovery latency is defined as the duration from when any
data is detected lost to when resending a recovery packet
that will be successfully received.Loss detection time, denoted
asTynit, is defined as the time elapsed for a data packet from
being sent to being retransmitted. Recovery latency consists
of zero or more Ty,,;:, reflecting the additional time for loss
recovery besides the first T),,,;¢.In Fig. 7(a), recovery latency
is 0.Fig. 7(b) shows the resent data is detected lost again and
another recovery packet (that will be successfully received at
t7) is sent at tg, where recovery latency = tg - t3.Besides, the
maximum recovery latency is employed to evaluate the largest
recovery latency for loss recoveries.

We make large-scale measurements and collect the trans-
mission logs of 50 million live streams. We then classify the
average values of measured recovery latency and maximum
recovery latency based on the ranges of loss rate and Smooth
Round-Trip Time (SRTT), as Table I shows.

Observation #1: The current recovery latency of live
streaming is far from satisfactory. For the lost data that
requires more than one retransmission, traffic senders waste
123.2 ms (i.e., recovery latency = 123.2 ms), on average,
before sending out the recovery packets that their receivers
will indeed acknowledge. Furthermore, the average maximum
recovery latency is up to 279.3 ms, which can easily cause
video freezing.

Observation #2: Higher loss rate and larger SRTT can
easily introduce more deteriorated recovery latency. As
Table I shows, with the increase in loss rate, the recovery
latency increases accordingly. This is because the recovery
data may experience another packet loss in the networks with

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: AutoRec: ACCELERATING LOSS RECOVERY FOR LIVE STREAMING

TABLE I
LIVE-STREAMING RECOVERY LATENCY MEASUREMENT RESULTS

metrics value \ loss rate \ SRTT(ms) |

| 0% ~3% [3% ~ 10% | 10% ~ 30% | 30% ~ 50% [0 ~ 50 [50 ~ 200 [200 ~ 500] 500 ~ 2000 |
recovery latency (ms) 123.2 26.8 94.5 186.4 530.2 68.2 170.2 273.6 418.0
maximum recovery latency (ms) | 279.3 51.8 204.9 451.3 1288.4 149.2 391.3 698.8 960.9

* The displayed recovery latency (maximum recovery latency) only records the each-stream’s average (maximum) recovery latency of the lost data, whose recovery requires

two or more retransmissions.

a higher loss rate. By contrast, SRTT has serious impacts
on recovery latency. For example, maximum recovery latency
will be improved to ~1 s, on average, under the SRTT of
500 ~ 2000 ms, which is unacceptable for the timeliness of
loss recovery.

Therefore, an enhanced recovery scheme is highly required
to further optimize the current unsatisfied recovery latency and
promote the recovery timeliness of live streams.

IV. THE AUTOREC OVERVIEW

In this section, we first discuss the design principles of
AutoRec, whose architecture overview will then be given.

A. Design Principles

AutoRec regards the control-unfriendly on-off mode as an
essential opportunity for enhancing the recovery latency of
live streaming and mitigating the negative effects on player
freezing caused by potential HOL blocking. Our goal is to
accelerate loss recovery to meet user demands whenever pos-
sible while keeping the overhead controllable. AutoRec should
follow two design principles for optimizing the timeliness of
loss recovery in live streams.

Principle #1: The overhead introduced by AutoRec must
be controllable. If the overhead is not carefully managed,
AutoRec could result in negative returns. From the perspective
of a CDN vendor, AutoRec primarily introduces two types
of overhead. The first type is the traffic cost incurred by
replicas under traffic billing conditions, which increases costs.
The second type is the potential goodput reduction caused by
redundant replicas, which can lead to a decrease in QoE and
thus reduce revenue. Therefore, AutoRec should have clear
and simple control logic to manage the overhead introduced
by injecting replicas.

Principle #2: AutoRec should ensure that recovery
latency is reduced to meet user demands whenever pos-
sible. Different application scenarios have different require-
ments for recovery latency. AutoRec should allow for the
setting of recovery latency requirement and, while strictly
adhering to overhead constraints, inject few but enough pack-
ets to reduce the recovery latency to meet the recovery latency
requirement whenever possible.

B. The Architecture of AutoRec

AutoRec is a sender-side modification to the protocol stack
whose key modules are illustrated in Fig. 8. Particularly,
AutoRec adopts redundancy adaption to compute the number
of replicas of a lost packet that should be retransmitted next
periodically. Given the number of replicas, AutoRec then
adopts reinjection control to determine the specific order and
time for sending out each replica from the sender.

Redundancy {Network“' ement} ACK || Send ACK
Adaption { Parameters Reading } :] |
Reinjection send Data smmmb| Receive ||

Control Under off-mod Data | 3

Sender

Receiver

Fig. 8. The architecture of AutoRec.

Redundancy adaptation. This module answers the ques-
tion of how many replicas should be sent to accelerate
loss recovery. The redundancy level (denoted by K, K €
N) is defined as the number of replicas that should be
resent for a specific lost packet. To adapt to the dynam-
ics of loss, we incorporate redundancy adaptation to allow
the redundancy level to vary dynamically. To achieve this,
we introduce the Redundancy Adapter, which carefully
selects the most appropriate redundancy level for the lost
packets.

Reinjection control. This module answers the question of
how to send the given number of replicas determined by the
Redundancy Adapter. For each lost packet, more than one
replica might be injected into the network. To avoid bandwidth
contention for unlost data transmission, we introduce the
Reinjection Controller to enable sending replicas of the lost
packet if the stream is in off-mode. To further reduce the loss
recovery latency, the Reinjection Controller also opportunisti-
cally captures the ideal chance to reinject replicas even when
the stream is not in the off-mode. This ensures that AutoRec
can accelerate packet loss recovery even when off-mode is
absent or unevenly distributed.

V. DETAILED DESIGN

In this section, we will depict the detailed designs of
AutoRec for optimizing loss recovery.

A. Redundancy Adapter

We first define redundancy cost as the ratio of the total
number of injected replicas to the total number of sent
packets (excluding retransmitted packets and injected replicas).
Goodput reduction is defined as the reduction percentage
in goodput when injected replicas compared to the goodput
without injected replicas during transmission. The Redun-
dancy Adapter provides three user-customizable parameters:
the recovery latency tolerance (denoted by «), the redundancy
cost tolerance (denoted by f3), and the goodput reduction
tolerance (denoted by 7).

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

: Recovery|[Redundancy i 3
! | Latency Cost i
! [Tolerance|| Tolerance | i !

i 1 |Constraint Constraint | |Constraint | !

: Goodput Reduction P
(e] o | @ | o

| Ll " Constraint Solving

Recovery | Redundancy | Goodput :
Latency Cost Reduction | :

| Redundancy ;

Parameters P Level
i Loss ‘ ;) .
' | Detection| | Loss Rate | ! | Find Minimum
1 __Time ;
i\ Network Metrics | . Final Decision ;i =
Input Redundancy Adapter Output

Fig. 9. The redundancy adapter of AutoRec.

The redundancy level is determined periodically.* AutoRec
will measure the network metrics within each decision inter-
val. The network metrics include the average loss detection
time (§ III-C) and the average loss rate. When there is no
packet loss (i.e., loss rate = 0) in the last decision interval,
the Redundancy Adapter directly sets the redundancy level
to 0. Otherwise (i.e., 0 < loss rate < 1), taking the user-
customizable parameters and network metrics as input, the
Redundancy Adapter will execute the following four steps to
calculate the output, which is the redundancy level, as Fig. 9
shows. Step #1: Calculate the minimum redundancy level
satisfying the recovery latency constraint (denoted by K,).
Step #2: Calculate the maximum redundancy level satisfying
the redundancy cost constraint (denoted by K). Step #3: Cal-
culate the maximum redundancy level satisfying the goodput
reduction constraint (denoted by K). Step #4: Determine the
final redundancy level (denoted by Kjy) according to the above
K., Kz, K,. Next, we will elaborate step by step.

Step #1: Calculate the minimum redundancy level sat-
isfying the recovery latency constraint. Let K denote the
redundancy level, F'(K) denote the average recovery latency
for lost packets® under network conditions with the maximum
average recovery latency (i.e., the entire transmission process
remains in on-mode), and « denote the recovery latency
tolerance. The formal description of the problem to calculate
the minimum redundancy level that satisfies the recovery
latency constraint (denoted by K) is as follows:

K, = argm&nK st. F(K)<aand K € N

Given the loss rate (denoted by R), the loss detection time
Tunit and the redundancy level K, when 0 < R < 1, Tynit >
0 and K € N, F(K) can be computed as follows (please refer
to Appendix B for the detailed derivation):

(1+ KRK)
1-R(1+K)
where K e N, O < R<1and Ty, >0 (D)

F(K) - Tunit

We further find that F(K) is monotonically decreasing for
K e N (please refer to Appendix C for the detailed proof).
In this case, we can determine K, using the binary search
method.

Step #2: Calculate the maximum redundancy level
satisfying the redundancy cost constraint. Let K denote

4The decision interval (denoted by D) is usually set several Round-Trip
Times (RTTs), e.g., D = 5 RTTs.

SIn this paper, we only focus on the lost packets that are retransmitted over
once.

IEEE TRANSACTIONS ON NETWORKING

the redundancy level, G(K) denote the average redundancy
cost, and 8 denote the redundancy cost tolerance. The for-
mal description of the problem to calculate the maximum
redundancy level that satisfies the redundancy cost constraint
(denoted by K3p) is as follows:

Kg = argml?xK st. G(K)<fand K €N

Given the loss rate (denoted by R) and the redundancy
level K, when 0 < R < 1 and K € N, G(K) can be
computed as follows (please refer to Appendix D for the
detailed derivation):

G(K)=KR
where K e Nand 0 < R < 1 2)

We further find that G(K) is monotonically increasing for
K € N (please refer to Appendix E for the detailed proof).
In this case, we can determine K using the binary search
method.

Step #3: Calculate the maximum redundancy level sat-
isfying the goodput reduction constraint. Let K denote the
redundancy level, H(K) denote the average goodput reduction
under network conditions with the maximum average goodput
reduction (i.e., the entire transmission process remains in on-
mode), and denote the goodput reduction tolerance. The
formal description of the problem to calculate the maximum
redundancy level that satisfies the goodput reduction constraint
is (denoted by K,,) as follows:

K, = argm}z{xxK st. HK) <vyand K € N

Given the loss rate (denoted by R) and the redundancy
level K, when 0 < R < 1 and K € N, H(K) can be
computed as follows (please refer to Appendix F for the
detailed derivation):

1
14+ KR—(1+ K)R? + RK+2
where K e Nand 0 < R < 1 3)

H(K) =1

We further find that H(K) is monotonically increasing for
K € N (please refer to Appendix G for the detailed proof).
In this case, we can determine K, using the binary search
method.

Step #4: Determine the redundancy level for this decision
interval. Since AutoRec aims to satisfy the constraint of
recovery latency whenever possible while strictly satisfying the
constraints of the redundancy cost and the goodput reduction,
the Redundancy Adapter determines the Ky as follows.

Ko = min{K,, Kz, K} 4)

B. Reinjection Controller

We use D,; to denote the lost data that has been resent
but unacknowledged by its receiver. The data D,; is added
and stored in a reinjection queue that is managed at the
sender.To decide when to retransmit the replicas, the Reinjec-
tion Controller is introduced, which reinjects replicas when the
current stream enters off-mode.The Reinjection Controller also
adopts opportunistic reinjection to further reduce loss recovery

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: AutoRec: ACCELERATING LOSS RECOVERY FOR LIVE STREAMING

move
=== () °
= i i I | Reinjection

uIn

stmp n
|nsert delete Reinjection
Controller

Fig. 10. Sender-side reinjection queue.

latency while keeping the bandwidth contention for unlost data
transmission within acceptable bounds.

Queue management. In AutoRec, a reinjection queue
will be created by a traffic sender when a new connection
of live streaming is established, which will be removed
once this connection is closed. AutoRec enables senders to
update the reinjection queue (using the following operations)
for each live stream whenever lost data is retransmitted or
acknowledged, as Fig. 10 shows.The detected lost data will
be inserted into the end of the reinjection queue after it
has been retransmitted.The D,; will be deleted from the
reinjection queue when (i) the resent D,; is acknowledged
by its receiver, or (ii) the performed reinjection times exceeds
the decided Ky. The D,; will be moved from the head
to the end of the reinjection queue if it has been resent
again, which is sorted by the timestamp of its last rein-
jection or retransmission. In addition, the AutoRec sender
maintains a status table for each reinjection queue, which
records the reinjection times (A;) that has been performed,
timestamp (Tstmp) of D,;’s last reinjection or retransmis-
sion and D, identification (Data_ID).° as Fig. 10 shows.

Opportunistic reinjection. To address the issue of unevenly
distributed on-off mode (§ III-B) and conduct replica reinjec-
tion more timely, AutoRec enables traffic senders to inject
packets even during on-mode.As illustrated in Fig. 10, in the
status table of the reinjection queue, Ty, can be used to
compute D,,;’s “silence” duration since its last retransmission
or reinjection. Once it exceeds the threshold Tipes, Dy Will
be fetched from the reinjection queue and then be resent
regardless of whether the off-mode is entered or not.To achieve
well-distributed loss reinjections, at each decision interval,
the Reinjection Controller will use the average loss detection
time (denoted by T,,;;) measured by AutoRec and the Kj
calculated by the Redundancy Adapter (§ V-A) as input, and
calculate T}p,,.s through the following formula:

Tuni t
Tihres = ﬁ (5)

Fig. 11 illustrates an example of how the Reinjection
Controller performs lost injections with several critical events.
Assume the redundancy level determined by the Redundancy
Adapter is 2.In this example, a lost packet is detected and
resent at t1. At time to, the time elapsed since the last transmis-
sion of this packet has exceeded threshold T},cs. Therefore,
the Reinjection Controller will reinject a replica of this packet
even if the sender is currently not in off-mode. From t3 to t5,
the AutoRec sender enters off-mode, which enables another
loss replica to be reinjected at ¢3. After this point, no further
replicas of this packet are injected, because for a single packet,

In this paper, Data_ID can be recognized as the packet number
(pkt_num) in TCP or the stream offset (stream_of fset) in QUIC.

M Loss is detected M Loss is resent
Loss is reinjected M Loss is acknowledged

Time since the packet was last
injected or retransmitted
o
=
o
(7]

‘off-mode

t, t, t; tgtg Time

Fig. 11. An example of how the Reinjection Controller handles lost injections.

Origin
omn| Server

Internet

— Server

Emulator

VL
]
CIient
o

(a) Testbed

(b) Real network

Fig. 12. Testbed and real-world deployments.

we cannot inject more replicas than the redundancy level
determined by the Redundancy Adapter. At tg, one of the
reinjected replicas is acknowledged, which means that the loss
recovery process of the packet is completed. Note that only
the last injected replica is checked for loss. Even if all replicas
are lost, the existing ARQ mechanism will retransmit the last
injected replica when it detects the loss of the last injected
replica.Thus, the packet will not fail to be retransmitted by
ARQ, nor will it be retransmitted excessively.

VI. IMPLEMENTATION

We integrate all the components described in Section V into
only sender-side upgrades and implement AutoRec prototype
based on the user-space QUIC protocol (with the version
of LSQUIC QO043) [26] and NGINX architecture (with the
version of ias-nginx 1.17.3) [27]. Our implementation consists
of 900+ lines of code without any client-side modification.
Please refer to Appendix H for details on the AutoRec
implementation.

VII. EXPERIMENTAL EVALUATION

We perform the experimental evaluations on our estab-
lished testbed and the real networks, respectively. In the
testbed experiments, servers deploying AutoRec generate live-
streaming data and transmit it to clients through a network
environment simulated by the simulator, as Fig. 12(a) shows.
In real network experiments, CDN nodes deploying AutoRec
deliver live-streaming data obtained from the origin servers to
real user clients, as Fig. 12(b) shows.

The testbed server and client are running on CentOS
Linux release 7.9 with Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz (E5-2620 v3 @ 2.40GHz), 48 (24) processors, 62 GB
memory, and 1000 Mbps NIC. The employed network emula-
tor is HoloWAN ultimate 2600u which supports 0~ 1000 Mbps

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NETWORKING

120 - 120 120 - 120 200 - 50
—<— Recovery latency (simulated) —<— Recovery latency (simulated) —<— Recovery latency (simulated)
%100 Recovery latency (formula-based) 100 % 100 Recovery latency (formula-based) 100 w 160 Recovery latency (formula-based) o
§ —m— Redundancy cost (simulated) é —#— Redundancy cost (simulated) E —#— Redundancy cost (simulated)
> 8014 Redundancy cost (formula-based) |go > 80 Redundancy cost (formula-based) |go > Redundancy cost (formula-based) =
S \ —¥— Goodput reduction (simulated) § S \ —— Goodput reduction (simulated) X S 120 —¥— Goodput reduction (simulated) 30§
E 60 \ —— Goodput reduction (formula-based) |60 o E 60 \+ Goodput reduction (formula-based) 60 o r_‘S _ —*— Goodput reduction (formula-based) o
> g 2 \ & 20 208
2 40 ! 40 ¢ 40 X 40 ¢
§ \\4\ N § \ - g
& 20 e 20 & 20 ~ 20 & 40 10
0 0 0 0

o

0 2 4 6 8 10 0 2 4
Redundancy level

(a) BBR

Fig. 13. Formula accuracy validation.

bandwidth, 0~10 s delay, 0~100% loss rate and 0~ 1000 GB
buffer length. In this section, unless otherwise declared, the
BBR (with version 1) [28] scheme is leveraged for congestion
controls. Additionally, to enhance the robustness of AutoRec,
we limit the value range of the redundancy level to [0, 10].
The baseline scheme is the typical ARQ paradigm that will
retransmit one recovery packet once a packet is detected lost.
In this section, each stream’s recovery latency is displayed
only for the lost data, whose recovery requires at least two
retransmissions.

To better evaluate AutoRec, we define a new metric called
recovery deterioration rate, which refers to the ratio between
the amount of lost data (D},) that takes two or more 13,,,;; (i.e.,
recovery latency > T,,:;) to be recovered, to the amount of all
lost data. For example, there are 2 packets (one is in Fig. 7(a)
and the other is in Fig. 7(b)) detected lost, which require one
Tunit and two T, for their successful recoveries (at t4 and
t7), respectively. Then, we can learn Dy = 1 and recovery
deterioration rate = 50%.

A. Testbed Evaluation

The testbed experiments are performed to validate the
accuracy of the formulas used by AutoRec, the parameter
sensitivity of AutoRec, the effectiveness of AutoRec’s oppor-
tunistic reinjection, the advantages compared to the ART [29],
the performance of AutoRec in Real-Time Communication
(RTC) scenarios, the robustness of AutoRec across diverse
packet loss models and loss rate magnitudes, and the perfor-
mance comparison of AutoRec against multiple FEC strategies
[71, [8], [30], [31].The basic environment is configured as
follows: 5% loss rate, 60 ms Round-Trip Time (RTT), 12 Mbps
bandwidth. Unless otherwise declared, we use recovery latency
tolerance o = 30 ms, redundancy cost tolerance S = 30%,
and goodput reduction tolerance v = 20%, without loss of
generality. The QUIC’s loss recovery mechanism employs
Tail Loss Probe (TLP) [32], Retransmission Timeout (RTO)
[33], and Forward Acknowledgement (FACK) [34] for packet
loss detection. Upon detecting lost packets, it immediately
initiates retransmissions. Crucially, QUIC imposes no maxi-
mum retransmission limit per packet to fulfill its reliable data
delivery guarantee.Each obtained metric is the average value
of over 100 sets of experiments, in which each live stream
will last for 60 seconds.

Formulas accuracy validation. In this experiment, we
validate the accuracy of three formulas used by AutoRec
for calculating the benefits and overhead varying with the

Redundancy level

(b) Copa

6 8 10 2
Redundancy level

(c) CUBIC

redundancy level (i.e., Formula 1, Formula 2, and Formula 3
in § V-A). We use a live stream with a bitrate of 12 Mbps
to ensure that the entire transmission process of the stream
remains in on-mode, thereby maximizing the negative impact
of redundancy injection on goodput. Additionally, we slightly
modify the Redundancy Adapter so that the redundancy level
remains a fixed preset value throughout the transmission
process, allowing us to measure the benefits and overhead
of AutoRec at the specified redundancy level. We use the
formulas employed by AutoRec, which describe the benefits
and overhead varying with the redundancy level, to calculate
the benefits and overhead of AutoRec at each fixed redundancy
level. Then, we use the testbed to simulate and measure the
benefits and overhead of AutoRec at each fixed redundancy
level. By comparing the values calculated using the formulas
with those measured through simulation, we can validate the
accuracy of the formulas used by AutoRec for calculating the
benefits and overhead varying with the redundancy level. Due
to the significant impact of congestion control algorithms on
transmission control, we conduct formulas accuracy validation
based on different congestion control algorithms separately.

As shown in Fig. 13, whether using BBR, Copa, or Cubic,
the calculated values from the formulas and the testbed
simulation values for recovery latency, redundancy cost, and
goodput reduction for a given redundancy level are in close
agreement. When using BBR and Copa, the absolute error of
recovery latency does not exceed 3.2 ms, and the absolute
errors of redundancy cost and goodput reduction do not
exceed 2.4%. When using CUBIC, due to the larger values
of recovery latency, the absolute error of recovery latency is
slightly higher but does not exceed 5.8 ms, and the absolute
errors of redundancy cost and goodput reduction do not
exceed 1.4%. As the redundancy level increases, differences
between the calculated values from the formulas and the
testbed simulation values increase. This is because the actual
amount of injected replicas is limited by the sending rate
determined by the congestion control algorithm, meaning that
the amount of replicas injected within a Tj,,;; is capped.
The larger the redundancy level, the greater the difference
between the actual average amount of replicas injected per
packet and the redundancy level, resulting in a larger dif-
ference between the simulated measurement values and the
calculated values from the formulas for AutoRec’s benefits and
overhead.

In summary, the formulas used by AutoRec can accurately
describe the benefits and overhead of AutoRec at each fixed
redundancy level.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: AutoRec: ACCELERATING LOSS RECOVERY FOR LIVE STREAMING

[ZZ2 Recovery latency
100 —e— Recovery deterioration rate {10

40 ? }

AL

10 20 30 100 200
Recovery latency tolerance (ms)

Redundancy cost
501 —e— Goodput reduction

7

S
S

Ratio (%)
Noow
=)

S

~
S

Recovery latency (ms)
5

=
Recovery deterioration rate (%)

o
o
N

10 20 30 50 100 200
Recovery latency tolerance (ms)

o1 AR

(a) Benefits with different recovery
latency tolerance.

(b) Overhead with different recovery
latency tolerance.

Fig. 14. Recovery latency tolerance («) sensitivity validation.

1

-
Iy

[z Recovery latency
100 —e— Recovery deterioration rate

Redundancy cost
501 —e— Goodput reduction

40 2 F

=
)

£
Recovery deterioration rate (%)

=)

40

Recovery latency (ms)
o
3
ES

N

E

100

=)

0 5 10 20 30 50 100
Redundancy cost tolerance (%)

0 5 10 2 30 5
Redundancy cost tolerance (%)

(b) Overhead with different redun-
dancy cost tolerance.

(a) Benefits with different redun-
dancy cost tolerance.

Fig. 15. Redundancy cost tolerance (3) sensitivity validation.

Recovery latency
—e— Recovery deterioration rate 110

Redundancy cost
501 —e— Goodput reduction

,_.
o
)

®
]
S
S

Ratio (%)
Noow
8

IS
S

Recovery latency (ms)
o
3
S

N
=]
-
S

o
o

Recovery deterioration rate (%)

/ /-
0 20 0 100

5 50 100
Goodput reduction tolerance (%)

5 10 20 30 5
Goodput reduction tolerance (%)

(a) Benefits with different goodput
reduction tolerance.

(b) Overhead with different goodput
reduction tolerance.

Fig. 16. Goodput reduction tolerance () sensitivity validation.

The sensitivity of user-customizable parameters. In this
experiment, we test the performance of AutoRec under dif-
ferent user-customizable parameters (i.e., recovery latency
tolerance, redundancy cost tolerance, and goodput reduction
tolerance in § V-A). We use a live stream with a bitrate of
12 Mbps to ensure that the entire transmission process remains
in on-mode, thereby maximizing the impact of injection on
goodput. We first set both the redundancy cost tolerance and
the goodput reduction tolerance to 100% to observe how
AutoRec’s benefits and overhead change with the recovery
latency tolerance. Next, we set recovery latency tolerance
to 0 ms and observe how AutoRec’s benefits and overhead
change with the redundancy cost tolerance or goodput reduc-
tion tolerance by setting the goodput reduction tolerance to
100% or the redundancy cost tolerance to 100%, respectively.

As shown in Fig. 14, the benefits and overhead of AutoRec
gradually decrease as the recovery latency tolerance increases.
As shown in Fig. 15 and Fig. 16, as the redundancy cost
tolerance or goodput reduction tolerance increases, AutoRec’s
benefits and overhead also increase. When the recovery latency
tolerance is set to 0 ms and both the redundancy cost tolerance
and goodput reduction tolerance are set to 100%, AutoRec’s
benefits and overhead are at their maximum, with the values
of recovery latency, recovery deterioration rate, redundancy
cost, and goodput reduction being 9.5 ms, ~0%, 47.6%, and
33.0%, respectively.

As shown in Fig. 14, due to factors such as the limit
on the maximum redundancy level, AutoRec cannot achieve

40 Redundancy cost (AutoRec)
Redundancy cost (Incomplete AutoRec)
30— Goodput reduction (AutoRec)
—=— Goodput reduction (Incomplete AutoRec)

Recovery latency (AutoRec)

222 Recovery latency (incomplete AutoRec)

—< Recovery deterioration rate (AutoRec)

—- Recovery deterioration rate (Incomplete AutoRec)

=

IS
Recovery deterioration rate (%)

Recovery latency (ms)
N

=)

12

4 8 4 8
Bandwidth (Mbps) Bandwidth (Mbps)

(a) Benefits with different band-
width.

(b) Overhead with different band-
width.

Fig. 17. Opportunistic reinjection effectiveness validation.

the theoretical minimum recovery latency. When the recovery
latency tolerance is set between 10 ms and 200 ms, AutoRec
can inject appropriate replicas to control the recovery latency
within no more than 3 ms of the recovery latency tolerance.
When the recovery latency tolerance exceeds 100 ms, the
recovery latency can already meet the recovery latency tol-
erance requirements without injecting redundant replicas by
AutoRec. At this point, AutoRec injects negligible replicas,
and the redundancy cost and goodput reduction approach 0%.

As shown in Fig. 15 and Fig. 16, regardless of the values
set for the redundancy cost tolerance or goodput reduction
tolerance, AutoRec can maintain the measured redundancy
cost or goodput reduction no more than 1% of the redun-
dancy cost tolerance or goodput reduction tolerance. When
the redundancy cost tolerance or goodput reduction tolerance
gradually increases from 0% to 30%, AutoRec can quickly
reduce the recovery latency to below 20 ms. Further increasing
the redundancy cost or goodput reduction tolerance beyond
30% provides diminishing returns in terms of recovery latency
optimization, while incurring higher overhead.

In summary, AutoRec can accelerate recovery latency
to meet user-customizable recovery latency tolerance when-
ever possible while satisfying the constraints of the user-
customizable redundancy cost tolerance and goodput reduction
tolerance.

Opportunistic reinjection effectiveness validation. In this
experiment, we verify the effectiveness of using opportunistic
reinjection in the Reinjection Controller (§ V-B). We imple-
ment two versions of AutoRec: one with the opportunistic
reinjection mechanism and one without. We set the bitrate
of the live stream to 4 Mbps and observe how the benefits
and overhead of the two versions of AutoRec change as the
bandwidth gradually increases from 2 Mbps to 12 Mbps.

When the bandwidth is between 2 Mbps and 4 Mbps, the
entire transmission process is in on-mode. As shown in Fig. 17,
in this situation, the version of AutoRec without the oppor-
tunistic reinjection mechanism injects negligible replicas,
resulting in higher recovery latency and recovery deterioration
rate, which are 281.4 ms ~ 166.7 ms and 4.9% ~ 4.8%,
respectively, while its redundancy cost and goodput reduction
are almost 0. In contrast, AutoRec with the opportunistic
reinjection mechanism injects an appropriate amount of redun-
dant replicas, optimizing the recovery latency to 56.1 ms ~
32.9 ms and the recovery deterioration rate to nearly 0%. This
optimization effect is significantly better compared to AutoRec
without the opportunistic reinjection mechanism. Furthermore,
its redundancy cost and goodput reduction reach 21.2% ~
18.5% and 16.2% ~ 14.3%, respectively, which are higher
than those of AutoRec without the opportunistic reinjection

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

=
o

S
[
Recovery deterioration rate (%)

00 Recovery latency (AutoRec)

EZZ Recovery latency (ART)

—<— Recovery deterioration rate (AutoRec)
—m— Recovery deterioration rate (ART)

x@“ v
oLz Z

7
20 60 100 200
)

Redundancy cost (AutoRec)
40 Redundancy cost (ART)

—<— Goodput reduction (AutoRec)
30{ —#— Goodput reduction (ART)

e e
® N o
s s 3

S o
o
Ratio (%)

IS
S

Recovery latency (ms)
o
N

100 200

“om 5l
0

20 60
RTT (ms)

(b) Overhead with different RTT.

4
o

(a) Recovery latency benefits with
different RTT.

Fig. 18. AutoRec vs. ART.

mechanism. Nevertheless, it still meets the constraints of the
redundancy cost tolerance and goodput reduction tolerance.

When the bandwidth is between 8 Mbps and 12 Mbps, part
of the transmission process will be in off-mode. As shown
in Fig. 17, the version of AutoRec without the opportunistic
reinjection mechanism can inject more redundant replicas
as the bandwidth increases, optimizing the recovery latency
and recovery deterioration rate to 52.3 ms ~ 7.9 ms and
2.3% ~ 0.1%, respectively, with its redundancy cost and
goodput reduction being 5.0% ~ 14.5% and nearly 0%.
Similarly, the version of AutoRec with the opportunistic
reinjection mechanism can also inject an appropriate amount
of redundant replicas, optimizing the recovery latency and
recovery deterioration rate to 24.3 ms ~ 5.1 ms and nearly
0%, respectively, which is better than that of the version
without the opportunistic reinjection mechanism. Furthermore,
its redundancy cost and goodput reduction are 10.2% ~ 14.7%
and nearly 0%, respectively. Although the overhead is higher
compared to the version without the opportunistic reinjection
mechanism, they still meet the constraints of redundancy cost
tolerance and goodput reduction tolerance.

In summary, compared to the version of AutoRec without
the opportunistic reinjection mechanism, the version with the
opportunistic reinjection mechanism can inject an appropriate
amount of replicas to accelerate loss recovery when there is
no off-mode or when the off-mode distribution is uneven.

AutoRec vs. ART. This experiment compares two loss
recovery acceleration schemes: AutoRec and ART [29]. We
set the bitrate of the live stream to 4 Mbps and observe how
the benefits and overhead of AutoRec and ART change as the
RTT gradually increases from 20 ms to 200 ms.

As Fig. 18 shows, when the RTT is 20 ms, ART injects
more replicas than AutoRec, optimizing the recovery latency
and recovery deterioration rate to 13.02 ms and 0.23%,
respectively. Its redundancy cost and goodput reduction are
5.73% and nearly 0%, respectively. In this case, AutoRec
optimizes the recovery latency and recovery deterioration rate
to 15.76 ms and 0.45%, respectively. Although the optimiza-
tion effect is slightly worse than ART, it meets the recovery
latency tolerance. Its redundancy cost and goodput reduction
are 5.10% and nearly 0%, respectively, which is slightly lower
compared to ART.

As Fig. 18 shows, when the RTT is between 60 ms and
200 ms, ART’s recovery latency increases from 34.03 ms
to 109.44 ms as the RTT increases, with the recovery dete-
rioration rate between 0.12% and 0.19%. Its redundancy
cost and goodput reduction are 5.93% ~ 6.37% and nearly
0%, respectively. On the other hand, AutoRec injects more
redundant replicas than ART, maintaining the recovery latency

IEEE TRANSACTIONS ON NETWORKING

below 30 ms and the recovery deterioration rate nearly 0%.
Its redundancy cost increases with the RTT, ranging from
14.72% to 24.44%, while its goodput reduction remains
nearly 0%.

In summary, compared to ART, AutoRec adjusts the amount
of redundant replica injection based on different RTTs to
optimize the loss recovery latency.

AutoRec vs. FEC. In this experiment, we implement
AutoRec on two RTC simulation platforms to: (1) validate
its performance in RTC scenarios, (2) assess its robustness
across diverse packet loss models and loss rate magnitudes,
and (3) benchmark its effectiveness against multiple FEC
strategies.

This experimental evaluation consists of the following
mechanisms:

e AutoRec: Our proposed packet loss recovery mech-
anism. In RTC scenarios, we use parameter settings
recovery latency tolerance o = 0 ms (minimizing recov-
ery latency), redundancy cost tolerance 8 = 20%, and
goodput reduction tolerance v = 20% as the standard
configuration.

e AutoRecy,c: The AutoRec mechanism with o = 0 ms,
B = 5%, and v = 5%. Compared to standard AutoRec
(B = 20%, v = 20%), AutoRec under this configura-
tion aims to reduce bandwidth cost by accepting higher
susceptibility to video freezing.

e AutoRecyc: The AutoRec mechanism with o = 0
ms, 3 = 50%, and v = 50%. Compared to standard
AutoRec (8 = 20%, v = 20%),AutoRec under this
configuration aims to reduce video freezing by tolerating
higher bandwidth costs.

e RTX: A fundamental packet loss recovery mechanism
that detects lost packets via ACK sequencing and retrans-
mits them.

e WebRTC/14: The original Web Real Time Commu-
nication (WebRTC) [35] FEC mechanism proposed in
Google’s 2014 paper [30], which dynamically adjusts
redundancy based on RTT measurements.

e WebRTC/now: The current industry-standard
WebRTC FEC implementation (used in Stadia [36],
Meet [37], etc.) that employs more aggressive redundancy
than WebRTC/14.

e Hairpin: A novel packet loss recovery mechanism for
edge-based interactive streaming that adaptively applies
FEC encoding to lost packets [8]. The standard coefficient
A of Hairpin is set to 10~%.

e Hairpinyc: The Hairpin mechanism configured with
A = 107!, Compared to standard Hairpin (A = 107%),
Hairpin under this configuration aims to reduce band-
width cost by accepting higher susceptibility to video
freezing.

e Hairpingc: The Hairpin mechanism configured with
A = 1077, Compared to standard Hairpin (A = 107%),
Hairpin under this configuration aims to reduce video
freezing by tolerating higher bandwidth costs.

e Tambur: An efficient loss recovery mechanism for
videoconferencing that leverages streaming codes—a spe-
cialized FEC variant optimized for burst losses [7]. We set
the maximum FEC redundancy ratio to 25% by default.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: AutoRec: ACCELERATING LOSS RECOVERY FOR LIVE STREAMING

e Tamburyc: The Tambur mechanism was configured
with its maximum redundancy parameter set to the min-
imum value, resulting in the generation of exactly one
FEC redundancy packet per video frame. Compared to
standard Tambur (maximum redundancy ratio = 25%),
Tambur under this configuration aims to reduce band-
width cost by accepting higher susceptibility to video
freezing.

e Tamburyc: The Tambur mechanism configured with
maximum redundancy ratio = 50%. Compared to stan-
dard Tambur (maximum redundancy ratio = 25%),
Tambur under this configuration aims to reduce video
freezing by tolerating higher bandwidth costs.

We evaluate the following performance metrics:

e Deadline miss rate (DMR): Proportion of video frames
failing to render before their deadline due to packet loss.

e Bandwidth cost (BWC): The ratio of non-video-frame
bytes (e.g., reinjection redundancy bytes, FEC redun-
dancy bytes) to total transmitted bytes.

e Percent of video spent frozen: The ratio of the cumula-
tive duration of video freezing events to the total video
playback time, expressed as a percentage.

We configure the environment with 12 Mbps bandwidth,
4 Mbps bitrate, 60 fps frame rate, 30 ms RTT, and 100 ms
playback deadline.

First, using an ns3-based WebRTC simulator [38], we eval-
uate the deadline miss rate and bandwidth cost of AutoRec,
AutoRec ¢, AutoRecyc, WebRTC/14, WebRTC'now, Hairpin,
Hairpin| ¢, and Hairpinyc under a variety of conditions, includ-
ing four fixed packet loss rates (0.5%, 1%, 5%, 10%) and
two real-world network traces.Specifically, Trace #1 represents
a high-loss, stable-latency environment, characterized by an
average bandwidth of 11.3 Mbps, an average RTT of 13.7 ms,
an RTT variance of 13, an average packet loss rate of 10.1%,
and a 95th percentile packet loss rate of 75.0%. In contrast,
Trace #2 exemplifies a low-loss, high-jitter RTT scenario, with
an average bandwidth of 4.6 Mbps, a longer average RTT of
38.1 ms, a substantially larger RTT variance of 178, an average
packet loss rate of 2.8%, and a 95th percentile packet loss rate
of 25.0%.

Fig. 19 illustrates the experimental results. As shown in
Fig.19(a) and Fig. 19(b), at low packet loss rates (0.5%
and 1%), AutoRecyc, AutoRec, and AutoRec ¢ all achieve
0% deadline miss rate with modest bandwidth cost, where
the highest cost are 9.92%, 9.92%, and 4.39% respectively,
satisfying redundancy cost constraint. While WebRTCyow and
WebRTC/q4 also achieve 0% deadline miss rate, they incur
substantially higher bandwidth costs reaching 32.81% and
16.16%. Hairpinyc achieves 0% deadline miss rate at both
loss rates, whereas Hairpin fails at 0.5% loss and Hairpin, ¢
fails at both rates. Notably, Hairpin in all three configurations
maintains minimal bandwidth costs under 3%.

As shown in Fig. 19(c) and Fig. 19(d), at high loss rates
(5% and 10%), AutoRecyc maintains a 0% deadline miss rate
with bandwidth cost up to 46.28%. However, AutoRec fails to
achieve 0% deadline miss rate at 10% loss rate while incurring
up to 17.23% bandwidth cost. AutoRec ¢ completely fails to
achieve 0% deadline miss rate and performs comparably to
RTX at 10% loss rate. AutoRec in all three configurations

11

IS
S

v @ @ ‘
R30{WebRTCrow @RTX 4 AutoRec,]30 We!RTCxuw @RTX M Hairpinyc
g @AutoReckc * AutoRec g @AutoRecyc 4 AutoRecic
220 ® Hairpinic W WebRTCrow Z20 :ﬁ:t?;ﬁc v w:g&;gww
=l irpi . o Lc ‘14
s @ Hairpin WebRTC:14 S | AgtoRec @ Hairpin
T10 AutoRecyc W Hairpinyc 210 utoRecuc
3 #/AutoRec 3 'H RTX

airpinyc
0 FEWM @®Hairping RTX@ o{Hairpin o0
00 05 10 25 0 10

2 4 6 8
Deadline miss rate (1/10000)

(b) Loss rate = 1%.

1.5 2.0
Deadline miss rate (1/10000)

(a) Loss rate = 0.5%.

10

@ RTX @ Hairpinie ¥ WebRTChow @ RTX ‘AutoRech W Hairpinuc
_ 8ol == AutoRec;c @ Hairpin WebRTCq4 _ 80! * AutoRec @ Hairpinic W WebRTCyow
8 @ AutoRecyc Bl Hairpinyc * AutoRec & = AutoRecic @ Hairpin WebRTC 14
g oo & Y]
: °° c Hairpin, ¢
5 .| auorec = £ . ,A%mpﬁe%c e
= WebRTCyow s 'WebRTChow
2 Hairpin, 2 Hairpin
3 20 Auto‘?}eEL & 207 AutoRec

Hairpi RTX [} RTX

0 L +) 01 Py
15 0 1 2 3 2 5

3 6 9 12
Deadline miss rate (1/1000) Deadline miss rate (1/100)

(c) Loss rate = 5%. (d) Loss rate = 10%.

@ RTX @ Hairpin.c ' ¥ WebRTCnow
=4 AutoRec,c @ Hairpin WebRTCq4
@ AutoRecyc B Hairpinyc % AutoRec

AutoRecyc %‘&

@ RTX ® Hairpinie ' ¥ WebRTCnow
4 AutoRec,c @ Hairpin WebRTCq4
@ AutoRecyc Bl Hairpinyc % AutoRec

8
.
AutoRecyc 4p VW WebRTCyow
/\ut&Rc(

)
g

AutoRec

Bandwidth cost (%)
IS
8
Bandwidth cost (%
]

WobRTCym’ﬁV Hairpin
Hairpin
o] Hairpinyl® ' ® SRTX 0 Ha\rpirtg- ORTX
0 3 6 9 12 1 2 3 4
Deadline miss rate (1/10000) Deadline miss rate (1/1000)
(e) Trace #1. (f) Trace #2.

Fig. 19. The performance of the AutoRec and FEC mechanisms under both
controlled fixed packet loss rates and real-world network traces.

satisfies its respective redundancy cost constraints. Neither
WebRTCnow nor WebRTC/q4 achieves a 0% deadline miss
rate under either loss rate, with bandwidth costs below 39.38%
and 12.77% respectively. Hairpinyc and standard Hairpin
achieve 0% deadline miss rate with bandwidth cost up to
44.48% and 35.48% respectively, while Hairpin ¢ fails with
bandwidth cost up to 10.26%. Notably, at 10% loss rate,
Hairpin ¢ reduces deadline miss rate more significantly than
AutoRec while consuming less bandwidth.

As shown in Fig. 19(e), under Trace #1, AutoRec performs
considerably worse than Hairpin but outperforms WebRTC.
Specifically, in this high-loss environment, the AutoRecc
instance injects negligible redundant packets to avoid exceed-
ing the overhead limit, resulting in minimal improvement
to the deadline miss rate. In contrast, the AutoRec and
AutoRecyc instances reduce the deadline miss rate to 0.067%
and 0.051%, with associated bandwidth costs of 18.5% and
55.9%, respectively. However, owing to the superior efficiency
of FEC over simple retransmission, even the best-performing
AutoRec instance (AutoRecpc) is surpassed by Hairpinc.
The latter achieves a lower deadline miss rate of 0.045% at
a significantly lower bandwidth cost of only 0.27%. Among
the WebRTC versions, WebRTC:\ow achieves the best result,
yet its deadline miss rate (0.073%) remains higher than
that achieved by the AutoRec instance, with a bandwidth
cost of 14.7%.

As shown in Fig. 19(f), under Trace #2, AutoRec demon-
strates stronger performance than both Hairpin and WebRTC.
Owing to the low loss rate and high RTT variability, Hair-
pin overestimates the number of remaining retransmission
opportunities, leading to an insufficient number of FEC pack-
ets. Consequently, the best-performing instance of Hairpin

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

—_
S}

N
S

AutoRecyc ##% Tambur
Tamburc Tamburyc

143

8 a2 -
10% 20% 40% 60% 80% 10% 20% 40% 60% 80%
Loss rate in the bad state of the GE model (%) Loss rate in the bad state of the GE model (%)

RIX AutoRecic

AutoRec ¢ I AutoRec

AutoRec h -

AutoRecyc

Tamburic i
#axi Tambur I

"

o
o
3

1

-
S

Bandwidth cost (%)
»
S

N
S

«
PErCrERER G E—

Tamburyc II 1
n
1 b 1

o
PEPEPERE)

Percent of video spent frozen (%)

(a) Percent of video spent frozen vs. (b) Bandwidth cost vs. packet loss
packet loss rates in the bad state of rates in the bad state of Gilbert-Elliott
Gilbert-Elliott model. model.

Fig. 20. The performance of the AutoRec and Tambur under varying packet
loss rates in the bad state of Gilbert-Elliott model.

(Hairpinyc) only reduces the deadline miss rate to 0.35% with
a bandwidth cost of 1.85%. In comparison, the least effective
instance of AutoRec (AutoRec|c) achieves a lower deadline
miss rate of 0.33% with a bandwidth cost of 4.56%. Among
the WebRTC versions, WebRTC:\ow achieves the best result,
yet its deadline miss rate and bandwidth cost are both worse
than those of AutoRec.

These results demonstrate AutoRec’s effectiveness in RTC
scenarios. Under low packet loss conditions, AutoRec out-
performs these FEC mechanisms, achieving comparable stall
reduction with similar or lower bandwidth cost. However, as
packet loss rates increase, AutoRec’s effectiveness diminishes
relative to these FEC mechanisms. To match their stall reduc-
tion at higher loss rates, AutoRec incurs greater bandwidth
costs that increasingly exceed those of the FEC mechanisms.

Second, we evaluate the percent of video spent frozen and
bandwidth cost of AutoRec, AutoRec| ¢, AutoRecnc, Tambur,
Tambur; ¢, and Tamburyc in Gilbert-Elliott loss model [39]
using Ringmaster (an extensible videoconferencing research
platform for FEC benchmarking, replacing WebRTC for con-
trolled experiments) [40].

The Gilbert-Elliott (GE) model is a two-state Markov chain
widely used to simulate burst packet losses in networks, where
the channel alternates between good (low-loss) and bad (high-
loss) states. We implement a Gilbert-Elliott loss model with
state transitions every 30 ms, fixed transition probabilities
(good to bad: 20%; bad to good: 80%), fixed good state loss
rate (1%), and varying bad state loss rates (10%, 20%, 40%,
60%, 80%) to evaluate AutoRec’s performance under varying
burst loss intensities. Ringmaster utilizes a constant bitrate
transmission scheme without congestion control. It does not
employ a timeout-based termination mechanism. Instead, if the
first unacknowledged datagram remains outstanding for more
than one second, the sender forces the next frame to be a key
frame and continues transmission.

Fig. 20 illustrates the experimental results. At low bad
state loss rate (10%), AutoRec, AutoRec ¢, and AutoRecyc
can reduce the percent of video spent frozen to 0%, with
AutoRec| ¢ operating under the strictest redundancy cost con-
straint and incurring only 4.93% bandwidth cost. Meanwhile,
Tambur, Tambur;c, and Tamburyc achieve 0% of video
spent frozen. Tambur| ¢ (the one with the smallest bandwidth
cost among Tambur, Tambur ¢, and Tamburyc) requires over
13.81% bandwidth cost, significantly exceeding AutoRec’s
bandwidth cost. At moderate bad state loss rates (20% to
40%), the performance in reducing the percent of video spent
frozen of both AutoRec and Tambur across configurations

IEEE TRANSACTIONS ON NETWORKING

-

w
o

Recovery latency (AutoRec)
Recovery latency (baseline)
—<— Recovery deterioration rate (AutoRec)
—m— Recovery deterioration rate (baseline)

1000 1008

®
3
8
S W
® » o
Goodput (Mbps)

IS
S
3

Recovery latency (ms)
o
3
38
vy
9

N
=]
3

NN

7
2
th- 95th- ~Avg. 5th-

NN

7
0l St V2
Avg. 5th- 25th- 50th- 7

v

25th- 50th- 75th- 95th-

(a) The average and quantile of the
benefits.

(b) The average overhead and the
quantile of the goodput.

Fig. 21. AutoRec’s benefits and overhead in the real network.

consistently correlates with their bandwidth cost rankings.
Under high bad state loss rates (60% and 80%), Tambur
achieves 3.88% and 11.91% of video spent frozen at a
bandwidth cost of ~28%; by contrast, even AutoRecyc (the
best-performing one for freeze reduction among AutoRec,
AutoRec| ¢, and AutoRecpc) achieves only 3.13% and 12.38%
of video spent frozen at a bandwidth cost of ~53%.

These results demonstrate that AutoRec delivers strong
performance even under burst packet loss conditions. While
AutoRec outperforms Tambur at low burst loss rates, its
effectiveness in reducing video freezes diminishes as the burst
loss rate increases. Under high burst loss rates, AutoRec falls
short of Tambur’s performance.

In summary, AutoRec effectively reduces video freezes
within redundancy cost constraints for RTC applications. It
consistently mitigates freezes under all tested packet loss con-
ditions, including varying loss magnitudes (low to high) and
types (random and burst), though its effectiveness decreases as
loss rates increase. Crucially, AutoRec outperforms multiple
FEC schemes at low loss rates, matches their performance
at moderate loss rates, but is surpassed by multiple FEC
mechanisms in high-loss scenarios.

B. Real-Network Evaluation

To further explore AutoRec’s performance,we deploy
AutoRec prototype in our CDN proxy and evaluate video
freezing metrics, loss recovery benefits, and reinjection over-
head.

Parameter configuration. To facilitate the deployment of
AutoRec in real-world networks,the user-customizable param-
eters in the Redundancy Adapter (§ V-A), namely recovery
latency tolerance (o), redundancy cost tolerance (3), and
goodput reduction tolerance (v), are set to 200 ms, 50%, and
50%, respectively.

AutoRec’s loss recovery benefits and overhead. Fig. 21(a)
demonstrates the performance of AutoRec in the real network,
showing consistent improvements in recovery latency and
recovery deterioration rate.The average recovery latency is
reduced by 15.8%, from 231.2 ms to 194.6 ms, while the
average recovery deterioration rate decreases by 1.7%, from
23.0% to 22.6%. Notably, the 95th percentile recovery latency
is reduced by 102.2 ms. This means that for the worst-
affected 5% of receivers, the waiting time for recovering from
the loss of a first retransmission is cut by 102.2 ms.These
results indicate that AutoRec effectively reduces the recovery
latency below the recovery latency tolerance, which satisfies
the recovery latency constraints.

The overhead of AutoRec under the evaluated parameter
configuration is shown in Fig. 21(b), which demonstrates

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: AutoRec: ACCELERATING LOSS RECOVERY FOR LIVE STREAMING

e

baseline

-
=
o

* Average * Average

=
N
=
N

14
o
o
©

4
>
o
o

Duration per 100s (s)

o
w

Times per 100s

o
w

o
o

baseline AutoRec AutoRec

(a) Video freezing times. (b) Video freezing duration.

Fig. 22. The video freezing changes in the real network.

that the introduced overhead is negligible. Specifically, the
average redundancy cost of AutoRec is only 0.47%, indicating
that the total traffic increases by at most 0.47%. Meanwhile,
the average goodput reduction of AutoRec is just 0.34%.
Compared to the baseline, the reduction in goodput is more
pronounced at higher percentiles, with a decrease of 2.58%
at the 95th percentile, from 2.99 Mbps to 2.91 Mbps. From
the above results, it is evident that AutoRec’s redundancy cost
and goodput reduction are both strictly within the redundancy
cost tolerance and goodput reduction tolerance, meeting the
constraints on overhead.

In summary, in the real network, the deployed AutoRec
accelerates loss recovery to meet user demands whenever
possible while keeping the overhead controllable.

Video freezing. The AutoRec performance can be further
evaluated by the observed client-side video freezing, including
its frequency and duration. As Fig. 22(a) shows, AutoRec
reduces the average freezing times (per 100s) from 0.69 to
0.62, representing an improvement of 10.10%. The minimum
and maximum values of video freezing times (per 100s) are
reduced by 26.83% and 11.61%, respectively.Furthermore,
AutoRec also reduces freezing duration (per 100s) by 4.74%,
in which the maximum value is reduced by 159.03 ms (with
the ratio of 13.39%), as Fig. 22(b) shows.

In summary, the results demonstrate that AutoRec effec-
tively enhances loss recovery timeliness, leading to a
measurable reduction in both the frequency and duration of
client-side video freezing.

VIII. DISCUSSION
A. What About the Overhead of AutoRec?

The computational and storage overhead of the AutoRec
remains minimal even under extreme conditions.

Computational overhead. The computational overhead
of AutoRec consists of the following two aspects: (i) the
calculation of the redundancy level in the Redundancy
Adapter; (ii) the computational operations of insertion, dele-
tion, and movement of the reinjection queue in the Reinjection
Controller.

For aspect (i), the redundancy level is periodically calcu-
lated at each decision interval. The time complexity of this
calculation is O(log(n)), where n is the maximum allowable
value of Ky (§ V-A), typically set to 10. Given the small value
of n and the logarithmic time complexity, the computational
overhead is negligible.

For aspect (ii), since the insertion, deletion, and movement
operations do not affect the order that the entire reinjection
queue should maintain, i.e., an order where the time of their
last transmission is from the earliest at the front to the latest at

13

the back, there is no need for sorting operations. Insertion and
movement operations do not require traversing the reinjection
queue. Instead, they only access the head and tail of the
reinjection queue, which means no excessive computation is
required. However, deletion requires traversing the reinjection
queue to find the acknowledged packets and then delete them.
The time complexity here is O(n), where n is the number of
packets in the reinjection queue. In the worst-case scenario,
namely that all sent packets are lost, the reinjection queue
will contain all the packets sent within one RTT. According
to our measurement results, the average bitrate of live streams
is 984.5 kbps, the average SRTT is 95.5 ms, and the amount
of data carried by each packet is approximately 1300 bytes.
Therefore, in the worst-case scenario, the average number
of packets in the reinjection queue of each connection is
approximately 9. So, the overhead required to traverse the
reinjection queue once is extremely small.

Storage overhead. The storage overhead of AutoRec
mainly consists of the following two aspects: (i) the storage
overhead required for measuring the loss detection time in
the Redundancy Adapter; (ii) the storage overhead needed to
implement the reinjection queue in the Reinjection Controller.

For aspect (i), we need to store the first transmission time
of each currently unacknowledged packet so that the loss
detection time of the packet can be obtained when it is first
retransmitted. As analyzed in § VIII-A, the average number
of packets in the reinjection queue of each connection is 9,
therefore, the storage overhead of storing the sending time of
each currently unacknowledged packet will not be large either.

For aspect (ii), we need to store each packet that is currently
being retransmitted but has not been acknowledged and whose
number of injection times is less than Ky (§V-A) in the reinjec-
tion queue. Additionally, we have to record some information
for these packets. Evidently, compared with the overhead of
storing packets, the overhead of recording information for
these packets can be neglected. As analyzed in § VIII-A,
the average number of packets in reinjection queue at any
given moment is 9. Therefore, in the worst-case scenario, the
overhead of storing packets in reinjection queue will not be
significant either.

B. Will AutoRec Exacerbate Congestion?

In fact, the number of packets injected by AutoRec will
not be so large as to exacerbate network congestion. Firstly,
AutoRec can adaptively adjust the number of injections for
each packet. When there is congestion, the packet loss rate
will increase. At this time, AutoRec will adaptively reduce the
number of injections for each lost packet in the next decision
interval according to the goodput reduction tolerance and
redundancy cost tolerance, so that the total number of injected
packets will not exceed a certain threshold. In addition, as
analyzed in § VIII-A, the average number of packets that are
sent but not acknowledged is very small. As shown in Fig. 4,
the average packet loss rate in the real network is about 4%,
that is, the lost packets account for a very small part of the total
number of sent packets. And we only inject packets that are
retransmitted but not acknowledged, so the number of injected
packets will not be large to exacerbate congestion.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

C. How AutoRec Integrates With QUIC’s Existing
Loss-Recovery Mechanisms?

QUIC’s native loss-recovery mechanism exclusively tracks
the last transmission attempt (whether initial transmission,
retransmission, or reinjection) for each packet. It utilizes
this final attempt’s information to determine packet loss and
initiate retransmissions, thereby ensuring reliable data deliv-
ery. AutoRec, conversely, performs reinjection of previously
retransmitted or injected packets only under specific condi-
tions. Notably, both reinjection and retransmission operations
require first renumbering the original data packet and then
sending the renumbered packet. Crucially, AutoRec fundamen-
tally advances retransmission timing by executing these packet
retransmissions before loss occurs. This process operates with-
out interfering with QUIC’s native loss-recovery mechanism
or compromising reliability.

Ilustrative example (AutoRec’s redundancy level = 2):
When QUIC’s native loss-recovery mechanism detects that
packet P; (carrying application data D) is lost, it retransmits
P, by renumbering it as P» and sending P». QUIC then
stops monitoring P; for loss and begins monitoring P, for
loss. If AutoRec’s conditions are met, it reinjects P, by
renumbering P, as Ps; and sending Ps;. QUIC consequently
stops monitoring P> for loss and begins monitoring P; for
loss. When AutoRec’s conditions are met again, it reinjects Ps
by renumbering P; as P, and sending P,. QUIC then stops
monitoring P3 for loss and begins monitoring P, for loss.
Upon a third trigger, AutoRec skips reinjection of P, because
the packet carrying data D has been reinjected twice, reaching
the maximum allowed by the redundancy level. Should P, be
lost, QUIC’s native loss-recovery mechanism detects this loss,
retransmits P, by renumbering P, as P5 and sending Ps, then
stops monitoring P, for loss and begins monitoring P; for loss.
Thereafter, QUIC’s existing loss-recovery mechanism ensures
data D is successfully delivered to the receiver through this
persistent cycle of loss detection and retransmission. Notably,
if any packet from P; to P; is ACKed, the loss detection for
P5 is terminated to prevent infinite retransmission loops.

IX. RELATED WORK

Adaption to on-off traffic pattern. To the best of our
knowledge, almost all prior works [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53] fall into the category
of adapting congestion control to on-off traffic patterns. For
example, Zhang et al. [46] proposed a TCP variant to over-
come the challenges, in which the on-off traffic pattern disturbs
the increase of the TCP congestion window and triggers packet
loss at the beginning of the on-mode.This paper does not focus
on the congestion control issues of live streaming. Instead, in
a manner analogous to how TADOC [54] leverages repetitive
textual features to optimize text analytics, we leverage the on-
off pattern to accelerate packet loss recovery.

Loss tolerance control for live streaming. Many stud-
ies have been proposed to enhance the data timeliness of
live streaming to achieve efficient loss recovery and opti-
mize client-side video freezes. The key ideas of these works
include injecting supplement data (e.g., FEC [5], [6], [7],
[8] and multi-path retransmissions [9], [10], [55]), ignoring
some non-critical losses (e.g., application-level controls [13],

IEEE TRANSACTIONS ON NETWORKING

[14], [15], semi-reliable transmissions [11], [12], [56]). For
instance, Tambur [7] employs streaming codes, a specialized
FEC variant optimized for burst losses. In contrast, AutoRec
optimizes loss recovery for diverse loss patterns by selectively
reinjecting only lost packets, significantly reducing bandwidth
overhead under low-loss conditions. Whereas GRACE [56]
preserves QoE across varying packet losses via a novel neural
video codec implemented through specialized application-
layer frame encoding and decoding, AutoRec operates at the
transport layer by reinjecting lost packets. The mechanism
most close to AutoRec is Hairpin [8], which adaptively
applies FEC encoding to lost packets specifically for edge-
based interactive streaming. In fact, Hairpin can be viewed
as an advanced variant of AutoRec designed for scenarios
where modifying both client and server endpoints is feasible,
since under these conditions, FEC is more efficient than
simple packet reinjection. However, in commercial large-
scale live-streaming product networks, the CDN vendor is
mainly responsible for optimizing the end-to-end transmission
performance and has control rights only on the sender side.
Therefore, the above arts that apply client-side modification
cannot meet the requirements of real-world deployment. In this
paper, we propose a sender-side approach from the perspective
of CDN vendors.

Advancements upon ARQ. Modern CDN vendors simply
apply the ARQ for loss tolerance control in commercial
live-streaming services. However, the legacy ARQ-based loss
recovery is far from satisfactory. There also exist many studies
[29], [33], [57], [58], [59], [60], [61], [62] that improve the
performance of ARQ by introducing redundancy to loss recov-
ery. These works, however, suffer from obviously deteriorated
goodput since the inserted extra packets occupy the sender-side
and in-network resources. This paper overcomes the above
challenges by taking full advantage of the off-mode of live
streaming.

Upstream path. The data transmission paths for live
streaming can generally be simply divided into the upstream
path from the live streamer to the server and the downstream
path from the server to the user. Currently, many research
studies [4], [63], [64], [65] are dedicated to improving the
transmission quality of the upstream path. In contrast to these
efforts, AutoRec primarily focuses on the optimization of the
downstream path performance, with particular emphasis on
reducing packet loss recovery latency. Since the downstream
path is directly relevant to the users, optimizing the packet
loss recovery latency using AutoRec on the downstream path
rather than the upstream path is more likely to result in an
improvement of users’ Quality of Experience.

X. CONCLUSION

Slow loss recovery is not primarily caused by the retrans-
mission process itself, but rather by the loss of retransmitted
packets, which constitutes the fundamental challenge. To
address this issue, we propose AutoRec, a mechanism that
accelerates loss recovery by enabling senders to reinject
lost packet duplicates in a strategic and controlled manner.
AutoRec leverages the on-off mode switching prevalent in live
streaming to improve recovery timeliness without disrupting
ongoing data transmission. The effectiveness of AutoRec is

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: AutoRec: ACCELERATING LOSS RECOVERY FOR LIVE STREAMING

validated through extensive testbed experiments and real-world
deployment. It has been integrated into Tencent’s global CDN
[66] and its EdgeOne platform [67], serving billions of live-
streaming users worldwide.

(1]

(2]

[3]

(4]

[3]

(6]

(71

(8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

[20]

[21]

REFERENCES

Technavio. (2023). Live Streaming Market By Product, End-User,
and Geography-Forecast and Analysis 2023-2027. [Online]. Avail-
able: https://www.technavio.com/report/live-streaming-market-industry-
analysis

S. Hatchet. (2022). 2022 Yearly Video Game Live Streaming Trends
Report. [Online]. Available: https://streamhatchet.com/blog

J. Li et al., “LiveNet: A low-latency video transport network for large-
scale live streaming,” in Proc. ACM SIGCOMM Conf., Aug. 2022,
pp. 812-825.

J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live
streaming: Improving live video ingest via online learning,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Archit., Protocols Comput. Commun., Jul. 2020, pp. 107-125.

S.-H.-G. Chan, X. Zheng, Q. Zhang, W.-W. Zhu, and Y.-Q. Zhang,
“Video loss recovery with FEC and stream replication,” [EEE Trans.
Multimedia, vol. 8, no. 2, pp. 370-381, Apr. 2006.

F. Michel, Q. De Coninck, and O. Bonaventure, “QUIC-FEC: Bringing
the benefits of forward erasure correction to QUIC,” in Proc. IFIP Netw.
Conf., May 2019, pp. 1-9.

M. Rudow, F. Y. Yan, A. Kumar, G. Ananthanarayanan, M. Ellis, and
K. Rashmi, “Tambur: Efficient loss recovery for videoconferencing via
streaming codes,” in Proc. USENIX NSDI, Apr. 2023, pp. 953-971.

Z. Meng et al., “Hairpin: Rethinking packet loss recovery in edge-
based interactive video streaming,” in Proc. USENIX NSDI, Apr. 2024,
pp. 907-926.

Z. Zheng et al., “XLINK: QoE-driven multi-path QUIC transport in
large-scale video services,” in Proc. ACM SIGCOMM Conf., Aug. 2021,
pp. 418-432.

G. Chen et al., “FUSO: Fast multi-path loss recovery for data center
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1376-1389, Jun.
2018.

M. Palmer, M. Appel, K. Spiteri, B. Chandrasekaran, A. Feldmann, and
R. K. Sitaraman, “VOXEL: Cross-layer optimization for video streaming
with imperfect transmission,” in Proc. 17th Int. Conf. Emerg. Netw.
EXperiments Technol., Dec. 2021, pp. 359-374.

T. Pauly, E. Kinnear, and D. Schinazi, “An unreliable datagram
extension to QUIC,” in Internet Engineering Task Force Draft-Pauly-
Quicdatagram-00. USA: Internet Engineering Task Force (IETF), Sep.
2018.

B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
TCP (DZTCP),” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 115-126, 2012.

C. Zhou, W. Wu, D. Yang, T. Huang, L. Guo, and B. Yu, “Deadline
and priority-aware congestion control for delay-sensitive multimedia
streaming,” in Proc. 29th ACM Int. Conf. Multimedia, Oct. 2021,
pp. 4740-4744.

H. Zhang, X. Shi, X. Yin, F. Ren, and Z. Wang, “More load,
more differentiation—A design principle for deadline-aware congestion
control,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr.
2015, pp. 127-135.

Y. Arda and J.-C. Hennet, “Inventory control in a multi-supplier system,”
Int. J. Prod. Econ., vol. 104, no. 2, pp. 249-259, Dec. 2006.

D. Bertsekas and R. Gallager, Gallager, Data Networks, vol. 1. Upper
Saddle River, NJ, USA: Prentice-Hall, 1992, p. 2.

T. Li, K. Zheng, and K. Xu, “Acknowledgment on demand for transport
control,” IEEE Internet Comput., vol. 25, no. 2, pp. 109-115, Mar.
2021.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92-99, Jan. 2010.

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., Nov. 2010, pp. 267-280.

S. H. Yeganeh, Y. Cheng, N. Cardwell, and V. Jacobson, “Delivery rate
estimation,” in IETF. Internet-Draft Draft-Cheng-Iccrg-Delivery-Rate-
Estimation-02. USA: Internet Engineering Task Force (IETF), 2017.

[22]

[23]

[24]

(25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]
(33]

[34]

[35]
[36]

(371

[38]

(39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

15

A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, “An
experimental study of the learnability of congestion control,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 479490,
Feb. 2015.

S. Rajasekaran, M. Ghobadi, G. Kumar, and A. Akella, “Congestion
control in machine learning clusters,” in Proc. 21st ACM Workshop Hot
Topics Netw., Nov. 2022, pp. 235-242.

S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” ACM SIGCOMM Comput.
Commun. Rev., vol. 30, no. 4, pp. 43-56, Oct. 2000.

J. Iyengar and I. Swett, QUIC Loss Detection and Congestion Control,
document IETF RFC 9002, 2021.

LiteSpeed Tech. LiteSpeed QUIC and HTTP/3 Library. Accessed: Oct.
19, 2025. [Online]. Available: https://github.com/litespeedtech/Isquic

I. Ovchinnikov and K. Pavlov. Nginx. [Online]. Available: https://
github.com/nginx

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5,
pp- 20-53, Oct. 2016.

T. Li et al., “ART: Adaptive retransmission for wide-area loss recovery
in the wild,” in Proc. IEEE 3list Int. Conf. Netw. Protocols (ICNP),
Oct. 2023, pp. 1-11.

S. Holmer, M. Shemer, and M. Paniconi, “Handling packet loss in
WebRTC,” in Proc. IEEE Int. Conf. Image Process., Sep. 2013,
pp- 1860-1864.

(2020). PSA: WebRTC MS88 Release Notes. [Online]. Available:
https://groups.google.com/g/discuss-webrtc/c/AOFjOcTW2c0/m/UAv-
veyPCAAJ

Y. Cheng, N. Cardwell, N. Dukkipati, and P. Jha, The RACK-TLP Loss
Detection Algorithm for TCP, document RFC 8985, 2021.

V. Paxson, M. Allman, J. Chu, and M. Sargent, Computing TCP’s
Retransmission Timer, document RFC 6298, 2011.

M. Mathis and J. Mahdavi, “Forward acknowledgement: Refining TCP
congestion control,” in Proc. Conf. Appl., Technol., Archit., Protocols
Comput. Commun., Aug. 1996, pp. 281-291.

WebRTC. [Online]. Available: https://webrtc.org/

A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano, “A
network analysis on cloud gaming: Stadia, GeForce now and PSNow,”
Network, vol. 1, no. 3, pp. 247-260, Oct. 2021.

brianhu. (2021). Google Meet Troubleshooting Playbook—Network
and Hardware Troubleshooting. [Online]. Available:
https://www.googlecloudcommunity.com/gc/Workspace-Product-
Articles/Google-Meet-Troubleshooting-Playbook-Network-and-
Hardware/ta-p/165810

S. Zhang. (2020). Soonyangzhang/Webrtc-GCC-NS3: Test Google
Congestion Control on NS3. [Online]. Available: https://github.com/
SoonyangZhang/webrtc-gcc-ns3

E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. J., vol. 42, no. 5, pp. 1977-1997, Sep. 1963.

M. Corporation. (2023). Ringmaster. [Online]. Available: https://
github.com/microsoft/ringmaster

A. Wierman and T. Osogami, “A unified framework for modeling TCP-
vegas, TCP-SACK, and TCP-reno,” in Proc. 11th IEEE/ACM Int. Symp.
Modeling, Anal. Simulation Comput. Telecommun. Syst. (MASCOTS),
Oct. 2003, pp. 269-278.

A. Wierman, T. Osogami, and J. Olsén, “Modeling TCP-vegas under
on/off traffic,” ACM SIGMETRICS Perform. Eval. Rev., vol. 31, no. 2,
pp. 6-8, Sep. 2003.

J. Esteban, S. A. Benno, A. Beck, Y. Guo, V. Hilt, and I. Rimac,
“Interactions between HTTP adaptive streaming and TCP,” in Proc.
22nd Int. Workshop Netw. Operating Syst. Support Digit. Audio Video,
Jun. 2012, pp. 21-26.

T. Kupka, P. Halvorsen, and C. Griwodz, “Performance of on-off
traffic stemming from live adaptive segmented HTTP video streaming,”
in Proc. 37th Annu. IEEE Conf. Local Comput. Netw., Oct. 2012,
pp. 401-4009.

L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC:
A client-side controller for dynamic adaptive streaming over HTTP
(DASH),” in Proc. 20th Int. Packet Video Workshop, Dec. 2013, pp. 1-8.
T. Zhang, J. Wang, J. Huang, J. Chen, Y. Pan, and G. Min, “Tuning
the aggressive TCP behavior for highly concurrent HTTP connec-
tions in intra-datacenter,” IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp- 3808-3822, Dec. 2017.

Y. Zhao, B. Zhang, C. Li, and C. Chen, “ON/OFF traffic shaping in the
internet: Motivation, challenges, and solutions,” IEEE Netw., vol. 31,
no. 2, pp. 48-57, Mar. 2017.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[48] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in Proc. USENIX Symp. Netw. Syst. Design
Implement., 2018, pp. 329-342.

T. Li et al., “TACK: Improving wireless transport performance by taming
acknowledgments,” in Proc. Annu. Conf. ACM Special Interest Group
Data Commun. Appl., Technol., Archit., Protocols Comput. Commun.,
Jul. 2020, pp. 15-30.

M. Yanev, S. McQuistin, and C. Perkins, “Does TCP new congestion
window validation improve HTTP adaptive streaming performance?,” in
Proc. ACM NOSSDAV, 2022, pp. 29-35.

B. Wu, T. Li, C. Luo, C. Ouyang, X. Du, and F. Wang, “AutoPlex:
Inter-session multiplexing congestion control for large-scale live video
services,” in Proc. ACM SIGCOMM Workshop Netw.-Appl. Integr., Aug.
2022, pp. 1-6.

X. Yan et al., “Poster: TOO: Accelerating loss recovery by taming
on-off traffic patterns,” in Proc. ACM SIGCOMM Conf., Sep. 2023,
pp. 1147-1149.

B. Wu et al., “Reducing first-frame delay of live streaming by simul-
taneously initializing window and rate,” in Proc. IEEE 44th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2024, pp. 232-242.

F. Zhang et al., “TADOC: Text analytics directly on compression,” VLDB
J., vol. 30, no. 2, pp. 163-188, Mar. 2021.

L. Li et al.,, “A measurement study on multi-path TCP with multiple
cellular carriers on high speed rails,” in Proc. Conf. ACM Special Interest
Group Data Commun., Aug. 2018, pp. 161-175.

Y. Cheng et al., “GRACE: Loss-resilient real-time video through neural
codecs,” in Proc. USENIX NSDI, 2023.

B. S. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan, “Improving
performance of TCP over wireless networks,” in Proc. 17th Int. Conf.
Distrib. Comput. Syst., May 1997, pp. 365-373.

D. Barman, I. Matta, E. Altman, and R. El-Azouzi, “TCP optimization
through FEC, ARQ and transmission power tradeoffs,” in Proc. WWIC.
Cham, Switzerland: Springer, 2009, pp. 87-98.

[59] J. Chen, W. Tan, L. Liu, X. Hu, and F. Xu, “Towards zero loss for
TCP in wireless networks,” in Proc. IEEE 28th Int. Perform. Comput.
Commun. Conf., Dec. 2009, pp. 65-70.

H. Xie and T. Li, “Revisiting loss recovery for high-speed transmission,”
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2022,
pp. 1987-1992.

K. Liu and J. Y. B. Lee, “Improving TCP performance over mobile
data networks with opportunistic retransmission,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Apr. 2013, pp. 1992-1997.

S. Liu, J. Huang, W. Jiang, J. Wang, and T. He, “Reducing flow
completion time with replaceable redundant packets in data center
networks,” in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2019, pp. 46-56.

[63] J. Li, Z. Li, Q. Wu, and G. Tyson, “On uploading behavior and opti-
mizations of a mobile live streaming service,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., May 2022, pp. 1299-1308.

D. Ray, J. Kosaian, K. V. Rashmi, and S. Seshan, “Vantage: Optimizing
video upload for time-shifted viewing of social live streams,” in Proc.
ACM Special Interest Group Data Commun., Aug. 2019, pp. 380-393.
M. Siekkinen, E. Masala, and J. K. Nurminen, “Optimized upload
strategies for live scalable video transmission from mobile devices,”
IEEE Trans. Mobile Comput., vol. 16, no. 4, pp. 1059-1072, Apr. 2017.
Tencent Cloud CDN. [Online]. Available: https://www.tencentcloud.com/
products/cdn

Tencent Cloud Edgeone. [Online]. Available: https://www.tencentcloud.
com/products/teo

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[60]

[61]

[62]

[64]

[65]

[66]

[67]

Tong Li (Member, IEEE) received the Ph.D. degree from the Department
of Computer Science and Technology, Tsinghua University, China, in 2017.
He was the Chief Engineer with Huawei in 2022. Currently, he is as an
Associate Professor with Renmin University of China. His research interests
include network protocols, distributed systems, and network security.

IEEE TRANSACTIONS ON NETWORKING

Xu Yan received the B.S. degree from the Department of Computer Sci-
ence and Technology, Shandong University, Qingdao, China, in 2023. He
is currently pursuing the M.S. degree with Renmin University of China,
Beijing, China. His research interests include network transport protocols and
congestion control.

Bo Wu received the Ph.D. degree from the Department of Computer Science
and Technology, Tsinghua University, Beijing, China, in 2019. Currently, he is
a Research Fellow with the Department of Cloud Architecture and Platform,
Tencent Technologies. His research interests include next-generation Internet,
network security, network transport, and congestion control.

Cheng Luo received the M.S. degree from Zhejiang University, Hangzhou,
China, in 2015. Currently, he leads the Application Framework Group with
the Department of Cloud Architecture and Platform, Tencent Technologies.
His research interests include the Internet architecture and transmission
optimization.

Fuyu Wang received the M.S. degree in electromagnetic field and microwave
technology from UESTC, China, in 2013. Currently, he is the Chief Engineer
with the Department of Cloud Architecture and Platform, Tencent Technolo-
gies. His research interests include the Internet architecture, network transport
protocols, and congestion control.

Jiuxiang Zhu received the B.S. degree from the Department of Computer
Science and Engineering, Central South University, Changsha, China, in 2024.
He is currently pursuing the M.S. degree with Renmin University of China,
Beijing, China. His research interests include high-performance web proxy
and QUIC optimization.

Haoyi Fang received the B.S. degree from Renmin University of China,
Beijing, China, where he is currently pursuing the M.S. degree. His research
interests include networking and big data.

Xinle Du received the B.E. degree from the Department of Computer Science
and Technology, Xidian University, Xi’an, China, in 2018, and the Ph.D.
degree from the Department of Computer Science and Technology, Tsinghua
University, Beijing, China, in 2023. He has been the Chief Engineer with
the Computer Network and Protocol Laboratory, Huawei Technologies, since
2023. His research interests include networking and LLM systems.

Ke Xu (Fellow, IEEE) received the Ph.D. degree from Tsinghua University,
Beijing, China. He is currently a Full Professor with the Department of
Computer Science and Technology, Tsinghua University. He has published
more than 200 technical articles in the research areas of next-generation
Internet, blockchain systems, and network security. He received the IWQoS 24
Best Paper Award and the Distinguished Paper Award from USENIX Security
23/24, CCS 25, and NDSS 25.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 28,2025 at 13:32:39 UTC from IEEE Xplore. Restrictions apply.

