
TACK: Improving Wireless Transport Performance by Taming
Acknowledgments

Tong Li
Huawei

li.tong@huawei.com

Kai Zheng
Huawei

kai.zheng@huawei.com

Ke Xu
Tsinghua University &

BNRist & PCL
xuke@tsinghua.edu.cn

Rahul Arvind Jadhav
Huawei

nyrahul@gmail.com

Tao Xiong
Huawei

yahz81@gmail.com

Keith Winstein
Stanford University

keithw@cs.stanford.edu

Kun Tan
Huawei

kun.tan@huawei.com

ABSTRACT

High-throughput transport over wireless local area network
(WLAN) becomes a demanding requirement with the emer-
gence of 4K wireless projection, VR/AR-based interactive
gaming, and more. However, the shared nature of the wireless
medium induces contention between data transport and back-
ward signaling, such as acknowledgement. The current way
of TCP acknowledgment induces control overhead which is
counter-productive for TCP performance especially in WLAN
scenarios.

In this paper, we present a new acknowledgement called
TACK (“Tame ACK”), as well as its TCP implementation
TCP-TACK. TCP-TACK works on top of commodity WLAN,
delivering high wireless transport goodput with minimal con-
trol overhead in the form of ACKs, without any hardware
modification. To minimize ACK frequency, TACK abandons
the legacy received-packet-driven ACK. Instead, it balances
byte-counting ACK and periodic ACK so as to achieve a
controlled ACK frequency. Evaluation results show that TCP-
TACK achieves significant advantages over legacy TCP in
WLAN scenarios due to less contention between data packets
and ACKs. Specifically, TCP-TACK reduces over 90% of
ACKs and also obtains an improvement of ∼ 28% on good-
put. We further find it performs equally well as high-speed
TCP variants in wide area network (WAN) scenarios, this is
attributed to the advancements of the TACK-based proto-
col design in loss recovery, round-trip timing, and send rate
control.

CCS CONCEPTS

∙ Networks → Transport protocols; Wireless local
area networks.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
c○ 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405850

KEYWORDS

acknowledgement mechanism, ACK frequency, periodic ACK,
instant ACK

ACM Reference Format:

Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong,

Keith Winstein, and Kun Tan. 2020. TACK: Improving Wireless
Transport Performance by Taming Acknowledgments. In Annual
conference of the ACM Special Interest Group on Data Com-
munication on the applications, technologies, architectures, and

protocols for computer communication (SIGCOMM ’20), August
10–14, 2020, Virtual Event, NY, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3387514.3405850

1 INTRODUCTION

Wireless local area networks (WLANs) are ubiquitous and
readily getting employed in scenarios such as ultra-high-
definition (UHD) streaming, VR/AR interactive gaming, and
UHD IP video. The implications of video growth raise sig-
nificant bandwidth demands with the video application re-
quirements. Particularly, the peak bandwidth requirement
might reach 206.9 Mbps for a 8K video [45]. However, the
average WLAN connection speed worldwide (e.g., 30.3 Mbps
in 2018 and predicted to be 92 Mbps by 2023 [24]) is far
from satisfactory for these UHD-video-based applications
(see S3.1).

It is well-studied that medium acquisition overhead in
WLAN based on the IEEE 802.11 medium access control
(MAC) protocol [11] can severely hamper TCP throughput,
and TCP’s many small ACKs are one reason [53, 69]. Ba-
sically, TCP sends an ACK for every one or two packets
(i.e., received-packet-driven) [7, 15]. ACKs share the same
medium route with data packets, causing similar medium
access overhead despite the much smaller size of the ACK-
s [8, 31, 36, 50, 58]. Contentions and collisions, as well as
the wasted wireless resources by ACKs, lead to significant
throughput decline on the data path (see S3.2).

The WLAN bandwidth can be expanded by hardware mod-
ifications, such as 802.11ac and 802.11ax, in which channel
binding is extended, or more spatial streams and high-density
modulation are used. However, a faster physical (PHY) rate
makes the MAC overhead problem even worse. This is be-
cause delay associated with medium acquisition wastes time
and a higher PHY rate also proportionally increases ACK

https://doi.org/10.1145/3387514.3405850
https://doi.org/10.1145/3387514.3405850

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

frequency for legacy TCP. Consequently, rethinking the way
of TCP acknowledgement that reduces medium acquisition
overhead in WLAN, so as to improve transport throughput,
would be a relevant contribution.

The ACK frequency can be decreased by sending an ACK
for every 𝐿 (𝐿 ≥ 2) incoming packets [8, 31, 50, 67] (i.e., byte-
counting ACK) or by sending an ACK for every large time
interval (i.e., periodic ACK). However, simply reducing ACK
frequency not only disturbs the packet clocking algorithms
(e.g., send pattern, send window update and loss detection)
and round-trip timing [47], but also impairs the feedback
robustness (e.g., more sensitive to ACK loss). The challenge
here is that legacy TCP couples the high ACK frequency
with transport controls such as robust loss recovery, accurate
round-trip timing, and effective send rate control (see S4.3).

This paper presents TACK (“Tame ACK”), a type of ACK
that minimizes ACK frequency by balancing byte-counting
ACK and periodic ACK. To decouple the high ACK frequen-
cy from transport requirement, we propose the TACK-based
acknowledgement mechanism, in which we use TACKs to
sync the statistics (such as receipts, losses, available band-
width, delays, etc.) between endpoints, and we also introduce
Instant ACK (IACK), driven by instant events (e.g., loss,
state update, etc.), to assure timely signaling. For example,
on detecting loss, an IACK will be sent to proactively pull
missing packets at the receiver’s buffer. TACKs and IACKs
are complementary, as IACKs assure rapid feedback while
TACKs assure feedback robustness (see S4.4).

We further design TCP-TACK, the TACK-based TCP
works on top of WLAN. TCP-TACK revisits the current di-
vision of labor between senders and receivers. It compensates
for sending fewer ACKs by integrating the receiver-based loss
detection, round-trip timing and send rate control. These
components are not exactly new but are co-designed ex-
pressly to be part of the TACK-based protocol design. This
cooperation between TACK and receiver-based paradigm not
only minimizes the ACK frequency required, but also assures
effective transport control under network dynamics (see S5).

Real-world deployment experiences demonstrate TACK’s
significant advantages over legacy way of acknowledgements
in WLAN scenarios. Goodput improvement is attributed to
the reduction of contention between data packets and ACKs.
Furthermore, reducing ACK frequency without disturbing
transport performance validates the idea of decoupling high
ACK frequency from transport requirement (Figure 1 gives
a preview of the results).

2 RELATED WORK

Reducing ACK frequency. In order to improve transport
performance over IEEE 802.11 wireless links, Salameh et
al. [69] proposed HACK by changing Wi-Fi MAC to carry
TCP ACKs inside link-layer ACKs, this eliminates TCP
ACK medium acquisitions and thus improves TCP goodput.
We clarify the differences between TACK and HACK in
three aspects. (1) TACK reduces the ACKs end-to-end while
HACK only reduces the ACKs over wireless links. TACK
is more general in this aspect and can be used to solve

802.11b

90.5%Number of
ACKs reduced

Goodput improved

802.11g 802.11n 802.11ac

20.0%

95.4% 99.4% 99.8%

26.3% 28.1%27.7%

Figure 1: Percentage of goodput improvement of
TCP-TACK over TCP-BBR in WLAN. Full results
are in S6.3.

problems in asymmetric networks where the ACK path is
congested [13, 28, 34, 42, 64]. (2) HACK requires network
interface card (NIC) changes but no TCP changes while
TACK requires TCP changes but no NIC changes. (3) Since
the trigger time of the link-layer ACK and the transport-layer
ACK is usually asynchronous, HACK is likely to result in
ACK delays. However, HACK does not solve the transport
challenges such as enlarged delay in loss recovery, biased
round-trip timing, burst send pattern, and delayed send
window update.

Apart from the link-layer solutions, the study of delaying
more than two ACKs was first carried out by Altman and
Jiménez [8], followed by a line of ACK thinning technolo-
gies [3, 9, 19, 20, 31, 57, 58, 67] on the transport layer. Among
them, some studies reduce ACK frequency by dropping se-
lected ACKs on an intermediate node (e.g., a wireless AP or
gateway). Due to information asymmetry, this intermediate
management unavoidably makes endpoints take untimely or
wrong actions. Under these circumstances, some studies adop-
t the end-to-end solutions, which fall into two categories: (1)
Byte-counting ACK that sends an ACK for every 𝐿 (𝐿 ≥ 2)
incoming full-sized packets. (2) Periodic ACK that sends an
ACK for each time interval (or send window). Both fail to
match the number of ACKs to the frequency that a transport
required in the network with time-varying data rate. This
paper proposes TACK that combines these two approaches,
achieving a controlled ACK frequency under different network
scenarios.

Compensating for sending fewer ACKs. Compared with
the studies that explore how to reduce the ACK frequency,
much fewer studies explore how to compensate for sending
fewer ACKs. To overcome the hurdles created by excessive
ACK decrease, Allman [6] proposed the appropriate byte
counting (ABC) algorithm and limited the number of packets
sent (i.e. two) in response to each incoming ACK to deal
with feedback lags and traffic bursts. Landström et al. [50]
integrated a modified fast recovery scheme and a form of the
ABC algorithm to improve the TCP bandwidth utilization
when ACK frequency is reduced to two or four per send
window. The limitation of these algorithms, however, is that
they only solve part of the problems. For example, Allman’s
solution did not consider the feedback robustness under ex-
cessive ACK losses. Landström’s solution resulted in large
router buffer occupation without smoothing the traffic bursts.
Both solutions did not address the interference on the round-
trip timing caused by the delayed ACKs. This paper aims
to provide a complete framework that defines more types of
ACKs and carries more information in ACKs, to minimize the

TACK: Improving Wireless Transport Performance by Taming Acknowledgments SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

ACK frequency required but still achieve effective feedback.
In the context of TACK, this paper co-designs the receiver-
based transport control to address the challenges caused by
sending fewer ACKs. The receiver-based paradigm is also
validated by the recent work such as pHost [35], RCC [75],
ExpressPass [22], NDP [40] and Homa [56] in datacenter
environments.

TACK vs delayed ACK. Transport protocols, such as
TCP and QUIC [51], also alternatively adopt delayed ACK [7,
15, 46]. Delayed ACK falls into the category of byte-counting
ACK except that an extra timer prevents ACK from being
excessively delayed. For full-sized data packets, it turns to
byte-counting ACK when 𝑏𝑤 is large and falls back to per-
packet ACK when 𝑏𝑤 is small (see Equation (5)). TACK
differs from delayed ACK by mandatorily sending ACKs
periodically when 𝑏𝑤 is large (see Equation (3)). In particular,
TACK applies periodic ACK when 𝑏𝑑𝑝 is large and falls back
to byte-counting ACK when 𝑏𝑑𝑝 is small.

Both TACK and delayed ACK reduce sending ACKs. Some
of the proposed ideas for compensating sending fewer ACKs
in this paper, for example the advancements in round-timing
(see S5.2), are also applicable to TCP’s delayed ACK scheme
in the case, called “stretch ACK violation” [66], where ACKs
are excessively delayed.

3 MOTIVATION

3.1 WLAN demands high throughput

It is predicted that, by 2022, the video-based applications
will make up 82% of all IP traffic [23]. It is also reported
that the video effect on the traffic is mainly because of the
introduction of UHD video streaming [24]. As illustrated in
Figure 2, the average bit rate for UHD video at about 16
Mbps is more than 2x the high-definition (HD) video bit rate
and 8x more than standard-definition (SD) video bit rate. By
2022, nearly 62% of the installed flat-panel TV sets will be
UHD, up from 23% in 2017. And UHD video streaming will
account for 22% of global IP video traffic. Moreover, VR/AR
gaming has become increasingly popular, and the traffic will
increase 12-fold, about 65% compound average growth rate
per year.

Video Application

Average Bit Rate
(Mbps)

SD
Video

2

HD
Video

8

UHD
Streaming

16

VR

17

UHD
IP Video

51

8K
Wall TV

100

HD VR

167

UHD VR

500

Figure 2: Average bit rate of applications [24].

It is reported that [24] the average WLAN connection
speed in 2018 was 30.3 Mbps and will be more than triple
(92 Mbps) by 2023. Which, however, is still far from satisfac-
tory for UHD-video-based applications. This is because UHD
video usually requires a peak bandwidth that is multiple
times of its average bit rate (e.g., a video with 100 Mbps av-
erage bit rate may require over 200 Mbps peak bit rate [45]).
Wireless projection is a representative UHD-video-based ap-
plication. A smartphone connects a TV using Wi-Fi Direct
and streams videos on top of Miracast [4]. Our deployment
experiences (see Figure 11) show that UDP-based solution

1:12:14:18:116:1

of data packets : ACKs

0

25

50

75

100

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Data path

(a) Data throughput

1:12:14:18:116:1

of data packets : ACKs

0.0

0.5

1.0

1.5

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

ACK path

(b) ACK throughput

Figure 3: Examples for contention between data
packets and ACKs over 802.11n wireless links.

achieves high throughput but suffers from 5 ∼ 6 times of mac-
roblocking artifacts due to unreliable transport, and legacy
TCP-based solutions assure zero macroblocking but result in
an over 30% of video rebuffering ratio [25] due to bandwidth
under-utilization. Reliable and high-throughput transport
over WLAN turns out to be a challenging requirement.

3.2 Legacy WLAN can be improved on
the transport layer

Most modern WLANs are based on the IEEE 802.11 stan-
dards. It has been well studied that the key challenge of TCP
is its poor bandwidth utilization and performance when inter-
acting with the IEEE 802.11 wireless MAC protocol [53, 69].
This can be attributed to the extensive number of medium
access carried out by TCP. Basically, TCP sends an ACK
every one or two packets [7, 15], which is frequent. Although
the length of an ACK is usually smaller than the data packet
(e.g., 64 bytes for an ACK vs. 1518 bytes for a data packet),
ACKs cause similar medium access overhead on the MAC
layer. By sharing the same medium path for ACKs and data
packets, frequent ACKs create competitions and collision-
s [53, 69], wasting wireless resources. As a result, the wastage
leads to data rate decline on the data path. Note that al-
though improvements in 802.11 standards (e.g., 802.11ac
and 802.11ax) result in data rate increase, they also cause
proportionally increased number of ACKs, which makes the
MAC overhead problem even worse.

To explain the problem of collision more clearly, we con-
ducted emulations over the 802.11n wireless links with a PHY
rate of 300 Mbps (see Figure 7). It can be demonstrated that
TCP’s packet clocking algorithms are highly dependent on
the ACK arrival pattern, and sending fewer ACKs has a
negative effect on TCP throughput (see Figure 10(b)). We
did not want our results to be biased because of such depen-
dency, and hence we chose to develop our own UDP-based
tool [29] that runs on two wireless laptops connected to a
commercial wireless router (TL-WDR7500) with negligible
external interferences. The sender keeps sending 1518-byte
packets at a fixed sending rate (100 Mbps), and the receiver
counts the received bytes, and then sends one 64-byte packet
that act as an ACK. 𝐿 emulates the byte-counting parameter
that limits the amount of data to be counted before sending
an ACK, e.g., 𝐿 = 1 denotes acknowledging every packet
(1:1) and 𝐿 = 2 denotes acknowledging every second packet

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

(2:1), which are being used today and supported by IETF
standards [7, 15].

As shown in Figure 3, although the throughput on the
acknowledgement path is quite low (below 1.5 Mbps), the
throughput on the data path decreases significantly with
the increase of the ACK frequency. This demonstrates that
ACKs cause significant medium access overhead, degrading
data transmission performance dramatically if frequent ACKs
are sent. It is also observed that the ACK throughput fails
to double when we raise the number of ACKs by changing
the proportion between data packets and ACKs from 4:1 to
2:1. We believe that it is the result of the fierce collisions
between data packets and ACKs, based on the observation of
a higher bidirectional loss rate when 𝐿 ≤ 2. We also tested
802.11b/g/ac links, the insights of which remain similar.

Based on these observations, the legacy WLAN transport
can be improved on the transport layer by reducing the ACK
frequency required.

4 DESIGN RATIONALE

4.1 ACK frequency breakdown

ACK frequency can be denoted by 𝑓 with the unit of Hz,
i.e., the number of ACKs per second, which can be reduced
in two fundamental ways: byte-counting ACK and periodic
ACK.

Byte-counting ACK. There exist a number of studies that
reduce ACK frequency by sending an ACK for every 𝐿 (𝐿 ≥ 2)
incoming full-sized packets (packet size equals to the maxi-
mum segment size (MSS)) [8, 31, 50, 67]. The frequency of
byte-counting ACK is proportional to data throughput 𝑏𝑤:

𝑓𝑏 =
𝑏𝑤

𝐿 ·𝑀𝑆𝑆
(1)

In general, 𝑓𝑏 can be reduced by setting a large value of 𝐿.
However, for a given 𝐿, 𝑓𝑏 increases with 𝑏𝑤. This means
when 𝑏𝑤 is extremely high, ACK frequency might still be
comparatively large. In other words, the frequency of byte-
counting ACK is unbounded under bandwidth change.

Periodic ACK. Byte-counting ACK’s unbounded frequency
can be attributed to the coupling between ACK sending and
packet arrivals (i.e., received-packet-driven). We therefore
propose periodic ACK that decouples ACK frequency from
packet arrivals, achieving a bounded ACK frequency when
𝑏𝑤 is high. The frequency of periodic ACK can be computed
as

𝑓𝑝𝑎𝑐𝑘 =
1

𝛼
(2)

where 𝛼 is the time interval between two ACKs. However,
when 𝑏𝑤 is extremely low, the ACK frequency is always as
high as that in the case of a high throughput, which might be
unnecessary. In other words, the frequency of periodic ACK
is unadaptable to bandwidth change, which wastes resources.

Tame ACK (TACK). To control ACK frequency in the
context of network dynamics, this paper proposes TACK,
balancing the above two ways to minimize ACK frequen-
cy. As a result, we set the TACK frequency as 𝑓𝑡𝑎𝑐𝑘 =

min{𝑓𝑏, 𝑓𝑝𝑎𝑐𝑘}. Through Equations (1) and (2), we have
𝑓𝑡𝑎𝑐𝑘 = min{ 𝑏𝑤

𝐿·𝑀𝑆𝑆
, 1
𝛼
}.

In 2006, Floyd and Kohler [31] proposed a tunable trans-
port control variant in which the minimum ACK frequency
allowed is twice per send window (i.e., per RTT). In 2007,
Sara Landström et al. [50] has also demonstrated that, in
theory, acknowledging data twice per send window should
be sufficient to ensure utilization with some modifications to
the legacy TCP. Doubling the acknowledgment frequency to
four times per send window can produce good performance
and it is more robust in practice. Based on this rationale, we
set 𝛼 = 𝑅𝑇𝑇𝑚𝑖𝑛

𝛽
, which means sending 𝛽 ACKs per 𝑅𝑇𝑇𝑚𝑖𝑛.

𝑅𝑇𝑇𝑚𝑖𝑛 is the smallest RTT observed over a long period of
time. As a consequence, the frequency of TACK is eventually
given as follow:

𝑓𝑡𝑎𝑐𝑘 = min{ 𝑏𝑤

𝐿 ·𝑀𝑆𝑆
,

𝛽

𝑅𝑇𝑇𝑚𝑖𝑛
} (3)

Qualitatively, TACK turns to periodic ACK when bandwidth-
delay product (𝑏𝑑𝑝) is large (𝑏𝑑𝑝 ≥ 𝛽 ·𝐿·𝑀𝑆𝑆), and falls back
to byte-counting ACK when 𝑏𝑑𝑝 is small (𝑏𝑑𝑝 < 𝛽 ·𝐿 ·𝑀𝑆𝑆).
𝛽 indicates the number of ACKs per RTT, and 𝐿 indicates
the number of full-sized data packets counted before sending
an ACK. Appendices B.1∼B.2 have discussed the TACK
frequency minimization in terms of the lower bound of 𝛽
and the upper bound of 𝐿. By default, this paper sets 𝛽 = 4
and 𝐿 = 2 which we have found to be robust in practice1

(see Appendix B.3). We also quantitatively analyze the ACK
frequency below.

4.2 TACK frequency analysis

To facilitate the analysis, we assume that every data pack-
et is full-sized (i.e., MSS). When the TCP socket option
TCP QUICKACK is enabled, the legacy TCP sends an ACK
for every packet (i.e., per-packet ACK). The frequency of
per-packet ACK is computed as

𝑓𝑡𝑐𝑝 = 𝑓𝑡𝑐𝑝(𝐿=1) =
𝑏𝑤

𝑀𝑆𝑆
(4)

TCP also alternatively adopts delayed ACK [7, 15, 46], in
which a data receiver may delay sending an ACK response
by a given time interval (𝛾) or for every 𝐿 full-sized incoming
packets. As described in RFC 1122 [15] and updated in RFC
5681 [7], 𝐿 is strictly limited up to 2, and 𝛾 is tens to hundreds
of milliseconds and varies in different Linux distributions. The
frequency of delayed ACK is computed as

𝑓𝑡𝑐𝑝 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 = 𝑓𝑡𝑐𝑝(𝐿=2) =

{︃
𝑏𝑤

𝑀𝑆𝑆
, 0 ≤ 𝑏𝑤 < 2𝑀𝑆𝑆

𝛾
𝑏𝑤

2𝑀𝑆𝑆
, 𝑏𝑤 ≥ 2𝑀𝑆𝑆

𝛾

(5)

According to Equations (3), (4) and (5), we summarize
three insights as follows. First, given an 𝐿, the frequency of
TACK is always no more than that of legacy TCP ACK, i.e.,
𝑓𝑡𝑎𝑐𝑘 ≤ 𝑓𝑡𝑐𝑝. Second, the higher bit rate over wireless links,
the more number of ACKs are reduced by applying TACK.
Meanwhile, the larger latency between endpoints, the more

1Our real product deployment under both WAN and WLAN scenarios
serves as a validation of its practicability. If not for special needs, it is
not recommended to change the values of 𝛽 and 𝐿.

TACK: Improving Wireless Transport Performance by Taming Acknowledgments SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

number of ACKs are reduced by applying TACK. More de-
tailed discussion on ACK frequency is given in Appendix B.4.

4.3 Challenges for applying TACK

To apply TACK without decreasing transport performance,
we list several major challenges that need to be overcome.

Enlarged delay in loss recovery. For ordered and byte-
stream transport, when a loss occurs and a packet has to
be retransmitted, packets that have already arrived but that
appear later in the bytestream must await delivery of the
missing packet so the bytestream can be reassembled in order.
Known as head-of-line blocking (HoLB [71]), this incurs high
delay of packet reassembling and thus can be detrimental
to the transport performance. Applying TACK will further
enlarge this delay incurred by HoLB.

We define the TACK delay as the delay incurred between
when the packet is received and when the TACK is sent.
According to Equation (3), with a large 𝑅𝑇𝑇𝑚𝑖𝑛, TACK
might be excessively delayed. When loss occurs during the
TACK interval, the excessive TACK delay might disturb
loss detection, resulting in costly retransmission timeouts.
TACK loss further aggravates this problem. For example,
𝑅𝑇𝑇𝑚𝑖𝑛 = 200 ms, 𝑏𝑤 = 10 Mbps, and 𝐿 = 1, then 𝑓𝑡𝑎𝑐𝑘 =
20 Hz. Compared with per-packet ACK, TACK can cause
the feedback delay up to 50 ms upon loss event. If the TACK
is lost or the retransmission is lost again, then the delay
doubles.

Biased round-trip timing. The initial RTT can be com-
puted during handshakes (Figure 4 (a)), after that, the sender
calculates an RTT sample upon receiving a TACK. For ex-
ample in Figure 4 (b), a packet is sent at time 𝑡0 and arrives
at time 𝑡2. Assume that the TACK is generated and sent at
time 𝑡3, the receiver computes the TACK delay ∆𝑡 = 𝑡3 − 𝑡2
. The sender therefore computes the RTT according to ∆𝑡,
𝑡0 and the TACK arrival time (𝑡1), i.e., 𝑅𝑇𝑇 = 𝑡1 − 𝑡0 −∆𝑡.
By measuring ∆𝑡 at the receiver, TACK assures an explicit
correction for a more accurate RTT estimate.

The problem here is that multiple data packets might be
received during the TACK interval, as shown in Figure 4 (c),
generating only one RTT sample among multiple packets is
likely to result in biases. For example, a larger minimum RTT
estimate or a smaller maximum RTT estimate. In general, the
higher the throughput, the larger the biases. One alternative
way to reduce biases can be that, each TACK carries the
per-packet ∆𝑡 (specific TACK delays for each data packet) for
the sender to generate more RTT samples. However, (1) the
overhead is high, which is unacceptable especially under high-
bandwidth transport. Also, (2) the number of data packets
might be far more than the maximum number of ∆𝑡 that a
TACK is capable to carry.

Apart from loss recovery and round-trip timing, applying
TACK also falls short of send rate control with regard to
send pattern and send window update.

Burst send pattern. A burst of packets can be sent in
response to a single delayed ACK. Legacy TCP usually sends
micro bursts of one to three packets, which are bounded

TACK

t

t0

t1

t2

t3

Sender Receiver

SYN

SYN+ACK

ACK

t0

t1
TACK

t0

t1

t3

...

t0'

t0''
t2
t2'
t2''

(b) (c)(a)
Sample RTT = t1 - t0 - tInitial RTT = t1 - t0 RTTmin = ?

Figure 4: TACK-based round-trip timing: a case s-
tudy.

by 𝐿 ≤ 2 according to definition of TCP’s delayed ACK [7].
However, the fewer ACKs sent, the larger the bursts of packets
released. Since TACK might be excessively delayed, the burst
send pattern is non-negligible as it may have a larger buffer
requirement, higher loss rate and longer queueing delay if
not carefully handled.

Delayed send window update. Send window update re-
quires ACKs to update the largest acknowledged packet and
the announcement window (AWND). With a small frequency,
TACK probably delays acknowledging packet receipts and
reporting the AWND, resulting in feedback lags and band-
width under-utilization. For example, 𝑓𝑡𝑎𝑐𝑘 = 20 Hz, then
TACK is sent every 50 ms. Assume a TACK notifies AWND
= 0 due to receive buffer runs out at 𝑡 = 0 ms, upon receiving
this TACK, the sender stops sending data. In the case that
the receive buffer is released at 𝑡 = 5 ms due to loss recovery,
the sender continues to be blocked for another 45 ms until
a subsequent TACK is sent at 𝑡 = 50 ms, and thus wastes
opportunity of sending data. TACK loss further aggravates
this issue.

4.4 TACK-based acknowledgement
mechanism

Applying TACK significantly reduces ACK frequency. Howev-
er, as discussed above, independently using TACK probably
falls short of robust loss recovery, accurate round-trip timing,
and effective send rate control. What we really want, for
WLAN, is a full TACK-based acknowledgement mechanis-
m that overcomes the hurdles for applying TACK, using a
controlled frequency of ACKs to support efficient transport.

There are some notable features of the TACK-based ac-
knowledgement mechanism which are important for reasoning
about the differences from legacy TCP. We briefly describe
these features below.

More types of ACKs. Apart from the ACK type of TACK,
we also introduce the ACK type of IACK (“Instant ACK”) to
assure timely feedback upon instant events. For example, (1)
when loss occurs, the receiver sends an IACK to timely pull
the desired range of lost packets from the sender. This loss-
event-driven IACK enables the rapid response to loss event,
effectively avoiding timeouts. (2) An IACK may be sent in
the case that the receive buffer nearly runs out, which assures
timely send window update. In addition, (3) the sender might
send an IACK to sync an updated 𝑅𝑇𝑇𝑚𝑖𝑛 with the receiver
for adjusting TACK interval.

IACK and TACK are complementary. IACK assures timely
and deterministic signaling while TACK acts as the last

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

resort mechanism in the case of ACK loss (S5.1). Specific and
additional types of IACK can be defined on demand in the
future.

More information carried in ACKs. First of all, reducing
ACK frequency may require extending TACK to carry more
information if the link has deteriorated. For example, to
reduce feedback delay under excessive ACK loss, TACK is
expected to report as many blocks as possible, in which each
block reports a contiguous range of lost or received packets
(see S5.1). It is worth mentioning that this rich information
can be carried on demand. Specifically, only when the loss rate
on the ACK path has reached a critical level (see Equation (6))
will carrying more information be profitable.

TACK might also be required to carry the TACK delay
for accurate RTT estimation and might carry timestamps
if latency such as one-way delay is computed at the sender.
Furthermore, although the sender can achieve an approxi-
mate computation accuracy of some transport states, such as
delivery rate, congestion window and loss rate, the receiver-
based computation is more straightforward in the context
of a reduced ACK frequency. Optionally, by shifting these
functionalities from sender to receiver and syncing results
through TACKs, the total CPU and memory usages at both
endpoints might be reduced at the cost of the larger size of
TACKs.

Note that carrying more information in TACK does not
introduce excessive overhead over WLAN, as it only increases
the size of ACK rather than increasing the number of ACKs.
We believe the improved feedback robustness will more than
pay for the TACK extension overhead.

Less number of ACKs. Although adopting more types of
ACKs, we still have the advantages of significantly reducing
ACK frequency in most cases. This is because the event-
driven IACK is rarely triggered, whose frequency is usually
low and negligible. For example, with a packet loss rate (𝜌),

the highest frequency of the loss-event-driven IACK is 𝜌·𝑏𝑤
𝑀𝑆𝑆

.
Since 𝜌 is usually a small percentage (e.g., < 10%), this type
of IACK only adds few number of ACKs on the return path.

5 TACK-BASED PROTOCOL DESIGN
AND IMPLEMENTATION

This section introduces the detailed design of TACK-based
protocols, in which the advancements in loss recovery, round-
trip timing, and send rate control are the most key reasons
that the dependence on frequent ACKs has decreased.

5.1 Advancements in loss recovery

Instead of the traditional reactive approach where the sender
counts duplicate ACKs or analyzes packet timestamps, a
TACK-based protocol adopts a receiver-based loss detection,
in which the packet number, the IACK, and the TACK play
different roles.

Packet number enables receiver-based loss detection.
First of all, we must overcome the so-called “retransmission
ambiguity”, which refers to the fact that the receiver cannot
accurately identify the number of retransmission losses when

employing the TCP sequence numbering scheme [46]. In this
paper, we introduce a monotonically increasing number for
each packet, i.e., the packet number (PKT.SEQ). Therefore, a
data packet contains both sequence number (SEQ) and packet
number. SEQ is the existing data sequence number used in
legacy TCP to assure bytestream can be reassembled in order.
PKT.SEQ directly encodes the transmission order. In other
words, a packet sent later owns a higher PKT.SEQ than the
packet sent earlier. When a packet is being retransmitted,
both of its payload and SEQ remain the same while its
PKT.SEQ is updated. PKT.SEQ removes the ambiguity
about which packet is lost when losses are detected.

To explain this clearly, we give an example where 5 pack-
ets with bytestream range [0 ∼ 5999] are sent (MSS=1500
byte). Assume packet [1500 ∼ 2999] with PKT.SEQ = 2 is
dropped, when subsequent packet [3000 ∼ 4499] with PK-
T.SEQ = 3 arrives, the receiver detects loss and retransmits
[1500 ∼ 2999] with PKT.SEQ = 4. Assume the retransmitted
PKT.SEQ = 4 is dropped again, when subsequent packet
[4500 ∼ 5999] with PKT.SEQ = 5 arrives, the receiver is
still able to detect the retransmission loss. However, with-
out packet number, receiver-based loss detection can hardly
detect the exact number of lost retransmissions.

We note that, for the TACK-based protocol, the sender has
to maintain a two-tuples (SEQ, PKT.SEQ) for each packet.
Although retransmissions will have different PKT.SEQs, for
implementation it is recommended the PKT.SEQ of a packet
in the tuples be always replaced and updated by the latest
PKT.SEQ of the retransmitted packet. This is reasonable
since the packet with a smaller PKT.SEQ has already been
retransmitted, the sender does not need to maintain extra
state to check on whether this packet has been received. In
this case,the extra overhead by introducing the packet number
turns out to be negligible. The packet number in TACK is
semantically similar to the packet number as specified in
QUIC [51].

IACK speeds up loss recovery on lossy data path.
The legacy TCP sends per-packet ACK when loss occurs, in
contrast, our design only sends a single IACK. Loss-event-
driven IACK is a supplemental method for TACK to assure
rapid reaction to loss events, significantly reducing feedback
delay of TACK. The IACK determines losses according to
the out-of-order packets in the PKT.SEQ space. Specifically,
the IACK integrates two fields, the largest PKT.SEQ and
the second largest PKT.SEQ of the received packets, to
indicate the most recent range of lost packets, with which
the sender can retransmit lost packets timely upon IACK
arrivals. Considering the above example, assume packet with
PKT.SEQ = 1 is received and PKT.SEQ = 2 is dropped,
upon packet with PKT.SEQ = 3 arrives, an IACK contains
PKT.SEQ = 1 and PKT.SEQ = 3 is constructed according
to the out-of-order delivery, notifying the sender of the loss
of PKT.SEQ = 2.

To investigate how the loss-event-driven IACK impacts loss
recovery, we randomly sample the packet loss rate between 0
and 3% on data path, and the RTT between 1 and 200 ms. We

TACK: Improving Wireless Transport Performance by Taming Acknowledgments SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

report the amount of data blocked in the receiver’s buffer at
the time when a TACK is sent. Figure 5(a) shows the results.
It is demonstrated that IACK decreases the delay incurred
by HoLB, as a result, the memory pressure is significantly
reduced at the receiver.

It is worth noting that the loss-event-driven IACK shares
the same idea as the “negative ACK” (NACK or NAK), which
has been widely used in error-control mechanisms for data
transmission (e.g., WebRTC [73], UDT [38], RBUDP [41],
NACK Option [32], and NORM [1]). However, the proposed
IACK in this paper is a novel concept of acknowledgement
whose formation is triggered by an instant event. These
instant events can be not only an event of packet loss, but
also an event that buffer runs out, an event of RTT update
request and so on.

TACK assures loss recovery robustness on bidirec-
tionally lossy path. When losses are only on the data
path, the delay incurred by HoLB can be decreased by timely
sending loss-event-driven IACKs. However, on a bidirection-
ally lossy path, loss notification of IACK might also be lost.
To bound the delay incurred by HoLB, proactively and peri-
odically, TACK carries rich information to pull lost packets
and also acknowledges packet receipts.

Specifically, the information carried in TACK contains
ranges of packets which are alternately in the “acked list”
and in the “unacked list”. The “acked list” is a list of the
blocks of contiguous packets that have been received and
queued at the receiver, and the “unacked list” is a list of
the gaps between the non-contiguous blocks of data that
have been received and queued at the receiver. For example,
packets 1 to 10 are sent and packets 1, 4, 5, 6, 10 are received.
In this case, the “acked list” can be the blocks of {1}, {4, 6},
and {10}, and the “unacked list” can be the blocks of {2, 3},
{7,9}. Limited by MSS, a TACK might not be able to carry
all blocks. In principle, TACK should preferentially carry the
blocks with the largest serial number in the “acked list” (e.g.,
{10}), or the blocks with the smallest serial number in the
“unacked list” (e.g., {2, 3}).

One of the high level idea of reducing the ACK frequency
is using more informative ACK. 𝜌 denotes the packet loss
rate on the data path, and 𝑄 denotes the primary number
of blocks in the “unacked list” that a TACK has reported.
It can be derived that more information should be carried
when the loss rate (𝜌′) on the ACK path follows:

𝜌′ >

{︃
𝑄·𝑀𝑆𝑆
𝜌·𝑏𝑑𝑝 , 𝑏𝑑𝑝 ≥ 𝛽 · 𝐿 ·𝑀𝑆𝑆
𝑄
𝜌·𝐿 , 𝑏𝑑𝑝 < 𝛽 · 𝐿 ·𝑀𝑆𝑆

(6)

Furthermore, the additional number of blocks (△𝑄) in the
“unacked list” that the TACK should report is given by △𝑄 =
𝜌·𝜌′·𝑏𝑑𝑝
𝑀𝑆𝑆

−𝑄 when 𝑏𝑑𝑝 ≥ 𝛽 ·𝐿 ·𝑀𝑆𝑆, and △𝑄 = 𝜌 · 𝜌′ · 𝐿−𝑄
when 𝑏𝑑𝑝 < 𝛽 · 𝐿 · 𝑀𝑆𝑆. Please refer to Appendix A for
detailed derivation.

To investigate how the rich information in TACK improves
performance, we transmit a long-lived flow on a bidirectional-
ly lossy path with the RTT of 200 ms (refer to S6.1 for testbed

1K 10K 100K 1M 10M 100M

Data Blocked in Receive Buffer(Byte)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Without IACK

With IACK

(a) Lossy data path

0.2 1 5 10

Loss Rate on ACK Path (%)

0

50

100

B
a
n
d
w

id
th

 U
ti

li
z
a
ti

o
n
 (

%
)

9
2
.7

7
8
.3 9

1
.7

9
1

.8

7
5

.9

9
1
.6

9
1

.6

6
3

.4

8
0
.2 9
0

.8

6
0

.6

6
5

.3

TACK-rich

TACK-poor

TCP BBR

(b) Bidirectionally lossy path

Figure 5: Loss recovery in the context of TACK.
(a) IACK reduces memory pressure at the receiv-
er. (b) Carrying rich information in TACK assures
high bandwidth utilization.

setup). “TACK-poor” refers to the TACK-based TCP imple-
mentation (S5.4) that only acknowledges the largest ordered
packets accumulatively and reports the smallest out-of-order
packets in the receive buffer (i.e., 𝑄 = 1), and “TACK-rich”
refers to the version that reports as many losses and receipts
as possible in each TACK. Both employ BBR [17] as conges-
tion controller. We set a constant loss rate (1%) on the data
path, and varying loss rates on the ACK path. Figure 5(b)
shows the results. “TACK-poor” suffers from throughput
decline in the case of ACK loss. It also demonstrates that
TCP BBR’s margin benefits from the SACK option [55] and
RACK [21] decrease with the increase of the ACK loss rate.
In contrast, “TACK-rich” repeatedly carries rich informa-
tion in TACK to improve loss recovery robustness, making
transport insensitive to bidirectional losses. Note that the
utilization of “TACK-rich” is barely decreased with the high
ACK loss (10%), this can be attributed to the more number
of blocks (> 4) reported by a TACK, while TCP’s SACK
option only reports 3 or 4 blocks per ACK [55].

Note that in order to avoid unnecessary retransmission,
TACK only reports missing packets that have been reported
by loss-event-driven IACKs, while the sender only retransmits
a specific packet once per RTT when the loss is repeatedly
notified by both IACKs and TACKs.

5.2 Advancements in round-trip timing

As discussed above, legacy way of round-trip timing adopts
simple RTT sampling (S4.3), introducing either large biases
or high overhead for large 𝑏𝑑𝑝 transport. Without loss of
generality, this section takes the minimum RTT estimation
as an example2. Aiming to reduce TACK’s overhead of accu-
rate round-trip timing, we propose a receiver-based way to
estimate the minimum RTT indirectly without maintaining
too many connection states.

The rationale is that the variation of one-way delay (OWD)
reflects the variation of RTT. The OWD estimation does not
require clock synchronization here as we use relative values.
For example in Figure 4 (c), a relative OWD sample can be
computed as 𝑂𝑊𝐷 = 𝑡2 − 𝑡0, where 𝑡0 and 𝑡2 are the packet

2In general, the minimum RTT estimation can be easily extended to

the 𝑥𝑡ℎ percentile RTT estimation, where 𝑥 ∈ (0, 100].

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

departure timestamp and the packet arrival timestamp, re-
spectively. Upon packet arrivals, the receiver is capable to
generate per-packet OWD samples.

The smoothed OWD is an exponentially weighted moving
average (EWMA) [65] of the per-packet OWD samples at
the receiver. According to the smoothed OWD, the minimum
OWD during each TACK interval can be observed. After-
wards, based on the TACK delay (∆𝑡⋆) and the departure
timestamp (𝑡⋆0) corresponding to the packet that achieves the
minimum OWD, the sender calculates the RTT of this packet
as a minimum RTT sample. Ultimately, the minimum RTT
is computed according to these minimum RTT samples using
a minimum filter [10, 17] over a long period of time 𝜏 (𝜏 ≤ 10
s), where the 10-second part is to handle route changes. Note
that we adopt two minimum filters at both sides because the
minimum filter at the sender further implicitly reduces biases
of the ACK delivery.

To investigate how round-trip timing impacts performance,
we first discuss the accuracy of 𝑅𝑇𝑇𝑚𝑖𝑛 as a microbenchmark
that we seek to improve. We use the TACK-based TCP
implementation (S5.4) to transmit flows between two Wi-Fi
endpoints, with a network emulator (see S6.1) forwarding.
A fixed bidirectional latency (100 ms) is set between the
endpoints. Figure 6(a) shows that the advanced round-trip
timing tracks the real minimum RTT. However, legacy RTT
sampling suffers 8% ∼ 18% larger 𝑅𝑇𝑇𝑚𝑖𝑛 estimates. We
further explore performance improvement on real paths over
the Internet [59]. As illustrated in Figure 6(b), applying the
advanced round-trip timing has reduced 20% of the 95th
percentile OWD and 54% of the packet loss. Note that this
improvement is obtained without sacrificing throughput [60,
61]. We infer that an accurate minimum RTT estimate avoids
pushing too much data into the pipe, and thus reduces latency
and loss.

5.3 Advancements in send rate control

Lowering the ACK frequency might result in larger burstiness.
In order to control the amount of sent data, TACK-based
congestion controller should integrate with pacing instead
of the burst send pattern. The rationale is that pacing [2]
smooths traffic behaviors by evenly spacing packets at a spe-
cific pacing rate (denoted by 𝑝𝑎𝑐𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) according to the
congestion controller. For example, 𝑝𝑎𝑐𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 may be ob-
tained by distributing congestion window (CWND) over RTT
when applying a window-based controller (e.g., CUBIC [39]),
and 𝑝𝑎𝑐𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 may also be computed using bandwidth
estimate of a rate-based controller (e.g., BBR [17]).

The 𝑝𝑎𝑐𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 can be computed at both endpoints.
Take the rate-based controller as an example, if a BBR-
like bandwidth estimation [17] is adopted, the pacing rate
at time 𝑡 is computed at the sender side using a windowed
max-filter (𝜃𝑓𝑖𝑙𝑡𝑒𝑟 is set at several RTTs): 𝑝𝑎𝑐𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑡 ∝
𝑚𝑎𝑥(𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒𝑖), ∀𝑖 ∈ [𝑡−𝜃𝑓𝑖𝑙𝑡𝑒𝑟, 𝑡], where 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒𝑖
is the deliver rate computed upon each TACK arrival. Since
receiver-based computation is more straightforward than
sender-based one in the context of TACK, a rate-based con-
troller may conduct bandwidth estimation in a receiver-based

0 5 10 15 20 25

Time (s)

100

120

140

160

180

R
T
T
 (

m
s
)

118

110
108

RTT samples
RTTmin (sampled)
RTTmin (advanced)

(a) Microbenchmark

Latency
0

20

40

60

80

10
0

12
0

9
5
th

 P
e
rc

e
n
ti
le

 O
W

D
 (

m
s
)

Loss
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
a
c
k
e
t

L
o
s
s
 R

a
te

 (
%

)

Sampling

Advanced

(b) Wild Internet tests

Figure 6: Round-trip timing in the context of TACK.
(a) Legacy RTT sampling suffers 8% ∼ 18% larger
𝑅𝑇𝑇𝑚𝑖𝑛 estimates. (b) Latency and loss change be-
fore [61] and after [60] applying the advanced round-
trip timing.

way instead, i.e., the 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 is computed at the receiv-
er upon data packet arrivals and synced to the sender via
TACK. With regard to the window-based controllers such
as CUBIC, Vegas [16], and Compound TCP [72], a TACK-
based congestion controller requires converting the CWND
to the pacing rate [10]: 𝑝𝑎𝑐𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑡 ∝ 𝐶𝑊𝑁𝐷

𝑠𝑅𝑇𝑇𝑡
, where 𝑠𝑅𝑇𝑇𝑡

denotes the smoothed RTT at time 𝑡.
Most of the popularly used congestion controllers can

work with the TACK design with minor implementation
changes. Moreover, rate-based congestion controllers (e.g.,
BBR) usually requires less changes than window-based ones
(e.g., CUBIC). In this paper, we adopt a TACK-based con-
gestion controller co-designing BBR for TACK performance
evaluation (S6). BBR’s RTT and bandwidth estimations are
all coupled with frequent ACKs. However, these can be imple-
mented with small amount of work by moving the estimation
logic from sender to receiver. This receiver-based paradigm
also fits the TACK-based acknowledgement mechanism well.
On the other hand, since one round of pacing rate control can
be as large as multiple RTTs (e.g., 8), BBR is supposed to
work well with the TACK-based protocol framework where
ACKs are excessively delayed.

In addition, lowering the ACK frequency also probably
causes bandwidth under-utilization without timely updating
the send window. To tackle this issue, an IACK updating the
largest acknowledged packet and the AWND should be sent
without delay when encountering an abrupt change of receive
buffer. For example, when the receive buffer usage is full, an
IACK may be generated to report a zero window. Moreover,
if a large volume of data3 has been released in the receive
buffer, an IACK may also be sent to update the AWND.

5.4 Protocol implementation

TACK, or its acknowledgement mechanism, can be imple-
mented in most of the ordered and reliable transport protocol-
s. This paper mainly discusses TCP-TACK, a TACK-based
TCP implementation that applies TACK and deploys the
advancements as specified in S5.1∼5.3. A full implementation
of TCP-TACK including all the above advancements requires

3The trigger conditions of IACKs for updating send window can vary
with different protocol implementations. An effective trigger should
be carefully designed, which we leave to the further work.

TACK: Improving Wireless Transport Performance by Taming Acknowledgments SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

extension on the TCP option to introduce more ACK types,
and also requires extension on the TCP data field to carry
more information in ACKs.

According to Equation (3), 𝑏𝑤 should be estimated in
real time for TACK frequency update. This paper defines
𝑏𝑤 as the maximum delivery rate. The receiver computes
the average delivery rate (𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒) per TACK interval
as the ratio of data delivered to time elapsed. At time 𝑡,
the maximum delivery rate is a windowed max-filtered value
of the delivery rates, i.e., 𝑏𝑤 = max (𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒𝑖), ∀𝑖 ∈
[𝑡− 𝜃𝑓𝑖𝑙𝑡𝑒𝑟, 𝑡], where 𝜃𝑓𝑖𝑙𝑡𝑒𝑟 is recommended as 5∼10 RTTs.

The receiver computes the loss rate (𝜌) on the data path
per TACK interval. 𝜌 is the ratio of number of lost packets
to number of packets that should have been received. The
sender also computes the loss rate (𝜌′) on the ACK path
when 𝑅𝑇𝑇𝑚𝑖𝑛 is updated. 𝜌′ is the ratio of number of lost
TACKs to number of expected TACKs during a period of
time. Note that 𝑏𝑤 and 𝑅𝑇𝑇𝑚𝑖𝑛 are synced between sender
and receiver, the sender therefore is capable to compute the
number of expected TACKs based on the TACK frequency.
IACKs are used for real-time synchronization in these cases.

6 EVALUATION

In this section, we first investigate the ideal performance
of TACK over wireless links with various 802.11 standards.
We then evaluate the actual performance of TCP-TACK in
WLAN scenarios, including the deployment experience in
commercial products. We also investigate how TCP-TACK
would work over the combined links of WLAN and WAN.
Finally, we share our long-term experience over WAN links,
which further validates the advancements of the TACK-based
protocol design.

6.1 Experiment setup

Experiment data is conducted on various wireless links (e.g.,
IEEE 802.11b/g/n/ac), controllable links connected with
a Spirent Attero network emulator [70], and shared links
on the Internet, using the link conditions for randomized
experimental trials. If not otherwise specified, the PHY raw
bit rates of 802.11b/g/n/ac links are 11/54/300/866.7 Mbps,
respectively. Detailed parameters are listed in Figure 7.

Spatial
streamsLink

Modulation
 type

Coding
 rate

Guard
interval

Channel
width

PHY
capacity

UDP
baseline

802.11b

802.11g

802.11n

802.11ac

-

-

2

2

CCK

64-QAM

64-QAM

256-QAM

-

3/4

5/6

5/6

-

-

400ns

400ns

22MHz

20MHz

40MHz

80MHZ

11 Mbps

54 Mbps

300 Mbps

866.7 Mbps

7 Mbps

26 Mbps

210 Mbps

590 Mbps

Figure 7: Parameters of 802.11-based links.
Since this paper mainly discusses acknowledgement mech-

anism rather than congestion control, we do not intend to
investigate the differences among various congestion con-
trollers. Instead, we focus on the comparison between dif-
ferent acknowledgement mechanisms in the context of the
same congestion controller upon the same transport protocol.
Particularly, TCP-TACK is compared with TCP BBR. TCP-
TACK is implemented upon the TCP of our user-mode Stack4

4TCP-TACK has been widely applied in commercial products of
Huawei. Because of Huawei’s policies related to Linux’s GNU GPL

802.11b 802.11g 802.11n 802.11ac

0

10000

20000

30000

40000

50000

R
e
d
u
c
e
d
 A

C
K

 F
re

q
.(

H
z
)

 Δf= ftcp− ftack

RTT=10ms

RTT=80ms

RTT=200ms

(a) ACK frequency reduction

RTTmin
TACK
(L=2)

TCP
(L=2)

TACK
(L=2)

10 ms

294 24777

294

80 ms 24777

294

200 ms

24777

294

802.11b 802.11ac

TCP
(L=2)

50 50

2020

400

(b) ACK frequency (Hz)

Figure 8: TACK reduces ACK frequency over the
IEEE 802.11b/g/n/ac wireless links.

based on the Netmap framework [68]. Both TCP-TACK and
TCP BBR has integrated the improvements specified in [18]
to improve throughput over wireless links with aggregation.

The Linux kernel follows the TCP [7, 15] guidelines of
sending an ACK for every second full-sized data packet re-
ceived. For experimentation we changed the Linux Kernel
5.3 TCP code [30] to allow the receiver sends an ACK for
every 𝐿 (𝐿 ≥ 2) full-sized data packets, with which we
can deploy prior ACK thinning mechanisms, i.e., TCP vari-
ants with 𝐿 = 4, 8, 16. We introduced a new option called,
BPF SOCK OPS ACK THRESH INIT, as part of the BPF socket
options [54] (BPF PROG TYPE SOCK OPS) to allow changing the
ACK frequency. This option operates in TCP control flow
handling only and does not introduce any runtime overhead
during data flow.

For a fair comparison, we tried our best to use default
versions and parameters for all schemes. For example, TCP
BBR represents TCP using BBR as congestion controller
and RACK [21] as loss detection algorithm. TCP CUBIC
is the default SACK-enabled implementation in the latest
Linux kernels. Unless otherwise noted, TACK sets 𝐿 = 2,
TCP delayed ACK is enabled, and data packets are full-sized
with 𝑀𝑆𝑆 = 1500 bytes.

6.2 TACK frequency in real-world
deployments

First of all, we give numeral analysis of TACK frequency
over the 802.11 wireless links in comparison with standard
delayed ACKs. Figure 8(a) shows that more number of ACKs
are reduced in the case of a faster PHY capacity. Specifically,
as shown in Figure 8(b), TACK has the same frequency as
TCP’s delayed ACK (denoted by TCP (L=2)) over 802.11b
wireless links with a small 𝑅𝑇𝑇𝑚𝑖𝑛 (10 ms). However, for
the 802.11ac links, the frequency of TACK has dropped two
orders of magnitude when 𝑅𝑇𝑇𝑚𝑖𝑛 = 10 ms and three orders
of magnitude when 𝑅𝑇𝑇𝑚𝑖𝑛 = 80 ms. Note that Figures 8(a)
and 9(a) also reveal that goodput increase is insensitive to the
latency between endpoints. This is because TACK’s frequency
is already quite low, reducing ACK frequency by hundreds
of Hz only slightly impact goodput.

license, we currently only implement TCP-TACK in the user space
instead of the kernel space. TCP-TACK evaluations in this paper are
all conducted under this commercial implementation.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

802.11b 802.11g 802.11n 802.11ac

0

50

100

150

Im
p
ro

v
e
d
 G

o
o
d
p
u
t

(M
b
p
s
)

Goodputtack−Goodputtcp

RTT=10ms

RTT=80ms

RTT=200ms

(a) Goodput improvement

TCP
L=1

TCP
L=2

TCP
L=4

TCP
L=8

TCP
L=16

TACK

L=2

0

40

80

120

160

200

240

280

320

G
o
o
d
p
u
t

(M
b
p
s
)

Ideal Goodput

UDP Baseline

PHY Capacity

(b) Ideal goodput trend

Figure 9: (a) Links with faster PHY rate enlarge
goodput improvement. (b) TACK approaches the
transport upper bound with a minimized ACK fre-
quency (RTT=80 ms, 802.11n).

802.11
b

802.11
g

802.11
n

802.11
ac

0

30

200

400

500

600

G
o
o
d
p
u
t

(M
b
p
s
)

6 5

24
19

198
155

556

434

TCP-TACK

TCP BBR

(a) TCP-TACK vs. TCP BBR

TCP
L=1

TCP
L=2

TCP
L=4

TCP
L=8

TCP
L=16

TACK

L=2

0

40

80

120

160

200

240

280

320

G
o
o
d
p
u
t

(M
b
p
s
)

Actual Goodput

UDP Baseline

(b) Actual goodput trend

Figure 10: (a) TCP-TACK obtains 20% ∼ 28.1%
of goodput improvement. (b) Prior ACK thinning
mechanisms disturb the TCP transport performance
(RTT=80 ms, 802.11n).

6.3 Performance in WLAN scenarios

Before diving into protocol performance, we first answer the
question of how close TACK can get to transport upper
bound. We use the UDP-based tool [29] specified in S3.2
to estimate the ideal goodput of different ACK thinning
techniques. For example, “TCP (L=8)” considers the case
of byte-counting ACK that send an ACK every 8 full-sized
packets. Our simulator keeps sending 1518-byte packets from
the sender over the 802.11n links, and the receiver counts 8
received packets, and then sends one 64-byte packet as an
ACK. “UDP Baseline” acts as the transport upper bound as
its goodput is not disturbed by ACKs (see Figure 7). “PHY
Capacity” is the raw bit rate at the PHY layer.

It is well-known that the transport will be disturbed when
the number of ACKs is excessively reduced. Thus, sending
fewer ACKs has a “negative effect” on the transport perfor-
mance. However, in wireless scenarios sending fewer ACKs
also has a “positive effect” on the transport performance due
to the reduced contentions. To better estimate this “positive
effect”, we assume that there is no “negative effect” ideally.
As a result, “Ideal Goodput” refers to the ideal situation that
the transport will not be disturbed by reducing the number
of ACKs. “Actual Goodput” refers to the real situation that
the transport is impacted by both the “negative effect” and
the “positive effect” when reducing the number of ACKs.

Figure 9(a) shows that the goodput gain is enlarged over
a faster wireless link. Figure 9(b) demonstrates that TACK’s
ideal goodput approaches the transport upper bound with a

RTP+UDPMetrics

0

TCP CUBIC

Macroblocking
(times/30min)

TCP-TACK

0

30 ~ 58 3 ~ 10

5 ~ 6 0

5 ~ 15 50 ~ 90

TCP BBR

Rebuffering
(%)

Figure 11: Wireless projection with Miracast.

minimized ACK frequency. Note that the gap between UDP
baseline and PHY capacity is caused by non-ACK factors
such as high medium acquisition overhead for data packet-
s. Generating large A-MPDUs (Aggregated MAC Protocol
Data Units [12]) may serve the purpose of reducing this gap.
However, this is outside the scope of this paper.

We then compare the actual goodput of TCP-TACK flows
and TCP BBR flows over the IEEE 802.11b/g/n/ac wire-
less links. A Wi-Fi host (Intel Wireless-AC 8260, 2 × 2) is
connected to another wired host with a wireless router (TL-
WDR7500) forwarding. All devices are in a public room with
over 10 additional APs and over 100 wireless users at peak
time. Ping test shows that the RTT varies between 4 to
200 ms and slight burst losses exist. Single-flow tests are
repeatedly conducted over all hours of the days in a full week.
Figure 10(a) shows that TCP-TACK obtains 20% ∼ 28.1%
of average goodput improvement over TCP BBR. Our data
traces also show that TCP-TACK sends much less number of
ACKs than TCP BBR (e.g., over the 802.11g wireless links,

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐶𝐾𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

of TCP-TACK approximates 1.9%, and

which of TCP BBR approximates 50%), significantly reducing
the contentions on wireless links.

We also investigate the difference between the actual and
the ideal goodput of TCP BBR with prior ACK thinning
mechanisms. We introduce data packet impairments (𝜌 =
0.1%) by adding a network emulator connected between
the endpoints. Figure 10(b) shows that legacy TCP’s actual
trend of goodput improvements does not match the ideal
trend (as illustrated in Figure 9(b)). We believe it is because
TCP’s control algorithms such as loss recovery, round-trip
timing, and send rate control are disturbed by reducing ACK
frequency. In contrast, TCP-TACK’s actual performance
approaches the ideal goodput improvement. This validates
the TACK-based protocol design. We have also tested the
Wi-Fi Direct [5] links, the results of which remain similar.

6.4 Deployment experience: Miracast

TCP-TACK is deployed in the commercial products, such
as Huawei Mate20 Series Smartphone (Android 9) [43] and
Honor Smart TV [44], providing optimized high resolution
wireless projection using Miracast. Miracast [4] allows user-
s to wirelessly share multimedia, including high-resolution
pictures and HD video content between Wi-Fi devices. A
predecessor (Android 8) of Huawei’s product adopts RTP
on top of UDP as the transport protocol, while the current
commercial products have modified Miracast so as to enable
the TCP-based transmissions, i.e., TCP CUBIC, TCP BBR,
and TCP-TACK.

The smartphone screen can be projected to a nearby TV,
wherein the distance is usually less than 10 meters between
the two devices. Data traces are collected from both the

TACK: Improving Wireless Transport Performance by Taming Acknowledgments SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Wireless client ServerWireless router

WLAN WAN

bw=100Mbps/500Mbps
RTT=20ms/200ms

54Mbps/300Mbps

Network emulator

Figure 12: Hybrid topology of WLAN and WAN.

Goodput
(Mbps)

WLAN WAN TCP BBR TCP-TACK

(ρ, ρ)
(%)

bw
(Mbps)

RTT
(ms)

bw
(Mbps)

(0, 0)

(1, 1)

(0, 0)

(1, 1)

1

2

3

4

54

54

300

300

20

20

200

200

100

100

500

500

C
ase Data pkt

(#)
ACK

(#)
Goodput

(Mbps)
Data pkt

(#)
ACK

(#)
17.16

16.90

159.50

156.39

190896

175434

1657476

1767197

104298

84523

882545

897361

20.21

18.44

190.22

185.73

222561

213161

2067212

2204647

24356

26068

2474

22407

Figure 13: Performance over combined links of
WLAN and WAN.

smartphones and TVs during A/B testing. Figure 11 sum-
marizes the trace-based performance results. We found that
TCP-TACK’s video rebuffering ratio [25] is significantly re-
duced as compared with the legacy TCP or RTP based
projections. Also TCP-TACK’s macroblocking artifacts are
less as compared with the RTP transport. The application-
level benefit of TCP-TACK can be attributed to goodput
improvement because of reduced ACK overhead and effective
loss recovery. These experiences demonstrate TACK’s signif-
icant advantages for high-throughput and reliable wireless
transport.

6.5 Performance over combined links of
WLAN and WAN

TACK also works on the hybrid connections over both wired
and wireless links. Figure 12 illustrates the topology. A wire-
less client (Intel Wireless-AC 8260, 2× 2) connects a wireless
router (TL-WDR7500) within a distance of 10 meters. Band-
width of WLAN is configured by setting different 802.11
standards on the wireless router. For example, the policy of
“802.11g only” provides a 54 Mbps bandwidth for the WLAN.
A hardware network emulator is deployed to provide pack-
et impairments and transport latency between the wireless
router and a wired server. For example, setting the latency of
100 ms on both ingress and egress ports of network emulator
provides a 200 ms RTT for the WAN. Packet loss rate on the
data path (𝜌) and on the ACK path (𝜌′) can also be set on
the ingress port and egress port, respectively.

Figure 13 shows the results when bandwidth of WLAN
is the bottleneck. Case 1 and Case 2 consider the cases
where a wireless client communicates with a domestic server.
Case 3 and Case 4 consider the cases where a wireless client
communicate with a cross-country server. All cases demon-
strate TCP-TACK’s advantage over legacy TCP on goodput.
This can be attributed to two reasons: (1) Significant ACK
frequency reduction improves WLAN bandwidth utilization,
and (2) TCP-TACK’s advancements in loss recovery, round-
trip timing and send rate control assure robust transmission
over the long-delay and lossy links of WAN.

Note that the number of ACKs of TCP-TACK in Case
1 is nearly 10 times of that in Case 3, this is because the
RTT on the WAN link has increased to 10 times in Case 3.
According to Equation (3), the higher RTT results in the

T
C

P
 V

e
g
a
s

T
C

P
-T

A
C

K

T
C

P
 C

U
B

IC

In
d
ig

o

P
C

C
-V

iv
a
c
e

C
o
p
a

T
C

P
 B

B
R

P
C

C
-A

lle
g
ro

Q
U

IC
 C

U
B

IC

V
e
ru

s

S
p
ro

u
t

1

3

5

7

9

11

R
a
n
k
in

g
 (

s
m

a
lle

r
is

 b
e
tt

e
r)

Figure 14: Violin-plots of performance ranking (200-
day public data traces from [63]).

lower TACK frequency even though the data throughput is
substantially higher. In addition, the number of ACKs in
Case 4 is nearly 20 K larger than that in Case 3, this is
because TCP-TACK adds more ACKs on the return path
when losses occur, in which the additional ACKs are almost
loss-event-driven IACKs.

6.6 Experience over real-world WAN links

Although the TACK-based protocols are designed for WLAN
scenarios, we tried evaluating the performance in WAN sce-
narios. Specifically, we have integrated TCP-TACK into the
Pantheon [59] and run long-term tests in different workloads
(single flow, or cross traffic). The Pantheon is a global-scale
community evaluation platform for academic research on
TCP variants. Measurement nodes are on wired networks
and in cloud datacenters across nine countries such as the US-
A, the UK, Japan and Australia. Links between endpoints are
with varying bandwidth and latency, and are non-dedicated,
i.e., there exists wild cross traffic over the Internet.

We investigate the overall performance of TCP-TACK
as well as a curated collection of 10 working implementa-
tions of high-speed protocol variants: TCP Vegas [16], TCP
CUBIC, TCP BBR [17], QUIC CUBIC (proto-quic [37]),
PCC-Allegro [26], PCC-Vivace [27], Indigo [33], Copa [10],
Verus [76], and Sprout [74]. All schemes are using their rec-
ommended parameters [62].

For quantitative analysis, we summarize the performance
of each scheme using a version of Kleinrock’s power met-

ric [49] as the utility function 𝑙𝑜𝑔(
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑎𝑣𝑔

𝑂𝑊𝐷95𝑡ℎ
), where

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑎𝑣𝑔 denotes the mean throughput, and 𝑂𝑊𝐷95𝑡ℎ

denotes the mean 95th percentile one-way delay (with clock
synchronization [59]). Figure 14 illustrates the ranking of
each scheme in tests during 200 days [63]. For each test, the
highest-power scheme has the smallest ranking value accord-
ing to the utility metric. Figure 14 reveals that TCP-TACK
achieves acceptable performance in the WAN scenarios5. It
is explained that the proposed TACK-based protocol design
overcomes the hurdles for reducing the ACK frequency. Note
that due to less contention between data packets and ACKs
in WAN, TACK achieves less performance gain in WAN than
that in WLAN.

5Note that QUIC CUBIC performs badly as it uses a very old version
which has already been deprecated [37].

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

Our experience over real-world WAN links serves as a vali-
dation of the cooperation between TACK and receiver-based
transport paradigm. However, we believe more substantial
measurements are needed in the future, to answer the question
of how TACK-based protocols behave on various real-world
traffic patterns in WAN scenarios.

7 DISCUSSION, LIMITATIONS, AND
FUTURE WORK

Buffer requirement. Sending fewer ACKs increases bottle-
neck buffer requirement. Ideally, buffer requirement is decided
by the minimum send window (𝑊𝑚𝑖𝑛), i.e., 𝑊𝑚𝑖𝑛− 𝑏𝑑𝑝. Giv-

en by [50], we have 𝑊𝑚𝑖𝑛 = 𝛽
𝛽−1

· 𝑏𝑑𝑝, 𝛽 ≥ 2. By default,

TCP-TACK (𝛽 = 4) requires a bottleneck buffer of 0.33
𝑏𝑑𝑝. However, in practice, buffer requirement might be en-
larged when the send rate control does not behave properly
under network dynamics. Pacing can help alleviate the prob-
lems associated with increased buffer requirements [2, 50].
Our experiment results in WAN scenarios (Figure 14) reveal
that TCP-TACK’s buffer requirement (based on OWD esti-
mate) can be bounded in practice. However, more substantial
measurements are needed for a deep dive into the buffer
requirement of TACK-based protocols in the future.

Handling reordering. Load balancing usually splits traffic
across multiple paths at a fine granularity [48]. By handling
the prevalent small degree of reordering on the transport
layer [52], we help network layer to achieve fine partition
granularity by enabling the load balancer to consider less
about reordering avoidance in traffic engineering. Thus, we
define the IACK delay as an allowance for settling time ([14]

and [21] recommend 𝑅𝑇𝑇𝑚𝑖𝑛
4

) before marking a packet lost.
In general, the IACK delay depends on the service’s tolerance
of retransmission redundancy. It can be adjusted dynamical-
ly according to whether unnecessary retransmissions occur,
which we leave as the further work.

Congestion controller. TACK impacts the implementation
of congestion controllers. For example, to work with TACK,
it is required to change sender-based control to receiver-based
control. This paper adopted a TACK-based congestion con-
troller co-designing BBR in a receiver-based way. Figure 15
shows that the co-designed BBR has the similar TCP friend-
liness to the standard BBR. In other words, as an ACK
mechanism, our current experience shows that TACK does
not impact much on the performance of congestion controllers.
However, we believe more substantial investigations are need-
ed in the future, to answer the question of how TACK works
with more congestion controllers such as CUBIC, Vegas, and
Compound TCP.

TCP splitting. TCP splitting is a possible way to reduce the
complexity of the TACK-based protocol design. This is based
on the fact that the last-mile wireless network usually has
a smaller delay and converges fast. However, TCP splitting
uses a proxy access node that divides the end-to-end TCP
connection, which needs further modification on the access
point (router). Another well-known problem of TCP splitting

BBR CUBIC TACK CUBIC TACK BBR
0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e
 R

a
ti

o

Ratio=
Throughput

Ideal Throughput

TCP BBR TCP CUBIC TCP-TACK

Figure 15: Evaluation of TCP friendliness. We ran-
domly sample bandwidth between 1 and 100 Mbps,
RTT between 1 and 200 ms, and bottleneck buffer
size between 0.5 and 5 𝑏𝑑𝑝. The flows are run concur-
rently for 60 seconds. We report the average ratio of
the throughput (Y axis) achieved by each flow to its
ideal fair share for all algorithms being tested.

is that the split TCP connection is no longer reliable or
secure, and a server failure may cause the client to believe
that data has been successfully received when it has not. The
cost performance of TACK with/without TCP splitting is
worth being further studied.

8 CONCLUSION

To the best of our knowledge, this is the first work to give a
full protocol design with minimized ACK frequency required
on the transport layer. The TACK-based acknowledgement
mechanism introduces more types of ACKs and carries more
information in ACKs so as to reduce the number of ACKs
required. In particular, IACKs speed up feedback for different
instant events (e.g., packet losses), and TACK periodically
assures feedback robustness by carrying rich information in
ACKs. The protocols based on TACK are therefore capable to
achieve robust loss recovery, accurate round-trip timing, and
effective send rate control. A TACK-based protocol is a good
replacement of the legacy TCP to compensate for scenarios
where the acknowledgement overhead is non-negligible (i.e.,
WLAN scenarios), and meanwhile, it also works well in WAN
scenarios. This serves as a strong validation of TACK.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS

We thank Yi Zeng, Xinping Chen, Shengjun Chen, and Ruix-
iang Guo from Huawei Computer Network and Protocol Lab
for the work and support over the years. We thank Zhiqiang
Fan, Hua Yu, Xiongzuo Pan, Dong Yang, Tao Bai, and Meng
Luo for helping to build the testbed. We are grateful for
conversations with and feedback from Li Li, Junsen Chen,
Dang Su, and Fanzhao Wang. We thank Feng Gao, Jing Zuo,
and Fang Liu for helping to polish the language. We also
thank the anonymous reviewers and our shepherd, Radhi-
ka Mittal, for their valuable feedback. Ke Xu is supported
by NSFC Project with No. 61825204 and No. 61932016,
Beijing Outstanding Young Scientist Program with No. B-
JJWZYJH01201910003011. Keith Winstein acknowledges
funding from NSF grants CNS-1909212 and CNS-1763256 for
the support on the Pantheon open-source project [33], which
contributes to the horizontal evaluation of this work among
a collection of transport protocols.

TACK: Improving Wireless Transport Performance by Taming Acknowledgments SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Brian Adamson, Carsten Bormann, Mark Handley, and Joe Mack-

er. 2009. RFC 5740: Nack-oriented reliable multicast (NORM)
transport protocol. IETF (2009).

[2] Amit Aggarwal, Stefan Savage, and Thomas Anderson. 2000.
Understanding the performance of TCP pacing. In Proceedings
of IEEE INFOCOM. 1157–1165.

[3] Ammar Mohammed Al-Jubari. 2013. An adaptive delayed ac-
knowledgment strategy to improve TCP performance in multi-hop
wireless networks. Springer WPC 69, 1 (2013), 307–333.

[4] Wi-Fi Alliance. 2019. High-definition content sharing on wi-fi de-
vices everywhere. https://www.wi-fi.org/discover-wi-fi/miracast.

[5] Wi-Fi Alliance. 2019. Wi-Fi direct. https://www.wi-fi.org/
discover-wi-fi/wi-fi-direct.

[6] Mark Allman. 1998. On the generation and use of TCP acknowl-
edgments. ACM SIGCOMM CCR 28, 5 (1998), 4–21.

[7] Mark Allman, Vern Paxson, and Ethan Blanton. 2009. RFC 5681:
TCP congestion control. IETF (2009).

[8] Eitan Altman and Tania Jiménez. 2003. Novel delayed ACK
techniques for improving TCP performance in multihop wireless
networks. In Proceedings of IFIP PWC. 237–250.

[9] Farzaneh Razavi Armaghani, Sudhanshu Shekhar Jamuar, Sabira
Khatun, and Mohd Fadlee A. Rasid. 2011. Performance analysis of
TCP with delayed acknowledgments in multi-hop ad-hoc networks.
Springer WPC 56, 4 (2011), 791–811.

[10] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical
delay-based congestion control for the internet. In Proceedings of
USENIX NSDI. 329–342.

[11] IEEE Standards Association. 2016. Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications. https:
//ieeexplore.ieee.org/document/7786995.

[12] Frank Aurzada, Martin Lévesque, Martin Maier, and Martin
Reisslein. 2014. FiWi access networks based on next-generation
PON and gigabit-class WLAN technologies: A capacity and delay
analysis. IEEE/ACM Transactions on Networking (ToN) 22, 4
(2014), 1176–1189.

[13] Hari Balakrishnan, Venkata N. Padmanabhan, Godred Fairhurst,
and Mahesh Sooriyabandara. 2002. RFC 3449: TCP performance
implications of network path asymmetry. IETF (2002).

[14] Sumitha Blanton, A. L. Narasimha Reddy, Mark Allman, and
Ethan Blanton. 2006. RFC 4653: Improving the robustness of
TCP to non-congestion events. IETF (2006).

[15] R. Braden. 1989. RFC 1122: Requirements for internet hosts -
communication layers. IETF (1989).

[16] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson.
1994. TCP Vegas: New techniques for congestion detection and
avoidance. ACM SIGCOMM CCR 24, 4 (1994), 24–35.

[17] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Has-
sas Yeganeh, and Van Jacobson. 2016. BBR: Congestion-based
congestion control. ACM Queue 14, 5 (2016), 20–53.

[18] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, So-
heil Hassas Yeganeh, Ian Swett, Jana Iyengar, Victor
Vasiliev, and Van Jacobson. 2018. BBR IETF 101 up-
date. https://datatracker.ietf.org/meeting/101/materials/slides-
101-iccrg-an-update-on-bbr-work-at/-google-00.

[19] Hongyuan Chen, Zihua Guo, Richard Yuqi Yao, Xuemin Shen, and
Yanda Li. 2006. Performance analysis of delayed acknowledgment
scheme in UWB-based high-rate WPAN. IEEE TVT 55, 2 (2006),
606–621.

[20] Jiwei Chen, Mario Gerla, Yeng Zhong Lee, and M. Y. Sanadidi.
2008. TCP with delayed ack for wireless networks. Elsevier Ad
Hoc Networks 6, 7 (2008), 1098–1116.

[21] Yuchung Cheng and Neal Cardwell. 2016. RACK: A time-based
fast loss detection algorithm for TCP. Work in progress, IETF
(2016).

[22] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-scheduled
delay-bounded congestion control for datacenters. In Proceedings
of ACM SIGCOMM. 239–252.

[23] Cisco. 2019. Cisco predicts more ip traffic in the next five years
than in the history of the internet. https://newsroom.cisco.com/
press-release-content?type=webcontent&articleId=1955935.

[24] Cisco. 2020. Cisco visual networking index: forecast and trends,
2018-2023. https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white-paper-c11-
741490.html.

[25] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Antony
Joseph, Aditya Ganjam, Jibin Zhan, and Zhang Hui. 2011. Un-
derstanding the impact of video quality on user engagement. In
Proceedings of ACM SIGCOMM.

[26] Mo Dong, Qingxi Li, Doron Zarchy, Philip Brighten Godfrey, and
Michael Schapira. 2015. PCC: Re-architecting congestion control
for consistent high performance. In Proceedings of USENIX NSDI.
395–408.

[27] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace:
Online-learning congestion control. In Proceedings of USENIX
NSDI. 343–356.

[28] Ge Fei, Liansheng Tan, and Moshe Zukerman. 2008. Throughput
of FAST TCP in asymmetric networks. IEEE Communications
Letters 12, 2 (2008), 158–160.

[29] Fillpthepipe. 2019. Ackemu. https://github.com/fillthepipe/
ackemu.

[30] Fillpthepipe. 2020. A Patch to allow changing TCP ACK frequen-
cy. https://github.com/fillthepipe/TcpAckThinning.

[31] Sally Floyd and Eddie Kohler. 2006. RFC 4341: Profile for data-
gram congestion control protocol (DCCP). IETF (2006).

[32] Richard Fox. 1989. RFC 1106: TCP big window and nak options.
IETF (1989).

[33] Y. Yan Francis, Ma Jestin, D. Hill Greg, Raghavan Deepti, S. Wah-
by Riad, Levis Philip, and Winstein Keith. 2018. Pantheon: The
training ground for Internet congestion-control research. In Pro-
ceedings of USENIX ATC. 1–13.

[34] Cheng P. Fu and Soung C. Liew. 2003. A remedy for perfor-
mance degradation of TCP vegas in asymmetric networks. IEEE
Communications Letters 7, 1 (2003), 42–44.

[35] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal,
Sylvia Ratnasamy, and Scott Shenker. 2015. pHost: Distributed
near-optimal datacenter transport over commodity network fabric.
In Proceedings of ACM CONEXT.

[36] Mario Gerla, Ken Tang, and Rajive Bagrodia. 1999. TCP perfor-
mance in wireless multi-hop networks. In Proceedings of IEEE
WMCSA. 1–10.

[37] Google. 2019. Quic cubic implementation. https://github.com/
google/proto-quic.

[38] Yunhong Gu and Robert L. Grossman. 2007. UDT: UDP-based
data transfer for high-speed wide area networks. Computer Net-
works 51, 7 (2007), p.1777–1799.

[39] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A new
TCP-friendly high-speed TCP variant. ACM SIGOPS Operating
Systems Review 42, 5 (2008), 64–74.

[40] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-
architecting datacenter networks and stacks for low latency and
high performance. In Proceedings of ACM SIGCOMM. 29–42.

[41] Eric He, Jason Leigh, Oliver Yu, and Thomas A. DeFanti. 2002.
Reliable Blast UDP: Predictable High Performance Bulk Data
Transfer. In Proceedings of IEEE Cluster Computing. 317.

[42] Cheng Yuan Ho, Cheng Yun Ho, and Jui Tang Wang. 2011. Perfor-
mance improvement of delay-based TCPs in asymmetric networks.
IEEE Communications Letters 15, 3 (2011), 355–357.

[43] Huawei. 2018. Mate 20 series wireless projection. https://
consumer.huawei.com/en/support/content/en-us00677996/.

[44] Huawei. 2019. Honor smart screen. https://consumer.huawei.
com/en/support/content/en-us00677996/.

[45] Huawei iLab. 2019. Top 10 traffic killers among Internet
videos. https://www-file.huawei.com/-/media/corporate/pdf/
whitepaper/10.pdf.

[46] Jana Iyengar and Ian Swett. 2020. QUIC loss recovery and
congestion control. IETF draft (2020).

[47] Van Jacobson. 1988. Congestion avoidance and control. ACM
SIGCOMM CCR 18, 4 (1988), 314–329.

[48] Srikanth Kandula, Dina Katabi, Arthur Berger, and Arthur Berger.
2007. Dynamic load balancing without packet reordering. ACM
SIGCOMM CCR 37, 2 (2007), 51–62.

[49] Leonard Kleinrock. 1978. On flow control in computer networks.
In Proceedings of IEEE ICC.

[50] Sara Landström and Lars-Ake Larzon. 2007. Reducing the TCP
acknowledgment frequency. ACM SIGCOMM CCR 37, 3 (2007),
5–16.

[51] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente,
Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett,
Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind,
Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade,

https://www.wi-fi.org/discover-wi-fi/miracast
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://ieeexplore.ieee.org/document/7786995
https://ieeexplore.ieee.org/document/7786995
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at/-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at/-google-00
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1955935
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://github.com/fillthepipe/ackemu
https://github.com/fillthepipe/ackemu
https://github.com/fillthepipe/TcpAckThinning
https://github.com/google/proto-quic
https://github.com/google/proto-quic
https://consumer.huawei.com/en/support/content/en-us00677996/
https://consumer.huawei.com/en/support/content/en-us00677996/
https://consumer.huawei.com/en/support/content/en-us00677996/
https://consumer.huawei.com/en/support/content/en-us00677996/
https://www-file.huawei.com/-/media/corporate/pdf/white paper/10.pdf
https://www-file.huawei.com/-/media/corporate/pdf/white paper/10.pdf

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi
Shi. 2017. The QUIC transport protocol: Design and internet-scale
deployment. In Proceedings of ACM SIGCOMM. 183–196.

[52] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang,
Xiangxiang Wang, Meng Shen, and Rashid Mijumbi. 2018. A
measurement study on multi-path TCP with multiple cellular
carriers on high speed rails. In Proceedings of ACM SIGCOMM.
161–175.

[53] Eugenio Magistretti, Krishna Kant Chintalapudi, Bozidar
Radunovic, and Ramachandran Ramjee. 2011. WiFi-Nano: Re-
claiming WiFi efficiency through 800 ns slots. In Proceedings of
ACM MobiCom. 37–48.

[54] Linux man-pages project. 2020. BPF helpers. http://man7.org/
linux/man-pages/man7/bpf-helpers.7.html.

[55] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow.
1996. RFC 2018: TCP selective acknowledgment options. IETF
(1996).

[56] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John
Ousterhout. 2018. Homa: A receiver-driven low-latency trans-
port protocol using network priorities. In Proceedings of ACM
SIGCOMM.

[57] Ruy De Oliveira and Torsten Braun. 2005. A dynamic adaptive
acknowledgment strategy for TCP over multihop wireless networks.
In Proceedings of IEEE INFOCOM. 39–49.

[58] Ruy De Oliveira and Torsten Braun. 2006. A smart TCP acknowl-
edgment approach for multihop wireless networks. IEEE TMC 6,
2 (2006), 192–205.

[59] Pantheon. 2018. Pantheon of congestion control. http://pantheon.
stanford.edu/.

[60] Pantheon. 2018. Test from GCE Tokyo to GCE Sydney after the
advanced round-trip timing is applied. https://pantheon.stanford.
edu/result/4874/.

[61] Pantheon. 2018. Test from GCE Tokyo to GCE Sydney before the
advanced round-trip timing is applied. https://pantheon.stanford.
edu/result/4623/.

[62] Pantheon. 2019. Github repo of schemes tested in the pan-
theon. https://github.com/StanfordSNR/pantheon/tree/master/
third party.

[63] Pantheon. 2019. Summary of results in Pantheon. http-
s://pantheon.stanford.edu/summary/.

[64] Jiyong Park, Daedong Park, Seongsoo Hong, and Jungkeun Park.
2011. Preventing TCP performance interference on asymmetric
links using ACKs-first variable-size queuing. Elsevier Computer
Communications 34, 6 (2011), 730–742.

[65] Vern Paxson, Mark Allman, H.K. Jerry Chu, and Matt Sargent.
2011. RFC 6298: Computing TCP’s retransmission timer. IETF
(2011).

[66] Vern Paxson, Mark Allman, Scott Dawson, William C. Fenner,
Jim Griner, Ian Heavens, Kevin Lahey, Jeff Semke, and Bernie
Volz. 1999. RFC 2525: Known TCP implementation problems.
IETF (1999).

[67] Kothuri Nageswara Rao, Y. K. Sundara Krishna, and K. Lakshmi-
nadh. 2013. Improving TCP performance with delayed acknowl-
edgments over wireless networks: A receiver side solution. In IET
Communication and Computing.

[68] Luigi Rizzo. 2019. Netmap - The fast packet i/o framework.
http://info.iet.unipi.it/∼luigi/netmap/.

[69] Lynne Salameh, Astrit Zhushi, Mark Handley, Kyle Jamieson, and
Brad Karp. 2014. HACK: Hierarchical ACKs for efficient wireless
medium utilization. In Proceedings of USENIX ATC. 359–370.

[70] Spirent. 2017. Accurate and repeatable network emulation. https:
//www.spirent.com/Products/Attero.

[71] Stephen D. Strowes. 2013. Passively measuring TCP round-trip
times. Commun. ACM 56, 10 (2013), 57–64.

[72] Kun. Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. 2006.
A compound TCP approach for high-speed and long distance
networks. In Proceedings of IEEE INFOCOM. 1–12.

[73] Google Chrome team. 2019. WebRTC. https://webrtc.org/.
[74] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013.

Stochastic forecasts achieve high throughput and low delay over
cellular networks. In Proceedings of USENIX NSDI. 459–472.

[75] Lei Xu, Ke Xu, Yong Jiang, Fengyuan Ren, and Haiyang Wang.
2017. Throughput optimization of TCP incast congestion control
in large-scale datacenter networks. Elsevier Computer Networks
124 (2017), 46–60.

[76] Yasir Zaki, Jay Chen, and Lakshminarayanan Subramanian. 2015.
Adaptive congestion control for unpredictable cellular networks.
In Proceedings of ACM SIGCOMM. 509–522.

Appendices

Appendices are supporting material that has not been peer
reviewed.

A NECESSITY OF CARRYING MORE
INFORMATION IN TACK

We use IACKs to report the most recent range of lost packets,
with which the sender can retransmit lost packets timely upon
IACK arrivals. Since IACKs might also be lost when there
exist losses on the ACK path, TACKs are adopted to report
the blocks of lost packets with the smallest serial numbers as
the so-called “unacked list”. We use 𝜌 and 𝜌′ to denote the
loss rate on the data path and on the ACK path, respectively.
𝑄 denotes the primary number of blocks in the “unacked
list” that a TACK has reported. It is easy to see that if
𝜌′ = 0, then we can set 𝑄 = 0. However, when 𝜌′ is large,
the provisioning of 𝑄 might fail to meet the needs of loss
recovery. In this section, we derive under what 𝜌′ it is more
profitable to use a TACK carrying more information.

A.1 When 𝑏𝑑𝑝 is large

To ensure efficient loss recovery, during the time period of
△𝑡, our goal is to employ the TACK to repeat all the blocks
of lost packets that have been reported by the lost IACKs,
that is, the number of lost IACKs should not exceed 𝑄.

Considering the worst case in which there are no back-
to-back packet losses, that is, each loss forms a “hole” in
the receiver’s buffer. According to Equation (3), when 𝑏𝑑𝑝 ≥
𝛽 · 𝐿 · 𝑀𝑆𝑆, the receiver sends 𝛽 (𝛽 ≥ 1) TACKs every
RTT. The maximum number of IACKs can be computed as
𝜌 · 𝑏𝑑𝑝

𝑀𝑆𝑆
, where △𝑡 = 𝑅𝑇𝑇 , and the number of lost IACKs

is computed as 𝜌 · 𝜌′ · 𝑏𝑑𝑝
𝑀𝑆𝑆

under an ACK loss rate of 𝜌′.
Since the number of lost IACKs should not exceed 𝑄, i.e.,
𝜌 · 𝜌′ · 𝑏𝑑𝑝

𝑀𝑆𝑆
≤ 𝑄, we have

𝜌′ ≤ 𝑄 ·𝑀𝑆𝑆

𝜌 · 𝑏𝑑𝑝 (7)

In this case, when 𝜌′ > 𝑄·𝑀𝑆𝑆
𝜌·𝑏𝑑𝑝 , it is more profitable to

use a TACK carrying more information. And the additional
number of blocks (△𝑄) in the “unacked list” that the TACK

should report is given by △𝑄 = 𝜌·𝜌′·𝑏𝑑𝑝
𝑀𝑆𝑆

−𝑄.

A.2 When 𝑏𝑑𝑝 is small

According to Equation (3), when 𝑏𝑑𝑝 < 𝛽 · 𝐿 · 𝑀𝑆𝑆, the
TACK frequency is 𝑓𝑡𝑎𝑐𝑘 = 𝑏𝑤

𝐿·𝑀𝑆𝑆
, where 𝐿 is the number

of full-sized data packets counted before sending an ACK.
During the time period of △𝑡, and the number of lost

IACKs is computed as 𝜌 · 𝜌′ · 𝑏𝑤
𝑀𝑆𝑆

· △𝑡. And meanwhile,

at least one TACK should be sent, i.e., 𝑏𝑤
𝐿·𝑀𝑆𝑆

· △𝑡 = 1.
Since the number of lost IACKs should not exceed 𝑄, i.e.,
𝜌 · 𝜌′ · 𝑏𝑤

𝑀𝑆𝑆
· 𝐿·𝑀𝑆𝑆

𝑏𝑤
≤ 𝑄, we have

𝜌′ ≤ 𝑄

𝜌 · 𝐿 (8)

http://man7.org/linux/man-pages/man7/bpf-helpers.7.html
http://man7.org/linux/man-pages/man7/bpf-helpers.7.html
http://pantheon.stanford.edu/
http://pantheon.stanford.edu/
https://pantheon.stanford.edu/result/4874/
https://pantheon.stanford.edu/result/4874/
https://pantheon.stanford.edu/result/4623/
https://pantheon.stanford.edu/result/4623/
https://github.com/StanfordSNR/pantheon/tree/master/third_party
https://github.com/StanfordSNR/pantheon/tree/master/third_party
http://info.iet.unipi.it/~luigi/netmap/
https://www.spirent.com/Products/Attero
https://www.spirent.com/Products/Attero
https://webrtc.org/

TACK: Improving Wireless Transport Performance by Taming Acknowledgments SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

ACKi+1 ACKi+3

Di-1 Di

t RTT/2

 2 RTT

|Di-1| = |Di| = 1 bdp
ACKi+2ACKi-1 ACKi

Figure 16: Behavior analysis when 𝛽 = 2.

In this case, when 𝜌′ > 𝑄
𝜌·𝐿 , it is more profitable to use a

TACK carrying more information. And the additional number
of blocks (△𝑄) in the “unacked list” that the TACK should

report is given by △𝑄 = 𝑄
𝜌·𝐿 −𝑄.

To summarize, it can be derived that the rich information
should be carried when the loss rate (𝜌′) on the ACK path
follows:

𝜌′ >

{︃
𝑄·𝑀𝑆𝑆
𝜌·𝑏𝑑𝑝 , 𝑏𝑑𝑝 ≥ 𝛽 · 𝐿 ·𝑀𝑆𝑆
𝑄
𝜌·𝐿 , 𝑏𝑑𝑝 < 𝛽 · 𝐿 ·𝑀𝑆𝑆

(9)

B TACK FREQUENCY
MINIMIZATION

TACK’s frequency follows Equation (3), where 𝛽 indicates
the number of ACKs per RTT, and 𝐿 indicates the number
of full-sized data packets counted before sending an ACK.
To minimize the ACK frequency, a smaller 𝛽 or a larger 𝐿 is
expected. This section discusses the lower bound of 𝛽 and the
upper bound of 𝐿. We also give the default values suggested
in practical scenarios. Finally, three insights are obtained
through quantitatively analysis of TACK frequency.

B.1 Lower bound of 𝛽

With regard to the sliding-window protocols such as TCP,
sending one ACK per RTT (i.e., 𝛽 = 1) transforms the
protocol into a stop-and-wait mode. That is, the sender stops
after sending a send window of data, and then waits for
one RTT, i.e., the time it takes for an ACK to reach the
sender and the data released by this ACK to propagate to
the receiver.

Since the waiting time wastes opportunities of sending
data, a transport with 𝛽 = 1 suffers from bandwidth under-
utilization. Under these circumstances, two ACKs per RTT
(i.e., 𝛽 = 2) are required. To facilitate the analysis, we
assume that a symmetric network without loss. 𝐷𝑖 denotes
the data packets released by the 𝑖𝑡ℎ ACK (𝐴𝐶𝐾𝑖) and |𝐷𝑖|
denotes the data volume of 𝐷𝑖. As shown in Figure 16, to
fully utilize the available bandwidth, at time 𝑡, the first
byte of 𝐷𝑖 should arrive at the receiver, and meanwhile
𝐴𝐶𝐾𝑖+2 should acknowledge the last byte of 𝐷𝑖−1. Upon
each ACK arrival, the sender will be enabled to send a 𝑏𝑑𝑝
of data, i.e., |𝐷𝑖| = 𝑏𝑑𝑝. As a result, the send window size
is |𝐷𝑖|+ |𝐷𝑖−1| = 2𝑏𝑑𝑝 and it takes 2 RTTs for the data in
this window to complete. Note that the bottleneck buffer
therefore has to be at least one 𝑏𝑑𝑝. In summary, the lower
bound of 𝛽 is 2.

0
.0

1 2 5

1
0

5
0

1
0
0

5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

bw (Mbps)

100

101

102

103

104

105

A
C

K
 F

re
q
u
e
n
c
y
 (

H
z
)

Pivot point

ftcp(L=1)

ftack(RTT=1ms)
ftack(RTT=10ms)

ftack(RTT=80ms)
ftack(RTT=200ms)
ftack(RTT=400ms)

(a) ACK frequency vs. 𝑏𝑤

0
.0

0
1

0
.0

1

0
.1 1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

RTTmin (ms)

101

102

103

104

105

A
C

K
 F

re
q
u
e
n
c
y
 (

H
z
)

Pivot point

5

ftcp(bw=1000Mbps)

ftcp(bw=100Mbps)

ftcp(bw=0.1Mbps)

ftack(bw=1000Mbps)
ftack(bw=100Mbps)
ftack(bw=0.1Mbps)

(b) ACK frequency vs. 𝑅𝑇𝑇𝑚𝑖𝑛

Figure 17: An example of ACK frequency dynamics
(data packets are full-sized, 𝐿 = 1 and 𝑀𝑆𝑆 = 1500
bytes).

B.2 Upper bound of 𝐿

According to Equation (8), we have

𝐿 ≤ 𝑄

𝜌 · 𝜌′ (10)

Hence, the upper bound of 𝐿 is given by 𝐿 = 𝑄
𝜌·𝜌′ . For

example, when 𝑄 = 4, 𝜌 = 𝜌′ = 10%, the receiver should
send an ACK at least every 𝐿 = 400 full-sized data packets.

B.3 Robustness consideration in TACK

According to Equation (3), the parameter 𝛽 comes into effect
when the 𝑏𝑑𝑝 is large, and parameter 𝐿 comes into effect
when the 𝑏𝑑𝑝 is small.

In terms of a transport with a large 𝑏𝑑𝑝, 𝛽 = 2 should
be sufficient to ensure utilization, but the large bottleneck
buffer (i.e., one 𝑏𝑑𝑝) makes it necessary to acknowledge data
more often. In general, the minimum send window 𝑊𝑚𝑖𝑛 can
be roughly estimated as given in [50]:

𝑊𝑚𝑖𝑛 =
𝛽

𝛽 − 1
· 𝑏𝑑𝑝, 𝛽 ≥ 2 (11)

Ideally, the bottleneck buffer requirement is decided by the
minimum send window, i.e., 𝑊𝑚𝑖𝑛 − 𝑏𝑑𝑝. Since doubling the
ACK frequency reduces the bottleneck buffer requirement
substantially from one 𝑏𝑑𝑝 to 0.33 𝑏𝑑𝑝, this paper suggests
𝛽 = 4 to provide redundancy, being more robust in practice.

Having a relatively low throughput, latency-sensitive flows
(such as RPCs) and application-limited flows usually suffer
more from ACK reduction as 𝐿 grows. Since the high ACK
frequency is not the main bottleneck in these cases, this paper
suggests a delayed TCP-like provisioning of 𝐿 = 2 to be more
robust in practice. Note that we might also provide an option
similar to TCP QUICKACK, allowing the real-time applications
to set 𝐿 = 1.

B.4 ACK frequency modeling and analysis

In the case that data packets are full-sized, according to
Equations (3), (4) and (5), we get three insights as follows.

First, given an 𝐿, the frequency of TACK is always no
more than that of the legacy TCP ACK, i.e., 𝑓𝑡𝑎𝑐𝑘 ≤ 𝑓𝑡𝑐𝑝.
For example as shown in Figure 17 , the frequency of TACK

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Tong Li et al.

is only 10% of the per-packet ACK when 𝑏𝑤 = 48 Mbps and
𝑅𝑇𝑇𝑚𝑖𝑛 = 10 ms, which is a typical scenario in WLAN.

Second, the higher bit rate over wireless links, the more
number of ACKs are reduced by applying TACK. For ex-
ample, the frequency of TACK has dropped two orders of
magnitude (𝑓𝑡𝑎𝑐𝑘 ≈ 2.4%𝑓𝑡𝑐𝑝) when 𝑏𝑤 increases from 48
Mbps to 200 Mbps (𝑅𝑇𝑇𝑚𝑖𝑛 = 10 ms). Also, with higher
𝑏𝑤, the 𝑅𝑇𝑇𝑚𝑖𝑛 pivot point where the ACK frequency is
reduced, is further lowered (Figure 17(a)).

Meanwhile, the larger latency between endpoints, the more
number of ACKs are reduced by applying TACK. For ex-
ample, the frequency of TACK has dropped three orders of
magnitude (𝑓𝑡𝑎𝑐𝑘 ≈ 0.3%𝑓𝑡𝑐𝑝) when 𝑅𝑇𝑇𝑚𝑖𝑛 increases from
10 ms to 80 ms (𝑏𝑤 = 200 Mbps). And with larger 𝑅𝑇𝑇𝑚𝑖𝑛,
the 𝑏𝑤 pivot point where the ACK frequency is reduced, is
further lowered (Figure 17(b)).

In summary, TACK significantly reduces the ACK frequen-
cy in most cases. It is also straightforward that the results
remain similar in the case that the data packets are not
full-sized.

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	3.1 WLAN demands high throughput
	3.2 Legacy WLAN can be improved on the transport layer

	4 Design Rationale
	4.1 ACK frequency breakdown
	4.2 TACK frequency analysis
	4.3 Challenges for applying TACK
	4.4 TACK-based acknowledgement mechanism

	5 TACK-based Protocol Design and Implementation
	5.1 Advancements in loss recovery
	5.2 Advancements in round-trip timing
	5.3 Advancements in send rate control
	5.4 Protocol implementation

	6 Evaluation
	6.1 Experiment setup
	6.2 TACK frequency in real-world deployments
	6.3 Performance in WLAN scenarios
	6.4 Deployment experience: Miracast
	6.5 Performance over combined links of WLAN and WAN
	6.6 Experience over real-world WAN links

	7 Discussion, Limitations, and Future Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A Necessity of Carrying More Information in TACK
	A.1 When bdp is large
	A.2 When bdp is small

	B TACK Frequency Minimization
	B.1 Lower bound of
	B.2 Upper bound of L
	B.3 Robustness consideration in TACK
	B.4 ACK frequency modeling and analysis

