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Abstract—Cloud radio access network (C-RAN) and mobile
edge computing (MEC) have emerged as promising candidates
for the next generation access network techniques. Unfortunately,
although MEC tries to utilize the highly distributed computing
resources in close proximity to user equipments equipments (UE),
IN C-RANS suggests to centralize the baseband processing units
(BBU) deployed in radio access networks. To better understand
and address such a conflict, this paper closely investigates
the MEC task offloading control in C-RANs environments. In
particular, we focus on perspective of matching problem. Our
model smartly captures the unique features in both MEC and C-
RAN with respect to communication and computation efficiency
constraints. We divide the cross-layer optimization into the
following three stages: (1) matching between remote radio heads
(RRH) and UEs, (2) matching between BBUs and UEs, and (3)
matching between mobile clones (MC) and UEs. By applying
the Gale-Shapley Matching Theory in the duplex matching
framework, we propose a multi-stage heuristic to minimize the
refusal rate for user’s task offloading requests. Trace-based
simulation confirms that our solution can successfully achieve
near-optimal performance in such a hybrid deployment.

Index Terms—Computation Offloading, Cloud Radio Access
Network, Mobile Edge Computing, Offloading Control

I. INTRODUCTION

User equipment (UE) (e.g., smartphone, tablet, wearable

device, and digital camera) is playing an important role in new

application scenarios including virtual reality (VR), augmented

reality (AR) and surveillance system, etc. While resource-

constrained UEs (CPU, GPU, memory, storage capacity, and

battery lifetime) have driven a dramatic surge in developing

new paradigms to handle computation intensive tasks [1] (for

example, computation intensive applications requiring huge

computing capacity are not suitable to run in mobile or

portable devices). Mobile cloud computing (MCC) [2] pro-

vides a solution where UEs offload computation to the remote

resourceful cloud (e.g., EC2 [3]), thereby saving processing

power and energy. However, the cloud in MCC scenarios is

usually in a wide area network (WAN), and it is difficult

to control delays and jitters at the WAN scale. Therefore,

offloading tasks to the public cloud may suffer from high

latency via the Internet [4]. For example, AR requires low

latency in order to provide correct information according

to user location and orientation, while offloading tasks to

remote cloud may incur information distortion due to delayed
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data transmission. To accomplish this, mobile edge computing

(MEC) [5] is proposed where UEs offload computation inten-

sive tasks to a computing resource-rich location, within radio

access networks and in close proximity to UEs.

On the other hand, task offloading generates data intensive

workloads, which may become one of the main influential

factors of the unprecedented mobile traffic growth. It has been

predicted that mobile traffic will increase exponentially to 100
times by the year 2020 [6] [7]. The dynamics of substantially

increased data rates requires that cellular infrastructure must be

flexible and reconfigurable, supporting simplified deployment

and management. As conventional radio access network may

incur high cost, high latency and data exchange inefficien-

cy [8], it lacks the efficiency to support centralized interference

management and the flexibility to migrate services to the edge

for computation intensive applications.

To ensure highly efficient network operation and flexible

service delivery when handling mobile Internet traffic surg-

ing, cloud radio access network (C-RAN) [8] brings cloud

computing technologies into mobile networks by centralizing

baseband processing units (BBU) of radio access network. It

moves BBU from traditional base stations to the cloud and

leaves remote radio heads (RRH) distributed geographically.

RRHs are connected to the BBU pool via high bandwidth and

low-latency fronthaul. The BBU pool can be realized by virtual

machines (VM) in data centers, and the centralized baseband

processing enables BBU to be dynamically configured and

shared on demand [9]. In this case, with the transition from a

conventional hardware based environment to a software based

infrastructure, C-RAN can achieve flexible matching between

RRHs and BBUs, according to the quality of service (QoS)

requirement.

It is worth mentioning that C-RAN uses centralized BBU

to do baseband processing, while MEC handles distributed

task offloading by shifting computation capacity from a public

cloud to an edge cloud, which can significantly reduce offload-

ing latency. Since MEC usually works with distributed base

stations in conventional radio access network, it is quite inter-

esting to see if MEC mobile offloading still works in C-RANs

environments. Figure 1 shows the hybrid deployment of C-

RAN with MEC for computation offloading. Connected with

geographically distributed RRHs and centralized BBUs, UEs

get access to VMs, called mobile clones (MC), in a mobile
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cloud for computation offloading. For computation offloading

requests, data is first transmitted by base stations (RRHs and

BBUs) via uplinks. Once processed by an MC in a mobile

cloud, the results will be returned to UEs via downlinks. As

this paper mainly focuses on uplink optimization, we calculate

the completion time of task offloading as the sum of the data

transmission latency via wireless communication and the task

processing time on MCs.

Assume RRHs, BBUs and MCs are heterogeneous (e.g.,

different loads and amount of resources), then the different

matching among UEs, RRHs, BBUs and MCs results in differ-

ent task offloading efficiencies. In particular, data transmission

latency depends on the assignment of both RRHs and BBUs,

and task processing time depends on the MC assignment.

However, the UE interaction makes it challenging to directly

assign a UE’s most satisfied RRH, BBU or MC to them. This

interaction may affect the task offloading efficiency in two

aspects: (1) the wireless transmission data rate will decrease

with poor channel qualities between UEs and RRHs, (2) while

the baseband processing speed of BBUs and task processing

speed of MCs will be slowed down when overloaded. The

former is called communication efficiency, and the latter is

called computation efficiency.

For offloading control, we define refusal ratio as the pro-

portion of offloading tasks that are not able to meet their

deadlines. Then this paper is devoted to the efficient offloading

control by addressing the assignment problem: how to assign

RRHs, BBUs and MCs to UEs to minimize the refusal

ratio among all the offloading requests? Different from the

prior solutions of resource allocation [10], [11], [12], [13]

and admission control [14] [15], we focus on the matching

problem. Moreover, we take into account the task offloading

efficiency not only in wireless transmission but also in cloud

computing, which is new and challenging in achieving efficient

MEC task offloading control in C-RANs environments.

Motivated by these observations, we first formulate the

joint assignment among UEs, RRHs, BBUs and MCs, which

is unfortunately NP-Hard. By applying the duplex match-

ing framework based on the classic Gale-Shapley Matching

Theory, a multi-stage heuristic is finally given to minimize

the refusal rate for UE’s task offloading requests. Our major

contributions are summarized as follows. 1) We handle the

offloading control with a new perspective that focuses on

the joint RRH, BBU and MC matching problem, where a

0-1 programming model capturing the unique features in

both MEC and C-RAN is proposed (Section IV). 2) We

divide the optimization problem into three stages including

the UE-to-RRH stage, the UE-to-BBU stage, and the UE-to-

MC stage, and a multi-stage heuristic for efficient offloading

control is proposed (Section V). 3) We conduct a trace-based

evaluation to show that our solution can achieve near-optimal

performance for MEC task offloading control in C-RANs

environments (Section VI).

II. RELATED WORK

Cai et al. [16] enabled cloud services in the Internet, serving

UEs by using a split-TCP proxy. However, the Internet may

introduce large latency to the transmission, which may not be
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Fig. 1: Computation offloading architecture

able to complete tasks within the required time limits. Wang et

al. [10], [11], [12] studied the joint resource allocation in

C-RANs with MCC under the time constraints of the given

tasks. Also, Sardellitti et al. [13] studied joint optimization

of radio and computational resources for MEC combined

with cellular networks. Tang et al. [9] studied the cross-layer

resource allocation with elastic service scaling in C-RANs.

Nevertheless, all the above work fell in the general category

of resource allocation optimization, without considering the

optimal matching between users (e.g., UE), communication

resource (e.g., BBU) and computing resource (e.g., MC).

Moreover, Ha et al. [14] proposed cooperative transmission

in C-RANs considering cloud processing constraints by allo-

cating different BBUs and RRHs to different UEs. Ha [15]

moved a step further by considering admission control in C-

RANs under the fronthaul constraints. However, those two

papers [14] [15] only consider communication efficiency, other

than considering cloud service computation efficiency as well.

Thus, to address the above challenges, we focus on the

perspective of multi-stage RRH, BBU and MC assignments,

and design a duplex matching framework based on the classic

Gale-Shapley Matching Theory.

III. OFFLOADING CONTROL: BACKGROUND AND

FRAMEWORK

This section clarifies the computation offloading background

and the offloading control framework in C-RANs with MEC.

A. Computation Offloading

Figure 1 illustrates the overall architecture for task offload-

ing in C-RANs with MEC. There are three basic components

in the architecture: (1) Geographically distributed, RRHs are

remote radio transceivers that bridge UEs and the operator

radio control panel, performing lower layer analogue radio

frequency (RF) functions. (2) Centralized in C-RANs, BBU

is a unit for digital signal processing which can dynamically

provision baseband processing for multiple distributed RRHs

on demand. (3) MC is a VM deployed in a mobile cloud near

the BBU pool, hosting various mobile edge applications (e.g.,

edge health care, smart tracking). For the scenarios of C-RANs

with MEC, the MEC platform hosts computation and services

at the edge of radio access networks, reducing network latency

and bandwidth consumption for subscribers. Furthermore,

network operators allow third-party partners to run the MEC
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platform, which will promote the rapid deployment of new

applications and edge services to the mobile subscribers.

B. Computation and Communication Efficiency

Here we argue that not only communication efficiency but

also computation efficiency should be considered in C-RANs

with MEC scenarios, i.e., there is interference among UEs

both in wireless data transmission and cloud task processing.

It is easy to understand that wireless channel quality will be

influenced by user interaction. On the other hand, multiple

tasks will compete for CPU time slices, which may lead to

queueing delay. Moreover, based on the fact that the BBU

processing during wireless communication can be regarded as

computation intensive workload [8], multiple UEs will also

compete for the computing resource in the BBU.

Computation Efficiency. With regard to task processing,

we use qv to denote the number of tasks (load) being processed

in MC v. To capture the relationship between processing speed

and task load, we introduce the Net Present Value (NPV)

function [17], which is proved to fit the measurement results

by Wang et al. [18]. We calculate the task processing speed

as follow:

fv
GOPS =

βγ−qv

α
(1)

where fv
GOPS refers to the computation frequency (CPU

cycles per second) with the unit of giga operations per second

(GOPS) in MC v. The parameter α indicates the speed when

MC is fully loaded (reaching the VM service limitation γ

(γ > max{⌊n
k
⌋, ⌊ n

m
⌋}). The service limitation depends on

the resource allocated to the VM, reflecting the budget of

network operators. The parameter β controls the skewness of

the relationship between load and speed where β ∈ (1,+∞).
It is easy to see that different VMs may have different α, β

and γ. For example in [18], the features of the EC2 instances

is captured as follows: α is around 105, β is around 1.04, and

γ represents the resource amount purchased from EC2.

Communication Efficiency. On the other hand, the commu-

nication efficiency is influenced by multiple factors including

radio signal bandwidth and the modulation and coding scheme

(MCS) index. Alyafawi et al. [19] conducted a research to

show that the decoding and encoding time for the LTE sub-

frames grows with the increase of the MCS index. It is revealed

that effective data rate over the air interface (throughput) is

mainly controlled by MCS. For heterogeneous UEs and RRHs

in C-RANs, the MCS index varies from 0 to 31, deciding

the number of bits per symbol and defining the amount of

redundant information inserted into data stream [20]. Hence,

the communication efficiency mainly depends on the MCS

index between RRHs and UEs (in this paper, we do not

consider user interference in wireless channels, as it can also

be reflected by the MCS index). Based on the prior related

work [21] [22], we define the base station communication

efficiency with the unit of giga operations per bit (GOPB). We

use fGOPB = g(θul) to denote the communication efficiency,

where g(θ) is defined as a function of the MCS index.

Therefore, we derive the wireless transmission data rate (bit

per second) as follow:

ρu =
f b
GOPS

g(θul)
(2)
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Fig. 2: Offloading control framework

where f b
GOPS refers to the computation frequency with the

unit of GOPS in BBU b.

C. Offloading Control Framework

We illustrate the deadline-aware offloading control frame-

work in Fig. 2. In terms of heterogeneous RRHs, BBUs and

MCs, we consider the channel qualities between RRHs and

UEs, the BBU load and the MC load as the inputs. At first, UE

generates tasks with offloading requests, then the offloading

control unit (e.g., the mobile cloud controller) assigns RRHs,

BBUs and MCs to each UE. The expected completion time of

each offloading task is obtained as the output. By estimating

whether a task may exceed its deadline, we decide to accept

or reject UE’s offloading request. Note that our objective is

to maximize the number of tasks meeting their deadlines,

the operator may gain a better profit while satisfying most

subscribers.

IV. PROBLEM FORMULATION

In this section, we formulate the matching problem among

UEs, RRHs, BBUs and MCs to achieve the optimal offloading

control in C-RANs with MEC. U = {u1, u2, ..., un}, L =
{l1, l2, ..., lo}, B = {b1, b2, ..., bk} and V = {v1, v2, ..., vm}
denote the sets of UEs, RRHs, BBUs and MCs, respectively. n,

o, k, and m denote the number of UEs, RRHs, BBUs and MCs,

respectively. For a UE u ∈ U that requests task offloading,

du refers to the deadline, and cu refers to the completion

time. According to Section III-B, we consider the constraints

of computation and communication efficiency. We model the

task processing time and the wireless transmission latency, and

then model the assignment optimization problem.

A. Task Processing Time

As mentioned above, computation efficiency depends on the

loads in MCs. According to Equation (1), we therefore obtain

the processing time of UE’s offloading tasks as follow:

TC(u, v) =
Fu

fv
GOPS

=
αFu

βγ−qv
(3)

where Fu refers to the computing resource of the offloading

task, which is denoted by the number of CPU operations.

B. Wireless Transmission Latency

In C-RANs, user data is transmitted by wireless commu-

nication via base stations, in which the fibre links between

RRHs and BBUs allow more flexibility in network planning

and deployment. On the other hand, the BBU pool is also a

cloud-based platform in C-RANs. Thus, the wireless transmis-

sion latency is related to both communication efficiency and
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computation efficiency. As mentioned above, we use different

MCS indexes to estimate the communication efficiency. For

the BBU baseband computation efficiency, we again use the

NPV function to capture the relationship between baseband

processing speed and the BBU load, i.e., f b
GOPS = βγ−qb

α
.

Then based on Equation (2), we obtain the wireless transmis-

sion latency for UE u as follow:

TN (u, l, b) =
Du

ρu
=

α ·Du · g(θul)

βγ−qb
(4)

where Du refers to the traffic size to be transmitted to the

cloud for UE u.

C. Joint Assignment Optimization

Figure 3 illustrates the RRH, BBU and MC assignments.

We define xuv, zul, yub as the decision variables. In particular,

xuv, zul, yub = 1 if MC v, RRH l and BBU b are assigned

to UE u, respectively, otherwise xuv, zul, yub = 0. Since

the offloading scheme depends on whether the task is able

to meet its deadline, our objective becomes minimizing the

refusal ratio for the UE’s offloading requests, i.e., maximizing

the amount of UEs whose completion time is less than their

deadlines. As mentioned before, we focus on the uplink

completion time, which can be calculated by

cu = TC(u, v(u)) + TN (u, l(u), b(u)) (5)

where v(u), l(u), and b(u) denote the MC, RRH and

BBU assigned to UE u, respectively. Defining {x}+ =
{

1,
0,

x > 0
otherwise

, we therefore obtain the number of UEs

that will miss their deadlines, i.e., Z =
∑

u∈U {cu − du}
+

(refusal ratio is Z
n

). Then the joint assignment optimization

model is proposed as follows:

min
∑

u∈U

{cu − du}
+ (6)

s.t.
∑

v∈V

xuv,
∑

b∈B

yub,
∑

l∈L

zul = 1 ∀u ∈ U (7)

∑

u∈U

xuv ≤ γv − γ0
v , ∀v ∈ V (8)

∑

u∈U

yub ≤ γb − γ0
b , ∀b ∈ B (9)

xuv, yub, zul = 0 or 1, ∀u ∈ U , v ∈ V, b ∈ B
(10)

where the constraint (7) refers to that every UE only selects

one MC, every UE only selects one BBU, and every UE only

selects one RRH. Note that the load of MC v can be calculated

as qv =
∑

u∈U xuv + γ0
v , and the load of BBU b can be

calculated as qb =
∑

u∈U yub + γ0
b , where γ0 denotes the

initial load. Then (8) and (9) refer to the service limitation

constraints of MC and BBU, respectively.

According to Formulas (3)-(6) and (10), the joint assign-

ment optimization is a non-linear integer programming prob-

lem, which essentially turns out to be NP-Hard [23] [24].

Thus we are devoted to seeking efficient heuristics towards the

optimal solution, which will be detailed in the next section.

V. MULTI-STAGE DUPLEX MATCHING

By exhaustively searching all the possible combination of

xuv , yub and zul, the optimal solution can be achieved.

However, the practical usefulness of this method is limited

considering the real-time user demands. We thus propose a

tri-level heuristic, which divides the optimization problem into

three stages: the UE-to-RRH stage, the UE-to-BBU stage, and

the UE-to-MC stage. We define the assignment A1, A2 and

A3 as the matchings from U to L, U to B and U to V ,

respectively. A1 is the optimal assignment in the UE-to-RRH

stage, while A2 and A3 are heuristic solutions obtained by

applying the Matching Theory. Note that these three stages

are correlative during multi-stage matching. In particular, A2

is obtained according to A1, and A3 is obtained according to

A1 and A2.

A. UE-to-RRH Stage

We assume that all the BBUs are the same and fully

loaded, i.e., αb = α and qb = rb (b ∈ B). According

to Equation (2), the expected transmission latency of UE u

becomes α · Du · g(θul). In this case, each UE just selects

the RRH with the minimal expected transmission latency.

Thus, based on the MCS index θul, we can get the optimal

assignment A1 between UEs and RRHs.

B. UE-to-BBU Stage

In this stage, different UEs have different deadlines d.

Meanwhile, different BBUs have different loads q and service

limitations γ. The BBU assignment problem to minimize the

transmission latency can be transformed into a 0-1 Multiple

Knapsack problem with the non-linear objective function,

which is known to be NP-Hard [23]. Since it is hard to get

the optimal assignment here, we design a heuristic duplex

matching algorithm based on the Gale-Shapley Matching

Theory [25], in which Gale et al. discussed the real-life college

admission problem (CAP). Similarly, we can regard UEs as

students and BBUs as colleges. Since both UEs and BBUs own

diverse properties and their preference lists are variable within

a large range. To apply the Gale-Shapley Matching Theory, the

challenge here is how to define the preference lists reasonably

and efficiently [26].

BBU Availability. We assume that all the MCs are the same

and fully loaded, i.e., αv = α and qv = rv (v ∈ V). According

to Equation (3), the expected processing time of UE becomes

αFu. Since the BBU load affects the transmission latency

according to Equation (2), when we add a UE to the BBU, the

performance of the UEs that are already assigned to this BBU

will be affected. We therefore define that a BBU is available
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to a UE if those existing UEs can still meet their deadlines

after the new UE is added in, i.e., TN (u(b)) ≤ du(b)−αFu(b),

where u(b) denotes the UE assigned to BBU b.

Algorithm 1 PreferenceListGeneration()

1: Get θul according A1;

2: for all u that u ∈ U do

3: Get the set of the available BBU set B∗
u;

4: end for;

5: for all u b that u ∈ U , b ∈ B do

6: TN (u, l, b) = GetExpectedTransLatency(qu, θul);

7: Get Pu by sorting B∗
u by ascending order of TN (u, l, b);

8: Get Qb by sorting U by ascending order of du − αFu;

9: end for;

10: return Q and P ;

Preference List Generation. The preference for UE u

to select the available BBUs results in preference list Pu

(P ⊆ B). Also, every BBU owns a preference list Qb (Q ⊆ U).

As depicted in Algorithm 1, we calculate Pu and Qb as

follows. 1) For UE u to select a BBU, Pu is obtained by

sorting BBU set B by an ascending order of the expected

transmission latency. To calculate the expected transmission

latency for UE u assigning BBU b (Algorithm 1. Step 6), we

add 1 to qb and get θul based on the assignment A1 before

calculating TN according to Equation (2). 2) Similarly, for

BBU b to select a UE, Qb is obtained by sorting U by an

ascending order of du − αFu, where du denotes the deadline

of UE u.

Algorithm 2 DuplexMatchingAlgorithm()

1: i← 1, ϕb ← 1, Yb ← ∅(b ∈ B);

2: while (
⋃

b∈B
Yb 6= U) do

3: for all u b that u ∈ (U \ ∪b∈BYb), b ∈ B do

4: (Pu,Qb) = PreferenceListGeneration();

5: Yb = Yb

⋃
{u|GetTopItem(Pu) = b};

6: end for;

7: for all b that b ∈ B do

8: Sort Yb according to UE ranking in Qb;

9: if GetElementCount(Yb) > ϕb then

10: Define a temporary set H as the set of the bottom

(GetElementCount(Yb)− ϕb) UE(s) in Yb;

11: Yb = Yb \ H;

12: ϕb = ϕb +△ϕ;

13: end if;

14: end for;

15: i = i + 1;

16: end while;

17: return A2 according to Yb;

UE-to-BBU Duplex Matching Algorithm. Defining Yb as

the prospective admission list of BBU b, and ϕ as the quota

of a BBU. Regarding to the CAP, students are considered by a

college which can admit a quota of only ϕ. Similarly, we set

a dynamic quota for each BBU, which gradually increases

during iterations. The duplex matching framework can be

described as Algorithm 2.

C. UE-to-MC Stage

After wireless transmission through base station, the of-

floading tasks are processed in the mobile cloud. The final

UE-to-MC stage handles the MC assignment for offloading

requests. Similar to the UE-to-BBU stage, it is also feasible to

apply the duplex matching framework in this stage, however,

to achieve better performance we have to modify some steps.

Firstly, the preference list for UE u to select the available

MCs is denoted by P ′u (P ′ ⊆ V), which can be obtained by

sorting V in an ascending order of the expected processing

time. To calculate the expected processing time for UE u

assigned MC v, we add 1 to qv , then calculate TC according

to Equation (3). Different from the UE-to-BBU stage, for MC

v to select UEs, the preference list Q′v (Q′ ⊆ U ) is obtained

by sorting U in an ascending order of du − TN , where TN is

calculated based on the assignment A2. Secondly, the available

MCs for a UE must meet the constraints of TC ≤ du − TN

for all the UEs assigned to this MC. Note that during the UE-

to-BBU stage, some of the offloading requests were probably

not assigned to any BBU, due to task deadline constraints and

BBU service limitations. As a result, in this stage we no longer

assign MCs to the UEs that were not assigned a BBU.

By applying the modified Algorithms 1 and 2, we obtain the

assignment A3 through the duplex matching framework. The

matchings between RRHs and BBUs, and BBUs and MCs are

also obtained by combining A1, A2 and A3.

VI. PERFORMANCE EVALUATION

In this section, we conduct the matlab-based implementation

to estimate the duplex matching framework, where trace-based

offloading requests are fed to these programs. In particular,

task deadline, offloading traffic size and computation resource

demand are randomly generated in a uniform distribution

according to the prior works [21] [27] [28], i.e., we set

du ∈ [4000, 6000] (ms), Du ∈ [1, 100] (MB), Fu ∈ [1, 20] (G

Hz). We also set parameters α = 102, β = 1.0026, γ = 400,

γ0 = 0, ∆ϕ = 1, and empirically set g(θ) = 0.0156
θ

.

For optimality comparison, we summarize the algorithms

as follows. Optimal baseline refers to the optimal solution

obtained by brute-force searching. Duplex matching refers to

our heuristic solution proposed in Section V. Linear pro-

gramming relaxation refers to the solution that converts the

integer constraint (Formula (10)) into the continuous one, i.e.,

xuv, yub, zul ∈ [0, 1], ∀u ∈ U , v ∈ V , b ∈ B. By solving the

relaxed linear programming, we obtain the rounded decision

variables as a feasible solution.

We start with a small offloading scenario with 6 offloading

requests (each request is generated by an individual UE), 5
RRHs distributed geologically, 3 BBUs in the BBU pool, and

3 MCs in the MEC platform, i.e., n = 6, o = 3, k = 3,

and m = 3. Figure 4 presents the performance of our optimal

assignment among UEs, RRHs, BBUs and MCs (we test 10
randomly generated cases). We can see that the multi-stage

duplex matching reduces the refusal ratio compared to the

linear programming relaxation solution (whose refusal ratio

can be as high as 68%). Note that both the optimal baseline and

our solution can achieve 0 refusal ratio in Case 9. Eventually,

this figure draws the conclusion that our approach can achieve

near-optimal performance in 90% of cases.

To avoid measurement bias, we also test the scenarios with

a larger number of UEs, RRHs, BBUs and MCs, i.e., n ≥ 100,

o = 50, k = 30, and m = 30. Figure 5 illustrates the case

when the number of UEs varies from 100 to 500 (refusal ratio

is the average value calculated by running the same case 100
times). We can see that even though refusal ratio increases

with the number of UEs, our solution can always bound the

optimal assignment. Figure 6 further explores the cumulative

distribution function (CDF) of task completion time for the

UEs admitted (UEs that can meet their deadline). It is easy to
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see that completion time increases with the growing number

of UEs, due to the increased load on both BBUs and MCs,

which affects the computation efficiency.

VII. CONCLUSION

This paper focuses on the perspective of matching prob-

lem in the hybrid offloading architecture of C-RANs with

MEC. We design an efficient offloading control framework

minimizing the refusal ratio of offloading requests. The joint

assignment modeling shows the NP-Hardness of our problem,

and a tri-level heuristic is therefore proposed, which divides

the cross-layer optimization into three stages: the UE-to-

RRH stage, the UE-to-BBU stage, and the UE-to-MC stage.

By applying the Matching Theory, we propose the duplex

matching framework. Evaluation shows that our solution can

achieve near-optimal performance.

Future work includes the extension to environments with

multi-resource management as well as further research on

scenarios of mobility management [29].
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