
Towards Minimal Tardiness of Data-intensive

Applications in Heterogeneous Networks

Tong Li∗, Ke Xu∗, Meng Sheng†, Haiyang Wang‡, Kun Yang§ and Yuchao Zhang∗

∗Tsinghua University, Beijing, China. Email: (litong12@mails, xuke@, zhangyc14@mails).tsinghua.edu.cn
†Corresponding author: Beijing Institute of Technology, Beijing, China. Email: shenmeng@bit.edu.cn

‡University of Minnesota at Duluth, Minnesota, United States. Email: haiyang@d.umn.edu
§University of Essex, Colchester, United Kingdom. Email: kunyang@essex.ac.uk

Abstract—The increasing data requirement of Internet appli-
cations has driven a dramatic surge in developing new program-
ming paradigms and complex scheduling algorithms to handle
data-intensive workloads. Due to the expanding volume and
the variety of such flows, their raw data are often processed
on intermediate processing nodes before being sent to servers.
The intermediate processing constraints are however not yet
considered in existing task and flow computing models.

In this paper, we aim to minimize the total tardiness of all flows
in the presence of intermediate processing constraints. We build a
model to consider Tardiness-aware Flow Scheduling with Process-
ing constraints (TFS-P), which is unfortunately NP-Hard. Hence,
we propose a heuristic Routing and Scheduling duplex MATching
(RSMAT) framework based on the classic Gale-Shapley Matching
Theory. We find that the problem can be well-addressed by
classic Deferred Acceptance (DA) algorithm, in which the match
is stable but inefficient for the model. We therefore propose the
Tardiness-aware Deferred Acceptance algorithm with Dynamical
Quota (TDA-DQ). This algorithm is enhanced by overcoming
the inefficient stability and smartly considering the dynamical
quota in the system. The evaluation compares TDA-DQ to the
lower bound obtained by a modified subgradient optimization
algorithm. The result indicates that TDA-DQ can achieve near-
optimal performance for data-intensive applications.

Index Terms—Heterogeneous Network, Data-intensive Appli-
cation, Matching Theory

I. INTRODUCTION

Based on the real-time analysis of large volumes of complex

sensor data, real-time Big Data applications in heteroge-

neous networks have received considerable attention in recent

years [1] [2]. Whereas it is cost-inefficient to indiscriminately

send all raw data to the server, a solution towards effective pro-

cessing of data-intensive workloads is enabling the networked

nodes with processing capacity [2] [3]. However, capability

anisotropy, stage treatment, and load balancing promote an

increasing number of special data-intensive workloads, requir-

ing being processed (such as size changing, format conversion,

and noise handling) at intermediate nodes on its route to

destination, which is called intermediate processing constraint.

An intermediate processing node is usually a dedicated high-

performance machine with sufficient resources (e.g., CPU

cores, memory). For simplicity, we call it big-node in this

paper. On the other hand, for the flows1 of a soft real-time

1Different from the 5-tuple traffic flow, the flow here is composed of two
sub-flows, i.e., sub-flow from source to intermediate node, and sub-flow from
intermediate node to destination.

Graphic
workstation

Camera

Control center

Destination
node

Data processing

(a) Network topology (b) Intermediate processing
constraint

Big-node
Source
node

Raw
data

Fig. 1: An example to handle data-intensive workloads with

intermediate processing constraints

application, their expected completion time varies due to the

interdependence of flows, i.e., deadline of each flow might

be discrepant [4]. Meanwhile, the flow is still meaningful and

contributes to the application even if it misses the deadline [5].

Thus, optimizing the application tardiness means minimizing

the total tardiness of all distributed flows [6]. Figure 1(a)

shows the example of a smart city, cameras distributed in

each district aggregate to a monitoring network of intelligent

transportation system (ITS) [3]. A typical application is that

when capturing all the peccant vehicles (traffic violations) at

some point, distributed cameras transmit their snapshots to the

control center. As shown in Fig. 1(b), due to limited processing

ability of the camera embedded system [7], image processing

needs to be migrated to one of the capable big-nodes (e.g.,

graphic workstations).

Figure 2 elaborates that flow completion time is the sum of

handling time and routing delay. Handling time is composed

of the queueing time and the processing time for a flow to be

processed on a big-node. While routing delay equals to the

propagation time on the path from source to destination via

big-node. Assume big-nodes are heterogeneous with different

processing speed, then the processing time and routing delay

depends on the selection of big-nodes, and the queueing time

depends on the scheduling scheme on big-nodes. However,

the interaction of routing and scheduling makes it challenging

to simultaneously reduce the queueing time, processing time,

and routing delay. For instance, as to a flow, being processed

at a high-performance big-node gains smaller processing time.

However, the path length might be long. Besides, achieving the

minimal routing delay is to select the big-node on its shortest

path. However, the queueing time might be extremely long on

Handling time

Queueing time Processing time

Completion time

Routing delay

Optimize Optimize

Fig. 2: Components of flow completion time

an overloaded big-node.

Under these circumstances, to minimize the total completion

time, flow scheduling should take into account the collabora-

tive routing strategies (see Section II for details). It is worth

noticing that individual scheduling inevitably results in longer

propagation delay, which means using more links to complete

an application. Hence, individual scheduling may suffer from

bandwidth waste and serious risk of link failure, which leads to

congestion. Therefore, even in the case that the handling time

is much longer than the routing delay, this joint optimization

remains significant.

This paper is devoted to addressing the following question:

how to assign big-nodes to flows, and which flow should

be preferentially processed, to minimize the total tardi-

ness of all flows? In addition to much work on individual

routing [8]–[10] and individual scheduling [11]–[17], the joint

optimization of routing and scheduling is attracting more

attention currently [18]–[22]. Different from the prior solutions

integrating routing and scheduling, we focus on the intermedi-

ate processing constraints, which are new and challenging in

achieving the minimal tardiness of data-intensive applications

in heterogenous networks.

Motivated by these observations, we formulate the problem

to minimize the total tardiness of all flows in the presence

of the intermediate processing constraints. Due to its NP-

hardness, we apply the Gale-Shapley Matching Theory [23]

in the cooperativity between scheduling and routing. By set-

ting a quota for each big-node and heuristically generating

the preference lists, we map our problem into the College

Admission Problem (CAP) [23]. As a result, the framework

of Routing and Scheduling duplex MATching (RSMAT) is

designed. To realize our RSMAT framework, (a we start from

the Gale-Shapley Deferred Acceptance (DA) algorithm, which

has already been proved to result in stable and the Pareto

efficient match [23]. However, this stability is inefficient for

the RSMAT framework, called inefficient stability. Meanwhile,

the performance of DA shows dependence on the quota of

big-nodes, called quota dependency. (b By considering the

expected handling time of flows and the dynamical quota in

the system, we develop the Tardiness-aware Deferred Accep-

tance algorithm with Dynamical Quota (TDA-DQ). Our major

contributions are summarized as follows:

• We model the problem as the joint optimization of rout-

ing with intermediate processing constraints and multi-

processer scheduling with capability constraints (Sec-

tion III). And a modified subgradient optimization algo-

rithm is designed to obtain the lower bound (Section IV).

(b)(a)

(d)

D

K1

K2

6

5S2

S1
3

1

1

1
3

1

(c)

D

K1

K2

6

5S2

S1
3

1

1

1
3

1

D

K1

K2

6

5S2

S1
3

1

1

1 3

1

f1: S1 D f2: S2 D

D

K1

K2

6

5S2

S1

3

1

1

1
3

1

Fig. 3: Case study for motivation

• By applying the Matching Theory in the cooperativity be-

tween scheduling and routing, we map our problem into

CAP and propose the RSMAT framework (Section V).

• We overcome the challenge of inefficient stability and

quota dependency, and design the enhanced duplex

matching algorithm TDA-DQ (Section VI).

• We conduct an evaluation to show that TDA-DQ

can achieve near-optimal performance for data-intensive

workloads, and gains better applicability in real-time

scenarios (Section VII).

II. MOTIVATING CASES

In this section, we use a case study to motivate the joint

optimization of routing and scheduling.

As illustrated in Fig. 3(a), two flows of a soft real-time

application (f1 from S1 to D with deadline 4t, and f2 from

S2 to D with deadline 6t, t is a time period) are scheduled

together with intermediate processing constraints. Resource

requirements of f1 and f2 are 2 units and 4 units, respectively.

Resource on big-nodes K1 and K2 is 6 units and 5 units,

respectively. Propagation delay on link 〈S1,K1〉 and 〈K1, D〉
are both 3t, with 1t on other links. K2 takes 2t and 4t to

process f1 and f2, respectively. The processing speed of K1

is twice of K2. Here we assume that one flow assigned to a

full-loaded node has to wait for idle state of the node. We

define the total tardiness [6] of the application as
∑

m∈M Tm,

where Tm = max {0, Cm − dm} is the tardiness of flow m,

C is the flow completion time, and d is the deadline.

Scheduling-only. Individual scheduling aims to achieve the

minimal handling time of flows. Since K1 owns sufficient

resource and its processing speed is faster than K2, individual

scheduling results in assigning K1 to f1 and f2 simultaneously

without queueing time, as shown in Fig. 3(b). The completion

time of f1 and f2 are 7t and 6t, respectively. Thus, the total

tardiness is 3t.
Routing-only. Tardiness-aware routing [9] aims to seek a

big-node on the shortest path. As shown in Fig. 3(c), individual

routing results in assigning K2 to f1 first with completion

time 4t. When f1 is processed on K2, f2 has to wait because

the residual resource of K2 cannot meet its requirement. As a

result, its queueing time is 2t and the completion time becomes

8t. The total tardiness is 2t.
Combination. However, as illustrated in Fig. 3(d), the glob-

al optimal strategy is to collaborate routing and scheduling by

assigning K2 to f1 with completion time 4t, while assigning

K1 to f2 with completion time 6t, during which the total

tardiness is 0.

Case study reveals that it hardly achieves the minimal total

tardiness of application within a single dimension. A joint

optimization of routing and scheduling shows the potential

to achieve the global optimal results. Motivated by these ob-

servations, this paper focuses on the data-intensive workloads

with intermediate processing constraints, which are involved

with both routing and scheduling. The former is to choose

which big-node to process the flow (based on that selection of

big-nodes affects the routing delay and processing time), and

the latter is to decide which flow among a set of requests is

to be preferentially processed at the big-nodes (based on that

scheduling sequence affects the queueing time).

III. PROBLEM FORMULATION

This section models the joint optimization for routing and

scheduling with intermediate processing constraints. Table I

summarizes part of the notations in our modeling.

TABLE I: Part of the Notations in Problem Formulation

Notation Description

M Set of flows requiring intermediate processing;

K Set of big-nodes;

vk Processing speed of big-node k;

p Processing time of a flow;

qm Amount of resource requirement of flow m;

dm Deadline of flow m;

Cm Completion time of flow m;

ωij Shortest path length from node i to node j;

l Relay-path length of a flow;

Qk Amount of resource on big-node k;

Tm Tardiness of flow m;

τm Start time for flow m to be processed;

xt
mk

1 if flow m is processed at big-node k at discrete time t.

We express the network in triples of vertices, edges, and

big-nodes, i.e., G(N , E ,K). K denotes the set of K big-nodes

equipped with computing power. M denotes the set of M

flows integrated to finish a soft real-time application. For a

given flow m ∈ M, we use pm, qm and dm to denote the

processing time, the amount of resource requirement, and the

deadline, respectively. Particularly, pmk denotes the processing

time of flow m processed at big-node k (k ∈ K), which is

in inverse proportion to the big-node’s processing speed vk.

Set Cm as the completion time of flow m. Our objective is to

minimize the total tardiness of all flows, i.e., min
∑

m∈M Tm,

where the tardiness of flow m is Tm = max {0, Cm − dm}.
For convenience, Tm can also be denoted as {Cm − dm}

+,

where we define the expression {x}+ =

{

x,

0,
x ≥ 0
otherwise

.

Let xt
mk be the decision variable that is 1 if flow m is

processed at big-node k at discrete time t. τm denotes the

start time period of flow m, which can be denoted as

τm = min{t|xt
mk = 1}. (1)

We define the relay-path of a flow as the shortest path

from source to destination, via a big-node. Use lm to denote

the relay-path length of flow m, and lmk denotes the relay-

path length of flow m that is assigned big-node k. Let ωik

be the shortest path length between the source node i and the

big-node k, and ωkj be the shortest path length between the

big-node k and the destination node j. Thus lmk = ωik+ωkj .

Assume propagation delay is proportional to path length.

For convenience, we regard l as the routing delay. According

to Fig. 2, we obtain Cm = τm + pm + lm. By simultaneously

considering the big-node assignment and flow scheduling, we

present a model of Tardiness-aware Flow Scheduling with

Processing constraints (TFS-P), expressed as follows:

min
∑

m∈M

Tm (2)

s.t.
∑

k∈K

xt
mk =

{

1,
0,

t ∈ [τm, τm + pm]
otherwise

(3)

∑

m∈M

xt
mk · qm ≤ Qk, ∀k ∈ K (4)

∑

k∈K

τm+pm
∑

t=τm

xt
mk = pm, ∀m ∈M (5)

xt
mk = 0 or 1, ∀m ∈M, k ∈ K (6)

where Qk is the amount of resource on big-node k. Formu-

la (3) refers to that no big-node (resource) is allocated when

flows are inactive2, and one flow is only assigned one big-

node during its processing period. Formula (4) is the capability

constraint, ensuring that the cumulative resource usage on

big-node k at any given time cannot exceed its capacity.

Formula (5) is to maintain the allocation state of a flow, i.e.,

once active, a flow is ensured to be processed on its specified

big-node during its processing period.

According to Formulas (1), (2) and (6), TFS-P is a non-

linear integer programming problem, and it essentially turns

out to be a combinational optimization of the routing with in-

termediate processing constraints and multi-processer schedul-

ing with capability constraints. Brucker et al. summarized the

complexity results for scheduling problems [24]. Acting as the

subproblem of TFS-P, the multi-processer scheduling problem

for minimizing the total tardiness is still open. Since TFS-P

owns higher complexity than multi-processer scheduling, we

focus on the lower bound instead of the optimal value of TFS-

P, which will be detailed in the next section.

IV. LOWER BOUND

This section applies the Lagrangian Relaxation Theory [25]

to the combinational optimization to obtain the lower bound.

2When a flow is started and assigned a certain big-node, it is called active,
otherwise inactive.

A. Lagrangian Relaxation

With respect to the constraints of TFS-P model, capacity

constraint (Formula (4)) links every flow, which enhances

the difficulty of the optimization. Applying the Lagrangian

Relaxation Theory to handle the capacity constraint, and

according to Formula (2), we obtain the Lagrangian Relaxation

Problem (LRP) as follows:

LRP: Z = max
λ

Z(λ)

= max
λ

min
X
{
∑

m∈M

Tm +
∑

k∈K

T∗

∑

t=1

λkt{
∑

m∈M

xt
mkqm −Qk}}

(7)

s.t. (3) , (5) , (6) , and λkt ≥ 0.

where we use T ∗ to denote the maximum completion

time across the flows, X is a matrix of xt
mk, i.e., X =

(xt
mk)M×K×T∗ , loose coefficient λ is a matrix of λkt, i.e.,

λ = (λkt)K×T∗ . Define

h(m,X,K, T ∗, λ) = Tm +
∑

k∈K

T∗

∑

t=1

λktx
t
mkqm (8)

According to Equations (7) and (8), LRP turns into

Z = max
λ
{
∑

m∈M

min
X

h(m,X,K, T ∗, λ)−
∑

k∈K

T∗

∑

t=1

λktQk}

s.t. (3) , (5) , (6) , and λkt ≥ 0.

To obtain the lower bound of TFS-P, we divide LRP into

two steps. Firstly, to solve the subproblem (SUBP) with the

given λkt (λkt ≥ 0). SUBP can be formulated as follows:

SUBP:

min
X

h(m,X,K, T ∗, λ) = min
X
{Tm +

∑

k∈K

T∗

∑

t=1

λktx
t
mkqm}

s.t. (3) , (5) , and (6).

Once the SUBP is solved, we have

Z(λ) =
∑

m∈M

minh(m,X,K, T ∗, λ)−
∑

k∈K

T∗

∑

t=1

λktQk (9)

Secondly, to find the maximum Z(λ) in Formula (9) with

constraint λ ≥ 0, we regard this maximum Z(λ) as the lower

bound ZLB .

B. Subgradient Optimization Algorithm

As mentioned above, we use two steps to solve LRP, of

which the first step is to solve SUBP. According to the

definition of xt
mk, to solve the SUBP, we only need to estimate

{t∗ + lmk∗ + pmk∗ − dm}
+ + qm

t∗+pmk∗

∑

t=t∗

λk∗t∗

≤ {τm + lmk + pmk − dm}
+ + qm

τm+pmk
∑

t=τm

λkt (10)

According to Formula (10), for each flow, t∗ and k∗ can be

calculated with computation complexity O(KT ∗). Therefore,

the optimal solution X = (xt
mk)M×K×T∗ can be easily

obtained with regard to SUBP.

As to the second step, we introduce a subgradient vector

S(X) = {s(k, t,X), k ∈ K, 1 ≤ t ≤ T ∗}, then the

subgradient of LRP can be

s(k, t,X) = {
∑

m∈M

xt
mkqm −Qk}

+. (11)

The subgradient optimization algorithm aims to find a λ to

maximize Z(λ) (the lower bound) by means of iteration. Here

we give two stop conditions:

1) Stop when reaching the maximum iteration times;

2) Given an infinitesimally small number ε, stop in the ith

iteration if ‖S(Xi)‖2 =
∑

k∈K

∑T∗

t=1 s
2(k, t,Xi) < ε,

where ε > 0, and ‖ · ‖2 denotes the L2 norm.

Algorithm 1 Subgradient Optimization Algorithm

1: T ∗ = max(pmk) + 1, i = 0. Initialize λ0(K,T ∗) = 0;

2: Solve the SUBP. For each flow, calculate the optimal xt
mk

according to Formula (10). Then the subgradient S(X) is

obtained according to Formula (11). Set λi+1 = {λi +
θiS(X

i)}+. When it does not meet the stop conditions:

1) If λi+1(K,T ∗) = 0, i = i+ 1, return to Step 2;

2) If λi+1(K,T ∗) > 0, T ∗ = T ∗+1, λi+1(K,T ∗) = 0,

i = i+ 1, return to Step 2;

3: Calculate ZLR(λ
i) as the lower bound according to Xi if

it meets the stop conditions.

The subgradient optimization algorithm can be described as

Algorithm 1. Since 0 < Cm < T ∗, a larger T ∗ broadens the

solution space. Here we start from a small T ∗ and gradually

increase it during the iterations. The coefficient θi in Step 2 is

defined by [26]. There exist multiple expressions of θi, for

example, θi = θ0ρ
i (0 < ρ < 1), in which θi decreases

exponentially, leading to fewer iterations. However, in this

paper we denote θi as in [25] θi =
ZUP (i)−ZLB(i)

‖S(Xi)‖2 πi, where

0 ≤ πi ≤ 2 and π0 = 2. ZUP is an upper bound equals to the

objective value of a certain feasible solution (e.g., a greedy

algorithm). ZLB is a lower bound of ZLR(λ
i) (the objective

value of LRP with λi). Here we set ZLB(i) = ZLR(λ
i). We

technically remain πi when ZLR(λ) increases, while reduce it

by half when ZLR(λ) stays the same within a given number

of iterations.

So far, we have obtained the lower bound of TFS-P, which

will be used to estimate the algorithms proposed in the

following sections.

V. ROUTING AND SCHEDULING MATCHING FRAMEWORK

TFS-P focuses on the joint optimization of flow routing

and scheduling. The former aims to obtain the optimal big-

node assignment, and the latter aims to achieve the optimal

sequential scheduling. In this section, we argue that this

joint optimization can be heuristically abstracted to a Routing

Student Preference List

College Preference List

Students Colleges

Flow Preference List

Big-node Preference List

Big-nodesFlows

Quota

Quota

Fig. 4: Form CAP to RSMAT

and Scheduling MATching (RSMAT) framework, which is

similar to the real-life College Admission Problem (CAP) [23].

Table II summarizes part of the notations in the algorithms.

TABLE II: Summary of Notations in Duplex Matching

Notation Description

A Preference list for a flow to select big-nodes;

B Preference list for a big-node to select flows;

Y Prospective admission list of a big-node;

ϕ Quota limit of flows for a big-node to serve;

△ϕ Integer that denotes the quota step size(1 ≤ △ϕ ≤ ⌊M
K

⌋);

η Parameter of a big-node related to service capability;

θl Evaluation score in inverse proportion to relay-path length;

θv Evaluation score in proportion to big-node processing speed;

θd Evaluation score in inverse proportion to flow deadline;

θq
Evaluation score in inverse proportion to resource

requirement;

θe
Evaluation score in proportion to flow’s expected handling

time.

As shown in Fig. 4, regarding to the CAP, students are

considered by a college which can admit a quota of only

ϕ. According to the applicant qualifications, the college de-

cides which one to admit. Since students may apply multiple

colleges according to their various preference lists, it is not

generally satisfactory for the college to offer admission to

its ϕ best-qualified applicants. In this paper, we regard flows

as students, and big-nodes as colleges. However, flows are

applying big-nodes who can theoretically admit infinite flows.

Without binding an appropriate quota to each big-node, our

problem can never be mapped into CAP. On the other hand,

both flows and big-nodes own diverse properties, and their

preference lists are variable within a large range. Therefore,

the mapping challenges are a) how to set an appropriate quota

for each big-node, and b) how to define the preference lists

reasonably and efficiently.

A. Mapping Challenges from CAP to RSMAT

Quota Setting. We define the service limit (quota) as an

additive attribute of big-nodes. This service limit is reasonable

since we seldom process all flows on the same big-node. In

other words, it contributes to load balance in a way by avoiding

overloading the most popular big-node.

The number of flows and big-nodes is denoted by M and

K, respectively. We define a variable ηk (k ∈ K) relevant with

1 1.5 2 2.5 3 3.5 4 4.5 5
4000

6000

8000

10000

Service Limit Coefficient η

O
b
je

c
ti
v
e
 V

a
lu

e Case1: q<<Q

Case 2: q close to Q

Fig. 5: Objective value vs. service limit coefficient η

the service capability of big-node k. To ensure ϕ ∈ [1,M],
the quota of each big-node can be denoted as

ϕk = ⌈ηk ·
M

K
⌉, (ηk ∈ (0,K]) (12)

Preference List Generation. The preference of flow m to

select the alternative big-nodes results in preference list Am

(big-node set in Am is included in K). Also, every big-node

owns a preference list Bk (flow set in Bk is included in M).

• Am: For a flow to select a big-node, define standardized

variable θl as the evaluation score in inverse proportion

to relay-path length lmk, and θv in proportion to the

processing speed vk. We regard the top of the preference

list as the first choice, and the list is generated by

a weighted sum of scores among multiple evaluation

indicators. Thus, Am is decided by θl + θv .

• Bk: Similarly, for a big-node to select a flow, define

standardized variable θd as the evaluation score in in-

verse proportion to flow deadline dm, and θq in inverse

proportion to the amount of resource requirement qm. Bk

depends on θq + θd.

B. Framework of RSMAT

Algorithm 2 Description of the RSMAT Framework

Input:

G(N , E ,K), M, θl, θv , θd, θq , ϕk (k ∈ K);
Output:

Big-node assignment and scheduling sequence;

1: for all m k that m ∈M, k ∈ K do

2: Am = GetRankingListA(θl, θv);
3: Bk = GetRankingListB(θd, θq);
4: end for;

5: Yk = DuplexMatchingAlgorithm(A,B, ϕ);
6: for all k y that k ∈ K, y ∈ Yk do

7: Schedule flow y according to preference list Bk;

8: end for;

By overcoming the challenges of quota setting and prefer-

ence list generation, our problem is reduced to the Routing and

Scheduling duplex MATching (RSMAT) framework, in which

Match Theory [23] is applied. Defining Yk as the prospective

admission list of big-node k, the RSMAT framework can be

described as Algorithm 2, in which Step 5 is a certain duplex

matching algorithm. We will discuss it next.

VI. DUPLEX MATCHING ALGORITHMS

A. Gale-Shapley Deferred Acceptance Algorithm

Since our RSMAT framework is based on CAP, Step 5 of the

RSMAT framework can further be implemented by the classic

Gale-Shapley Deferred Acceptance (DA) algorithm, which has

already been proved to result in stable and the Pareto efficient

match [23]. DA is described as follows:

Iteration 1: Every flow applies to its first choice of big-node

in preference list A. Each applicant can only apply to one

big-node that has never rejected it. And then each big-node

may own a set of x applicants. According to the applicant

ranking in list B, every big-node puts top ϕ (x > ϕ) flows

into its prospective admission list Y , then rejects the other

x−ϕ applicants. If x ≤ ϕ, then just put the x applicants into

Y .

Iteration i: All flows eliminated in the last iteration continue

to apply to their ith choice in the preference list A, and

then each big-node takes both the new applicants and the

ones already in Y into account, assuming the total number of

applicants is x. According to list B, every big-node puts top

x (x > ϕ) flows into Y and rejects the other x−ϕ applicants.

If x ≤ ϕ, then put the x applicants into Y .

Repeat Iteration i until every flow is either in a prospective

admission list of a certain big-node, or rejected by all big-

nodes in its preference list. It is worth mentioning that here

the preference list A and B are both constant during each

iteration.

B. Applicability Consideration of DA

Inefficient Stability. Gale and Shapley have demonstrated

the stability and the Pareto efficiency of DA with regard to

both colleges and students. However, this Pareto efficiency

is inapplicable for the RSMAT framework, in which the

optimization objective is minimizing the total tardiness of

all flows. Tardiness is tightly coupled with the handling

time on the big-nodes. Since the handling time of a flow is

composed of the queueing and processing time, considering

the processing speed of a big-node can only contribute to

the processing time. Without taking the queueing time into

consideration, DA can hardly achieve approximately minimal

tardiness. For example in Fig. 3(a), assume both f1 and f2
prefer K2, meanwhile, K2 prefers f1. In this case, DA assigns

K2 to both f1 and f2. However, f2 has to be suspended when

f1 is being processed, which results in the tardiness of f2.

Therefore, although the Pareto efficient, the stable match of

DA is inefficient with regard to the RSMAT framework, which

is called inefficient stability.

Quota Dependency. The quota of big-nodes in DA is

obtained by Formula (12). Here we argue that the match in DA

has severe dependence on this quota. For instance, Figure 5

shows the objective value varies with the service limit coef-

ficient ηk (k ∈ K). Two random-generated networks (cases)

with K = 10 big-nodes and M = 50 flows are scheduled

using DA. For simplicity, we set ηk = η (k = 1, 2, ..., 10). In

the case that big-nodes equipped with sufficient resource, i.e.,

+

f1

f2

f3

Scheduling

f4
t=0 t=5 t=10 t=16

Expected handling time=16Add f4 to big-node

Expected queueing time=10

Fig. 6: Expected handling time

one big-node can serve several flows at a time (qm ≪ Qk).

The objective value decreases with the increase of η. However,

the objective value increases with η in the case that one big-

node can only serve one or two flows at a time (qm close

to Qk). Thus, the performance of DA depends on the quota

setting, called quota dependency.

C. Tardiness-aware Deferred Acceptance with Dynamical

Quota

To simultaneously mitigate inefficient stability and quota

dependency, we finally propose the Tardiness-aware Deferred

Acceptance algorithm with Dynamical Quota (TDA-DQ).

In terms of inefficient stability, the preference list A is

constant during all iterations, which ensures the matching

stability of DA. Here we break the stability by taking into

account the flow’s expected handling time on the big-node.

Handling time depends on the scheduling sequence according

to preference list B. To calculate the expected handling time

for a flow, we just temporarily add it into the big-node’s

prospective admission list Y , and schedule it with the other

flows on the big-node. Take Fig. 6 for example, f1, f2, and f3
are flows already in Y before f4 is added. Q = 18, q1 =
10, q2 = 5, q3 = 8, q4 = 6, pm = qm(m = 1, 2, 3, 4).
Assuming the preference in B is f1 > f2 > f3 > f4, and

scheduling with capacity constraints, the expected handling

time of f4 is 16.

Since the flow’s expected handling time depends on the

interaction of all flows in the queue, A changes dynamically

during each iteration. To calculate A in TDA-DQ, we define

a standardized variable θe as the evaluation score in inverse

proportion to the flow’s expected handling time at the big-

node. Considering the tradeoff between the relay-path length

and the flow’s expected handling time, the preference A for a

flow to select a big-node in TDA-DQ can be obtained based

on θl + θe.

On the other hand, to mitigate the challenge of quota

dependency, we propose a technical solution that gives a

dynamical quota to each big-node, i.e., gradually increase the

quota of the preferred big-node in each iteration. Here we

call it the preferred big-node whose applicant amount x meets

x > ϕ.

TDA-DQ is detailed in Algorithm 3, of which the iterations

are as outlined below.

Iteration i: Every flow that is not assigned a big-node

applies to its first choice of big-node in the preference list A.

And then each big-node owns a set of x applicants. According

Algorithm 3 Description of TDA-DQ

Input:

G(N , E ,K), M, A, B, ϕk(k ∈ K);
Output:

Big-node assignment Yk;

1: i← 0, Yk ← ∅(k ∈ K);
2: while (

⋃

k∈K Yk 6=M) do

3: for all m k that m ∈ (M\∪k∈KYk), k ∈ K do

4: Define Hmk as the the flow’s expected handling time

at the big-node;

5: Hmk = GetExpectedHandleT ime(Yk);
6: Am = GetRankingListA(θl, θe(Hmk));
7: Yk = Yk

⋃

{m|GetTopItem(Am) = k};
8: end for;

9: for all k that k ∈ K do

10: Sort Yk according to flow ranking in Bm;

11: if GetElementCount(Yk) > ϕk then

12: Define a temporary set H as the set of the bottom

(GetElementCount(Yk)− ϕk) flow(s) in Yk;

13: Yk = Yk \ H;

14: ϕk = ϕk +△ϕ;

15: end if;

16: end for;

17: end while;

18: return Yk;

to the preference list B, every big-node puts top ϕ (x > ϕ)

flows into its prospective admission list Y before rejecting the

other x − ϕ applicants. Then add △ϕ (1 ≤ △ϕ ≤ ⌊M
K
⌋) to

the ϕ of these preferred big-nodes. While if x ≤ ϕ, put the x

applicants into Y .

Repeat Iteration i until every flow is in a prospective

admission list of a certain big-node. Note that no matter

whether a big-node has rejected the flow ever before, the flow

can always apply to the big-node in a new iteration.

TDA-DQ tends to result in unstable matches, as we do

not care whether flows have ever been rejected by big-nodes.

However, in the problem of this paper, this algorithm can

effectively obtain the approximately minimal tardiness, which

is estimated in Section VII.

VII. PERFORMANCE EVALUATION

In this section, we conduct the Matlab-based implementa-

tion, in which different network topologies were randomly

generated and fed to these programs to estimate the duplex

matching algorithms for the RSMAT framework. Before pre-

senting the results, we summarize the algorithms we compared

in our simulations.

A. Algorithm Summary

• Greedy: The big-node achieving the smallest lmk +
pmk

Qk

are assigned to flows, and then the flows are scheduled

using the earliest due date (EDD) priority rule [27] .

• DA and TDA-DQ: Algorithms designed for the RSMAT

framework in Section V.

• LSPF: The routing-only strategy, in which the big-node

with the shortest relay-path is assigned to flows.

• TFS: The scheduling-only strategy, which is a modified

TDA-DQ algorithm that only considers individual flow

scheduling, without taking into account the θl during

updating preference list A.

B. Numerical Evaluation

We consider a scenario of the ITS in a smart city. A

random network with 500 nodes acting as the cameras, and

then randomly choose 2% of nodes acting as the big-nodes

(workstations distributed randomly across different districts).

We consider an application with 500 flows from cameras to

the control center, i.e., M = 500,K = 10. According to the

prior works [4] [15], with random uniform distribution, we

set lmk ∈ [40, 400], qm ∈ [200, 400], dm ∈ [1000, 3000], vk ∈
[1,K]. pmk = qm

vk

, Qk ∈ [12 max(qm), 2max(qm)] (all time

unit is ms). For DA, the quota of big-node ϕk = ⌈ηk
M
K
⌉,

(ηk = 1), and for TDA-DQ, we set △ϕ = 1. Finally, we

generate 100 applications to evaluate the proposed algorithms.

Total Tardiness. As illustrated in Fig. 7, by applying TDA-

DQ, the total tardiness in 60% cases is 0. This reveals that 60%
applications are finished without tardiness. We can see that

due to inefficient stability and quota dependency, DA performs

even worse than the routing-only or greedy strategy.

To quantitatively analyze the algorithm optimality, for each

application I we introduce the optimality gap

Gap(I) =
Z(I)− ZLB(I)

Z(I)
(13)

where Z(I) is the objective value in case I , and ZLB(I) is the

lower bound. Note that the lower bound is 0 if an application

can be completed without tardiness. Thus we set Gap(I) =
{

0,
1,

if Z(I) = 0
if Z(I) 6= 0, ZLB(I) = 0

.

Figure 8 further shows the gap on the total tardiness between

the proposed algorithms and the lower bound. More than 90%
of the gaps in TDA-DQ are less than 0.4, however, only 5%
of the gaps in the other algorithms are less than 0.4. This

indicates TDA-DQ outperforms any other proposed algorithms

in optimality and approximates the lower bound well.

Completion Time. Figures 9 shows that TDA-DQ gains

the min-max completion times, of which 94% are less than

3300 ms. Assume that the due date of the soft real-time

applications is 5000 ms, Fig. 9 illustrates that more than 80%
applications can be completed within 5000 ms when applying

TFS and Greedy, which is acceptable in terms of the maximum

completion time. However, systems applying LSPF and DA

have to suffer from high application tardiness in this case.

Similar insights involved with the average completion time

are also illustrated in Fig. 10.

Routing Delay. Figures 11 shows the average routing delay.

The routing-only strategy LSPF gains the lowest propagation

delay, as it assigns the big-nodes with the shortest relay-path to

flows. However, the scheduling-only strategy TFS results in the

highest propagation delay. Assume that all links have the same

0 5 10 15

x 10
5

0

0.2

0.4

0.6

0.8

1

Total Tardiness (ms)

C
D

F

DA

TDA−DQ

LSPF

TFS

Greedy

Fig. 7: Total tardiness

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Gap

C
D

F

DA

Greedy

TDA−DQ

LSPF

SPF

Fig. 8: Optimality gap

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Makespan (ms)

C
D

F

DA

TDA−DQ

LSPF

TFS

Greedy

Fig. 9: Maximum completion time

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Average Completiong Time (ms)

C
D

F

DA

TDA−DQ

LSPF

TFS

Greedy

Fig. 10: Average completion time

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Average Routing Delay (ms)

C
D

F
DA

TDA−DQ

LSPF

TFS

Greedy

Fig. 11: Average routing delay

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Average Queueing Time (ms)

C
D

F

DA

TDA−DQ

LSPF

TFS

Greedy

Fig. 12: Average queueing time

propagation delay, we can infer that higher propagation delay

means using more links to complete an application. Hence,

systems applying TFS may suffer from bandwidth waste and

higher risk of link failure. This further enhances the necessity

of integrating routing and scheduling even in the cases that

routing delay is much less than handling time.

Queueing Time. The handling time of a flow is composed

of the processing time and the queueing time. Figures 12

shows the average queueing time of different algorithms in

the 100 applications. We find that TDA-DQ and TFS result in

the relatively less queueing delay.

Applicability Evaluation. Tightly involved with the com-

pletion time of flows, minimum total tardiness reflects max-

imum throughput rate in most cases. Throughput rate here

equals to the proportion of flows whose completion time

does not exceed its deadline. Besides, since calculating the

expected handling time is time-consuming in each iteration of

algorithms, we use the iteration times to denote the algorithm

overhead. Therefore, the algorithm applicability is defined as

the tradeoff between overhead and throughput, i.e., O+ ξ ·Θ,

where ξ (ξ ≥ 0) is a coefficient relevant to throughput

tolerance, O and Θ denote the normalized average overhead

and the normalized average throughput rate, respectively.

Before making decisions, operators should estimate their

application throughput tolerance ξ first. Figure 13 shows the

applicability of the proposed algorithms, of which axes denote

the zero-mean nomalization value. The green dashed reference

line is drawn for the case that overhead and throughput get

the same weight, i.e., ξ = 1, while the red one is drawn for

the case that ξ = 2. In terms of applicability, points below

the line are always better than those above the line. As a

result, we find that Greedy are superior to TDA-DQ when

ξ = 1. However, TDA-DQ outperforms all the others when

ξ = 2. More generally, for operators the optimal choice is

�2�1.5�1�0.500.511.52
�2

�1.5

�1

�0.5

0

0.5

1

1.5

2

Greedy
 DA

 TDA�DQ

 LSPF

 TFS

Throughput

O
v
e
rh

e
a
d ξ=1

ξ =2

OPT

Fig. 13: Normalized overhead vs. normalized throughput

TDA-DQ when ξ > 1.72, while just Greedy when 0 ≤ ξ ≤
1.72. Whereas most flows in real-time systems are tardiness-

sensitive, we usually have ξ ≫ 2 in fact [5]. This reveals that

TDA-DQ is more applicative in real-time scenarios.

VIII. RELATED WORK

The related work is expounded in three aspects including

individual routing, individual scheduling, and the integration

of them.

Routing. Traditional networking methods usually fall in

the general category of Multi-Constrained Path (MCP) allo-

cation problems [8]–[10], devoted to network resource such

as bandwidth. However, these MCP solutions seldom meet

the intermediate processing constraints, which necessitates the

coupling of communication and computation, as not only the

bandwidth is the constraint that should be considered, but also

the computing resource.

Scheduling. Our envisioned research is also inspired from

existing packet-level scheduling [11] [12], flow-level schedul-

ing [13] [14], application-level scheduling [15], and job

packing [16] [17] algorithms that aim to achieve the best

performance or target fairness. However, these do not work

well in scenarios characterized by real-time and intermediate

processing constraints, as they do not take into account the

collaborative routing strategies.

Integration of Routing and Scheduling. Zhao et al. [18]

proposed RAPIER, which for the first time demonstrates

that routing and scheduling must be jointly considered to

optimize the average Coflow Completion Time (CCT) in Data

Center Networks (DCNs). Works in [19]–[21] focused on

the power-down model for network devices and proposed the

energy-efficient flow scheduling and routing strategies. Han

et al. [22] proposed a RUSH framework dealing with both

the batch-arrival and the sequential-arrival of network flow

demands in the hybrid DCNs. Although the joint optimization

of routing and scheduling is attracting more attention currently,

previous work seldom focuses on the intermediate processing

constraints in heterogenous networks, thus their solutions are

inapplicable to the problem in this paper.

IX. CONCLUSION

This paper is devoted to the joint optimization of flow

routing and scheduling for scenarios with intermediate pro-

cessing constraints, minimizing total tardiness of all flows. To

the best of our knowledge, we for the first time apply the

Gale-Shapley Matching Theory in the cooperativity between

routing and scheduling. As a result, the duplex matching

algorithm is proposed for our RSMAT framework, i.e., DA,

in which the match is stable with the Pareto efficiency, but

inefficient for RSMAT. To avoid inefficient stability and quota

dependency, we develop TDA-DQ. Evaluation shows TDA-

DQ achieves the near-optimal performance in handling data-

intensive workloads. Applicability analysis reveals that TDA-

DQ gains better applicability than the others in real-time cases,

and different algorithms can adapt to different scenarios.

Future work includes the extension to environments with

multi-resource management [28] and strategies on intermediate

processing node placement [29].

ACKNOWLEDGMENT

This work was supported by National Natural Foundation

of China (61472212), National Science and Technology Major

Project of China (2015ZX03003004), National High Tech-

nology Research and Development Program of China (863

Program) (2013AA013302, 2015AA015601), EU Marie Curie

Actions CROWN (FP7-PEOPLE-2013-IRSES-610524), and

Beijing Natural Science Foundation (4164098).

REFERENCES

[1] B. Yu and J. Pan, “Location-aware associated data placement for geo-
distributed data-intensive applications,” in IEEE INFOCOM, 2015.

[2] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information Sci-

ences, vol. 275, pp. 314–347, 2014.

[3] R. Kitchin, “The real-time city? big data and smart urbanism,” GeoJour-

nal, vol. 79, no. 1, pp. 1–14, 2013.

[4] K. Gardner, M. Harchol-Balter, and S. Borst, “Optimal scheduling for
jobs with progressive deadlines,” in IEEE INFOCOM, 2015.

[5] R. Liu, A. F. Mills, and J. H. Anderson, “Independence thresholds: Bal-
ancing tractability and practicality in soft real-time stochastic analysis,”
in IEEE RTSS, 2014, pp. 314–323.

[6] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and C. Amza, “Opti-
mizing i/o-intensive transactions in highly interactive applications,” in
ACM SIGMOD, 2009, pp. 785–798.

[7] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,”
IEEE Communications Magazine, vol. 43, no. 9, pp. S23–S30, 2005.

[8] S. Chen, M. Song, and S. Sahni, “Two techniques for fast computation
of constrained shortest paths,” IEEE/ACM TON, vol. 16, no. 1, pp. 105–
115, 2008.

[9] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,”
in IEEE INFOCOM, 2001, pp. 834–843.

[10] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“Rt-wifi: Real-time high-speed communication protocol for wireless
cyber-physical control applications,” in IEEE RTSS, 2013, pp. 140–149.

[11] Z. Mao, C. E. Koksal, and N. B. Shroff, “Online packet scheduling
with hard deadlines in multihop communication networks,” in IEEE

INFOCOM, 2013, pp. 2463–2471.
[12] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter

tcp (d2tcp),” in ACM SIGCOMM, 2012, pp. 115–126.
[13] F. Ciucu, F. Poloczek, and J. Schmitt, “Sharp per-flow delay bounds

for bursty arrivals: The case of fifo, sp, and edf scheduling,” in IEEE

INFOCOM, 2014, pp. 1896–1904.
[14] C. Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with

preemptive scheduling,” in ACM SIGCOMM, 2012, pp. 127–138.
[15] H. Wu, X. Lin, X. Liu, and Y. Zhang, “Application-level scheduling

with deadline constraints,” in IEEE INFOCOM, 2014, pp. 2436–2444.
[16] S. Albagli-Kim, H. Shachnai, and T. Tamir, “Scheduling jobs with

dwindling resource requirements in clouds,” in IEEE INFOCOM, 2014,
pp. 601–609.

[17] Y. Zhu, Y. Jiang, W. Wu, L. Ding, A. Teredesai, D. Li, and W. Lee,
“Minimizing makespan and total completion time in mapreduce-like
systems,” in IEEE INFOCOM, 2014, pp. 2166–2174.

[18] Y. Zhao, K. Chen, W. Bai, C. Tian, Y. Geng, Y. Zhang, D. Li, and
S. Wang, “Rapier: Integrating routing and scheduling for coflow-aware
data center networks,” in IEEE INFOCOM, 2015.

[19] L. Wang, F. Zhang, K. Zheng, A. V. Vasilakos, S. Ren, and Z. Liu,
“Energy-efficient flow scheduling and routing with hard deadlines in
data center networks,” in IEEE ICDCS, 2014, pp. 248–257.

[20] M. Xu, Y. Shang, D. Li, and X. Wang, “Greening data center networks
with throughput-guaranteed power-aware routing,” Computer Networks,
vol. 57, no. 15, pp. 2880–2899, 2013.

[21] L. Wang, F. Zhang, A. V. Vasilakos, C. Hou, and Z. Liu, “Joint
virtual machine assignment and traffic engineering for green data center
networks,” in ACM SIGMETRICS, 2014, pp. 107–112.

[22] K. Han, Z. Hu, J. Luo, and L. Xiang, “Rush: Routing and scheduling
for hybrid data center networks,” in IEEE INFOCOM, 2015.

[23] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” American Mathematical Monthly, pp. 9–15, 1962.

[24] P. Brucker and S. Knust, “Complexity results for scheduling problems,”
http://www2.informatik.uni-osnabrueck.de/knust/class/, 2009, [Online;
accessed 1-July-2015].

[25] J. Q. Xing W, Zhang J, “Capacitated single flexible manufacturing cell
with setups: model, complexity and lagrangian relaxation,” Operations

Research and Its Applications, pp. 162–170, 1995.
[26] M. L. Fisher, “An applications oriented guide to lagrangian relaxation,”

Interfaces, vol. 15, no. 2, pp. 10–21, 1985.
[27] A. Dogramaci and J. Surkis, “Evaluation of a heuristic for scheduling

independent jobs on parallel identical processors,” Management Science,
vol. 25, no. 12, pp. 1208–1216, 1979.

[28] W. Wang, B. Liang, and B. Li, “Low complexity multi-resource fair
queueing with bounded delay,” in IEEE INFOCOM, 2014, pp. 1914–
1922.

[29] Y. Yuan, D. Wang, and J. Liu, “Joint scheduling of mapreduce jobs with
servers: Performance bounds and experiments,” in IEEE INFOCOM,
2014, pp. 2175–2183.

