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Abstract—Packet losses significantly impact the user experience of content delivery network (CDN) services such as live streaming
and data backup-and-archiving. However, our production network measurement studies show that the legacy loss recovery is far from
satisfactory due to the wide-area loss characteristics (i.e., dynamics and burstiness) in the wild. In this paper, we propose a
sender-side Adaptive ReTransmission scheme, ART, which minimizes the recovery time of lost packets with minimal redundancy cost.
Distinguishing itself from forward-error-correction (FEC), which preemptively sends redundant data packets to prevent loss, ART
functions as an automatic-repeat-request (ARQ) scheme. It applies redundancy specifically to lost packets instead of unlost packets,
thereby addressing the characteristic patterns of wide-area losses in real-world scenarios. We implement ART upon QUIC protocol and
evaluate it via both trace-driven emulation and real-world deployment. The results show that ART reduces up to 34% of flow completion
time (FCT) for delay-sensitive transmissions, improves up to 26% of goodput for throughput-intensive transmissions, reduces 11.6%
video playback rebuffering, and saves up to 90% of redundancy cost.
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1 INTRODUCTION

The ubiquitous wide-area packet loss is a critical fac-
tor affecting the performance of content delivery network
(CDN) services including both delay-sensitive services (e.g.,
live streaming, web conferencing, interactive online gam-
ing, and remote procedure call (RPC) based services) and
throughput-intensive services (e.g., disaster recovery, cloud
migration, and data backup-and-archiving). Take TikTok’s
CDN platform as an example, the flows incur an average
5.2% packet loss rate in Turkey and 3.8% in Brazil, respec-
tively. The flow completion time (FCT) in these regions is
enlarged because the high loss rate introduces head-of-line
(HOL) blocking and even incurs service failure when loss
recovery is excessively delayed.

There exist two fundamental ways of loss recovery in
transmission control, i.e., forward-error-correction (FEC) [1]
and automatic-repeat-request (ARQ) [2], [3]. However, it
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Fig. 1: An example of the multi-supplier market for wide-
area applications.

is well-studied that FEC is far from satisfactory due to
the wide-area loss characteristics such as burstiness in the
wild [1]. Although some arts are proposed to protect against
bursts of losses [1], [4], they require dual-side (i.e., CDN
server and client-side application) modifications. These
FEC-based advancements might suffer from deployment
issues in the multi-supplier CDN market. As shown in
Figure 1, application operators (e.g., TikTok Live) usually
apply the Multi-Supplier Strategy [5] in the CDN market.
As a result, it is the CDN vendor’s duty that optimize the
transmission performance (e.g., loss recovery), according
to which the application operators will choose the better-
performed CDN vendors to carry more traffic (i.e., larger
market share). In this case, only server-side sending policies
can be adjusted by the selected CDN vendors, which lack
the proper authority to synchronize client-side control rules.

Most modern applications only apply the ARQ
paradigm to control loss tolerance as the commercial so-
lution, which retransmits data once any packet is detected
lost. Unfortunately, from our production network measure-
ment studies, we find that wide-area loss shows charac-
teristics of dynamics and burstiness in the wild (see §3).
We further find that the legacy ARQ-based loss recovery
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induces unexpected latency due to poor adaption to these
loss characteristics. Specifically, it still suffers from both data
reassembling starvation and receiving buffer starvation in delay-
sensitive transmissions and throughput-intensive transmis-
sions, respectively (see §4).

In this paper, we propose the adoption of FEC to im-
prove loss recovery in ARQ-based protocols. Unlike the
traditional FEC-based approach, which involves sending
redundant unlost data packets, our method focuses on
sending multiple packets replicating the content of pack-
ets declared as lost without the need for coding, thereby
avoiding dual-side modifications and expediting the loss
recovery process. Furthermore, our approach has the po-
tential to eliminate the costly traffic overhead typically
associated with traditional FEC. This is because the number
of lost packets is usually much smaller than the number of
unlost packets. Introducing redundancy to retransmission
may seem straightforward, but in practice, the dynamics
and burstiness of packet loss present several challenges that
must be addressed: (i) The trade-off between performance
and cost is decided by the redundancy level, which refers
to the number of replicas of a lost packet. The optimal
redundancy level for each loss varies with the dynamics
of the loss, and striking the right balance is crucial. (ii)
A loss event usually contains multiple consecutive lost
packets (i.e., burstiness), the redundant replicas might be
lost together again when burst losses occur.

To tackle these issues, we present ART1 (Adaptive Re-
Transmission), a sender-side approach without requiring
any modifications on the receiver side. Simple but useful,
ART overcomes the above-mentioned challenges through
two tightly coupled systems: Redundancy Adaption and
Replica Scheduling. To adapt to loss dynamics, Redundancy
Adaption alters the redundancy level step by step using the
method of test and then verification (i.e., test-and-verification
method). In addition, we have incorporated reinforcement
learning into packet loss recovery, using it to adjust the
redundancy level. To deal with the loss bustiness, Replica
Scheduling schedules the replicas in a random number of
sending cycles (one cycle equals the interval of sending one
packet at a specific pacing rate). With Redundancy Adaption
and Replica Scheduling, ART can achieve consistently rapid
loss recovery with the minimized cost of redundant traffic.

The contributions are summarized as follows.

• We conduct large-scale measurement studies on the
wide-area loss characteristics in the wild, and dis-
close that dynamics and burstiness are two key fea-
tures of loss in practice (see §3). We also declare
that FEC-based loss recovery is far from satisfactory
due to poor adaptions to burst losses as well as
deployment issues (see §4).

• We identify the critical challenges when facing the
wide-area loss characteristics in the wild, and then
propose ART that can dynamically adjust the redun-
dancy level according to the loss dynamics, and can
randomly schedule the sending of each replica to
protect against bursts of losses (see §5 and §6).

1. The open-source implementation of ART upon QUIC is maintained
at https://github.com/litonglab/quic-art.
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Fig. 2: (a) Example of loss distribution in different regions.
(b) Example of loss dynamics in the same region at
different time periods in the wild.

• We implement ART prototype in the user-space
QUIC protocol and deploy it on both the testbed
and production network (see §6.3). The experimental
results show the practicability and profitability of
ART, in which ART can accelerate loss recovery with
the minimum extra traffic overhead by adjusting the
sender’s loss recovery capability. For example, ART
reduces the FCT by up to 34% for delay-sensitive
transmissions when suffering data reassembling star-
vation. ART also improves up to 26% of goodput
for throughput-intensive transmissions when suffer-
ing receiving buffer starvation. Furthermore, ART
achieves up to 90% of lower redundancy cost with
considerable recovery performance (see §7).

2 RELATED WORK

FEC-based loss recovery. The field of packet loss recovery
has seen many works related to FEC [1], [6]–[8]. However,
most of them can not effectively address the issue of burst
packet loss [6]–[8]. Although some work [1] has provided
solution to handle burst packet loss, they involve high im-
plementation complexity and require corresponding modifi-
cations on the client side, making them unsuitable for multi-
vendor scenarios. In contrast, ART is a lightweight design
that only requires server-side (sender-side) modification.

ARQ-based loss recovery. The TCP stack has proposed
a series of ARQ-based loss recovery improvements [9]–
[12]. Among them, FACK [13] and RACK-TLP [14] have
been proven to significantly reduce loss detection time in
many cases. In addition to these sender-side loss detection
algorithms, QUIC [15] and TACK [16] are able to detect loss
at the receiver side according to the monotonically increas-
ing packet number. These works, however, mainly rely on
rapid loss detection (i.e., optimizing Tsingle in Equation (2)).
In contrast, this paper focuses on reducing retransmission
rounds (i.e., optimizing N in Equation (2)), which is also a
key influence factor in ARQ-based loss recovery.

Redundant Retransmission. There also exist some studies
that employ the idea of redundancy, most of which are
applied in wireless sensor networks [17], [18]. Furthermore,
their redundancy level is often set to a fixed value [19], [20].
[21] also follows a similar approach of adding redundancy
only to lost packets. However, it is focused on WebRTC and
does not tackle the new challenges present in QUIC-oriented
scenarios, such as Receiving Buffer Starvation. The most
related work to ART is OR3 [22], which adopts a rule-based
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way to decide the redundancy level according to the re-
transmission round. However, our comparison experiments
show that there is still room to reduce the recovery time
and redundant traffic due to the dynamics of packet loss in
the wild. ART differs from OR3 in two main aspects. Firstly,
adjusting redundancy in ART is based on the network state
over a period of time, whereas OR3 adjusts redundancy
based solely on the reception of individual packets. There-
fore, ART’s redundancy adjustment is more stable than
OR3. Because the redundancy adjustment in ART will not
vary significantly due to differences in the retransmission
rounds of preceding and subsequent packets. Secondly, al-
though both ART and OR3 use a random replica scheduling
approach for packet scheduling, ART further restricts the
dispersion of packets (their latest send time) based on the
burst size. This additional constraint enables ART to better
accommodate the characteristics of loss burstiness.

ML-based Transmission Control. Many works [23], [24]
have already utilized deep learning, including some aim-
ing at improving network transmission performance [25].
However, Reinforcement Learning (RL) has been used to
tackle congestion control challenges. For instance, in [26],
multi-armed bandit algorithms are employed to adjust the
initial window for congestion control, aiming to enhance the
transmission time of small flows. In [27], RL is employed
to configure routing, addressing traffic engineering chal-
lenges in Software-Defined Networking (SDN). In [28], a
framework based on Partially Observable Markov Decision
Processes (POMDP) is used to model network congestion
and improve energy efficiency in data centers. However,
these endeavors have not applied RL to address packet
loss recovery issues. This paper marks the first instance of
applying RL specifically to loss recovery enhancement.

3 LOSS IN THE WILD: A MEASUREMENT STUDY

Logs from our production network (i.e., the ByteDance
public cloud) are collected from a random sample over two
weeks. Each log corresponds to a QUIC connection, which
contains sequence number, and packet sending and loss
information of multiple QUIC streams. We measure over
200,000 connections from different application scenarios in
different regions all around the world.
3.1 Loss Shows Dynamics
The standard deviation in loss rate can be used to indicate
how evenly the loss rate is distributed during the mea-
surement. We first explore the standard deviations of the
loss rate (every 5 minutes) of each connection in different
regions. Figure 2(a) shows the results. Although there are
regions with similar average packet loss rates, they have
different packet loss rate distributions. For example, Brazil
and Japan both have an average packet loss rate of 3.78%,
but Japan has the highest packet loss rate of 7.1% while Ar-
gentina has only 5.7%. Figure 2(b) further gives an example
of how the packet loss rate evolves. Specifically, the loss rate
is never constant and varies from 2% to 5% during 24 hours.
This confirms that loss shows dynamics in the wild.

3.2 Loss Shows Burstiness
Figure 3 gives an example of loss burstiness (denoted by red
blocks) in a randomly selected connection. We further ex-
plore the burst loss distribution in the production network.

Burst Loss Time

Bytes
Data Sent Data Acked Data Lost

Fig. 3: An example of loss burstiness in the wild. Data
is collected from real-world networks. Burst loss refers to
consecutive packet losses, and the small red block on the
left represents individual packet loss.

1 2 3 4-5 6-8 9-12 13+
Burst Loss

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

PD
F 0 50 100 150 200 250 300

Burst Loss

0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

90th
95th
99th

(a) Burst size of loss

0 1 2 3 4 5 6 7 8 9 10
Maximum Retransmission Times

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

PD
F 0 1 2 3 4 5 6 7 8 9    10+

Maximum
Retransmission Times

0.4

0.6

0.8

1.0

CD
F

(b) Max Retransmission times

Fig. 4: (a) Burst loss distribution in the wild. The x-axis
is the number of continuously lost packets. (b) Maximum
retransmission times distribution in the wild.

Figure 4(a) shows the results. Surprisingly, the probability
of only one packet being lost is not as high as imagined (i.e.,
37.2% ), instead, the probability of losing multiple packages
(≥ 2) together accounts for a larger proportion (i.e., 62.8%)
(see Figure 4(a)). Specifically, as illustrated in the sub-figure
of Figure 4(a), the 90th, 95th, and 99th percentile burst size
of loss (i.e., the number of continuously lost packets) is 13,
27, 125 respectively, showing extremely bursty packet loss.
Numerous factors contribute to the emergence of the phe-
nomenon of loss burstiness. Here we provide readers with
a duo of potential explanations worthy of contemplation.
First, it might be due to the queue management strategy [1]
or traffic handling policy [29] employed by the Internet
Service Provider (ISP). Moreover, wireless interference in
unstable access networks of end users [30] may be a reason.
3.3 Retransmission Loss is Ubiquitous
A packet might be retransmitted more than once before it is
correctly received by the receiver. By counting the number
of occurrences of each frame according to the QUIC stream
offset, we can further analyze how many times each packet
was retransmitted before successfully received. Given a
connection, its maximum retransmission times can be com-
puted as the maximum value of retransmission times among
all packets in a connection. Figure 4(b) shows the results
of the distribution of the maximum retransmission times
in the production network. We find that the proportion of
connections with maximum retransmission times of two or
more exceeds 43%. Among them, many connections have
certain packets that are retransmitted even more than 10
times (loss rate in these case around 9.6%). This retransmis-
sion loss is harmful to both delay-sensitive applications and
throughput-intensive applications, as we will discuss next.

4 WIDE-AREA LOSS RECOVERY: ISSUES AND
CHALLENGES

FEC and ARQ are two fundamental techniques for loss
recovery. In this section, let’s first discuss why we tend to
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Fig. 5: An example of FEC failure when encountering burst
loss. The group coding length is 4, and the number of
redundant packets (redundancy level) is 1.
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Fig. 6: FEC failure rate in the wild. The x-axis is the coding
length, where nss refers to the number of source symbols
and nrs refers to the number of repair symbols. The nss/3
means that for every 3 original packets, one redundant
packet is encoded (the same applies to nrs).

use ARQ rather than FEC in production networks. Next,
we will elaborate on the issues and challenges that must be
addressed in the legacy ARQ paradigm.

4.1 Why Not FEC?

Poor adaption to burst loss. FEC adds redundant packets to
the transmitted data, which allows the receiver to identify
and correct errors in the received data. However, as illus-
trated in Figure 5, when encountering burst loss and the
number of lost packets exceeds the FEC redundancy level,
the receiver may fail to recover, which is called FEC failure.
We further investigate the FEC failure rate of our production
network in a specific region over some time (with burst
loss as shown in Figure 4(a)), with the implementation of
FEC referenced from [31]. Figure 6 shows the results. It
is demonstrated that the percentage of connections expe-
riencing FEC failures ranges from 3% to 10% of the total
connections, with some cases having a failure rate of up to
12%. It is worth noting that a larger coding length leads to a
higher failure rate for FEC. This occurs because if packet loss
is detected and resolved through retransmission before the
transmission of redundant packets in a group is completed,
the failure of FEC takes place. The probability of FEC failure
increases with the length of coding in the group.

Poor generalization to application. There are some other
notable features of FEC that are important for reasoning
why FEC is not suitable for our production network: (1)
Cost-inefficient when no loss occurs. FEC continuously
sends redundant packets even in the absence of packet
loss, resulting in a complete waste of bandwidth. Although
selectively enabling or disabling FEC can be a potential so-
lution, the challenge lies in determining the optimal timing
to turn it on or off [6]. (2) Deployment issues in a multi-
supplier CDN market. FEC requires support from both the
client and server sides [32], [33], which poses challenges for

its universal deployment in our production network from
the perspective of a CDN vendor. This is because, in a
multi-supplier CDN market where different CDN vendors
serve a certain application, the application operator may
not necessarily include FEC support as a default option.
(3) Good for loss-sensitive CCAs but weak for non-loss-
based. FEC’s ability to reduce the packet loss rate perceived
by the sender side can be beneficial for congestion control
algorithms (CCAs) that are sensitive to packet loss [32], [33],
such as Reno and Cubic. However, the mainstream non-loss-
based CCAs like BBR in our production network benefits
less from FEC. This issue has already been addressed by [4]
and will not be discussed further in this paper.

4.2 Why ARQ?

As FEC may not always be the optimal choice, let’s consider
using ARQ. Here are a few reasons why ARQ could be a
better option.

Cost-efficient. From the perspective of CDN vendors, traffic
cost is an important metric. To minimize traffic costs, ARQ is
often considered a more effective approach than FEC. While
FEC typically involves the addition of redundant data to the
original transmission for error correction, ARQ relies on the
sender responding to requests from the receiver for retrans-
mission of lost data only when necessitated. This helps to
minimize unnecessary data transmission, reducing overall
costs. Although spurious retransmissions can sometimes
occur with ARQ, there are well-established detection algo-
rithms available to identify and address these issues [34].

Single-side deployment. Another major advantage of ARQ
is that it operates without requiring extra support from the
receiver. Optimizing ARQ algorithms typically only requires
modifications to the sender (i.e. CDN server), which is
particularly valuable in multi-supplier CDN markets where
receiver-side modifications can be expensive and unreliable.
By operating independently of the receiver, ARQ offers a
more flexible and resilient approach to loss recovery.

A single retransmission is not painful. One of the criticisms
leveled at ARQ is that it can introduce delays during the
packet recovery process. This is because it can take an
extended period (typically greater than one RTT) to detect
and retransmit lost packets. However, we argue that overall
the delay incurred by ARQ during retransmission is rela-
tively insignificant and adds only a few milliseconds to the
delivery time. This is largely due to the benefits afforded by
CDNs, which bring content closer to users and reduce end-
to-end latency for most Internet services. While multiple
retransmissions can cause excessive delays for a particular
packet, we believe that retransmitting a packet once is rarely
a problem as long as successful packet delivery can be
ensured. Considering the potentially high cost associated
with implementing FEC, we believe that using an enhanced
ARQ technology represents a more practical solution that
can address these concerns.

Ideally, successful delivery of a lost packet should only
require a single retransmission to the receiver. However, our
previous measurement studies have shown that retransmis-
sion loss is ubiquitous. Next, we will investigate the impacts
on transmission performance when a single retransmission
attempt is insufficient to successfully deliver a lost packet.
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only achieves bandwidth utilization of less than 25%.
Where bandwidth bw = 1 Gbps, rtt ∈ [100, 300] ms, and
average loss is 0.5%. The maximum receiving buffer of
TCP is 16 MB in the cloud end-hosts [22].

4.3 Delay-Sensitive Transmission Suffers From Data
Reassembling Starvation

Consider a distributed system that relies on RPC for inter-
process communication. If a critical RPC call is lost and
experiences a high recovery latency, the client’s request will
be delayed, and subsequent dependent operations may be
blocked. This can result in a significant increase in flow com-
pletion time, negatively affecting the responsiveness and
overall performance of the service. Real-world scenarios,
such as financial trading platforms or online multiplayer
games that heavily rely on quick response times, can suffer
from degraded user experience and potential financial losses
due to increased recovery latency.

Under these circumstances, the prioritizing loss recovery
attempts to mitigate receiver-side waiting time (Twait) for
the lost data and enables delivery of the follow-up data
(that has already been received) to the application layer.
As illustrated in Figure 7, we define Twait as the duration
between when a packet is sent and when the packet is first
received, and Tsingle as the duration between when a packet
is sent and when the packet is detected lost. Then we have

Twait = K · Tsingle +
RTT

2
(1)

where RTT refers to the round-trip time (RTT) and K refers
to the retransmission times of a specific packet before suc-
cessfully being received at the receiver. If a packet is never
lost and retransmitted, then K = 0. Given a certain loss
detection algorithm, we have Tsingle ∝ RTT . Furthermore,
given the RTT, we have Twait ∝ K ·RTT .

Based on the above analysis, we infer that delay-
sensitive transmission suffers from data reassembling star-
vation in the case of the large K . However, the current loss
recovery paradigms mainly rely on rapid loss detection (i.e.,
optimizing Tsingle) while ignoring retransmission times (i.e.,
optimizing K). For example, RACK [14] is regarded as the
state-of-the-art loss detection advancement that assures a
relatively deterministic Tsingle, i.e., Tsingle ≈ 1.25RTT . In
this case, Equation (1) is instantiated as Twait ≈ (1.25K +
0.5)RTT .
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Fig. 9: An example of the retransmission loss when apply-
ing redundant retransmission, where the retransmission
times K = max(k) = 4 and the retransmission rounds
N = max(n) = 2.

4.4 Throughput-Intensive Transmission Suffers From
Receiving Buffer Starvation

Transport protocols like TCP and QUIC [15] provide reliable
and ordered byte-stream transmission. As a result, before
being handed off to upper applications, the subsequent
packets (stored temporarily in the receiver’s queue) of the
lost packet will be stalled in the receiving buffer until the
“hole” (the lost data sequence space) is filled via retrans-
missions. However, retransmissions might be lost again.
Since the receiving buffer required by a connection is closely
related to the maximum times of retransmissions, we focus
on the metric of Kmax, the maximum value of K among all
packets in a connection, where K denotes the retransmis-
sion times of a specific packet. In general, given a certain
loss ratio and period, the higher the throughput, the larger
the Kmax [22].

Based on the above analysis, we infer that throughput-
intensive transmissions might suffer from receiving buffer
starvation in the case of a large Kmax. This issue is unre-
markable for transmissions when both throughput and loss
are low. However, when running under large-BDP and lossy
network conditions, the buffer starvation issues may sig-
nificantly impact the performance of throughput-intensive
transmissions. Figure 8 shows an example of how high-
throughput transmission bottlenecks the receiving buffer
in the Pantheon [35]. Based on the fact that the receiving
buffer is usually small (e.g., 16 MB in the c5.xlarge instances
of Amazon EC2) in modern wide-area Linux servers. It is
observed that buffer limitation makes TCP only achieve
bandwidth utilization of less than 25% even when there is
sufficient available bandwidth.

It’s worth noting that network operators often increase
the end-host buffer through protocol tuning to address
the capability mismatch between loss recovery and high-
throughput requirements. However, this approach is inef-
fective when operators only have control over one side of
the network, such as in public cloud services where CDN
vendors cannot modify the end devices.

In summary, it may cause both data reassembling starva-
tion and receiving buffer starvation when a single retrans-
mission attempt is insufficient to successfully deliver a lost
packet (i.e., when K > 1). Hence it becomes crucial to care-
fully manage loss recovery at the sender side, minimizing K
for each loss when data reassembling is excessively delayed,
and minimizing Kmax for all the losses in the connection
when the end-host buffer is insufficient. These efforts would
provide a valuable contribution from the perspective of
CDN vendors, which encourages the development of ART,
as we will elaborate next.
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5 THE ART OVERVIEW

The main objective of ART (Adaptive ReTransmission) is
to ensure the successful reception of each lost packet by
the receiver, minimizing the receiver-side waiting time of
each packet. However, to effectively implement ART in
production networks where cloud services (sender side)
charge based on traffic volume, it is vital to not only pri-
oritize the quick recovery of lost packets but also minimize
redundancy cost and prevent any detrimental impact on
regular packet transmission. Striking a balance between
rapid recovery and efficient resource utilization is crucial
for the practicality of ART in production networks.

5.1 Problem Formulation
The fundamental concept behind ART is to introduce re-
dundancy during retransmissions, i.e., redundant retrans-
mission. When considering redundant retransmissions, it is
necessary to re-evaluate the variability in waiting time on
the receiver side (represented by Twait). To address this,
we propose a novel concept called “retransmission round”
(designated as N ) to replace the retransmission times (K) in
Equation (1) when computing Twait:

Twait = N · Tsingle +
RTT

2
(2)

where N refers to the retransmission rounds of a specific
packet before successfully being received at the receiver.
Figure 9 illustrates an example of the difference between
N and K , where n represents the nth retransmission round
and k represents kth retransmission times. For each packet,
we have N = max(n) and K = max(k). Similar to Kmax,
we define the maximum retransmission round (Nmax) for a
connection that transmits multiple packets as

Nmax = max(N) (3)

In the absence of redundancy, these two terms (N and K)
are essentially interchangeable. However, in the presence
of redundancy, the retransmission times will accumulate
within the same retransmission round. Specifically in this
example, the sender retransmits 3 replicas of the lost packet
(i.e., k = 1, 2, 3) during the first retransmission round (i.e.,
n = 1). Generally, whenever a packet is retransmitted, the
count of retransmission times for that packet increases by 1.
However, only when all retransmitted packets for a specific
packet in a complete retransmission round are identified
as lost, will the retransmission rounds for that packet be
increased by 1.

Given M packets, each packet has a recovery time of
Tm
wait, (m = 1, 2, ...,M ). cm denotes the redundant traffic

cost required to deliver the mth packet successfully. This
paper aims to achieve the lowest recovery time of lost
packets with bounded redundant traffic costs. The problem
can be simply modeled as follows:

Z = min
M∑

m=1

Tm
wait, s.t.

M∑
m=1

cm ≤ C (4)

where C refers to the cost budget to deliver these M packets.

5.2 The ART Framework
ART is a sender-side modification to the protocol stack
whose key modules are illustrated in Figure 10. ART is fully

Redundancy 
Adaptation

Replica 
Scheduling

Loss 
Detection

Feedback

Send

Feedback

Receive

Lost
Packet

Time

ACK

Data

Replicas

Sender Receiver

Fig. 10: Key modules in ART. The yellow modules are
newly added by ART, and the blue modules are originally
included in QUIC.
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PktNo: Packet Number

Packet
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Adapater

Replica
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Replica 3

Time 0us
Time 65us
Time 300us

235 us

Send
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Fig. 11: An example of the ART workflow. The Redun-
dancy Adapter module generated three replicas (packet
numbers 21, 23, and 27), which were sent by the Replica
Scheduling module at 0 us, 65 us, and 300 us, respectively.

compatible with QUIC’s encryption logic, and the Redun-
dancy Adaptation becomes operational after the endpoint
completes the QUIC decryption process. Particularly, once a
loss is detected, ART adopts redundancy adaption to com-
pute the number of replicas of the lost packet that should
be retransmitted next. Given the number of replicas, ART
then adopts replica scheduling to determine the specific
time interval for sending out each replica from the sender.
To explain this more clearly, we further give an example of
the ART workflow in Figure 11. Assuming a packet (packet
number = 18) is detected lost. In this case, ART first runs
the redundancy adapter to compute the redundancy level
for packet 18, we assume redundancy level = 3. Then ART
runs the replica scheduler to determine when to send each
replica. For example, the 3 replicas should be sent in 0 us, 65
us, and 300 us, respectively. As a result, the replicas are sent
out with packet numbers 21, 23, and 27, respectively. Since
the 3 replicas are sent at various intervals, it can greatly
enhance the likelihood of a successful retransmission.

Redundancy adaptation. The redundancy level, denoted as
R, is defined as the number of replicas that should be resent
for a specific lost packet. Rn represents the redundancy
level within the nth retransmission round. For instance,
in the case of Figure 9, we have R1 = 3. We define the
redundancy cost as the total number of replicas that are sent
during transmission. Initially, a naive approach for ART
would be to use a fixed redundancy level for all rounds,
i.e., Rn = R (n = 1, 2, ..., N). However, our deployment
experiences have shown that this fixed approach to redun-
dant retransmission is suboptimal (high redundancy cost or
long recovery latency) due to the dynamic nature of packet
loss in real-world scenarios (see §6.1). Consequently, we in-
corporate redundancy adaptation to allow the redundancy
level to vary dynamically. To achieve this, we introduce the
Redundancy Adapter, which applies a test-and-verification
method to gradually learn the feature of loss dynamics and
to carefully select the most appropriate redundancy level
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Fig. 12: Cost and Performance of ART under different re-
dundancy levels, where bw = 100 Mbps and rtt = 100 ms.

for each retransmission round of lost packets. This ensures
that ART can adapt to the dynamics of packet loss while
minimizing the redundancy cost.

Replica scheduling. For each round of retransmission, more
than one replica might be injected into the network. Ini-
tially, a naive approach for ART would be to send all the
replicas (with the same retransmission round) at once if
the send window is sufficient. However, our deployment
experiences have shown that this burst send pattern may fail
to accelerate loss recovery due to the burst nature of packet
loss in real-world scenarios (see §6.2), that is, a loss event
usually contains multiple consecutive losses, the back-to-
back replicas might be all lost again under burst loss. So the
replicas should be carefully scheduled. Consequently, we
introduce the Replica Scheduler, which adopts randomization
to enable the replicas to be sent out in a random number of
sending cycles (one cycle equals the interval of sending one
packet at a specific pacing rate). This ensures that ART can
adapt to the burstiness of packet loss.

6 DETAILED DESIGN

In this section, we give the detailed design of ART for its
practical deployment.

6.1 Redundancy Adapter

We first elaborate on the design of the Redundancy Adapter
by answering the following questions below.

Why dynamic redundancy level matters? To answer
this question, we conducted an investigation into the
performance of ART under different loss rates (p =
2%, 5%, 8%, 10%) and different redundancy levels (R =
0, 3, 5, 8). As shown in Figure 12(a), when the redundancy
level increases, there is a corresponding rise in the redun-
dancy cost. On the other hand, the redundancy levels also
significantly impact the maximum retransmission rounds
(Nmax). As shown in Figure 12(b), the higher the redun-
dancy level, the lower the Nmax. Intuitively, the optimal
redundancy level should be set at the inflection point. How-
ever, the experimental results demonstrate that the inflection
points vary with the loss rates. We then infer that the
redundancy level should be set dynamically according to
network dynamics. This greatly motivates the design of the
Redundancy Adapter, as we will elaborate below.

How to set redundancy level dynamically? Primarily, we
establish the replica loss rate (pr) by dividing the number
of lost replicas by the total number of sent replicas. While it
is acknowledged that redundancy levels should be adjusted
according to the loss rates, it is imperative to consider pr

0 1 0 01 1 1 1 1 0

Acked Lost

Old New𝐿!"#"#
Fig. 13: An example of the sliding-window-based bitmap
queue. If a replica is acknowledged, a “0” is appended to
the queue. Otherwise, a “1” is appended to the queue.

𝐸 = 𝑅 ⋆ 1 − 𝑝!

Replica Number

Replica Loss Rate
𝐸<1

𝐸≥2

𝑅=𝑅+1

𝑅=𝑅−1

Noop Otherwise

Fig. 14: The design rationale of the Redundancy Adapter.

instead of the general packet loss rate (p) for a more accurate
design of the Redundancy Adapter.

In this paper, we propose a test-and-verification method
that uses a sliding-window-based way to predict pr accord-
ing to the historical packet delivery information. First of all,
we set up a bitmap queue at the sender. As illustrated in
Figure 13. When the sender receives an acknowledgment
for a redundant packet, a “0” is appended to the queue.
Otherwise, a “1” is appended to the queue, indicating that
the redundant packet is lost again. In this case, pr is com-
puted as the proportion of “1” in the queue, i.e., pr = c

Lqueue
,

where Lqueue is the queue length measured in the number
of packets, and c is the number of “1” in the queue. Then the
expected number of successfully delivered replicas (denoted
as E) can be computed as follows:

E = R · (1− pr) (5)

where R is the redundancy level within a retransmission
round. In general, to ensure the effectiveness of redundant
retransmission where we only send the number of replicas
that is exactly required by the loss recovery, we should
keep E ≈ 1. This is because the unnecessary traffic cost
arises when E > 1, and recovery latency arises when
E < 1. To accomplish this, a step-by-step online algorithm
is applied. As illustrated in Figure 14, when E < 1, then
R = R + 1; When E ≥ 2, then R = R − 1; Otherwise,
R remains unchanged. It is foreseeable that under certain
network conditions, R will fluctuate within a range rather
than converging to a fixed value. However, the mean value
of R will converge in a statistical sense.

Sensitivity analysis of Lqueue. Intuitively, a larger Lqueue

results in higher performance and higher redundancy cost,
albeit at the expense of increased runtime overhead. Con-
versely, a smaller Lqueue yields lower performance, lower
redundancy cost, and diminished runtime overhead. In
Figure 15, we give examples of the influence of different
Lqueue sizes on redundancy across diverse lossy links. It
is evident that, within identical network conditions, the
overall redundancy level remains relatively stable (goes up
very slowly) with the increase of Lqueue values. Note that
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pattern follows Gaussian distribution.
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Fig. 17: An example of replicas being sent separately after
being scheduled by the Replica Scheduler.

Lqueue should not be set too small because a small Lqueue

(e.g., Lqueue = 1) increases the randomness in the statistics
on pr , resulting in a higher redundancy cost. We further find
that from the perspective of performance, the results remain
similar. Hence, in this paper, we by default set Lqueue ≥ 10.
6.2 Replica Scheduler
Figure 16 shows an example where packet 18 is lost, and the
Redundancy Adapter generates three replicas with packet
numbers 21, 22, and 23. During a burst loss, these three
replicas cannot be received by the receiver. Therefore, when
burst loss occurs, relying solely on the redundant replicas
generated by the Redundancy Adapter is not sufficient.

To withstand burst loss, we introduce the Replica Sched-
uler to ensure prompt delivery of replicas to the receiver.
Instead of sending out all the replicas at once, the Replica
Scheduler disperses the multiple replicas into a certain num-
ber of sending cycles (one cycle equals the interval of send-
ing one packet at a specific pacing rate). This means replicas
are interspersed with normal packets. Replica Scheduling
now uses random method to distribute redundant packets.
In the future, we may implement a more scientific algorithm
for distributing them.

Figure 17 explains how the Replica Scheduler functions
in the event of burst loss. After packet 18 is lost, the
Redundancy Adapter generates three replicas. The Replica
Scheduler schedules these replicas to be sent at 0 us, 65 us,
and 300 us. It can be seen that the replica sent after 300 us is
successfully received by the receiver.

Given multiple replicas of a specific lost packet, we
define the escape space (denoted by escape space) of this
lost packet as the total number of sent packets from starting
sending its first replica to finishing sending its last replica.
For example, as shown in Figure 18(a), for the traditional

QUIC
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(b) Effect of random

Fig. 18: (a) The design rationale of the Replica Scheduler.
(b) The effect of random scheduling, where ART-fix and
ART-norand refer to a fixed redundancy level, with and
without Replica Scheduling, respectively.

QUIC, we have escape space = 1. For ART without apply-
ing the Replica Scheduler, the escape space of each packet
equals the redundancy level, i.e., escape space = R.

As shown in Figure 18(b), we used ART with fixed
redundancy and compared the scenarios with and without
Replica Scheduling to transfer small files. We found that,
under the same network conditions (including burst loss),
more replicas are generated when Replica Scheduling is not
used. This is because, without scheduling replicas, burst loss
leads to repeated losses of replicas, resulting in an overall
increase in redundancy.

We use B to denote the burst size of loss during trans-
mission. Burst size is just one attribute of the loss pattern.
Intuitively, when B ≤ R, the Replica Scheduler is not a
mandatory measure that should be taken. However, when
it meets B > R , ART depends on the Replica Scheduler
to expand the escape space, i.e., escape space ≥ B. This
assures that at least one replica “escapes” the burst loss
and is successfully delivered. On the other hand, all replicas
should be sent in one RTT to ensure an orderly control loop.
Based on these observations, we finally give the guideline
of how to determine the escape space as follows:

escape space = min(bdp, α ·Bmax) (6)

where bdp refers to the bandwidth and delay product, α
refers to a scaling coefficient (α ≥ 1), and Bmax refers to the
maximum burst size of the loss in the past several RTTs (e.g.,
5 ∼ 10 RTTs). In general, setting a large scaling coefficient
α (e.g., α = 5) enhances the tolerance to burst loss but also
may induce recovery latency. In most cases, we set α = 1.

6.3 Implementation

We implement ART in the user-space QUIC protocol based
on LSQUIC commit 850b0a3 [36], consisting of 600+ lines of
code. The open-source implementation of ART upon QUIC
is maintained at [37]. ART only requires modifying the
retransmission logic at the sender without interfering with
other components such as congestion controllers.

For the Redundancy Adapter implementation, we
reuse the function of send ctl handle regular lost packet()
to generate replicas with newly assigned packet num-
bers. These replicas are incorporated into the packet
chain called po loss chain. To manage retransmis-
sion rounds effectively, we add two additional vari-
ables to the packet properties. Specifically, the variable
po retrans times keeps track of the retransmission rounds,
while po retrans packet number records the packet num-
ber in each round. We also maintain a queue specifi-
cally designated to record the transmission states of repli-
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cas. When an ACK for a replica is received (detected by
lsquic send ctl got ack()), or when the packet is identified
as lost (detected by send ctl detect losses()), the corre-
sponding states in the queue are updated accordingly.

For the Replica Scheduler implementation, we reuse the
alarm function of lsquic alarmset set() and add a new
alarm AL ART SCHE in the alarm set. We also include
an attribute called po expected sent to record the expected
time at which the next replica should be sent. When the
AL ART SCHE alarm expires, the Replica Scheduler sends
out the replicas according to their po expected sent. To de-
termine the value of po expected sent, we randomly select
a time interval less than escape space, which is updated
each retransmission round according to the max burst size.

6.4 Discussion

Adaptability to traffic patterns. From the perspective of
traffic patterns, there are at least two types of traffic pat-
terns in real networks. One is the application-limited traffic
pattern, where the data-sending rate is constrained by the
application itself, and the network is not the bottleneck. The
other is the congestion-control-limited traffic pattern, where
the data-sending rate is limited by the available network
bandwidth. For the application-limited traffic pattern, our
solution is undoubtedly effective because it utilizes excess
network bandwidth to accelerate loss recovery. However,
for the congestion-control-limited traffic pattern, replicas
might not be sent if there is no available congestion window.
To address the issues under the congestion-control-limited
traffic pattern, in this paper, we introduce opportunism,
which allows replicas to be sent on time even when the
congestion window is insufficient. Opportunism ensures that
during congestion, replicas are given higher priority over
regular packets for transmission, thus effectively speeding
up loss recovery.

Interaction with congestion controller. Many congestion
control algorithms, such as Cubic and Reno, are based on
loss signals. Generally, the loss of each packet triggers a
loss signal, which is fed back to the congestion controller.
In the context of ART, there are multiple replicas in each
retransmission round. ART only passes a loss signal to the
congestion controller if and only if all replicas in a round
are lost. This means that if only some replicas in a round are
lost, the congestion controller will not receive a loss signal.
This approach minimizes the impact of redundancy on the
congestion controller.

Calculation granularity for N . QUIC does not retransmit
“packets” but rather retransmits “frames.” Therefore, even
though we add redundancy to packets, all stream frames
within the packets must be retransmitted. This means that
the maximum retransmission round for a lost packet is
determined by the round in which the last frame within
the packet is received. For example, suppose a lost packet
(with packet number 18) contains two frames, Frame 1 and
Frame 2. After being split by QUIC’s packet splitting mecha-
nism, during retransmission, these frames are scattered into
packets with packets 50 and 60, respectively. In this case, the
maximum retransmission round for packet 18 would be the
greater of the retransmission rounds of packets 50 and 60.

7 EVALUATION

In this section, we conducted experiments to investigate the
performance of ART in both the testbed and production
networks. We focused primarily on the following questions:
(1) What are the advantages of ART when compared with
existing technologies? (2) How does ART accelerate packet
loss recovery for delay-sensitive transmissions? (3) How
does ART accelerate packet loss recovery for throughput-
intensive transmissions? (4) What is the cost of using ART?
And (5) how does ART work in practice?
7.1 Methodology

Experiment setup. In our evaluation, we utilized two dis-
tinct networks to comprehensively assess the performance
of our approach, namely: (1) Trace-driven testbed network
using the Mahimahi [38] simulation software. This versa-
tile software allowed us to accurately replicate real-world
network conditions by replaying publicly available network
traces. Burst loss is also simulated using Mahimahi’s limited
buffer. The credibility and widespread adoption in numer-
ous research papers [16], [39] further solidify its suitability
for our simulations. (2) Production network deployment
involved the implementation of ART on a QUIC server,
which was generously provided by ByteDance CDN service.
This deployment encompassed a diverse array of network
links and user profiles, providing a comprehensive and
practical assessment of our approach’s effectiveness in real-
world scenarios.

Schemes. Throughout our subsequent analyses, we com-
pare ART with the following baselines:

• QUIC: The traditional QUIC (LSQUIC commit
850b0a3 [36]) without ART or FEC. By default, QUIC
adopts the traditional ARQ where it retransmits only
one replica at a time when a packet is detected lost.

• OR3: The QUIC with OR3 [22], the pioneering ap-
proach on redundant data transmission. Note that
OR3 adopts a variable redundancy level (R = 2n−1),
where n denotes the nth retransmission round.

• FEC: The QUIC with FEC, which adopts the block
codes [40] as the error correcting codes. Note that
FEC can be implemented not only with block-
based schemes but also with random linear coding
schemes. Here, we use the more widely applied
block-based schemes for illustration. The block codes
approach divides the packets into different blocks.
The redundancy ratio of FEC is quantified as the
proportion between the count of regular data packets
and the count of redundant packets present in each
block. For example, a redundancy ratio of 9:1 means
9 data packets are used to create 1 redundant packet.
When one of these 10 packets in the block is lost, the
9 data packets can still be recovered.

• We also introduce some variants of QUIC. For ex-
ample, QUIC (R = 1) refers to the QUIC that
adopts a fixed redundancy level (R = 1) and QUIC
(R = 2n+1) refers to the QUIC that adopts a variable
redundancy level (R = 2n+ 1), where n denotes the
nth retransmission round.

Traffic Patterns. In our evaluation, we measure various
types of objects, encompassing both file transfers and RPC
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Fig. 19: Overall performance comparison between ART
and other schemes. The network condition is set as bw =
100 Mbps and p = 4%.
requests. File transfers have been subjected to evaluation in
both testbed networks and production networks, whereas
RPC requests have exclusively undergone production-
network measurement. The size of RPC requests adheres to
the actual body sizes observed on a real-world platform, en-
suring the authenticity of our assessment. To ensure a com-
prehensive evaluation, we have included a diverse range
of file sizes, spanning from tens of kilobytes to hundreds
of megabytes, thus providing a thorough analysis of the
system’s performance across different data loads.

Metrics. In delay-sensitive scenarios, our attention is di-
rected toward crucial metrics such as packet recovery time
and FCT. Conversely, in throughput-extensive scenarios, our
primary consideration centers around achieving optimal
goodput. Furthermore, in both of these contexts, meticulous
scrutiny is given to factors like the (maximum) retransmis-
sion rounds and redundancy cost. The former serves as a
reflection of performance, while the latter provides insights
into the associated overhead.

7.2 Overall Performance
Comparison with QUIC and OR3. The performance is rep-
resented by the maximum retransmission round (Nmax) and
the cost is represented by the redundancy cost. We compare
the performance and cost between ART and multiple QUIC
variants by transferring 100MB files in the testbed with
bw = 100 Mbps, rtt = 30 ms, and p = 4%. Figure 19
shows the results. The findings from our investigation af-
firm the superiority of ART in multiple aspects. Notably, it
boasts the smallest Nmax, outperforming all the other QUIC
variants. Additionally, ART exhibits a remarkable advantage
by having less redundancy cost when juxtaposed with its
counterparts. This demonstrates that ART can reduce the
recovery time of lost packets without imposing significant
redundancy costs.

Note that both OR3 and ART accelerate loss recovery,
however, ART achieves better performance-cost efficiency.
This is due to the adoption of the Redundancy Adaption
in ART. To explain this more clearly, we further explore
the differences between ART and OR3 under more types
of network conditions. As shown in Figures 20 to 21, we
run tests in the testbed with file sizes ranging from 200
KB to 1 MB, packet loss rate ranging from 1% to 10%.
We observe that ART substantially reduces the redundancy
costs, especially in scenarios with lower packet loss. For
example in Figure 21, when p = 10%, ART reduces the costs
by 12% ∼ 40%. While in Figures 20, when p = 1%, the
reduction of costs of ART increases to 75% ∼ 90%. This
is because ART is designed based on network feedback,
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Fig. 20: (a) The average value of transmitting 1000 files
of size 1MB each with a packet loss rate of 1%. (b) The
average value of transmitting 1000 files of size 200KB each
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200Mbps
100ms

10Mbps
100ms

10Mbps
20ms

200Mbps
20ms

0

20

40

60

80

100

120

Re
du

nd
an

cy
 C

os
t

Cost of ART
Cost of OR3

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6

N m
ax

Nmax of ART
Nmax of OR3

(a) File size=1MB loss=10%

200Mbps
100ms

10Mbps
100ms

10Mbps
20ms

200Mbps
20ms

0

5

10

15

20

25

30

35

Re
du

nd
an

cy
 C

os
t

Cost of ART
Cost of OR3

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0

N m
ax

Nmax of ART
Nmax of OR3

(b) File size=200KB loss=10%

Fig. 21: (a) The average value of transmitting 1000 files
of size 1MB each with a packet loss rate of 10%. (b) The
average value of transmitting 1000 files of size 200KB each
with a packet loss rate of 10%.
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Fig. 22: Performance comparison between ART and FEC.

adapting to the network conditions, and requiring fewer
replicas when the network performs well. In contrast, OR3
relies solely on the packets themselves and does not react to
external network factors, leading to nearly constant redun-
dancy levels across various packet loss rates.

Comparison with FEC. Since ART is proposed as an ARQ-
enhanced scheme that selectively incorporates FEC for lost
packets, it is necessary to compare the performance and cost
between ART and FEC. In this experiment, the redundancy
ratio of FEC is set to 9:1 to assure a relatively low redun-
dancy cost, the network condition is set as bw = 100 Mbps,
rtt = 20 ms, and p = 4%. We investigate both the FCT as the
performance and the redundancy cost as the cost. Figure 22
shows the results. It reveals that, on the whole, ART does not
yield a noteworthy enhancement in FCT when juxtaposed
with FEC. However, it significantly reduces the redundancy
cost, minimizing the redundant packet occurrences in com-
parison to FEC. This demonstrates that ART can achieve a
good trade-off between performance and cost.

7.3 Mitigating Data Reassembling Starvation of Delay-
Sensitive Transmissions
According to Equation (2), the delay-sensitive transmission
suffers from data reassembling starvation in the case of a
large N , the retransmission round of lost packets. To explore

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2025.3558020

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



11

0 1 2 3 4 5
N

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

(a) ∆N

0 200 400 600
Twait (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Twait = 3.23

Twait = 19.48
Twait = 78.48 90th

99th
50th

(b) ∆Twait

Fig. 23: (a) The distribution of the reduction of retrans-
mission rounds. (b) The distribution of the reduction of
recovery latency.

how ART tackles this issue, we first investigate how ART
reduces N , and then investigate how ART reduces the loss
recovery latency Twait. We have conducted a comprehensive
series of measurements using the testbed to analyze the
distributions of N and Twait during the transmission of 100
MB files. Specifically, the packet loss rate is varied within
the range of 1% to 10%. The bandwidth is varied within the
range of 10 Mbps to 200 Mbps, while the RTT is set to span
from 20 ms to 100 ms.

Reducing retransmission rounds of lost packets. We com-
pute the reduction of the retransmission round (∆N ) as
∆N = Nquic−Nart, where Nquic denotes the retransmission
round of a packet in traditional QUIC without applying
ART and Nart denotes the retransmission round of the
packet in QUIC applying ART. As shown in Figure 23(a),
we explore the distribution of ∆N by running tests with
the traditional QUIC and ART. It is noteworthy that we
have tried our best to make the measurement conditions
similar for ART and QUIC in each test. It is observed that
in most cases ∆N keeps the value of 0, this is because most
losses can be recovered via a single retransmission round.
However, it also shows that ART may significantly reduce
the retransmission rounds of lost packets, especially in the
worst cases. For example, ∆N is up to 5 when the packets
are excessively lost.

Reducing loss recovery latency. We compute the reduction
of the loss recovery latency (∆Twait) as ∆Twait = T quic

wait −
T art
wait, where T quic

wait denotes the recovery latency of a packet
in QUIC without applying ART and T art

wait denotes the
recovery latency of the packet in QUIC applying ART. As
shown in Figure 23(b), we explore the distribution of ∆Twait

by testing the traditional QUIC and ART. It is observed
that ART significantly reduces the recovery latency of lost
packets. Specifically, the 50th, 95th, and 99th percentile
∆Twait are 3.23 ms, 32.83 ms, and 78.48 ms, respectively.
Compared with the magnitude relative to RTT (i.e., [20, 100]
ms), this shows remarkable recovery latency reduction.

7.4 Mitigating Receiving Buffer Starvation of
Throughput-Intensive Transmissions

The throughput-intensive transmission suffers from receiv-
ing buffer starvation in the case of a large Nmax, the
maximum retransmission round among all lost packets. To
explore how ART tackles this issue, we first investigate
how ART reduces Nmax, and then investigate how ART
improves the goodput.
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Fig. 24: (a) An example of the relationship between Nmax

and goodput. (b) Performance in the case of receiving
buffer starvation.
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Fig. 25: QoE Comparison between ART and QUIC.

Reducing maximum retransmission round. Figures 20 to 21
illustrate the average value of the maximum retransmission
rounds under different network conditions. For example, in
Figure 20, when p = 1%, ART’s reduction of Nmax varies
across different network environments, ranging from 3% to
16% for the transmission of 200KB-sized files, and from 13%
to 16% for the transmission of 1MB-sized files. Similarly, in
Figure 21, when p = 10%, ART’s reduction of Nmax varies
across different network environments, ranging from 7% to
26% for 200KB-sized files and from 9% to 13% for 1MB-sized
files. We can conclude that OR3 is already quite excellent
in terms of the maximum retransmission rounds metric.
However, our comparison experiments show that there is
still room to reduce this metric.

Improving goodput. As shown in Figure 24(a), we give an
example of the relationship between Nmax and goodput,
where bw = 100 Mbps, rtt = 300 ms, p = 5%, and
receiving buffer size = 8 MB. The average Nmax is obtained
from 100 runs of each scheme. It is demonstrated that ART
greatly increases the goodput (orange line) by decreasing
the Nmax (blue dashed line). As mentioned in §4, a smaller
Nmax alleviates receiving buffer starvation. Figure 24(b)
further shows the case of how ART performs under different
receiving buffer sizes. It is observed that ART still fills up the
pipe when the receiving buffer size is insufficient for QUIC.
In particular, ART improves up to 28% of goodput when
receiving buffer size = 8 MB. We believe that this can be
attributed to ART’s efficient loss recovery.

7.5 Improvement on QoE

In this experiment, we set up the video playback client
using the DASH protocol [41]. Both the client and server
utilize LSQUIC to transmit video chunks, and those asso-
ciated with the same video are conveyed through a shared
LSQUIC connection. Mahimahi [38] is employed to simulate
the network environment for transmission. The simulated
network conditions are derived from Mahimahi’s Verizon-
LTE-driving trace file, incorporating a 30 ms RTT and a 10%
packet loss rate. Furthermore, the DASH videos employed
in our study were sourced from [42], with a duration of
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Fig. 26: Real-world deployment. The optimization ratio is
computed as FCTquic−FCTart

FCTquic
, where FCTquic and FCTart

denote the FCT of QUIC and ART, respectively.

approximately 600 seconds, covering a bitrate spectrum
from 44 Kbps to 3.9 Mbps. While there exist numerous
bitrate adaptation algorithms for the DASH protocol [43],
[44], this paper’s primary focus is not on these algorithms
but rather on the transmission protocol itself. Consequently,
we chose to use the basic bitrate adaptation scheme that uses
only the segment download rate for our assessments [44].
We compare the QoEs of video streaming when ART and
QUIC are used as transport protocols, respectively. The QoE
metrics include the average bitrate during video playback,
rebuffering times, and rebuffering duration.

Figure 25 shows the results. It is demonstrated that ART
outperforms QUIC by 7.9% in average bitrate, increasing
from 254 Kbps to 274 Kbps. In terms of the times of video
playback rebuffering, ART exhibits an 11.6% reduction com-
pared to QUIC, decreasing from 82 to 73. Furthermore,
concerning the duration of video playback rebuffering, ART
demonstrates a 27.9% decrease compared to QUIC, decreas-
ing from 322 s to 251 s. These improvements in QoE are
attributed to the faster loss recovery of ART.

7.6 The CPU overhead of Using ART

ART is a lightweight packet loss recovery solution. It does
not impose a large computational overhead on the CPU. To
demonstrate this, we use two machines to act as the sender
and the receiver. We set QUIC to run on a single core at
the sender side. The CPU utilization of running QUIC, ART,
and FEC on the sender side was counted separately with
the packet loss rate set to a constant value of 5% without
limiting the bandwidth and delay. The use of ART brings
about an additional CPU consumption of 0.18% and FEC
brings about an additional consumption of 0.92% compared
to the traditional QUIC (without applying any additional
means of packet loss recovery). This reveals that the CPU
overhead of using ART is negligible in most cases.

7.7 Real-world Deployment

To verify that ART indeed accelerates packet recovery
speed, we used the actual FCT on real-network as our mea-
surement metric. Particularly, we compute the optimization
ratio as FCTquic−FCTart

FCTquic
, where FCTquic denotes the FCT of

QUIC without applying ART and FCTart denotes the FCT
of QUIC applying ART.

Setup. We conducted comprehensive A/B testing of two key
scenarios: RPC transmission and small file downloading.
In the RPC transmission scenario, we analyzed data from
3.3 million QUIC connections spanning an entire day on a
4G Mobile Network. This data provided valuable insights
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Fig. 27: Performance and redundancy cost comparison
among ART variants.

into the performance and efficiency of the RPC requests.
For the small file transfer scenario, where each file size
was approximately 3MB, we collected real-network data
from users located in diverse geographical areas. The data
was gathered using the bonree [45] platform and comprised
over 26,000 requests spanning a week. Notably, these clients
generated transfer requests at an impressive rate of 100
times per second.

Result. Figure 26(a) presents the average FCT improvement
proportion of ART over native QUIC in an RPC transmis-
sion scenario under varying packet loss rates. The graph
demonstrates that the optimization effect becomes more
pronounced as the packet loss rate increases, with improve-
ments reaching approximately 34%. This phenomenon can
be attributed to the diminished effectiveness of the loss
recovery algorithm at higher packet loss rates, and ART
effectively compensates for this deficiency. Figure 26(b) pro-
vides a comparison of FCT across different quantiles. Addi-
tionally, in the small file downloading scenario, we observed
an overall reduction in FCT of about 2%. Our deployment
experience further shows that this reduction is especially
significant for users with higher access bandwidth.

8 FURTHER DISCUSSIONS: WHETHER
REINFORCEMENT-LEARNING-BASED REDUNDANCY
ADAPTERS WORK BETTER?

By default, the Redundancy Adapter in ART uses the test-
and-verification method to determine the redundancy level
upon retransmissions. However, it is also interesting to
answer the question of whether applying machine-learning-
based Redundancy Adapters works better. Recognizing the
absence of a universally defined “ground truth” for the
retransmission problem, we have opted against employing
supervised learning. Anticipating the next action according
to detailed previous records of network state is a promis-
ing approach. Reinforcement learning (RL) stands out as a
widely embraced machine learning technique ideally suited
for our requirements. We used two typical reinforcement
learning methods: multi-armed bandit and DQN (Deep Q-
Network), which were referred to as ART-MAB and ART-
DQN in the subsequent sections. ART-MAB includes the hy-
perparameter η, which represents the penalty factor, while
ART-DQN includes the hyperparameter γ, which represents
the magnitude ratio between rewards and penalties. For
details on the design and implementation of these two
methods, please refer to Appendix A.
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8.1 Experimental Comparison

Experiment setup. We primarily evaluated the transmis-
sion performance among ART, ART-DQN, and ART-MAB
in the testbed. Our testbed simulates the network envi-
ronment using Mahimahi. We use reinforcement learning
to determine the optimal redundancy level under varying
packet loss patterns. To isolate the effects of bandwidth and
RTT, we keep these conditions constant across experiments
while systematically varying packet loss rates. Files were
transmitted using these three algorithms under the same
trace (Verizon-LTE in Mahimahi), the same delay (30 ms),
and different packet loss rates (1%-10%). We transmitted
both large and small files, with large files being around
200MB and small files around 1MB. Each experiment lasted
approximately 4 hours. In our experiments, we set η = 1.01.

Convergence time. To mitigate the impact of limited data on
the model’s performance, we compared various algorithms
under consistent network conditions. The runtime for the
multi-armed bandit algorithm exceeded 9 hours, and the
training time for DQN surpassed 2 days.

Overall performance. Examining Figure 27, it is evident that
the values of Nmax for both the MAB-EG and the MAB-UCB
surpass those of ART. In the case of ART-DQN with varying
γ parameters, Nmax aligns with ART only when γ is set
to 1.05; otherwise, it exceeds the value observed for ART.
Figure 27 also demonstrates that the MAB-EG achieves the
lowest redundancy cost, whereas ART displays the highest
redundancy cost. When considering the same Nmax, ART-
DQN’s redundancy cost is only lower than ART when the γ
parameter is set to 1.05, resulting in a reduction of 7.4%.

ART’s performance with the test-and-verification
method is slightly lower than ART-MAB, yet the gap is not
considerable. It outperforms ART-DQN, albeit the enhance-
ment is minimal. Please refer to Appendix B for more de-
tailed experiments. Overall, the disparities in performance
among these three approaches are minor.

CPU Overhead. We conducted CPU overhead measure-
ments for ART, ART-MAB, and ART-DQN within a network
simulation using the Mahimahi tool, factoring in both server
and client components. Specifically, we utilized a trace
named Verizon-LTE-driving, featuring a delay of 30ms and a
packet loss rate of 10%. Our findings indicate that adopting
ART results in an additional CPU overhead of 0.68% while
employing ART-MAB incurs an extra 0.65% CPU overhead.
Conversely, the implementation of ART-DQN introduces a
significantly higher overhead of 54.64%, with model execu-
tion alone accounting for 53.69% of the additional overhead.
This indicates that the CPU overhead of ART and ART-MAB
are quite similar, while ART-DQN incurs significantly higher
overhead compared to both of them.

Conclusion. The performance of the multi-armed bandit
is slightly less favorable than ART, be it in terms of fine-
grained packet recovery time or coarse-grained Nmax. Nev-
ertheless, the redundancy is noticeably reduced compared
to ART. As for DQN, Nmax under various hyperparameters
can occasionally match ART, while the overall packet recov-
ery time is slightly inferior to both ART and the multi-armed
bandit. In summary, RL-based Redundancy Adapters work
similarly to the test-and-verification Redundancy Adapters

from the perspective of performance and redundancy cost.
However, the test-and-verification method significantly out-
performs the RL-based one from the perspective of conver-
gence time and CPU overhead. This reveals that the original
ART with the test-and-verification method works better
than expected and seems more practical for production
network deployment.

9 CONCLUSION

Retransmission itself does not hinder slow recovery, it is
the loss of retransmission that becomes the real obstacle.
Simple but useful, ART is essentially proposed as an ARQ-
enhanced scheme that selectively incorporates FEC for lost
packets without any modifications to the receiver/client
side. The primary goal of ART is to address data reassem-
bling starvation and receiving buffer starvation by consid-
erably reducing the recovery time of lost packets without
imposing significant redundancy costs. The real-world de-
ployment experience reaffirms the viability of ART as an
advantageous option for CDN vendors seeking to enhance
their competitiveness in a diverse and competitive market
landscape with multiple suppliers.
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