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Abstract
Cloud radio access network (C-RAN) and mobile edge computing (MEC) have emerged as promising candidates for the 
next generation access network techniques. Unfortunately, although MEC tries to utilize the highly distributed computing 
resources in close proximity to user equipments (UE), C-RAN suggests to centralize the baseband processing units (BBU) 
deployed in radio access networks. To better understand and address such a conflict, this paper closely investigates the MEC 
task offloading control in C-RAN environments. Most prior work handling offloading control falls in the general category 
of resource allocation optimization. However in this paper, we focus on the perspective of matching problem. Our model 
smartly captures the unique features in both MEC and C-RAN with respect to communication and computation efficiency 
constraints. We divide the cross-layer optimization into the following three stages: (1) matching between remote radio heads 
(RRH) and UEs, (2) matching between BBUs and UEs, and (3) matching between mobile clones (MC) and UEs. By applying 
the Gale-Shapley Matching Theory in the duplex matching framework, we propose a multi-stage heuristic to minimize the 
refusal rate for user’s task offloading requests. Trace-based simulation confirms that our solution can successfully achieve 
near-optimal performance in such a hybrid deployment.

Keywords  Computation offloading · Cloud radio access network · Mobile edge computing · Offloading control

1  Introduction

User equipment (UE), such as smartphone and wearable 
device, is playing an important role in new application sce-
narios including virtual reality (VR), augmented reality 
(AR) and cloud gaming etc. While resource-constrained UEs 
(CPU, GPU, memory, storage capacity, and battery lifetime) 
have driven a dramatic surge in developing new paradigms 

to handle computation intensive tasks Kumar (2010) (for 
example, computation intensive applications requiring huge 
computing capacity are not suitable to run in mobile or port-
able devices). As shown in Fig. 1, Mobile cloud comput-
ing (MCC) Dinh (2013) provides a solution where UEs 
offload computation to the remote resourceful cloud [e.g., 
EC2 Amazon (2018)], thereby saving processing power and 
energy. However, the cloud in MCC scenarios is usually in a 
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wide area network (WAN), and it is difficult to control delays 
and jitters at the WAN scale. Therefore offloading tasks to 
the public cloud may suffer from high latency via the Inter-
net Safaei (2005). For example, AR requires low latency 
in order to provide correct information according to user 
location and orientation, while offloading tasks to remote 
cloud may incur information distortion due to delayed data 
transmission. To accomplish this, mobile edge computing 
(MEC) Hu (2015) and Beck (2014) is proposed where UEs 
offload computation intensive tasks to a computing resource-
rich location, within radio access networks (RAN) and in 
close proximity to UEs.

On the other hand, task offloading generates data inten-
sive workloads, which may become one of the main influ-
ential factors of the unprecedented mobile traffic growth 
Ahmed (2015). It has been predicted that mobile traffic 
will increase exponentially to 100 times by the year 2020 
Andrews (2014). The dynamics of substantially increased 
data rates requires that cellular infrastructure must be flex-
ible and reconfigurable, supporting simplified deployment 
and management of RANs. As conventional radio access 
network may incur high cost, latency and inefficient data 
exchange (China Mobile Research Institute 2011), it lacks 
the efficiency to support centralized interference manage-
ment and the flexibility to migrate services to network edges 
for computation intensive applications.

To ensure highly efficient network operation and flexible 
service delivery when handling mobile Internet traffic surg-
ing, cloud radio access network (C-RAN) (China Mobile 
Research Institute 2011; Wu 2012) brings cloud computing 
technologies into mobile networks by centralizing baseband 
processing units (BBU) of RAN. It moves BBU from tra-
ditional base stations to the cloud and leaves remote radio 
heads (RRH) distributed geographically. RRHs are con-
nected to BBU pool via high bandwidth and low-latency 
fronthaul. The BBU pool is realized by virtual machines 

(VM) in data centers, and the centralized processing enables 
BBU to be dynamically configured and shared Tang (2015). 
In this case, with the transition from a conventional hard-
ware based environment to a software based infrastructure, 
C-RAN can achieve flexible matching between RRHs and 
BBUs on demand.

To summarize, C-RAN has emerged as a replacement for 
the next generation access network. Prior work has proposed 
the hybrid deployment of C-RAN with MCC Wang (2016a, 
b), however, this integration still suffers the bottleneck intro-
duced by MCC (e.g., long latency). As mentioned above, 
MEC is a promising replacement of MCC in the latency-
sensitive scenarios. It is worth mentioning that C-RAN uses 
centralized BBU to do baseband processing, while MEC 
handles distributed task offloading by shifting computation 
capacity from a public cloud to an edge cloud. Since MEC 
usually works with distributed base stations in conventional 
RANs, it is quite interesting to see if the MEC mobile off-
loading still works in C-RAN environments Li (2017).

Figure  2 shows the hybrid deployment of C-RAN 
with MEC1 for computation offloading. Connected with 
geographically distributed RRHs and centralized BBUs, 
UEs get access to VMs, called mobile clones (MC), in a 
mobile cloud for computation offloading. For computation 
offloading requests, data is transmitted to MCs by base sta-
tions (composed of RRHs and BBUs) via uplinks. Once 
processed by an MC in the mobile cloud, the results will 
be returned to UEs via downlinks. As offloading control 
mainly focuses on uplink optimization, we calculate the 
completion time of task offloading as the sum of the data 

Fig. 1   Evolution progress Fig. 2   Computation offloading architecture

1  The MEC platform is implemented by an edge cloud in close prox-
imity to the BBU pool. The transmission latency from the MEC cloud 
to BBUs can be ignored compared to the latency from the MCC 
cloud to BBUs. Since the MCC cloud is usually in WANs far away 
from the radio access network, we call it MEC other than MCC in the 
hybrid deployment.
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transmission latency via wireless communication and the 
task processing time on MCs.

Assume RRHs, BBUs and MCs are heterogeneous (e.g., 
different loads and amount of resources), then the differ-
ent matching among UEs, RRHs, BBUs and MCs results 
in different task offloading efficiencies. In particular, data 
transmission latency depends on the assignment of both 
RRHs and BBUs, and task processing time depends on 
the MC assignment. However, the UE interaction makes it 
challenging to directly assign a UE’s most satisfied RRH, 
BBU or MC to them. This interaction may affect the task 
offloading efficiency in two aspects: (1) the wireless trans-
mission data rate will decrease with poor channel qualities 
between UEs and RRHs, (2) while the baseband process-
ing speed of BBUs and task processing speed of MCs will 
be slowed down when overloaded. The former is called 
communication efficiency, and the latter is called compu-
tation efficiency.

For offloading control, we define refusal ratio as the 
proportion of offloading tasks that are not able to meet 
their deadlines. Then this paper is devoted to the efficient 
offloading control by addressing the assignment problem: 
how to assign RRHs, BBUs and MCs to UEs to mini-
mize the refusal ratio among all the offloading requests? 
Different from the prior solutions of resource allocation 
Wang (2016a, b), Sardellitti (2015) and Tang (2015) and 
admission control Ha (2014a, b), we focus on the match-
ing problem. Moreover, we take into account the task off-
loading efficiency not only in wireless transmission but 
also in cloud computing, which is new and challenging in 
achieving efficient MEC task offloading control in C-RAN 
environments.

Motivated by these observations, we first formulate the 
joint assignment among UEs, RRHs, BBUs and MCs, which 
is unfortunately NP-Hard. By applying the duplex match-
ing framework based on the classic Gale-Shapley Matching 
Theory, a multi-stage heuristic is finally given to minimize 
the refusal rate for UE’s task offloading requests. Our major 
contributions are summarized as follows:

–	 We handle the offloading control with a new perspective 
that focuses on the joint RRH, BBU and MC matching 
problem, where a 0-1 programming model capturing the 
unique features in both MEC and C-RAN is proposed 
(Sect. 4).

–	 We divide the optimization problem into three stages 
including the UE-to-RRH stage, the UE-to-BBU stage, 
and the UE-to-MC stage, and a multi-stage heuristic for 
efficient offloading control is proposed (Sect. 6).

–	 We further conduct a trace-based evaluation to show that 
our solution can achieve the near-optimal performance 
for MEC task offloading control in C-RAN environments 
(Sect. 7).

2 � Related work

C-RAN is a cloud based, centralized, and collaborative 
radio access network, which was proposed by China 
mobile in 2009 and soon received a large amount of inter-
ests (China Mobile Research Institute 2011). Moreover, in 
2015, another cloud-based technology, i.e., mobile edge 
computing was launched by European Telecommunica-
tions Standards Institute (ETSI), which aims to bring cloud 
services closer to UEs ETSI (2018) such that users can 
enjoy high data rate, low latency and jitter services.

Cai (2014) enabled cloud services in the Internet, serv-
ing UEs by using a split-TCP proxy. However, the Internet 
may introduce large latency to the transmission, which 
may not be able to complete tasks within the required time 
limits. Wang (2016a, b) studied the joint resource alloca-
tion in C-RANs with MCC under the time constraints of 
the given tasks. Also, Sardellitti (2015) studied joint opti-
mization of radio and computational resources for MEC 
combined with cellular networks. Tang (2015) studied the 
cross-layer resource allocation with elastic service scal-
ing in C-RANs. Nevertheless, all the above work Wang 
(2016a, b) Sardellitti (2015) Tang (2015) fell in the gen-
eral category of resource allocation optimization, without 
considering the optimal matching between users (e.g., 
UE), communication resource (e.g., BBU) and comput-
ing resource (e.g., MC).

Moreover, Ha (2014a) proposed cooperative transmis-
sion in C-RANs considering cloud processing constraints 
by allocating different BBUs and RRHs to different UEs. 
However, this paper did not consider the admission control 
scheme yet. Ha (2014b) moved a step further by consid-
ering admission control in C-RANs under the fronthaul 
constraints. Both of the two papers only consider commu-
nication efficiency, other than considering cloud service 
computation efficiency as well.

Thus, to address the above challenges, we focus on the 
perspective of multi-stage RRH, BBU and MC assign-
ments, and design a duplex matching framework based 
on the classic Gale-Shapley Matching Theory. To the best 
of our knowledge, no prior work has used the multi-stage 
matching algorithm to solve the offloading control problem 
in C-RANs with MEC, taking into account both commu-
nication efficiency and computation efficiency.

Author's personal copy
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3 � Offloading control: background 
and framework

This section clarifies the computation offloading back-
ground and the offloading control framework in C-RANs 
with MEC.

3.1 � Computation offloading

Facing at the growing requirement for running resource-
demanding applications, computation offloading expands 
the user base to the vast number of less powerful devices 
(e.g., mobile phones and tablets). For example, the indus-
trial pioneers such as Gaikai (2018) and Onlive (2018) 
suggested a new generation of online gaming based on 
cloud computing platforms. For most 3D online games 
(e.g., Battlefield 3, a highly popular first-person shooter 
game), the recommended system configuration is a quad-
core CPU, 4 GB RAM, 20 GB storage space, and 1 GB 
video memory. However, the newest Samsung Galaxy or 
iPhone can only approach to the minimum system require-
ments, not to mention mobile devices whose hardware 
capability is limited. In this case, by utilizing the powerful 
and elastic service capacity offered by cloud computing, 
task offloading can meet the hardware/software require-
ments of user consoles. In particular, Gaikai and Onlive 
deploy cloud-based proxy to act as a game console/client 
and only stream game screen/interactions to end users.

Conventional cloud-based computation offloading offers 
great benefits for both users and service providers. How-
ever, offloading tasks to a public cloud may incur high 
latency due to multi-hop data transmission. For example, 
cloud gaming applications Wang (2014) firstly collect user 
actions, and then transmit them to the cloud proxy. Dur-
ing being processed in the cloud, the actions are rendered, 
encoded and compressed. Thereafter, the video (game 
scenes) will be streamed back to the player. All these serial 
operations must happen in milliseconds in order to ensure 
stable user’s interactivity. The task offloading latency in 
MCC is thus essential even when the cloud capacity is not 
limited Safaei (2005).

To deal with the challenging issue of transmission 
delay, MEC, a new paradigm bringing the computation and 
storage to the close proximity of mobile subscribers, has 
attracted intensive attention from academia and industry 
Hu (2015) and Beck (2014). Figure 2 illustrates the over-
all architecture for task offloading in C-RAN with MEC. 
There are three basic components in the architecture: (1) 
geographically distributed, RRHs are remote radio trans-
ceivers that bridge UEs and the operator radio control 
panel, performing lower layer analogue radio frequency 

(RF) functions. (2) Centralized in C-RANs, BBU is a unit 
for digital signal processing which can dynamically provi-
sion baseband processing for multiple distributed RRHs 
on demand. (3) MC is a VM (e.g., an Android-x86 VM) 
deployed in a edge cloud near the BBU pool, hosting vari-
ous mobile edge applications (e.g., edge health care, smart 
tracking, automatic drive). For the scenarios of C-RANs 
with MEC, the MEC platform hosts computation and ser-
vices at the edge of RANs, reducing network latency and 
bandwidth consumption for subscribers. Furthermore, net-
work operators allow third-party partners to run the MEC 
platform, which will promote the rapid deployment of new 
applications and edge services to the mobile subscribers.

3.2 � Computation and communication efficiency

Here we argue that not only communication efficiency but 
also computation efficiency should be considered in C-RANs 
with MEC scenarios, i.e., there is interference among UEs 
both in wireless data transmission and cloud task processing. 
It is easy to understand that wireless channel quality will be 
influenced by user interaction. On the other hand, multiple 
tasks will compete for CPU time slices, which may lead to 
queueing delay. Moreover, based on the fact that the BBU 
processing during wireless communication can be regarded 
as computation intensive workload (China Mobile Research 
Institute 2011), multiple UEs will also compete for the com-
puting resource in the BBU. Table 1 summarizes some of the 
notations in our analysis.

Computation efficiency With regard to task processing, 
we use qv to denote the number of tasks (load) being pro-
cessed in MC v. Wang (2014) and Xu (2017) have conducted 
comprehensive experiments to demonstrate that the traffic 
load can significantly slow down processing speed of cloud 

Table 1   Summary of notations

Notation Meaning

 ,,, Set of the UEs, RRHs, BBUs and MCs, respectively 
( u ∈   , l ∈  , b ∈  , v ∈ )

d
u

Deadline of the offloading task for UE u
c
u

Completion time of the offloading task for UE u
D

u
Traffic size transmitted to the cloud for UE u

F
u

Computing resource demand of the offloading task
q Number of UEs/Tasks on a node (BBU or MC)
f Processing speed of a node (BBU or MC)
�
u

Transmission data rate (bit/second) for UE u
� Coefficient indicating the speed of full-loaded machine
� Coefficient controlling the skewness of the relationship 

between load and speed ( � ∈ (1,+∞))
� VM service limitation
�
ul

MCS index value between UE u and RRH l
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VMs. Yet, such a problem is rarely seen on the non-virtual-
ized local game consoles, or to a much lower degree. Since 
virtualization is applied in both C-RAN and MEC platforms, 
the Net Present Value (NPV) function Ross (1995) applied 
by Wang (2014) and Xu (2017) can be borrowed to capture 
the relationship between processing speed and load (NPV 
has been widely used to quantify the relationship between 
cash and price/cost, which resembles our case when we try 
to purchase more computation resources to reduce the vir-
tualization cost on VMs). We therefore calculate the task 
processing speed as follow:

where f v
GOPS

 refers to the computation frequency (CPU 
cycles per second) with the unit of giga operations per sec-
ond (GOPS) in MC v. The parameter � indicates the speed 
when MC is fully loaded (reaching the VM service limi-
tation � ( 𝛾 > max{⌊ n

k
⌋, ⌊ n

m
⌋} ). Here the service limitation 

depends on the resource allocated to the VM, reflecting the 
budget of network operators. The parameter � controls the 
skewness of the relationship between load and speed where 
� ∈ (1,+∞) . It is easy to see that different VMs may have 
different � , � and � . For example in Wang (2014), the fea-
tures of the EC2 large cloud instances is captured as fol-
lows: � is around 105, � is around 1.04, and � represents the 
resource amount purchased from EC2. We have also investi-
gated the parameters through our own testbed measurement, 
which is detailed in Sect. 7.1.

Communication efficiency On the other hand, the com-
munication efficiency is influenced by multiple factors such 
as radio signal bandwidth and the modulation and coding 
scheme (MCS) index. Alyafawi (2015) conducted a research 
to show that the decoding and encoding time for the LTE 
subframes grows with the increase of the MCS index. It 
is revealed that effective data rate over air interface (good-
put) is mainly controlled by MCS. For heterogeneous UEs 
and RRHs in C-RANs, the MCS index varies from 0 to 31, 
deciding the number of bits per symbol and defining the 
amount of redundant information inserted into data stream 
MCS (2018). Hence, the communication efficiency mainly 
depends on the MCS index between RRHs and UEs (in this 
paper, we do not consider user interference in wireless chan-
nels, whereas it can also be reflected by the MCS index). 
Based on the prior related work Sigwele (2015), we define 

(1)f v
GOPS

=
��−qv

�
,

the base station communication efficiency with the unit of 
giga operations per bit2 (GOPB). We use fGOPB = g(�ul) to 
denote the communication efficiency, where g(�) is defined 
as a function of the MCS index. �ul denotes the MCS index 
between UE u and RRH l.

Therefore, we derive the wireless transmission data rate 
(bit per second) as follow:

where f b
GOPS

 refers to the computation frequency with the 
unit of GOPS in BBU b.

3.3 � Offloading control framework

Real-time big data applications running on UEs have 
received considerable attention in the recent years Ahmed 
(2015). These applications including automatic driving, 
health care, cloud gaming, mobile cloud governance etc. 
tend to offload their computation intensive functions to the 
cloud. Since it is not always smart to offload all tasks (small 
ones), UEs can make the decision according to the trade-
offs between the overheads and benefits of offloading Kumar 
(2010). Here we assume all UEs have offloading requests in 
our offloading control framework. For offloading tasks of 
hard real-time applications, their expected completion time 
varies due to the interdependence of tasks, i.e., deadline of 
each task might be discrepant Gardner (2015a). Meanwhile, 
the task will be invalid if it exceeds its deadline. Thus, offer-
ing an improved user experience and gaining higher operator 
profit mean maximizing the number of tasks that meet their 
deadlines across all offloading requests.

We illustrate the deadline-aware offloading control frame-
work in Fig. 3. In terms of heterogeneous RRHs, BBUs and 
MCs, we consider the channel qualities between RRHs 
and UEs, the BBU load and the MC load as the inputs. At 
first, UE generates tasks with offloading requests, then the 
offloading control unit (e.g., the mobile cloud controller) 

(2)�u =
f b
GOPS

g(�ul)
,

Fig. 3   Offloading control framework

2  Based on the fact that poor channel quality aggravates packet loss 
and retransmission, resulting in more operations for baseband pro-
cessing such as frequency domain (FD) processing and forward error 
correction (FEC), base station communication efficiency can be 
expressed in GOPB. Note that one operation here equals to � ( � ≥ 1 ) 
CPU cycles, the coefficient � is not explicitly reflected in Equa-
tion (2), but implicitly considered in g(�).
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assigns RRHs, BBUs and MCs to UEs. The expected com-
pletion time of each offloading task is obtained as the output. 
By estimating whether a task may exceed its deadline, we 
decide to accept or reject UE’s offloading request. Note that 
our objective is to maximize the number of tasks meeting 
their deadlines, the operator may gain a better profit while 
satisfying most subscribers.

4 � Problem formulation

In this section, we formulate the matching problem among 
UEs, RRHs, BBUs and MCs to achieve the optimal offload-
ing control in C-RANs with MEC. Note that the problem 
we are solving can also be modeled into a non-matching 
problem, however, this paper proposes a different way, from 
the matching perspective, to achieve the maximum utility of 
both the operator and user.

As summarized in Table  1,  = {u1, u2, ..., un} , 
 = {l1, l2, ..., lo} ,  = {b1, b2, ..., bk} and  = {v1, v2, ..., vm} 
denote the sets of UEs, RRHs, BBUs and MCs, respectively. 
n, o, k, and m denote the number of UEs, RRHs, BBUs and 
MCs, respectively. For a UE u ∈   that requests task off-
loading, du refers to the deadline, and cu refers to the comple-
tion time. According to Sect. 3.2, we consider the constraints 
of computation and communication efficiency. We model the 
task processing time and the wireless transmission latency, 
and then model the assignment optimization problem.

4.1 � Task processing time

As mentioned above, computation efficiency depends on the 
loads in MCs. According to Eq. (1), we therefore obtain the 
processing time of UE’s offloading tasks as follow:

where Fu refers to the computing resource of the offloading 
task, which is denoted by the number of CPU operations. Fu 
can be obtained by using the approaches provided in Yang 
et al. (2013). Note that although MCs do not usually have 
the same architecture as mobile devices in terms of hard-
ware, we can calculate the cloud CPU cycles according to 
the mobile device ones Kosta (2012).

4.2 � Wireless transmission latency

In C-RANs, user data is transmitted by wireless communica-
tion via base stations, in which the fibre links between RRHs 
and BBUs allow more flexibility in network planning and 
deployment. On the other hand, the BBU pool is also a cloud-
based platform in C-RANs. Thus, the wireless transmission 

(3)TC(u, v) =
Fu

f v
GOPS

=
�Fu

��−qv
,

latency is related to both communication efficiency and com-
putation efficiency. As mentioned above, we use different 
MCS indexes to estimate the communication efficiency. For 
the BBU baseband computation efficiency, we again use the 
NPV function to capture the relationship between baseband 
processing speed and the BBU load, i.e., f b

GOPS
=

��−qb

�
 . Then 

based on Eq. (2), we obtain the wireless transmission latency 
for UE u as follow:

where Du refers to the traffic size to be transmitted to 
the cloud for UE u. Du can also be obtained by using the 
approaches provided in Yang et al. (2013).

4.3 � Joint assignment optimization

Figure 4 illustrates the RRH, BBU and MC assignments. 
We define xuv, zul, yub as the decision variables. In particu-
lar, xuv, zul, yub = 1 if MC v, RRH l and BBU b are assigned 
to UE u, respectively, otherwise xuv, zul, yub = 0 . Since the 
offloading scheme depends on whether the task is able to 
meet its deadline, our objective becomes minimizing the 
refusal ratio for the UE’s offloading requests, i.e., maximiz-
ing the amount of UEs whose completion time is less than 
their deadlines. As mentioned before, we focus on the uplink 
completion time, which can be calculated by

where v(u), l(u), and b(u) denote the MC, RRH and BBU 
as s igned  to  UE  u ,  r e spec t i ve ly.  De f in ing 

{x}+ =

{
1,

0,

x > 0

otherwise
 , we therefore obtain the number of 

UEs that will miss their deadlines, i.e., Z =
∑

u∈ {cu − du}
+ 

(refusal ratio is Z
n
 ). Then the joint assignment optimization 

model is proposed as follows:

(4)TN(u, l, b) =
Du

�u
=

� ⋅ Du ⋅ g(�ul)

��−qb
,

(5)cu = TC(u, v(u)) + TN(u, l(u), b(u)),

(6)min
∑

u∈

{cu − du}
+,

Fig. 4   Joint assignment among UEs, RRHs, BBUs and MCs
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where the constraint (7) refers to that every UE only selects 
one MC, every UE only selects one BBU, and every UE 
only selects one RRH. Note that the load of MC v can be 
calculated as qv =

∑
u∈ xuv + �0

v
 , and the load of BBU b can 

be calculated as qb =
∑

u∈ yub + �0
b
 , where �0 denotes the 

initial load. Then (8) and (9) refer to the service limitation 
constraints of MC and BBU, respectively.

Assuming the amount of computing resource is given, 
according to the Formulas (3)–(6) and (10), this matching 
problem can therefore be transformed into a 0–1 Multiple 
Knapsack problem with a non-linear objective function, 
which is known to be NP-hard Li (2006). Thus we are 
devoted to seeking efficient heuristics towards the optimal 
solution, which will be detailed in the next sections.

5 � Duplex matching framework

Our modeling focuses on the joint assignment optimization 
among UEs, RRHs, BBUs and MCs. By exhaustively search-
ing all the possible combination of xuv , yub and zul , the opti-
mal solution can be achieved. However, the practical useful-
ness of this method is limited considering the real-time user 
demands. We thus propose a tri-level heuristic, which 
divides the optimization problem into three stages: the UE-
to-RRH stage, the UE-to-BBU stage, and the UE-to-MC 
stage. As illustrated in Fig. 4, each stage is involved into the 
matching of a bipartite graph. The maximum matching of 
the bipartite graph can be achieved by other maximum flow 
algorithms (e.g., the Edmonds-Karp algorithm Edmonds 
(1972)) or the Hungary algorithm Kuhn (1955). Here we 
argue that none of these algorithms takes into account the 
interference between the matching elements (e.g., UEs), 
whereas both communication efficiency and computation 
efficiency result in dynamic utility of the matching elements. 
For example, for the two UEs ( u1, u2 ) and two BBUs ( b1, b2 ), 

the baseband processing speed matrix is set as 
(
10 15

20 30

)
 

( q = 1 ). When we assign the same BBU b1 to both UEs, 
based on the fact that the BBU load affects computation 
efficiency, UE’s baseband processing speed will decrease, 
i.e., the utility of UEs is lower than 

(
10 15

)
 . However, the 

(7)s.t.
∑

v∈

xuv,
∑

b∈

yub,
∑

l∈

zul = 1 ∀u ∈  ,

(8)
∑

u∈

xuv ≤ �v − �0
v
, ∀v ∈  ,

(9)
∑

u∈

yub ≤ �b − �0
b
, ∀b ∈ ,

(10)xuv, yub, zul = 0 or 1, ∀u ∈  , v ∈  , b ∈ ,
conventional bipartite graph algorithms failed to adapt to the 
utility dynamics of UEs. Under these circumstances, we aim 
to seek a novel duplex matching framework on account of 
the NP-Hardness of the joint assignment optimization model 
while adapting to the dynamics of computation and com-
munication efficiency.

5.1 � Deferred acceptance (DA) algorithm

First of all, we heuristically abstract a duplex matching 
framework which is inspired by the Gale-Shapley Matching 
Theory Gale and Shapley (1962), where Gale et al., dis-
cussed the real-life college admission problem (CAP). As 
shown in Fig. 5, regarding to the CAP, students are consid-
ered by a college which can admit a quota (denoted by � ). 
According to the applicant qualifications, the college decides 
which one to admit. Since students may apply multiple col-
leges according to their various preference lists, it is not 
generally satisfactory for the college to offer admissions to 
its � best-qualified applicants. In this paper, UEs act the 
role of students, while RRHs, BBUs or MCs act as colleges.

The CAP can be solved by the classic Gale-Shapley 
Deferred Acceptance (DA) algorithm, which has already 
been proved to result in stable and the Pareto efficient match 
Gale and Shapley (1962). DA is described as below.

Iteration i All the non-admitted students apply to their 
ith choice, and each college takes into account both the new 
applicants and the existing ones in its prospective admission 
list, assuming the total number of applicants is x. According 
to the college preference, every college puts top x ( x > 𝜑 ) 
students into its prospective admission list and rejects the 
other x − � applicants. If x ≤ � , put the x applicants into the 
prospective admission list.

Repeat Iteration i until every student is either in a pro-
spective admission list of a certain college, or rejected by all 
colleges in its preference list.

5.2 � Applicability consideration of DA

5.2.1 � Inefficient stability

It is worth mentioning that here the preference lists of both 
students and colleges are constant during each iteration, 
which means DA fails to consider the utility dynamics of 

Fig. 5   Duplex matching in CAP
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UEs (as discussed above). Gale et al., demonstrated the sta-
bility and the Pareto efficiency of DA with regard to both 
colleges and students. Unfortunately, it is observed that 
this Pareto efficiency is inapplicable to our target duplex 
matching framework, in which the optimization objective is 
minimizing the refusal ratio. Since the refusal ratio is tightly 
coupled with the computation and communication latency, 
similar to the conventional bipartite graph algorithms, DA 
does not fit our problem without considering the dynamics 
of computation and communication efficiency. Therefore, 
despite the Pareto efficient, the stable match of DA is inef-
ficient with regard to the duplex matching framework, which 
is called inefficient stability.

5.2.2 � Quota dependency

On the other hand, the quota of colleges is also fixed in DA. 
Here we argue that the match in DA has severe dependence 
on this quota. For instance, Fig. 6 shows the average util-
ity varies with the quota � . A random-generated instance 
with 10 colleges and 50 students are matched using DA. 
The student utility is quantified by Eq. (1), where we set 
� = 105, � = 1.04 . For simplicity, we assume the stu-
dent preference lists are the same and set �i = � = � 
( i = 1, 2,… , 10 ). We can find that the utility increases with 
the increase of small � . However, it decreases with the 
increase of big � . Intuitively enough, better colleges will 
always be popular among students, whereas full-loaded 
college results in utility decline according to Eq. (1). It is 
observed that the performance of DA depends on the quota 
setting, called quota dependency.

5.3 � Dynamic duplex matching framework

To simultaneously mitigate inefficient stability and quota 
dependency, we finally propose the dynamic duplex match-
ing framework, where we not only update the student pref-
erence list but also the college quota during each iteration.

In terms of inefficient stability, the student preference list 
is constant during all iterations, which ensures the matching 
stability of DA. Here we break the stability by taking into 

account the expected utility3 that a student gets from a col-
lege. Since the expected utility depends on the interaction 
of all students, the student preference lists change dynami-
cally during each iteration. This dynamics enables the stu-
dents to close to the higher utility when selecting a college. 
The method to calculate the expected utility varies with the 
matching stage, which will be detailed in the next section.

On the other hand, to mitigate the challenge of quota 
dependency, we propose a technical solution that gives a 
dynamical quota to each college, i.e., gradually increase the 
quota of the preferred college in each iteration. Here we 
call it the preferred college whose applicant amount x meets 
x > 𝜑.

It is easy to see that the dynamic duplex matching frame-
work tends to result in unstable matches, as we do not care 
whether students have ever been rejected by colleges. In this 
case, by breaking the stability of DA we adapt our duplex 
matching framework to the dynamics of computation and 
communication efficiency. The worst case complexity of 
DA is O(|S| ∗ |C|) , where |S| and |C| are the number of stu-
dents and colleges, respectively Iwama (2008). Since the 
quota gradually increases during each iteration, the worst 
case complexity of the dynamic duplex matching framework 
turns out to be O(|S|2 ∗ |C|).

6 � Multi‑stage duplex matching

In this section, we aim to solve the proposed tri-level heu-
ristic by applying the dynamic duplex matching framework. 
Table 2 summarizes some of the notations in our algorithm.

We define the assignment A1 , A2 and A3 as the matching 
from   to  ,   to  and   to  , respectively. A1 is the 
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Fig. 6   Student utility vs. college quota

Table 2   Summary of notations

Notation Meaning

A1 Matching from   to 
A2 Matching from   to 
A3 Matching from   to 
� Admission quota of a BBU or MC
�� Integer that denotes admission quota step size
 Prospective admission list of a BBU or MC

u

UE preference list for a UE to select BBUs (  ⊆ )


b
BBU preference list for a BBU to select UEs (  ⊆  )

 ′
u

UE preference list for a UE to select MCs (  ′ ⊆ )
′

v
MC preference list for an MC to select UEs ( ′ ⊆  )

3  Particularly, the expected utility can be the transmission latency for 
a UE assigning a BBU or the processing time for a UE assigning an 
MC.
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optimal assignment in the UE-to-RRH stage, while A2 and 
A3 are heuristic solutions obtained by applying the Match-
ing Theory in the UE-to-BBU stage and UE-to-MC stage, 
respectively. It is worth mentioning that separately handling 
all stages is hard to close to the optimal assignment, and 
these three stages are correlative during multi-stage match-
ing. In particular, A2 is obtained according to A1 , and A3 is 
obtained according to A1 and A2.

6.1 � UE‑to‑RRH stage

We assume that all the BBUs are the same and fully loaded, 
i.e., �b = � and qb = �b ( b ∈  ). According to Eq.   (4), 
the expected transmission latency of UE u becomes 
� ⋅ Du ⋅ g(�ul) . In this case, each UE just selects the RRH 
with the minimal expected transmission latency. Thus, based 
on the MCS index �ul , we can get the optimal assignment A1 
between UEs and RRHs.

6.2 � UE‑to‑BBU stage

In this stage, different UEs have different deadlines d. 
Meanwhile, different BBUs have different loads q and ser-
vice limitations � . The BBU assignment problem to mini-
mize the transmission latency can be transformed into a 0-1 
Multiple Knapsack problem with the non-linear objective 
function, which is known to be NP-Hard Brucker (2009). 
Since it is hard to get the optimal assignment here, we apply 
the dynamic duplex matching framework. Particularly, we 
regard UEs as students and BBUs as colleges. Since both 
UEs and BBUs own diverse properties and their preference 
lists are variable within a large range, the challenge here is 
how to define the preference lists reasonably and efficiently 
Li (2016).

6.2.1 � BBU availability

We assume that all the MCs are the same and fully loaded, 
i.e., �v = � and qv = rv ( v ∈  ). According to Eq. (3), the 
expected processing time of UE becomes �Fu . Since the 
BBU load affects transmission latency according to Eq. (2), 
when we add a UE to the BBU, the performance of the UEs 
that are already assigned to this BBU will be affected. We 
therefore define that a BBU is available to a UE if those 
existing UEs can still meet their deadlines after the new 
UE is added in, i.e., TN(u(b)) ≤ du(b) − �Fu(b) , where u(b) 
denotes the UE assigned to BBU b. 

6.2.2 � Preference list generation

The preference for UE u to select the available BBUs results 
in preference list u (  ⊆  ). Also, every BBU owns a pref-
erence list b (  ⊆   ). As depicted in Algorithm 1, we 
calculate u and b as follows. For UE u to select a BBU, 
u is obtained by sorting BBU set  by an ascending order 
of the expected transmission latency. To calculate the 
expected transmission latency for UE u assigning BBU b 
(Algorithm 1. Step 6), we add 1 to qb and get �ul based on 
the assignment A1 before calculating TN according to Eq. (2). 
Similarly, for BBU b to select a UE, b is obtained by sort-
ing   by an ascending order of du − �Fu , where du denotes 
the deadline of UE u. 

6.2.3 � UE‑to‑BBU duplex matching

Defining b as the prospective admission list of BBU b, 
and � as the quota of a BBU. Based on the dynamic duplex 
matching framework, the UE-to-BBU duplex matching can 
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be described as Algorithm 2, of which the iterations are out-
lined as below.

Iteration i Every UE that is not assigned a BBU applies 
to its first choice of BBU in the preference list  (similar to 
the students applying to colleges in CAP), each BBU owns 
a set of x applicants (Step 5 of Algorithm 2). According to 
the preference list  , every BBU puts top � ( x > 𝜑 ) UEs into 
its prospective admission list  before rejecting the other 
x − � applicants (similar to the colleges rejecting students 
in CAP). Then add △� ( 1 ≤ △� ≤ n ) to the � of these 
preferred BBUs. If x ≤ � , put the x applicants into .

Repeat Iteration i until every UE is in a prospective 
admission list of a certain BBU or all the BBUs are no 
longer available. Then the assignment A2 is obtained accord-
ing to .

6.3 � UE‑to‑MC stage

After wireless transmission through base stations, offloading 
tasks are processed in the mobile cloud. The final UE-to-MC 
stage handles the MC assignment for offloading requests. 
Similar to the UE-to-BBU stage, it is also feasible to apply 
the dynamic duplex matching framework in this stage, how-
ever, to achieve better performance we have to modify some 
steps.

Firstly, the preference list for UE u to select the available 
MCs is denoted by  ′

u
 (  ′ ⊆  ), which can be obtained by 

sorting  in an ascending order of the expected processing 
time. To calculate the expected processing time for UE u 
assigned MC v, we add 1 to qv and calculate TC according to 
Eq. (3). Different from the UE-to-BBU stage, for MC v to 
select UEs, the preference list ′

v
 ( ′ ⊆   ) is obtained by 

sorting   in an ascending order of du − TN , where TN is cal-
culated based on the assignment A2 . Secondly, the available 
MCs for a UE must meet the constraints of TC ≤ du − TN for 
all the UEs assigned to this MC. Note that during the UE-to-
BBU stage, some of the offloading requests were probably 
not assigned to any BBU, due to task deadline constraints 
and BBU service limitations. As a result, in this stage we no 
longer assign MCs to the UEs that were not assigned a BBU.

By applying the modified Algorithms 1 and 2, we obtain 
the assignment A3 through the duplex matching framework. 
The matchings between RRHs and BBUs as well as BBUs 
and MCs are also obtained by combining A1 , A2 and A3.

7 � Performance evaluation

In this section, based on the captured traces of an Openstack-
enabled testbed, we start with the measurement of param-
eters in Eq. (1), followed by deriving the function of MCS 
index �ul . Finally, we conduct the trace-based simulation 

to estimate our proposed multi-stage duplex matching 
algorithm.

7.1 � Computation efficiency parameters

Firstly, we conduct measurements on our testbed to estimate 
the cloud computation efficiency. The standard CPU bench-
mark ( F = 1 GHz) is created by the Rubis Task Generator 
Rubis (2018). We adjust the number of tasks running on 
the Openstack instance and record the processing time of 
all tasks. Each case is tested 100 times to get the average 
processing time. As illustrated in Fig. 7, the task process-
ing time increases with the load on the VM. In particular, 
a task processing with a standard CPU benchmark can be 
finished in 36.32 ms, whereas the completion time of all 
tasks increases to 73.11 ms when dealing with 250 con-
current task requests. Applying curve fitting, we therefore 
obtain the relationship between processing time and load, 
i.e., t(q) = 102

1.0026(400−q)
 , where t(q) denotes the task process-

ing time and q denotes the load on the VM. With regard to 
the NPV function of Eq. (1) in Sect. 3.2, we approximately 
calculate � = 102 , � = 1.0026 , and � = 400.

7.2 � Communication efficiency parameters

Based on the analysis above, we calculate the baseband 
computation efficiency as fGOPS = 0.0276 GOPS. Accord-
ing to the MCS index table MCS (2018), MCS index 
( � ∈ [0 − 31] ) can be completely mapped into the combina-
tion value of M × C × S , i.e., M × C × S = �(�) , where M 
denotes the modulation type (1, 2, 4, 6, referring to BPSK, 
QPSK, 16-QAM, and 64-QAM, respectively), C denotes the 
coding rate (e.g., 1

2
 , 2
3
 , 3
4
 , and 5

6
 ), and S denotes the number of 

spatial streams (1 - 4). For example, � = 0, 1, 15, 31 refer to 
M × C × S = 0.5, 1, 10, 20 , respectively. Note that the mul-
tiple MCS indexes may be mapped to the same M × C × S , 
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for example, both of � = 1 and � = 8 refer to M × C × S = 1 . 
MCS (2018) further illustrates that the data rate grows with 
the increase of �(�) ( �(�) ∈ [0.5, 20] ). We therefore fit a 
function of the data rate for �(�) , i.e., � = 1.768�(�) , where 
� denotes the data rate. Based on Eq. (2), we obtain the 
function of MCS index, which is expressed by the follow-
ing equation:

where W = 0.0156 (W is related to radio signal bandwidth, 
which is set 20 MHz in this case), and the matching function 
of �(�) is obtained according to MCS (2018).

7.3 � Algorithm estimation

In this section, we conduct the matlab-based implementation 
to estimate the duplex matching framework, where trace-
based offloading requests are fed to these programs. In par-
ticular, task deadline, offloading traffic size and computation 
resource demand are randomly generated in a uniform distri-
bution according to the prior works Sigwele (2015), Gardner 
(2015b) and Livelab (2018), i.e., we set du ∈ [4000, 6000] 
(ms), Du ∈ [1, 100] (MB), Fu ∈ [1, 20] (G Hz). We set 
parameters � = 102 , � = 1.0026 , � = 400 , �0 = 0 , �� = 1 , 
�ul ∈ [0, 31] , and W = 0.0156.

For optimality comparison, we summarize the algorithms 
as follows. Optimal baseline refers to the optimal solution 
obtained by brute-force searching. Duplex matching refers 
to our heuristic solution proposed in Sect. 6. Linear pro-
gramming relaxation refers to the solution that converts the 
integer constraint (Formula (10)) into the continuous one, 
i.e., xuv, yub, zul ∈ [0, 1],∀u ∈  , v ∈  , b ∈  . By solving 
the relaxed linear programming, we obtain the rounded deci-
sion variables as a feasible solution.

(11)g(�) =
W

�(�)

We start with a small offloading scenario with 6 offload-
ing requests (each request is generated by an individual UE), 
5 RRHs distributed geologically, 3 BBUs in the BBU pool, 
and 3 MCs in the MEC platform, i.e., n = 6 , o = 3 , k = 3 , 
and m = 3 . Figure 8 presents the performance of our optimal 
assignment among UEs, RRHs, BBUs and MCs (we test 10 
randomly generated cases). We can see that the multi-stage 
duplex matching reduces the refusal ratio compared to the 
linear programming relaxation solution (whose refusal ratio 
can be as high as 68% ). Note that both the Optimal baseline 
and our solution can achieve 0 refusal ratio in Case 9. Even-
tually, this figure draws the conclusion that our approach 
can achieve the near-optimal performance in 90% of cases. 
The reason is our duplex matching framework can adapt to 
the dynamics of computation and communication efficiency.

To avoid measurement bias, we also test the scenarios 
with a larger number of UEs, RRHs, BBUs and MCs, i.e., 
n ≥ 100 , o = 50 , k = 30 , and m = 30 . Figure 9 illustrates the 
case when the number of UEs varies from 100 to 500 (refusal 
ratio is the average value calculated by running the same 
case 100 times). We can see that even though refusal ratio 
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increases with the number of UEs, our solution can always 
bound the optimal assignment. Figure 10 further explores the 
cumulative distribution function (CDF) of task completion 
time for the UEs admitted (UEs that can meet their deadline). 
It is easy to see that the completion time increases with the 
growing number of UEs, due to the increased load on both 
BBUs and MCs, which affects the computation efficiency. 
Moreover, 98% of the admitted tasks can be completed in 
4500 ms when we have 100 UEs, and more than 91% of the 
tasks can be completed in 5000 ms with 200 or 300 UEs. This 
indicates that our solution can gain a small enough comple-
tion time (compared with deadline range) when minimizing 
the refusal ratio. Note that although the two cases (with 200 
and 300 UEs) achieve similar completion time, the refusal 
ratio in 300 UEs is much higher than that in 200 UEs.

To better understand the computation efficiency in dif-
ferent types of VMs, we investigate the refusal ratio with 
different parameter inputs in Eq. (1). Figure 11 presents the 
refusal ratio evolution when parameter � for the BBU or 
MC varies from 85 to 125. We can see that the refusal ratio 
increases with � . On the other hand, Fig. 12 presents the 

refusal ratio evolution of the skewed relationship between 
processing speed and load, and Fig. 13 presents the refusal 
ratio evolution of service limitation. Our figures reveal that 
a good VM should have a smaller � and larger � and � . 
The minimum processing speed should be larger when the 
VM is fully loaded (smaller � ). In other words, adding idle 
resources to the VM will significantly increase computation 
efficiency (larger � and �).

8 � Further discussion

Our duplex matching framework is a bit different from the 
DA. In CAP, students are considered by a college which can 
admit a quota of only � , which is fixed. According to the 
qualifications of applicants, the college decides which one 
to admit. However, in our solution we gradually increase the 
quota by �� ( �� = 1 by default) in each iteration. The inten-
tion to introduce quota is to bound the deadline of offloading 
requests (since we can hardly process all tasks on the same 
VM, this quota also contributes to load balance by avoiding 
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overloading the most popular VM). Furthermore, we opti-
mally assign BBUs or MCs to UEs by means of iteration.

Figure 14 further presents the case when �� varies from 
1 to 200. It is easy to see that the refusal ratio increases 
with incremental �� when 𝛥𝜑 < 30 . This reveals that the 
smaller �� helps to achieve higher assignment performance 
with more iterations. On the other hand, when �� ≥ 30 , the 
algorithm performance turns out to be poor due to insuf-
ficient iterations.

9 � Conclusion and future work

This paper focuses on the perspective of matching problem in 
the hybrid offloading architecture of the C-RAN with MEC. 
We design an efficient offloading control framework minimiz-
ing the refusal ratio of offloading requests. The joint assign-
ment modeling shows the NP-Hardness of our problem, and 
a tri-level heuristic applying the duplex matching framework 
is therefore proposed, which divides the cross-layer optimiza-
tion into three stages: the UE-to-RRH stage, the UE-to-BBU 
stage, and the UE-to-MC stage. Our evaluation shows that our 
solution can achieve the near-optimal performance.

Our ongoing work is to modify a simple framework ver-
sion to work in real time and hopefully deploy a prototype 
system in C-RAN environments. Future work also includes 
the extension to environments with multi-resource manage-
ment as well as further research on scenarios of mobility 
management Beck (2014).
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