
EDITOR: Yong Cui, cuiyong@tsinghua.edu.cn

DEPARTMENT: STANDARDS

Acknowledgment on Demand for Transport
Control
Tong Li and Kai Zheng, Huawei, Shenzhen, 518129, China

Ke Xu , Tsinghua University & BNRist, Beijing, 100084, China, and PCL, Shenzhen 518066, China

The dependence on frequent acknowledgments (ACKs) is an artifact of current transport
protocol designs rather than a fundamental requirement. Frequent ACKswaste
resourceswhen the overhead of ACKs is nonnegligible. However, reducing the number of
ACKsmay hurt transport performance. “TameACK” is an on-demandACKmechanism
that seeks tominimize ACK frequency, which is exactlywhat is required by transport.

D ata delivery between endpoints depends on
backward signaling, such as acknowledg-
ments (ACKs) for transport control. ACK

mechanism is a common component for transport
protocols such as Transmission Control Protocol
(TCP) and Quick UDP Internet Connections (QUIC).6

ACKs may serve multiple purposes. They acknowledge
received packets, drive loss detection, trigger trans-
mission of new packets, and assist in sending rate
determination and round-trip timing.

Ideally, an ACK should be generated each time a
packet is received at the destination. However, frequent
ACKs introduce overhead for both the network and the
end hosts. For example, inwireless networks running over
the IEEE 802.11 medium access control protocol, ACK
packets cause similar medium access overhead as data
packets despite themuch smaller size of the ACKs. Send-
ing frequent ACKs preempt resources that could have
been used for data packet transmission. Second, in asym-
metric networks (e.g., cellular networks) with a much
lower capacity on the uplink than the downlink, the
increased upload traffic causedbydata-intensive applica-
tions (e.g., live webcasting) can lead to congestion on the
ACK path of the download traffic. Furthermore, sending
frequent ACKs also induces computational cost at all
nodes along the end-to-end path. Consequently,
reducing ACK frequency can potentially improve

transmission performance when the overhead of ACKs is
nonnegligible.

However, over the past four decades, only few
modifications to ACK mechanism have been deployed.
One primary reason is that current protocol design
couples the high ACK frequency with transport con-
trols, such as robust loss recovery, accurate round-
trip time (RTT) monitoring, and effective send rate
control. For example, loss detection might be delayed
when the number of ACKs is excessively reduced,
sending fewer ACKs proportionally reduces the num-
ber of RTT samples that are capable to be generated
by the sender, and acknowledging a large amount of
data at once might lead to traffic burst. Multiple-com-
ponent interactions make these challenges harder to
be addressed at the same time.

RFCs 1122 and 5681 were two core functionality
standards that introduced, the delayed ACKmechanism,
the default ACK mechanism in most Linux distributions.
It increases the number of incoming packets (counted
before sending an ACK) from one to two and also sets a
timer that avoids an ACK being excessively delayed.
However, the delayed ACK mechanism is far from being
optimal in terms of ACK frequency minimization. RFCs
4341 and 5690 described an ACK congestion control
mechanism in which the minimum ACK frequency
allowed is twice per send window. RFC 3449 discussed
the imperfection and variability of TCP’s ACKmechanism
because of asymmetric effects and recommended
reducing ACK frequency as a mitigation to these effects.
However, these algorithms only solve part of the prob-
lems. For example, they did not address the interference
on the RTT monitoring caused by reducing the ACK fre-
quency. In the work by Li et al.11 we demonstrated the

1089-7801 � 2020 IEEE
Digital Object Identifier 10.1109/MIC.2020.3045208
Date of current version 16 April 2021.

March/April 2021 Published by the IEEE Computer Society IEEE Internet Computing 109

Authorized licensed use limited to: Tsinghua University. Downloaded on May 06,2021 at 02:21:54 UTC from IEEE Xplore. Restrictions apply.

mailto:Acknowledgment on Demand for Transport Control
https://orcid.org/0000-0002-6805-9565
https://orcid.org/0000-0002-6805-9565
https://orcid.org/0000-0002-6805-9565
https://orcid.org/0000-0002-6805-9565
https://orcid.org/0000-0002-6805-9565
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0003-2587-8517

possibilities of simultaneously addressing all the chal-
lenges mentioned earlier by decoupling high ACK fre-
quency from transport requirement.

Another reason is that ACK mechanism signifi-
cantly impacts the logic of ACK-clocking algorithms
(e.g., loss recovery, RTT monitoring, and send rate con-
trol). The robustness of these changes relies heavily on
extensive unit and end-to-end testing, which were lim-
ited by the kernel APIs and memory-constrained kernel
space. A major change of the whole protocol was diffi-
cult to be updated and deployed. Fortunately, the user-
space developments of transport protocols (e.g., QUIC)
allow for extensive logging and debugging, the high
deployment velocity allows deploying ACKmechanisms
with major modifications to the whole protocol stack.2

Based on these observations, it is time to rethink
the current trajectory of ACK mechanism for transport
control. Some work-in-progress drafts have paid great
attention to ACK scaling technologies in the IETF work-
ing groups. For example, Fairhurst et al.3 recommended
reducing the ACK frequency by sending an ACK for at
least every 10 received packets, and Kuhn et al.7 recom-
mended an ACK frequency of 4 ACKs every RTT, aiming
to reduce link transmission costs for asymmetric paths.
Instead of using an empirical value of ACK frequency,
Iyengar et al.5 recommended an extension of sender
controlled ACK-FREQUENCY frame to make it tunable
for the frequency of the delayed ACK mechanism.

An ACK mechanism can be called “on-demand” if
the ACK frequency is minimized but the ACKs sent
are exactly required by the transport. In contrast to
the delayed ACK mechanism that adopts the maxi-
mum value between byte-counting and a timer, the
authors of this article adopt the minimum one and
propose Tame ACK (TACK),9,10 an on-demand ACK
mechanism that seeks to minimize ACK frequency
with corresponding improvements in transport control
to compensate for sending much fewer ACKs.

CHALLENGES FOR REDUCING ACK
FREQUENCY

Before diving into the TACK design, we first discuss
the possible challenges that need to be overcome
when an ACK mechanism reduces ACK frequency.
Specifically, as shown in Figure 1, we focus on the
interactions between ACK mechanism and other pro-
tocol components, such as loss recovery, RTT moni-
toring, and send rate control.

Loss Recovery
For ordered bytestream transport, when loss occurs
and a packet has to be retransmitted, packets that
have already arrived but that appear later in the

bytestream must await delivery of the missing packet
so the bytestream can be reassembled in order. Known
as head-of-line blocking (HoLB), this incurs high delay
of packet reassembling and, thus, can be detrimental
to the transport performance.12 Considering an ACK
mechanism that sends much fewer number of ACKs
than the legacy way, the delay incurred by HoLB will
increase. If packet loss exists on the ACK path or the
retransmission is lost again, then the delay doubles.

Landstr€om et al.8 tried to solve part of the problems
by modifying the fast recovery scheme in this case. How-
ever, they did not consider the feedback robustness
under excessive ACK losses. In the work by Li et al.,11 we
gave an example of a full framework of loss recovery that
achieves both timely and robust feedback.

RTT Monitoring
The central premise of a closed control loop is that the
RTT is well monitored. For example, the minimum RTT
is used to update the TACK frequency. Many conges-
tion controllers (e.g., BBR1) use the minimum RTT to
estimate the congestion window. The minimum RTT is
also used by QUIC loss detection to reject implausibly
small RTT samples. However, the minimum RTT moni-
toring turns out to be one of the biggest victims of
reducing ACK frequency.

The initial RTT can be computed during hand-
shakes [see Figure 2(a)], after that, the sender calcu-

FIGURE 1. Interaction among protocols components.

FIGURE 2. Case study of RTT monitoring. (a) Initial RTT com-

putation. (b) ACK-clocking RTT sampling. (c) Minimum RTT

monitoring when sending fewer ACKs.

110 IEEE Internet Computing March/April 2021

STANDARDS

Authorized licensed use limited to: Tsinghua University. Downloaded on May 06,2021 at 02:21:54 UTC from IEEE Xplore. Restrictions apply.

lates an RTT sample upon receiving an ACK. For exam-
ple in Figure 2(b), a packet is sent at time t0 and
arrives at time t2. Assume that the ACK is generated
and sent at time t3, the receiver computes the ACK
delay Dt ¼ t3 � t2 . The sender, therefore, computes
the RTT according to Dt, t0 and the ACK arrival time
(t1), i.e., RTT ¼ t1 � t0 � Dt.

However, as shown in Figure 2(c), when sending
fewer ACKs, more data packets might be received dur-
ing the ACK interval, generating only one RTT sample
among multiple packets is likely to result in biases. For
example, a larger minimum RTT estimate. In general,
the higher the throughput, the larger the biases.

One alternative way to reduce biases can be that
each ACK carries the per-packet timestamps for the
sender to generate more RTT samples. However, 1) the
overhead is high, which is unacceptable especially for
high-bandwidth transport. Also, 2) the number of data
packets might be far more than the maximum number
of timestamps that an ACK is capable of carrying. In
the work by Li et al.11 we proposed a round-trip timing
method based on the one-way delay (OWD) in order to
reduce the biases introduced by sending fewer ACKs.

Send Rate Control
A burst of packets can be sent in response to a single
delayed ACK. Legacy TCP usually sends microbursts of
one to three packets, which is bounded according to def-
inition of TCP’s delayed ACK mechanism (RFCs 1122 and
5681). However, the fewer ACKs sent, the larger the
bursts of packets released. When an ACK excessively
delays ACKs, the burst send pattern is nonnegligible as it
may have larger buffer requirement, higher loss rate, and
longer queuing delay if not carefully handled.

To overcome the hurdles created by reducing ACK
frequency, RFC 3465 described the appropriate byte
counting (ABC) algorithm and limited the number of
packets sent (i.e., two) in response to each incoming
ACK to deal with feedback lags and traffic bursts. RFC
3449 also introduced some techniques (e.g., pacing)
to handle the reduced ACK frequency to retain the
TCP sender’s ACK-triggered self-clocking. In the work
by Li et al.,11 we recommended pacing and demon-
strated a co-designed BBR. Since BBR’s RTT and band-
width monitoring are coupled with frequent ACKs, we
proposed a receiver-based paradigm that moves the
monitoring logic from sender to receiver.

TACK: MINIMIZING ACK
FREQUENCY

In this section, we give the frequency formula for
TACK and its performance results.

Delayed ACK
By default, the current transport protocols, such as
TCP and QUIC, specify a simple delayed ACK mecha-
nism that a receiver can send an ACK for every other
packet (i.e., byte-counting), or when the maximum
ACK delay (a) timer expires. The frequency of the
delayed ACK mechanism (fdelayed) is given as follow:

fdelayed ¼ max
BW

L �MSS
;
1
a

� �
(1)

where L indicates the number of full-sized data pack-
ets counted before sending an ACK, a indicates the
time interval between two ACKs, BW is the data
throughput, and MSS is the maximum segment size.

In practice, the delayed ACK mechanism can only
reduce limited number of ACKs. As described in RFC
1122 and updated in RFC 5681, L is strictly limited up to
2, and a is tens to hundreds of milliseconds and varies
in different Linux distributions.

Even when L is allowed to be set larger than 2, the
delayed ACK mechanism is far from being optimal.
According to (1), when data throughput is high, ACK
frequency is also high. When data throughput is low,
ACK frequency is still as high as that in the case of
high throughput, which wastes resources. This reveals
that the frequency of the delayed ACK mechanism is
not bounded or not minimized under bandwidth
change.

Tame ACK (TACK)
TACK aims to minimize ACK frequency in the context
of network dynamics. In contrast to the delayed ACK
mechanism that adopts the maximum value between
byte-counting and a timer, TACK adopts the minimum
one. That is, ftack ¼ minf BW

L�MSS ;
1
a
g. In practice, a can be

set to a fraction of RTT (RFC 4341), i.e., a ¼ RTTmin
b

.
RTTmin is the minimum RTT observed over a long
period of time, and b indicates the number of ACKs
per RTTmin. As a consequence, the frequency of
TACK is in reality given as follow:

ftack ¼ min
BW

L �MSS
;

b

RTTmin

� �
: (2)

The frequency of TACK is decided by the band-
width-delay product (BDP), where BDP ¼ BW�
RTTmin. When BDP is large (BDP � b � L �MSS), ACK
frequency is bounded by RTT. On the other hand,
when BDP is small (BDP < b � L �MSS), ACK fre-
quency is reduced proportionally to data throughput.
In the work by Li et al.,11 we have given the TACK fre-
quency minimization in terms of the lower bound of b

March/April 2021 IEEE Internet Computing 111

STANDARDS

Authorized licensed use limited to: Tsinghua University. Downloaded on May 06,2021 at 02:21:54 UTC from IEEE Xplore. Restrictions apply.

and the upper bound of L. By default, b ¼ 4 and L ¼ 2
have been found to be robust in practice.

According to (1) and (2), we summarize three
insights as follows. First, given an L, the frequency of
TACK is always no more than that of delayed ACK
mechanism, i.e., ftack � fdelayed. Second, the higher bit
rate of the connection, the more number of ACKs are
reduced by applying TACK. Meanwhile, the larger
latency between endpoints, the more number of ACKs
are reduced by applying TACK.

We further give the numeral analysis of TACK fre-
quency over the 802.11 wireless links in comparison
with the delayed ACK mechanism. Figure 3(a) reveals
that more number of ACKs are reduced in the case of
a faster physical capacity. Specifically, as shown in
Figure 3(b), TACK has the same frequency as delayed
ACK mechanism over 802.11b wireless links with a
small RTT (10 ms). However, for the 802.11ac links, the
frequency of TACK has dropped two orders of magni-
tude when RTT = 10 ms and three orders of magnitude
when RTT = 80 ms. The throughput improvement of
TACK due to the reduced ACK frequency was also
shown in the work by Li et al.11

ROADMAP OF STANDARDIZING
TACK

Applying TACK does not mean simply changing the
ACK frequency according to (2). What we really want
is an on-demand ACK mechanism that minimizes the
number of ACKs but are exactly what are required by
transport. The TACK-based ACK mechanism not only
tells when to send ACKs, but also tells what to carry in
ACKs, and how to interact with other protocol
components.

When to Send ACKs?
The TACK-based ACK mechanism should answer the
question that when to send which type of ACKs.

Specifically, the ACK type of TACK can be triggered
periodically according to (2).

Apart from the ACK type of TACK, the ACK type of
Instant ACK (IACK) should also be introduced to
assure timely feedback upon instant events. For exam-
ple, 1) when loss occurs, the receiver should send an
IACK to timely pull the desired range of lost packets
from the sender. This loss-event-driven IACK enables
the rapid response to loss event, effectively avoiding
timeouts. 2) An IACK may be sent in the case that the
received buffer nearly runs out, which assures timely
send window update.

IACK and TACK are complementary. IACK assures
timely and deterministic signaling while TACK acts as
the last resort mechanism in the case of ACK loss.

What to Carry in ACKs?
In some cases (e.g., cellular networks), enlarging the
size of ACKs will increase the backward traffic volume,
cancelling out the benefit of reducing ACK frequency.
However, the overhead introduced by increasing the
size of ACK rather than increasing the number of
ACKs can be negligible in other cases (e.g., Wi-Fi
networks).

The TACK-based ACK mechanism should answer
the question that what information should be carried
in which type of ACKs, and why it is necessary. For
example, whether an ACK should carry the informa-
tion of lost packets or received packets can be consid-
ered in order to speed up recovery when loss event
occurs. When the loss rate on the ACK path has
reached a critical level,11 TACK is expected to report
multiple blocks in which each block reports a contigu-
ous range of lost or received packets. TACK should
also carry the ACK delay or timestamps for accurate
RTT monitoring.

In addition, ACK packet encapsulation and its
extension to the legacy TCP/QUIC should be specified.
In order to improve space utilization, mechanisms on
information compression/decompression in ACKs can
also be considered.

How to Interact with Other Protocol
Components?
First, the delay from a packet loss to the packet recov-
ery is crucial to packet reassembling and, thus,
impacts transport performance. The interaction
between ACK mechanism and loss recovery will focus
on timely loss detection on lossy forward path and
robust feedback on bidirectionally lossy path.

Second, per-packet ACK achieves ideal transport
state monitoring. The initial focus will be on round-trip

FIGURE 3. TACK reduces ACK frequency over the IEEE

802.11b/g/n/ac wireless links whose physical capacities are

11/54/300/866.7 Mb/s, respectively. (a) Trend of ACK fre-

quency reduction. (b) Case study.

112 IEEE Internet Computing March/April 2021

STANDARDS

Authorized licensed use limited to: Tsinghua University. Downloaded on May 06,2021 at 02:21:54 UTC from IEEE Xplore. Restrictions apply.

timing under varying ACK frequency. But a receiver-
based estimation framework of transport state, which
acts as input of the protocol’s ACK-clocking algo-
rithms, will be included in order to reduce the estima-
tion biases introduced by changing ACK frequency.

Third, during the startup phase, per-packet ACK is
recommended to assure robust bandwidth estimation.
After that, the TACK-based ACK mechanism can be
applied. The congestion controller’s initial focus will
be on avoiding burstiness caused by lowering ACK fre-
quency. In addition, the fairness between the flows
using the TACK-based ACK mechanism and the tradi-
tional flows should also be considered.

Finally, sendwindowupdate for flowcontrol requires
ACKs to update the receive window. Lowering ACK fre-
quency probably delays acknowledging packet receipts
and reporting receive window, resulting in feedback lags
and wasting opportunity of sending data. The interac-
tion with send rate control will probe into the ACK
mechanism to remove these side effects.

POSSIBLE PROTOCOL
MODIFICATIONS

According to the roadmap of standardizing TACK, we
now discuss what are the possible protocol modifica-
tions in the context of the TACK-based ACK mecha-
nism. As a representative of the state-of-the-art user-
space deployment, the QUIC-TACK implementation is
given as an example in this section.

First of all, the transport parameters should be
extended for ACK mechanism negotiation. Second,
multiple types of ACK frames (e.g., TACK and IACK)
should be defined to support efficient loss recovery
and accurate RTT monitoring. Also, a new sender-con-
trolled frame should be defined to sync the updated
TACK frequency to the receiver. Third, the algorithm
of minimum RTT monitoring should be implemented in
a receiver-based way. Finally, the division of labor
between sender and receiver should be revisited dur-
ing congestion controller modifications.

Extensions on Transport Parameters
and Frames
A QUIC packet contains one or more frames. In QUIC-
TACK, the TACK frames and the IACK frames may be
sent over an established connection once permission
has been given by QUIC’s transport parameter exten-
sion of ack-frequency-support.

Ack-Frequency-Support
QUIC endpoints make declarations of their transport
parameters, such as the maximum packet size, the

maximum ACK delay, disable migration, etc., to negoti-
ate features during connection establishment. In
QUIC-TACK, an endpoint uses a transport parameter
to signal its willingness to apply the TACK-based ACK
mechanism during handshakes. If present, the trans-
port parameter that sets ack-frequency-support is
equivalent to that the TACK-based ACK mechanism is
supported on the endpoint. If the transport parameter
is absent, QUIC uses the default ACK mechanism.6

TACK Frames
The TACK frames follow the format of QUIC’s legacy
ACK frames (e.g., types 0x02 and 0x03).6 That is, the
ACK frames in QUIC turn to the TACK frames in QUIC-
TACK, except that 1) the TACK frames are sent at the
frequency of ftack according to (2), and 2) the field of
ACK Delay is redefined as the delay incurred between
when the packet who achieves the minimum OWD is
received and when the TACK is sent. The other fields
carried in the TACK frame have the same meanings as
defined in legacy QUIC. TACK may also define more
fields according to the requirement of transport control.

A TACK frame contains one or more blocks to iden-
tify acknowledged packets, in which each block is either
anACK Range or a Gap as specified in the work by Iyen-
gar and Thomson.6 Each ACK Range acknowledges a
contiguous range of packets, and each Gap indicates a
range of packets that are not being acknowledged.
QUIC-TACK reuses the loss recovery algorithm of QUIC
as specified in thework by Iyengar and Thomson,6which
is capable to achieve feedback robustness.

IACK Frames
The IACK frames (types 0x20-0x27) are newly defined in
QUIC-TACK. For example, the loss-event-driven IACK
(type 0x20) contains two fields of the largest packet
number and the second largest packet number to indi-
cate the most recent range of lost packets. An IACK
(type 0x21) may also contain a field of the updated
receive window. QUIC-TACK can reuse the existing
frames (e.g., the MAX_STREAM_DATA or MAX_DATA
frames) defined in legacy QUIC with a specific decision
logic. Note that the type value of IACKsmight change as
QUIC packet structure is evolving at the IETF.6

ACK-FREQUENCY Frames
An ACK-FREQUENCY frame is to indicate the updated
TACK frequency calculated by the sender. ACK-FRE-
QUENCY frames are ack-eliciting. However, their loss
does not require retransmission. It is recommended
that the ACK-FREQUENCY frame is periodically sent
during a connection (e.g., every 5�10 RTTs).

March/April 2021 IEEE Internet Computing 113

STANDARDS

Authorized licensed use limited to: Tsinghua University. Downloaded on May 06,2021 at 02:21:54 UTC from IEEE Xplore. Restrictions apply.

According to (2), BW should be estimated in real
time for TACK frequency update. Here BW is specified
as the maximum delivery rate. The average delivery
rate (delivery rate) per TACK interval can be computed
as the ratio of data delivered to time elapsed. At time
t, the maximum delivery rate is a windowed max-fil-
tered value of the delivery rates, i.e., BW ¼
maxðdelivery rateiÞ; 8i 2 ½t� ufilter; t�, where ufilter is rec-
ommended as 5�10 RTTs. The minimum RTT monitor-
ing will be discussed next.

Redesign of MinimumRTT Monitoring
Ideally, when sending an ACK for every data packet, the
minimum RTT sample can be computed by monitoring
the per-packet RTT samples [see Figure 4 (a)]. However,
the sender can hardly generate per-packet RTT samples
in the case of sending fewer ACKs, which is the root
cause of the minimum RTT monitoring biases. As shown
in Figure 4(b), since the receiver is capable to monitor
per-packet state, the OWD of each data packet can be
easily computed according to the departure timestamp
and the arrival timestamp of each data packet.

In this case, QUIC-TACK should adopt the OWD-
basedminimumRTTmonitoring. The rationale is that the
variation of OWD reflects the variation of RTT. It requires
the sender to carry the departure timestamp in each
ack-eliciting packet. Meanwhile, at the receiver, the per-
packet OWD samples should be computed upon packet
arrivals. The receiver then generates and sends a TACK
frame to the sender, in which the TACK delay and depar-
ture timestamp for the packet that achieves the mini-
mum OWD is reported. Based on the information

reported by the incoming ACK frames and the TACK
arrival timestamps, the sender can generate RTT sam-
ples and, then, compute theminimumRTT accordingly.

Modifications to Congestion Control
Most of the popularly used congestion controllers can
work with the TACK design with corresponding imple-
mentation changes. Since lowering the ACK frequency
might result in larger burstiness, in order to control the
amount of sent data, QUIC-TACK should integrate
with pacing instead of the burst send pattern. The
rationale is that pacing smooth traffic behaviors by
evenly spacing packets at a specific pacing rate
according to the congestion controller. For example,
the pacing rate may be obtained by distributing con-
gestion window over RTT when applying a window-
based controller (e.g., CUBIC4), and the pacing rate
may also be computed using bandwidth estimate of a
rate-based controller (e.g., BBR1).

For fairness consideration, in the work by Li et al.11

we have found that the co-designed BBR in the con-
text of the TACK-based ACK mechanism has the simi-
lar TCP friendliness to the traditional BBR in the
context of the standard delayed ACK mechanism. In
other words, as an ACK mechanism, our current expe-
rience shows that TACK does not impact much on the
fairness of congestion controllers. However, we
encourage more substantial investigations to answer
the question of how does an ACK mechanism interact
with various congestion controllers.

ADVANTAGES AND
DISADVANTAGES

The TACK-based ACK mechanism is a good replace-
ment of the legacyway of ACKswhen theACKoverhead
is nonnegligible. In the work by Li et al.11 we further
found the TACK-based protocol performs equally well
as high-speed transport protocols in general networks
(e.g., wide-area network), this is attributed to the
advancements of the TACK-based protocol design in
loss recovery, RTTmonitoring, and send rate control.

However, the update of a novel ACK mechanism
requires major intrusive modifications to the protocol.
Specifically, deploying TACK upon TCP (i.e., TCP-
TACK11) requires more efforts than deploying TACK
upon QUIC (i.e., QUIC-TACK). For example, TCP-TACK
needs to carry the packet number option11 to enable
the receiver-based loss detection. TCP-TACK also
requires extension on the TCP data field, carrying
more information (ACK Ranges or Gaps) in ACKs to
achieve feedback robustness on a lossy ACK path. Dif-
ferent from TCP, QUIC naturally carries the packet

FIGURE 4. Two ways for minimum RTT monitoring. (a) Mini-

mum RTT monitoring with per-packet ACK. (b) OWD-based

minimum RTT monitoring when sending fewer ACKs.

114 IEEE Internet Computing March/April 2021

STANDARDS

Authorized licensed use limited to: Tsinghua University. Downloaded on May 06,2021 at 02:21:54 UTC from IEEE Xplore. Restrictions apply.

number in data packets and allows carrying more
information in ACKs, which can be reused in the
QUIC-TACK implementation. Hence, a tradeoff
between transport performance gain and protocol
modification overhead could be considered when
deploying the TACK-based ACK mechanism.

CONCLUSION
This article revisits the ACK mechanism for transport
control. ACK on demand requires specifying the trig-
ger conditions of ACKs and the information carried in
ACKs according to network environment and applica-
tions. It also requires rethinking the division of labor
between sender and receiver, allowing the overhead
of ACKs and the efficiency of ACK-clocking algorithms
to meet the transport requirements.

ACKNOWLEDGMENTS
This work was supported in part by the National Sci-
ence Foundation for Distinguished Young Scholars of
China under Grant 61825204, and in part by the Beijing
Outstanding Young Scientist Program under Grant
BJJWZYJH01201910003011.

REFERENCES
1. N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and

V. Jacobson, “BBR: Congestion-based congestion

control,” ACM Queue, vol. 14, no. 5, pp. 20–53, 2016.

2. Y. Cui, T. Li, C. Liu, X. Wang, and M. Khlewind,

“Innovating transport with QUIC: Design approaches

and research challenges,” IEEE Internet Comput., vol.

21, no. 2, pp. 72–76, Mar./Apr. 2017.

3. G. Fairhurst, A. Custura, and T. Jones, “Changing the

default QUICACKpolicy,” IETF, 2020. Accessed: Sep. 14,

2020. [Online]. Available: https://www.ietf.org/archive/

id/draft-fairhurst-quic-ack-scaling-03.txt

4. S. Ha, I. Rhee, and L. Xu, “Cubic: A new TCP-friendly

high-speed TCP variant,” ACM SIGOPS Operating

Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

5. J. Iyengar and I. Swett, “Sender control of

acknowledgement delays inQUIC,” IETF, 2020.

Accessed: Nov. 2, 2020. [Online]. Available: https://

tools.ietf.org/id/draft-iyengar-quic-delayed-ack-02.txt

6. J. Iyengar and M. Thomson, “QUIC: A UDP-based

multiplexed and secure transport,” IETF, 2020.

Accessed: Sep. 25, 2020. [Online]. Available: https://

tools.ietf.org/id/draft-ietf-quic-transport-31.txt

7. N. Kuhn, G. Fairhurst, J. Border, and E. Stephan,

“QUIC for SATCOM,” IETF, 2020. Accessed: Oct. 25,

2020. [Online]. Available: https://tools.ietf.org/id/

draft-kuhn-quic-4-sat-06.txt

8. S. Landstr€om and L. Larzon, “Reducing the TCP

acknowledgment frequency,” ACM SIGCOMM CCR,

vol. 37, no. 3, pp. 5–16, 2007.
9. T. Li, K. Zheng, R. J., and J. Kang, “Advancing ACK

handling for wireless transports,”IETF, 2020. Accessed:

Mar. 6, 2020. [Online]. Available: https://tools.ietf.org/

id/draft-li-tcpm-advancing-ack-for-wireless-00.txt
10. T. Li, K. Zheng, R. Jadhav, and J. Kang, “Optimizing ACK

mechanism forQUIC,” IETF, 2020. Accessed:Nov. 6, 2020.

[Online]. Available: https://www.ietf.org/archive/id/draft-

li-quic-optimizing-ack-in-wlan-01.txt
11. T. Li et al., “Tack: Improving wireless transport

performance by taming acknowledgments,” in Proc.

ACM SIGCOMM, 2020, pp. 15–30.
12. X. Zuo, Y. Cui, M. Wang, T. Xiao, and X. Wang, “Low-

latency networking: Architecture, techniques, and

opportunities,” IEEE Internet Comput., vol. 22, no. 5,

pp. 56–63, Sep./Oct. 2018.

TONG LI is currently a Senior Researcher with the Computer

Network and Protocol Lab, Huawei, Shenzhen, China. His

research interest includes network protocols, security, and

measurements. He received the B.S. degree from Wuhan Uni-

versity, Wuhan, China, in 2012, and the Ph.D. degree from Tsing-

hua University, Beijing, China, in 2017. He is the corresponding

author of this article. Contact him at li.tong@huawei.com.

KAI ZHENG is currently the Chief Architect and the Director

of the Computer Network and Protocol Lab, Huawei, Shenz-

hen, China. His research interests include datacenter net-

working, software-defined (transport) protocols, wide-area

network accelerations, Internet-of-Things protocols, and

peer-to-peer communications. He received the Ph.D. degree

in computer science from Tsinghua University, Beijing, China,

and his Ph.D. dissertation won the first “Outstanding PhD

Thesis Award” of the Chinese Computer Federation. Contact

him at kai.zheng@huawei.com.

KE XU is currently a Full Professor with the Department of

Computer Science & Technology of Tsinghua University,

Beijing, China. He has authored/coauthored more than 200

technical papers and holds 11 US patents in the research

areas of next-generation Internet, blockchain systems, Inter-

net of Things, and network security. He received the Ph.D.

degree from the Department of Computer Science & Tech-

nology, Tsinghua University. He is a member of ACM and a

Senior Member of IEEE. He has guest-edited several special

issues in IEEE and Springer journals. He is an Editor for the

IEEE INTERNET OF THINGS JOURNAL. He is a Steering Committee

Chair of IEEE/ACM International Symposium on Quality of

Service. Contact him at xuke@tsinghua.edu.cn.

March/April 2021 IEEE Internet Computing 115

STANDARDS

Authorized licensed use limited to: Tsinghua University. Downloaded on May 06,2021 at 02:21:54 UTC from IEEE Xplore. Restrictions apply.

https://www.ietf.org/archive/id/draft-fairhurst-quic-ack-scaling-03.txt
https://www.ietf.org/archive/id/draft-fairhurst-quic-ack-scaling-03.txt
https://tools.ietf.org/id/draft-iyengar-quic-delayed-ack-02.txt
https://tools.ietf.org/id/draft-iyengar-quic-delayed-ack-02.txt
https://tools.ietf.org/id/draft-ietf-quic-transport-31.txt
https://tools.ietf.org/id/draft-ietf-quic-transport-31.txt
https://tools.ietf.org/id/draft-kuhn-quic-4-sat-06.txt
https://tools.ietf.org/id/draft-kuhn-quic-4-sat-06.txt
https://tools.ietf.org/id/draft-li-tcpm-advancing-ack-for-wireless-00.txt
https://tools.ietf.org/id/draft-li-tcpm-advancing-ack-for-wireless-00.txt
https://www.ietf.org/archive/id/draft-li-quic-optimizing-ack-in-wlan-01.txt
https://www.ietf.org/archive/id/draft-li-quic-optimizing-ack-in-wlan-01.txt

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

