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Abstract—Recent years have witnessed the rapidly-growing business of ride-on-demand (RoD) services such as Uber, Lyft and Didi.

Unlike taxi services, these emerging transportation services use dynamic pricing to manipulate the supply and demand, and to improve

service responsiveness and quality. Despite this, on the drivers’ side, dynamic pricing creates a new problem: how to seek for

passengers in order to earn more under the new pricing scheme. Seeking strategies have been studied extensively in traditional taxi

service, but in RoD service such studies are still rare and require the consideration of more factors such as dynamic prices, the status

of other transportation services, etc. In this paper, we develop ROD-Revenue, aiming to mine the relationship between driver revenue

and factors relevant to seeking strategies, and to predict driver revenue given features extracted from multi-source urban data. We

extract basic features from multiple datasets, including RoD service, taxi service, POI information, and the availability of public

transportation services, and then construct composite features from basic features in a product-form. The desired relationship is

learned from a linear regression model with basic features and high-dimensional composite features. The linear model is chosen for its

interpretability–to quantitatively explain the desired relationship. Finally, we evaluate our model by predicting drivers’ revenue. We hope

that ROD-Revenue not only serves as an initial analysis of seeking strategies in RoD service, but also helps increasing drivers’ revenue

by offering useful guidance.

Index Terms—Ride-on-demand, dynamic pricing, seeking strategy, driver revenue
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1 INTRODUCTION

RECENT years witness the rapidly-growing business of
ride-on-demand (RoD) services such as Uber, Lyft

and Didi around the world. RoD service attracts passen-
gers by its convenience, affordable prices, and flexible
service; it also attracts drivers by its driving flexibility–
drivers do not have to apply for licenses or medallions to
enter the service. An increasing amount of passengers
now take RoD service as a regular choice in their everyday
transportation.

Dynamic pricing is one of the key features making RoD
service attractive to both passengers and drivers, as an effort
to manipulate the supply (i.e., the number of cars on the
road) and demand (i.e., the number of passenger requests).
Specifically, a higher price attracts more drivers and defers
those requests from passengers who are not in hurry; and a
lower price does just the opposite. Inmost cases, the dynamic
prices are represented by a price multiplier, such that the fare
of a trip is the product of a dynamic price multiplier (depen-
dent on the supply and demand condition) and a fixed normal
price (based on the trip time and distance).

The adoption of dynamic pricing helps tomake the service
more responsive and to improve service quality, but it also
gives rise to new problems to both drivers and passengers. In
this study, wemainly focus on the drivers’ side: how to seek for
passengers to earn more? Instead of relying on some personal,
ad-hoc experiences as was in taxi service, in RoD service the
price multiplier, a more accurate description of the instanta-
neous supply and demand condition, becomes a new indica-
tor for drivers to choose seeking strategies. But the effective
strategies are still yet to be explored. For example, if all driv-
ers flock to a particular region with high price multiplier, the
supply in this region becomesmore than enough, causing the
price multiplier to drop drastically. This not only generates
unstable prices, but also upsets those drivers with an inten-
tion of chasing high prices. In fact, many news stories, blogs
or research papers have discussed this intuitive “surge
chasing” strategy, but unfortunately they sometimes give
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contradictory suggestions from one to another [1], [2]. As a
result, it is pressing that drivers should have some concrete
guidance as to how to seek for passengers under dynamic
pricing, instead of intuitive or untenable suggestions.

To our knowledge, seeking strategies receive little atten-
tion in RoD service. In the traditional taxi service, seeking
strategies have been studied from many different perspec-
tives, e.g., mining patterns of strategies from taxi GPS trajecto-
ries, building models such as the Markov Decision Process
(MDP) model to evaluate certain strategies, etc. In RoD ser-
vice, on the other hand, most suggestions are from news sto-
ries or blogs that are not rigorous enough, and some few
existing researches are mostly based on theoretical models
that require a lot of assumptions and approximation. In fact,
the lack of real data in RoD service hinders relevant studies
based on the data-analyticalmethodology.

Studying seeking strategies in RoD service requires us to
take into account more factors than in taxi service. In our
study, we involve factors from two perspectives:

� Dynamic Prices: As the core and distinctive feature of
RoD service, the dynamic prices should have impacts
on seeking strategies. For example, the effects of the
intuitive “surge chasing” strategy, and “what to
chase” correspondingly, will be discussed. As another
example, the adoption of dynamic pricingmay change
the demand patterns of passengers, so the hours-of-
day inwhich seeking for passengers is themost profit-
able is also a problem to explore.

� Status of Other Transportation Services: There are con-
cerns that the emerging RoD services are competing,
to some extent, with traditional transportation services
such as taxi, bus ormetro. In some cases, these services
are also complementary to each other–for example,
onemay choose to seek in a regionwithmoremetro or
bus stations to provide connecting services. Hence, the
relationship between seeking strategies and the status
of other transportation services is also among our tar-
gets to study.

In this paper, our goal is to understand the relationship
between driver revenue and seeking strategies, i.e., “what
seeking strategies prove to be more profitable?” Based on real
data, we develop ROD-Revenue, a system that learns an
interpretable relationship between drivers’ hourly average
revenue and seeking strategies from the data, and predicts
driver revenue given features relevant to seeking strategies.
For the datasets, our study is based on multi-source urban
datasets including the data of RoD service, taxi service,
points-of-interest (POI), and public transportation services;
as to the model used to learn the desired relationship, we
resort to a linear regressionmodelwith high-dimensional fea-
tures. The consideration of choosing multi-source urban data
and linear regressionmodel is discussed briefly below.

Multi-Source Urban Data. We learn the desired relationship
from real data instead of theoretical models, and we choose
multi-source urban data for multiple reasons. First, the use of
multiple datasets helps us to describe the status of different
transportation services, before we can learn the impacts of
this status on drivers’ revenue. Second, with more datasets,
we can extract more features, making our model accurate
enough to learn the desired relationship.

Linear Regression Model with High-Dimensional Features. In
addition to describing the above relationship and predicting
driver revenue,wewant to interpret quantitatively the learned
relationship, e.g., “how, and to what extent, one particular feature
influences drivers’ revenue?” or “which feature is the most impor-
tant? by how much?”. Hence, the model should also be inter-
pretable. Complex non-linear models such as neural network
or deep learning models are generally not interpretable, albeit
with high accuracy. Some simpler models such as decision
tree models are, by its nature, interpretable, but the interpret-
ability is diminishedwhen trainingmultiple trees at high com-
plexity. A linear regression model is one of the simplest
models with interpretability–the weight of each feature quan-
tifies its importance–but it is hard for a linear model to charac-
terize clearly the non-linear correlation between features. In
our study, we adopt a linear regression model, and compen-
sate for the lack of non-linear terms by adding product-form
terms of a combination of features (i.e., composite features).
The multiplication of two or more features and using the cor-
responding result as a new feature in model training help to
describe the non-linear correlation between features. To vali-
date the effectiveness of our model, we also implement a neu-
ral networkmodel and compare their evaluation results.

Our contributions are three-fold:

� Our study is one of the very few on seeking strategies
in RoD service. As far as we know, existing studies
mainly use theoretical models such as theMDPmodel
with assumptions about the supply, demand and
driver behavior because of the lack of real data.
Instead, we are the first to mine the relationship betw-
een driver revenue and seeking strategies by a learn-
ing model from real service data. Thus, our focus is
not only on the learning model itself, but also on min-
ing and understanding new patterns and relationship
about seeking for passengers in emerging RoD serv-
ices and increasing the research community’s under-
standing about such a service.

� To the best of our knowledge, we are the first to
involve multi-source urban data in studying seeking
strategies in RoD service. This enables us to take into
account the status of other transportation services as
well as the POI information, instead of considering
only RoD service itself.

� Based on the linear model, ROD-Revenue quantifies
the above relationship and provide concrete heuristics
to drivers as to how to earnmore under dynamic pric-
ing in RoD service. Quantifying the relationship helps
to understand “what seeking strategies are more profit-
able, and by how much?”. The heuristics are derived
from real data, and some of them are counter-intuitive
andmay be contradictory to intuition.

The remainder of the paper is organized as follows.
Section 2 reviews related works. We show the system frame-
work of ROD-Revenue in Section 3. Sections 4, 5, 6, and 7
elaborate on the three main parts of ROD-Revenue, i.e.,
multi-source urban datasets, feature extraction, and model
& prediction. Together with the model in Section 7, we also
present our evaluation results. Section 8 provides discus-
sions on feature contribution, seeking strategies and rele-
vant topics. Finally, Section 9 concludes the paper.
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2 RELATED WORK

The problem about driver revenue and seeking strategies has
been studied in traditional taxi services from different per-
spectives, but receives very limited attention in emerging
RoD services. We first review some related work in RoD ser-
vice, then discuss previous studies on seeking strategies.

RoD Services. RoD service is relatively new, and there are
fewer studies compared to traditional taxi service. Quite a
few compare the differences of the price, waiting time, incen-
tives, and service quality between taxi and RoD service, from
a data statistical perspective. For instance, Picchi pointed out
that Uber is not always the economical choice although it can
reduce thewaiting time to a great deal [3]; Salnikov conducted
a head to head Uber-taxi comparison study in a reasonable
spatio-temporal resolution [4]. In addition, themarket sharing
of the taxi service and public transportation before and after
the entering of Uber is also compared and discussed in [5],
[6], [7]. There are also a number of studies estimating Uber’s
market effects such as “Is Uber a substitute or complement for
public transit?” [8], “Drivers of disruptions?” [9], etc.

As a key feature of RoD service, dynamic pricing receives a
great deal of attention. [10], [11], [12] examine the effective-
ness of dynamic pricing in balancing and redistributing the
supply and demand in different regions, increasing driver
revenue, reducing passenger waiting time, etc. [13] tries to
evaluate Uber’s surge pricing mechanism based on the mea-
surement treating Uber as a black-box, but their evaluation is
not accurate enough because of the lack of data. [14], [15]
study and analyze the demand, the effect of dynamic pricing
and passengers’ reaction to prices in RoD services. [16]
focuses on dynamic price prediction using different datamin-
ing techniques. There are also some works on economic anal-
ysis of dynamic pricing [10], the supply elasticity [17] and
consumer suplus [18].

Seeking Strategies. Seeking strategies, together with seeking
route recommendation, have been studied extensively in taxi
services. For example, [19], [20] study seeking strategies by
mining GPS trajectories, and identify whether hunting (i.e.,
seeking for passengers actively) orwaiting (i.e., staying in pop-
ular locations) are more profitable under different circumstan-
ces. [21] builds a Markov Decision Process model to optimize
taxi driver revenue efficiency. [22] discusses the same prob-
lem, but with reinforcement learning. [23] extends the model
in [21], incorporates the charging process, takes into account
the battery constraint, and discusses how to earn more when
driving electric taxis. Alternatively, [24] recommends routes to
drivers tominimize the distance between the taxi and an antic-
ipated customer request. However, as taxi adopts fixed pric-
ing, price is not a possible factor that influences seeking
strategies. Also, studies on taxi service generally consider the
taxi service itself as an entity that influences driver revenue.

In RoD service, there are much fewer studies on seeking
strategies considering the effects of dynamic pricing. [25]
studies how to optimize earning in on-demand ride-hailing
(i.e., another name similar to RoD service) based on theoreti-
cal modelling. It models drivers, cities, and the service itself
with a number of assumptions and approximations, and the
driver strategies mentioned are idealized to a certain extent.

Different from the above works, our study on seeking
strategies and driver revenue is based on real data, and tries

to mine the relationship between driver revenue and seek-
ing strategies using a learning model. We also evaluate the
accuracy of such a model based on ground truth. Besides,
we also offer tenable suggestions for drivers to increase rev-
enue based on the learned model.

3 SYSTEM FRAMEWORK

In this section, we formalize the problem to study, and then
present briefly the system framework of ROD-Revenue.

3.1 Problem Statement

The problem ROD-Revenue tries to solve is to learn the rela-
tionship between drivers’ hourly average revenue and seeking
strategies, and then predict any driver’s hourly average reve-
nue based on the learned model and corresponding seeking
strategies.

Definition 3.1 (Timeslot). Our study is on the unit of time-
slots. We divide one day into 4 timeslots of equal length: time-
slot-0 to -3 refers to [4am, 10am), [10am, 4pm), [4pm, 10pm)
and [10pm, 4am), respectively.

Roughly speaking, for weekdays, timeslot-0 and -2 corre-
spond to the morning and evening rush hours; timeslot-1 is
the non-rush hours around noon; and timeslot-3 represents
night hours. For weekends, our study and [14] suggest that
human activity remains relatively high and stable during the
day (about [9am, 10pm)), and is lowered during the rest of
the day, so the above partition of timeslots still makes sense.
In determining the length of timeslots, it cannot be too long to
avoid losing useful information of time division; and it cannot
be too short to have fewer than enough passenger delivery
trips to be representative. Our study is based on real data
from Beijing, a major Asian metropolitan city that accom-
modates a diversified population and hence diversified trip
patterns–making the length of rush or non-rush hours longer
than normal. In our model and evaluation, we also try to par-
tition one day into timeslots of 4 hours in length, and it proves
to generate lower accuracy (see Section 7.3.2).

Definition 3.2 (Hourly Average Revenue). The hourly
average revenue of a driver in one particular timeslot, is defined
as the sum of trip fares of all passenger delivery trips taking
place in this timeslot divided by the length of the timeslot in
hours. We use K to denote the number of trips of a driver in a
timeslot, and use fkð1 � k � KÞ to denote the trip fare of the
kth trip, then the hourly average revenue ravg is

ravg ¼
PK

k¼1 fk
6

; (1)

given that the length of each timeslot is 6 hours.

Choosing the hourly average revenue as the target of study is
intuitive, as we want to learn the relationship between driver
revenue and seeking strategies. Calculating the hourly aver-
age revenue over a timeslot ofmultiple hours helps in dealing
outliers or special events.

We use y to denote the hourly average revenue for one
driver during a timeslot, and x 2 Rm the feature vector, with
m being the dimension of the feature vector. From our data-
sets, we can extractN data entries of different drivers or dur-
ing different timeslots, denoted by X ¼ fx1; x2; . . . ; xNg and
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Y ¼ fy1; y2; . . . ; yNg. Data entries X and Y are then divided
into a training set (Xtrain and Ytrain) and a testing set (Xtest

and Ytest). We then build a model based onXtrain and Ytrain to
learn the relationship fðxÞ between X and Y such that y ¼
fðxÞ. The validation of the model is by predicting a Ypredict

based onXtest, and comparing between Ypredict and Ytest.

3.2 System Framework of ROD-Revenue

As illustrated in Fig. 1, ROD-Revenue consists of three main
layers: datasets, feature extraction, model & prediction. We
discuss briefly each of them below.

Datasets. We usemulti-source urban datasets as the funda-
mental component of ROD-Revenue. Datasets are obtained
from RoD service, taxi service, POI information, and public
transportation services. These datasets are used to describe
the spatio-temporal information as well as the status of other
transportation services fromdifferent perspectives.

Feature Extraction. For each driver during each timeslot, we
extract corresponding feature set. We have two categories of
features, namely basic features and composite features. Basic
features are those extracted from each single dataset. Features
from RoD service give the temporal and price information;
features from taxi service and other public transportation
services describe the status of these services around the seek-
ing locations; features from POI information characterize the
function and category of these locations. Composite features
are those combined from basic features in a product-form.
We use composite features to compensate for the lack of non-
linearity in our linearmodel.

Model & Prediction. Based on the basic and composite fea-
tures, we build a linear regression model to learn the rela-
tionship between driver revenue and seeking strategies
based on the training dataset, and use the learned model to

predict driver revenue based on the test dataset. We also
measure the difference between the predicted revenue and
ground truth in test dataset to evaluate model accuracy.

In the following sections, we elaborate on each layer with
more details: Section 4 for datasets, Section 5 for the extrac-
tion of basic features, Section 6 for the extraction of compos-
ite features, and Section 7 for the model and prediction.

4 MULTI-SOURCE URBAN DATA

Multi-source urban datasets are the fundamental component
of ROD-Revenue. In this section, we explain the RoD service
data, taxi service data, bus & metro distribution data, and
POI data. Table 1 summarizes the datasets and fields.

4.1 RoD Service Data

The use of mobile apps for both passengers and drivers to
access RoD services is a key enabler of our research. In tradi-
tional taxi service, most cars are now equipped with GPS
devices that uploadGPS trajectories, and in recent years there
are an emerging usage of mobile apps to assist the matching
between drivers and passengers. But in a RoD service, all
communication messages between passengers, drivers, and
the service provider are carried out throughmobile apps, and
there is not any other way of matching between drivers and
passengers such as street-hailing. Hence, in addition to the
car GPS trajectories data typically used in taxi studies, now
we havemore data to rely on.

Our data is from Shenzhou UCar (https://bit.ly/
2MG47xz), a major RoD service provider in China. Fig. 2
shows the user interface of its app, and we use it to explain
the work-flow of a typical RoD service. One types the board-
ing location A and arriving location B and could also choose
“when to ride” and “using coupon”. After these steps, the

Fig. 1. The system framework of RoD-Revenue. Fig. 2. The user interface of a typical RoD service.

TABLE 1
A Summary of Datasets and Fields

Dataset Fields

RoD Order: boarding location, boarding time, arriving location, arriving time, user ID, driver ID, car ID, order ID/type.
GPS Trajectories: car location, upload time, car ID, car number plate.
Event-log: event time, event location, estimated fare, price multiplier, user ID.

Taxi GPS Trajectories: taxi location, upload time, speed, full flag, car number plate.

Bus & metro the number of bus stations, bus lines, metro stations, metro lines.

POI the number of POIs of 14 categories mentioned in Section 4.4.
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app sends relevant information back to the service provider
and obtains (a) the estimated trip fare and (b) the current
dynamic price multiplier, which are displayed to the user.
Note that the service provider often sets a lower and upper
bound on the price multiplier in the service policy. The user
then chooses either to accept the current price (i.e., “Ride a
Car!”) or give up the current fare estimation if s/he considers
the pricemultiplier too high.

We obtain three different datasets from RoD service:
The Order Data. Each entry represents a single order from a

passenger, containing the order’s boarding/arriving time
and location, the unique ID of the user/driver/car/order, the
type of order, etc. We use the data in Beijing, as it is one of the
most representative metropolitan cities and also the biggest
market of the service provider. The dataset lasts for 4months,
from Nov. 2015 to Mar. 2016, and contains about 2.7 million
entries for Beijing alone. All entries are properly anonymized.

GPS Trajectories. This dataset covers the GPS trajectories of
every single car under the service provider. Each car uploads
its location to the service provider every twominutes, and the
upload period becomes longer (varying from five to ten min-
utes) when the car is out of service (e.g., the driver is taking a
rest, having lunch, etc.). Each entry represents one particular
data upload with information such as the location of the car
(i.e., the longitude and latitude), data upload time, the unique
ID and the number plate of the car, etc. The time range of the
dataset is the same to the order data, and on eachday the num-
ber of cars on the road is about 3,500 for the service provider.

The Event-Log Data. Each time when the mobile app sends
all the information to the service provider and returns the
current pricemultiplier and the estimated trip fare, anEstima-
teFee event is generated. Our event-log data contains the
record of this event in the same time range. Each entry corre-
sponds to a single event, and includes fields such as event
time, event location (i.e., the longitude and latitude when the
user triggers the event), estimated fare, price multiplier, the
unique user ID, etc. The dataset contains 14,832,418 entries.

The event-log data gives clues about dynamic prices: it cov-
ers more information than the orders created by passengers,
as those fare estimations that do not lead to order creations
are also recorded. For a particular time period and a region,
we can calculate the average price multipliers of all events in
this region during this period, and it tells “how different price
multipliers could be in different locations or during different
time periods?”. In [16] the authors show the average price
multiplier during different time periods around Beijing, and a
very simple observation is that the dynamic prices are related
to temporal and spatial factors, so are the drivers’ revenue.

These three datasets help us to obtain information about
both the passenger delivery trip and driver seeking trip. The
feature extraction process in details will be discussed later.

Passenger Delivery Trip. We can extract the following infor-
mation about a delivery trip: the boarding/arriving time and
locations are directly from the order data; and the trip dis-
tance and order revenue can also be estimated. Details will be
discussed in Section 5.1.1.

Driver Seeking Trip. A seeking trip is defined as the trip from
the arriving location of one order to the boarding location of
the next order. The starting and ending points (time and loca-
tions) of a seeking trip are just the arriving time/location of
one order, and the boarding time/location of the next order.

4.2 Taxi Service GPS Trajectory Data

The motivation of using taxi GPS trajectory data along with
RoD service data is two-fold. First, we envision that the opera-
tion status of RoD service is relevant to taxi service, as RoD
service is similar to taxi service in many ways. Thus, the prof-
itability of a particular seeking strategy maybe related to the
status of taxi service along the seeking routes. Second, the taxi
service GPS trajectories help to characterize the general traffic
condition of different locations. For examples, “whether a
region is busy during a particular time period”, “the number of
available taxis around a region”, etc.

Our dataset covers the GPS trajectories of about 30,000
taxis in Beijing in November, 2015. Similar to RoD service,
each taxi uploads one GPS entry every 30 seconds during
operation. For each day, the volume of dataset ranges from 45
to 50 million entries. Each entry contains information such as
the location of the car, upload time, speed, full flag (i.e.,
whether the taxi is available), the number plate, etc.

4.3 Bus & Metro Distribution Data

We use this dataset to describe the availability of public
transportation around different locations, as the profitability
of a seeking strategy may be related to the status of public
transportation services around.

We count the number of bus & metro lines and stations
within a 500-meter radius of a given location. It is true that
the most accurate description should be the availability of
bus &metro around, but as bus &metro have relatively fixed
time tables, most people decide whether to take public trans-
portation based on the availability of bus &metro lines or sta-
tions nearby, instead of the exact number of buses or metro
trains. The dataset is crawled from AMap service [26] (one of
the largest digital map service providers in China). For the
whole city, there are more than 7,700 bus stations and about
380metro stations.

4.4 POI Data

The goal of using point of interest information is that wewant
to extract some POI features to characterize a particular loca-
tion. For example, the average pricemultiplier ismuch higher
in some part of the city (e.g., some business areas) during
evening rush hour than in other locations. We want to find
out some features to accurately describe the differences
between locations.

We also crawl POI data from AMap service. It categorizes
each POI into 14 coarse categories: car service, restaurant, shop-
ping, sports & entertainment, hospital, hotel, scenic spot, business
& residential building, government, education & culture, transpor-
tation facility, finance & insurance, business and lifestyle. For a
location given, we count the number of POIs of each category
within a 500-meter radius of the location, and use the result-
ing vector as our POI data.

Essentially, the POI-counts data we collect describes a par-
ticular location with the number of POIs of different catego-
ries that appear around this location. Some previous work
used the nearest POI and its category to describe a location,
and we do not adopt this idea, as we consider it not an accu-
rate characterization of a location. For example, a passenger
standing out of a shopping mall may have the nearest POI as
a restaurant, but the reason of waiting here turns out to be the
shoppingmall instead of the restaurant.
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5 FEATURE EXTRACTION: BASIC FEATURES

Our study is on a weekly basis. For each driver driving on a
particular day-of-week, we gather his/her passenger orders
and seeking trips during each timeslot, and calculate the
corresponding features based on our multi-source datasets.

Basic features are those extracted from each dataset, and
in the following we elaborate on them in more details.

5.1 Features from RoD Service

RoD service features are the most fundamental in our study.
We extract features about both passenger delivery trips and
driver seeking trips. All features are extracted in the unit of
timeslot for each driver on a particular day-of-week. The
common features for delivery and seeking trips are the tem-
poral features: day-of-week and timeslot-of-day. Below we elab-
orate on features related to passenger delivery trips and
driver seeking trips separately.

5.1.1 Features about Passenger Delivery Trips

For passenger delivery trips, the goal is to calculate the aver-
age delivery speed and the hourly average revenue of a driver in
a timeslot.

AverageDelivery Speed.We first calculate the trip distance of
each passenger delivery trip of a driver in a timeslot. The
order dataset provides the boarding and arriving location of
an order, but the straight line distance between these two loca-
tions is only a rough estimate of the trip distance. The RoD
service GPS trajectories are used to approximately calculate
the distance. Specifically, the GPS trajectories of a single car in
one day consist of a series of points ðti; loni; latiÞð1 � i � nÞ. n
is the total number of data points, and ti, loni, lati are the data
upload time, longitude and latitude of the ith point, respec-
tively. For a single order, we use Tboard and Tarrive to denote
the boarding and arriving time, and find the board L,
board R, arrive L, arrive Rth data points on the GPS trajecto-
ries such that tboard L � Tboard � tboard R and tarrive L �
Tarrive � tarrive R.We thenuse two trajectorieswith a slight dif-
ference to approach the real distance: one from tboard L to
tarrive L, and another from tboard R to tarrive R. For each trajec-
tory, the trip distance is approximated by the sum of straight
line distances between adjacent points. The trip distance of
this order is the average of distances of the two trajectories.

The average delivery speed vavg of a driver in a timeslot can
then be calculated. Assuming that this driver servesK orders

during this timeslot, with boarding time Tboard;k, arriving time
Tarrive;k and trip distance dk (1 � k � K), then vavg is

vavg ¼
PK

k¼1 dkPK
k¼1 Tarrive;k � Tboard;k

: (2)

We use average delivery speed as a feature, as it reflects a driv-
er’s ability to choose faster routes in serving a passenger,
which is an important metric in driver evaluation. It is also
a reflection of the traffic condition along the delivery routes,
when there is no faster routes to choose from.

Hourly Average Revenue. The hourly average revenue of a
driver in a timeslot is the target of our model. Calculating the
hourly average revenue requires the trip fare of every single
passenger delivery trip of a driver, but our order dataset has
a limitation that there is not a total trip fare or dynamic price
multiplier associated with each order. This limitation may be
due to the privacy policy. Hence, we try to estimate the trip
fare aswell as the dynamic pricemultiplier.

Specifically, we divide the map of Beijing into 2500
(¼ 50 � 50) rectangular cells of the same size, so the board-
ing location of the order falls in one cell. Then we gather all
EstimateFee events from the event-log dataset in this cell tak-
ing place during the same hour and on the same day-of-
week with the order, and use the average price multiplier
contained in these events to approximate the price multi-
plier of the order. We use pk to denote the estimated price
multiplier for the kth order (1 � k � K) and fk as the esti-
mated trip fare of the kth order, then we have

fk ¼ pk � ð15þ 2:8 � dkÞ; 1 � k � K: (3)

In (3), the service provider sets the flag-fall to be 15 Yuan in
RMB (� 2:18 USD), and each additional kilometre costs 2.8
Yuan (� 0:41 USD). As an approximation, our estimated
trip fare omits the waiting charge, as it is hard to accurately
estimate the waiting time only from the GPS trajectories.

Visualizations and Analysis. We show some visualizations
of the intermediate quantities mentioned above, as well as
the average delivery speed and hourly average revenue, based on
our RoD service datasets. The goal is provide some intuitive
understanding and insights about these features.

Fig. 3 shows the hourly variation of order distance dk,
order revenue fk and order average speed. The red dot is

Fig. 3. The variation of order distance, revenue, and speed in one week.
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the corresponding mean value, and the error bar indicates
the standard deviation. Interesting observations include:

� For order distance, it is significantly higher during
night, and becomes the lowest during morning/
evening rush hours on weekdays. This agrees to our
intuition that people take longer rides at night.

� For order revenue, the temporal difference is smaller
during the day, compared to that of order distance.
But during morning rush hours the revenue is still
the lowest. The reduced temporal difference is a
result of higher dynamic prices during rush hours.

� The average speed also shows similar patterns with
more obvious fluctuation. It can be regarded as an
indication of the traffic condition, and it is clear that
the speed is much slower during rush hours.

� During weekends, the fluctuation of these three quan-
tities is much less obvious: during the day (e.g., [8am,
8pm]), the order distance, revenue and speed all
remainmore stable.

Figs. 4 and 5 show the distribution of hourly average rev-
enue among all drivers in each timeslot. The y-axis of these
figures is proportional to the probability, and may not inte-
grate to one. Similarly, Figs. 6 and 7 show the distribution of
average delivery speed among all drivers in each timeslot.

Regarding the hourly average revenue of drivers, we
have the following observations:

� The distribution is more even during weekends:
drivers make similar hourly revenue during the day.

Comparatively, the hourly average revenue fluctu-
ates more obviously between different timeslots.

� For weekdays, the hourly average revenue is the
highest during the evening rush hours (i.e., timeslot-
2), and then the non-rush hours around noon (i.e.,
timeslot-1), on the average driver level.

� Comparing between morning rush hours (i.e.,
timeslot-0) and night hours (i.e., timeslot-3), the
hourly average revenue distributes more evenly
during morning rush hours than during night
hours. In other words, only very few drivers can
make higher revenue during night hours, and it is
comparatively easier to earn more during morn-
ing rush hours.

� Similar to the order revenue observed in Fig. 3, it is
interesting to find that the hourly average revenue is
higher during the non-rush hours around noon, than
during the morning rush hours. The hourly average
revenue around noon is also very close to that during
the evening rush hours. This is, to some extent,
counter-intuitive to our experience, and we will vali-
date this later in our model.

Similarly, we have the following observations regarding
the average delivery speed:

� Onweekends, the average delivery speed has roughly
the same distribution during the day (i.e., timeslot-1
and 2), and becomes higher during other timeslots.
More accurately, there is not such concepts of rush

Fig. 4. The distribution of hourly average revenue on weekdays.

Fig. 5. The distribution of hourly average revenue on weekends.

Fig. 6. The distribution of average delivery speed on weekdays.

Fig. 7. The distribution of average delivery speed on weekends.
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hours during weekends; instead, people’s activities
aremore evenly spread across the day.

� On weekdays, the average delivery speed is signifi-
cantly lower duringmorning and evening rush hours,
than during other timeslots. Additionally, driving at
high speed during evening rush hours requires more
careful strategies than during morning rush hours, as
the distribution of delivery speed is much sharper
during evening rush hours, meaning that fewer driv-
ers can achieve higher speeds.

� Comparing between Figs. 4 and 6, most drivers are
able to maintain a relatively high speed during night
hours, but only a few can make higher revenue dur-
ing this timeslot. This shows that the hourly average
revenue has a rather complex relationship with aver-
age delivery speed–being able to driving faster or
choosing clearer routes does not necessarily lead to a
higher revenue.

5.1.2 Features about Driver Seeking Trips

For driver seeking trip, our goal is to generate features to
describe some high-level characteristics of seeking strate-
gies. Taking the same notations in Section 5.1.1, if the
number of delivery trips a driver serves during a timeslot
is K, then the number of seeking trips is M ¼ K � 1. In
the following, we first identify the price-chasing strategy,
then the price multipliers around seeking locations. We
also extract features from other datasets to characterize
the seeking locations, and more details can be found in
Section 5.2.

Basically, the characterization of seeking trips is based
on the corresponding starting and ending points. After
closing an order, a driver start a seeking trip at the arriv-
ing location of this order, and this seeking trip comes to
an end when another order starts. We compare the start-
ing and ending point of a seeking trip from different per-
spectives, to fully characterize the seeking strategy
represented in such a trip.

It may be more accurate to dig into more details about the
seeking trip than just the starting and ending points, for
example, the exact GPS trajectories between these points and
howdrivers take turns, accelerate, brake, etc. But we don’t do
that in our study due to two reasons. First, going into that
details is over-fitting to some extent, as these driver behaviors
may not be the result of seeking strategies; instead, they may
be spontaneous and due to some unplanned reasons such as
traffic condition, events, accidents, etc. Second, an accurate
description of these behaviors requires datasets other than
our RoD service datasets currently in use, such as data
obtained fromwearable devices.

For one particular driver during a particular timeslot,
there may be more than one seeking trips. The ideal way is to
design some features that describe each of these seeking trips.
One possible solution is to divide the city into a number of
pre-defined regions with some pre-defined characteristics
(e.g., business regions, residential regions, airports, etc.), and
then consider the number of seeking trips that fall in each
region. But choosing regions and corresponding characteris-
tics requires prior knowledge of the city and thus seems too
artificial. Instead, we choose to describe the starting and end-
ing points of a seeking trip based on the features extracted

from our multi-source urban datasets. However, the number
of seeking trips is not fixed, and if we describe each of these
trips, the dimension of features will also become variable,
adding complexity to our model. Hence, we choose to
describe the collective properties (e.g., average, minimum or
maximum of some properties) of all seeking trips of one driver
during a timeslot, similar to the way we generate the hourly
average revenue and average delivery speed features. Though los-
ing some information, collective properties still retain the
essence of information about seeking trips.

Strategy Factor. Strategy factor focuses on whether a
driver is chasing dynamic price multiplier. We first define
the price-chasing strategy of each seeking trip. The rationale
of identifying price-chasing strategy is that we want to see if
strategies such as “surge chasing” work. A seeking trip is
categorized into three different strategies:

� chasing current: in the hour of starting seeking, if the
average price multiplier around the ending point is
higher than that around the starting point;

� chasing future: in the hour of starting seeking, if the
average price multiplier around the ending point in
the next hour is higher than that around the starting
point;

� no chasing: if neither of the above holds.

A seeking trip can be of chasing or no chasing strategy; and
for chasing, it can be either chasing current or chasing future.

The strategy factor vector indicates a driver’s preference
on seeking strategy in a timeslot, and is defined as the
number of seeking trips of each category of a driver in a
timeslot. It is a 3-dimension vector ðNcurrent; Nfuture; NnonÞ,
referring to the number of seeking trips of each strategy.

Price Multipliers of Seeking Locations. The strategy factor
describes the relative relationship of dynamic prices
between the starting and ending points of seeking trips.
Now we turn to the absolute values of dynamic price multi-
pliers of the starting and ending points.

We discuss how to define a feature starting points’ price
multipliers, and for ending points the procedure is similar. For
the mth seeking trip (1 � m � M), we calculate the average
price multiplier around its starting point in the last hour,
now, and next hour, denoted by pm;last; pm;now; pm;next, respec-
tively, from the event-log data. We then traverse all seeking
trips, and calculate the average,minimumandmaximumval-
ues among all pm;last; pm;now; pm;next for 1 � m � M. Thus, we
generate 9 different values: pavg last, pmin last, pmax last, pavg now,
pmin now, pmax now, pavg next, pmin next, and pmax next. They form
the vector starting points’ price multipliers. Similarly, we define
the vector ending points’ price multipliers.

These two vectors, starting/ending points’ price multipliers,
describe the price multipliers around the seeking trips’ start-
ing and ending points, in the current and neighboring hours.
We consider these vectors as a representation of dynamic pri-
ces of every seeking trip, at a high and average level.

5.2 Features from Other Datasets

Features extracted from other datasets (i.e., taxi service, bus
& metro, and POI) are used to characterize the starting and
ending points of seeking trips, from perspectives such as
the status of taxi service, the traffic condition, the availabil-
ity of public transportation services and POI information.
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5.2.1 Features from Taxi Service

Features from taxi service data are used to describe the sta-
tus of taxi service as well as traffic condition around the
starting/ending points of seeking trips, and they form fea-
ture vectors starting/ending points’ taxi status. We discuss
how to form starting points’ taxi status, and for ending points
the procedure is similar.

From the taxi trip information, we extract two features:

� up/down count: the number of orders starting/ending
around the starting points.

From taxi GPS trajectories, we extract five features
describing taxis around the starting points of seeking trips:

� average speed: the average speed of full taxis (i.e., taxis
with passengers on-board);

� speed variance: the variance of speed among full taxis;
� taxi count: the number of taxis appearing around;
� full taxi count: the number of full taxis;
� full taxi ratio: the ratio of full taxis to all taxis.
Among these features, average speed and speed variance

describe the traffic condition around the starting points of
seeking trips, and other features describe either the avail-
ability of taxis, the popularity of the location, or passengers’
demand for taxis around the starting points. For all these
seven features, we calculate each of them based on the GPS
trajectories that fall in the same hour-of-day (i.e., “hourly
taxi features”), and in the same hour-of-day and day-of-
week (i.e., “daily taxi features”). In this way, we obtain
14 different features from taxi service, and they form the
feature vector starting points’ taxi status. For ending points of
seeking trips, the vector ending points’ taxi status is con-
structed similarly, but with features around the ending
points.

5.2.2 Features from Bus & Metro, and POI Data

Features from the bus & metro distribution data describe
the availability of public transportation services such as
bus or metro around the starting or ending points of seek-
ing trips. Specifically, we build a feature vector starting
points’ bus & metro, a 4-dimension vector containing the
number of bus stations, bus lines, metro stations, metro
lines around the starting points of seeking trips. We also
build the vector ending points’ bus & metro in a similar
way.

Regarding the driver seeking behavior mined from
our data, Figs. 8 and 9 show the histogram of bus and
metro station counts around ending points of seeking
locations during each timeslot on weekdays. Figures of
weekends are omitted due to the limited space. Observa-
tions are:

� On weekdays and weekends, drivers tend to go to
regions with very few bus stations to seek for passen-
gers during night hours–the lack of bus stations
means higher demand for taxi or RoD service.
Things are similar during the morning on weekends,
due to the lack of human activity in this timeslot.

� On weekdays, the histograms of bus stations during
the day (i.e., timeslot-1 and -2) are more evenly
spread–drivers have fewer specific choices regarding
bus stations, but locations with more bus stations are
favoured, as having more bus stations means that
the location has a higher popularity.

� On weekdays, in morning rush hours the average
number of bus stations around seeking locations is
between that during the day and night hours.

� For metro stations, we have the similar observations,
but with fewer number of stations, as metro stations
are much more sparsely distributed in the city than
bus stations. This also shows that drivers take into
account bus or metro stations in the same way in
determining their seeking strategies.

Features from the POI data help to describe the starting
and ending points of seeking trip by characterizing the
usage of these locations—the number of POIs of different cate-
gories around these locations. Our POI data categorizes POIs
into 14 categories (see Section 4.4), and these 14 values form
the feature vector starting/ending points’ POI counts.

6 FEATURE EXTRACTION: COMPOSITE FEATURES

The need to introduce composite features comes from the
lack of non-linearity in a linear regression model. Without
non-linear terms, a linear regression model is unable to
involve the non-linear relationship between features, and
thus has a relatively lower accuracy in fitting the data.

Adding product-form terms into a linear model trans-
forms the model into a non-linear one, while the model still
retains the same level of interpretability. For example,

Fig. 8. The histogram of bus station counts around ending points of
seeking locations on weekdays.

Fig. 9. The histogram of metro station counts around ending points of
seeking locations on weekdays.
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assuming we have two features x1 and x2 and the target var-
iable is y, a simple form of a linear regression model can be
written as

y ¼ v1x1 þ v2x2 þ b: (4)

If we multiply x1 and x2 and use x3 ¼ x1x2 to denote the
resulting feature, and then use x1, x2 and x3 to build the lin-
ear regression model, the result becomes

y ¼ v0
1x1 þ v0

2x2 þ v0
3x3 þ b0: (5)

In (4) and (5), v1, v2, b, v
0
1, v

0
2, v

0
3 and b0 are the model

parameters learned. Changing from (4) to (5) with the intro-
duction of x3 makes the model non-linear, but we can still
use v0

iði ¼ 1; 2; 3Þ and b0 to interpret the model. Hence, prod-
uct-form terms are equivalent to non-linear terms.

The composite features in our study are just the multipli-
cative product of multiple basic features.

6.1 Normalization of Basic Features

It is necessary to normalize basic features for fast convergence
of SGD (stochastic gradient descent) regression, and for uni-
fying the units andmeanings of different basic features.

There are two different kinds of feature: numerical and
categorical feature. For a numerical feature (e.g., average
delivery speed, the number of bus stations of starting points’
bus & metro, etc.), we apply the min-max normalization [27]
to make it between 0 and 1. For a categorical feature (e.g.,
day-of-week), we apply one-hot extension to transform it into
a vector, the dimension of which is the number of catego-
ries. There is nothing to normalize for a categorical feature,
as the maximum value of any component is 1.

6.2 Combination of Basic Features

We have already defined composite features as the combi-
nation of basic features in a product form. Specifically, now
we show how to perform this combination under different
circumstances, i.e., whether the basic features are numerical
or categorical features.

We use x1 and x2 to denote two basic features, and x3 to
denote the resulting composite feature. The calculation of x3

can be one of the following three circumstances:

� if x1 and x2 are numerical features, then x3 is also a
numerical feature, and x3 ¼ x1x2;

� if x1 is a numerical feature and ~x2 is a categorical fea-
ture, then x3 is also a vector and ~x3 ¼ x1~x2.

� if ~x1 ¼ ðx11; x12; . . . ; x1n1Þ and ~x2 ¼ ðx21; x22; . . . ; x2n2Þ
are categorical features of dimension n1 and n2, then
the resulting vector ~x3 has a dimension n3 ¼ n1n2 and
can bewritten as ~x3 ¼ ðx11x21; x11x22; . . . ; x11x2n2 ; x12x21;

x12x22; . . . ; x12 x2n2 ; . . . ; x1n1x21; x1n1x22; . . . ; x1n1x2n2Þ.

6.3 Examples of Composite Features

It is possible to combine virtually any two basic features to
form composite features, and judge the effects of the combi-
nation (i.e., whether this composite feature is necessary) by
the corresponding weight in the trained linear model.
Because of limited space, we give some illustrative exam-
ples below. More examples can be found in Table 2.

Combining Features from the Same Dataset. Combination of
this kind tries to express the correlation between features in
the same dataset. For example, a composite feature (day-of-
week, timeslot-of-day) tries to correlate the day-of-week feature
with timeslot-of-day feature, and its weight shows the joint
impact of both day-of-week and timeslot-of-day on the hourly
average revenue.

Combining Features from Different Datasets. Combining
basic features from different datasets not only helps to
express the correlation between these features, but also
shows the relationship between different datasets. For
example, (timeslot-of-day, ending points’ taxi status) reflects
how RoD service interacts with the status of taxi service. As
another example, the weight of (timeslot-of-day, ending points’
bus & metro) indicates different levels of profitability of find-
ing bus or metro stations during different timeslots.

In fact, the use of composite features combined from dif-
ferent datasets enables us to quantify and interpret the rela-
tionship between driver revenue and relevant features
extracted from other datasets, such as the status of taxi, bus
and metro service, POI information, etc. These composite
features also tell us, when coupled together, the importance
of features under different circumstances.

6.4 The Growing Dimensions of Features

The dimension of features grows tremendously with the
introduction of composite features. When combining two
basic features of dimension n1 and n2, the resulting composite
feature has a dimension of n1n2. The growth is much faster if
we combine more than two basic features to form composite
features. To bemore concrete, our basic features account for a
dimension of 97, andwhen combining any two basic features,
the resulting dimension of both basic and composite features
climbs to 3,730. If we choose some groups of three basic

TABLE 2
Feature Extraction: Some Selected Composite Features

Type Datasets Examples of combinations

Same RoD+RoD (day-of-week, timeslot-of-day), (strategy factor, starting points’ price multipliers),
dataset (average delivery speed, ending points’ price multipliers)...

Taxi+Taxi (starting points’ taxi status, ending points’ taxi status)

Different RoD+Taxi (timeslot-of-day, starting/ending points’ taxi status)...
dataset RoD+Bus&metro (timeslot-of-day, starting/ending points’ bus & metro)...

RoD+POI (strategy factor, starting points’ POI counts), (day-of-week, starting points’ POI counts)
Taxi+POI (starting points’ taxi status, ending points’ POI counts)...
Taxi+Bus&metro (starting points’ taxi status, ending points’ bus & metro)...
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features to form composite features, the dimension will be
higher than 13,000.

In our study we only combine any two basic features to
form composite features. There are multiple considerations
of not using more than two basic features in combination:

� We actually try to combine three basic features to
form composite features, and our evaluation shows
that while the training time is more than tripled, the
model’s accuracy does not improve significantly.

� Composite features combined from three or more
basic features have a reduced interpretability. It
becomes harder to quantify and interpret the joint
effects of three or more features as well as the rela-
tionship between driver revenue and these features.

Generating composite features with only any two basic
features does not bring huge challenges to our model’s per-
formance because:

� When only combining two basic features, the total
dimension of our basic and composite features is
3,730. This is not a very high dimension and we can
directly apply our linear model on the features.

� At this dimension of features, it takes about 12minutes
to train the model based on the complete training
set (taking about 70 percent of data, as discussed in
Section 7) on an ordinary Intel Core i7-8700K personal
computer. Though this seems to be a long time, the
mini-batch training paradigm of a linear regression
model can help to significantly reduce the training
time. With mini-batch SGD (stochastic gradient
descent) incremental model training, a batch is much
smaller than the whole training set, and it takes less
than 15 seconds to train.

7 MODEL & PREDICTION

“Model & Prediction” sits on the highest level of RoD-
Revenue’s framework. Basically, we build a model to learn
the relationship between driver revenue and seeking strate-
gies, and use the model to predict driver revenue based on
their seeking strategies. The prediction part serves as an eval-
uation of the model’s accuracy: we split our dataset into a
training set and a test set, and the model is learned based on
the training set, and then is evaluated by predicting driver
revenue based on the test set. Undoubtedly, the prediction
can also be performed on new or incoming data, as long as
they share similar characteristics with the training set.

In the following, we first present the model we use, then
the evaluation metrics, followed by our experiment results
in predicting driver revenue based on the learned model.

7.1 The Linear Regression Model

The choice of the model to mine the relationship between
driver revenue and seeking strategies and solve the problem
defined in Section 3.1 is actually a trade-off between accu-
racy and interpretability. Complex, non-linear models such
as neural network and deep learning models may give
highly accurate results when carefully tuned, with a rela-
tively small dimension of features; but these models are
generally hard to interpret, and even quantifying the feature
contribution at a high level sometimes requires complicated

methodologies. Some simpler, linear models such as the
decision tree family, though interpretable by nature, require
a complex structure to improve accuracy, and these deriva-
tives such as random forest or GBRT thus have a dimin-
ished interpretability. On the other hand, a linear regression
model is one of the simplest models with interpretability–
the weight of each feature or rather, each component of a
multi-dimensional feature, shows how important this fea-
ture or feature component is on the target variable. But an
increased level of interpretability leads to a decreased accu-
racy: the lack of non-linear terms in a linear regression
model makes it hard to characterize non-linear correlations
between features.

In ROD-Revenue, we want to quantify and explain the
relationship between driver revenue and seeking strategies
specifically, so that it is possible to offer concrete suggestions
to drivers about how to earn more. Hence, we choose to use
the linear regressionmodel. To deal with the inaccuracies due
to the lack of non-linear terms, we introduce composite fea-
tures, a product-form term based on basic features, to add
non-linear terms into the linear regressionmodel.

Following the notations in Section 3.1, y denotes the hourly
average revenue of one driver during a timeslot, and x 2 Rm

denotes the feature vector corresponding to y, with m as the
dimension of the feature vector. As discussed in Section 5
and Section 6, x contains the basic and composite features
extracted from multi-source urban data, and m is 3,730. We
write our raw feature dataset asD ¼ fðxi; yiÞji ¼ 1; 2; . . . ; Ng,
where ðxi; yiÞ represents the ith sample. For N , we compress
the 4-month data into one week as we only consider the dif-
ferences between days-of-week, and obtain N ¼ 802; 600
data entries for drivers in timeslots.We train the linearmodel
batch-by-batch, andD also represents the raw feature dataset
in each batch.

The parameters to be learned is a parameter vector, v, of the
same dimension of x, and an intercept b. The output of the
model, pi, with the input of xi, can be written as pi ¼ vTxi þ b.
In training the model, the goal is to calculate v and b such that
the sum of the squared differences between yi and pi is mini-
mized. Specifically, we use a simple form of linear regression:
the squared error loss objective functionwithL1 andL2 regular-
ization. The objective function can bewritten as

objðv; bÞ ¼
X

ðxi;yiÞ2D
ðyi � piÞ2 þ �1jjvjj1 þ �2jjvjj2: (6)

In (6), the first term is the squared error loss, and the latter two
terms are for L1 and L2 regularizations, with �1 and �2 as the
trade-off parameters. The L1 regularization uses a L1-norm
of v to control the sparsity of the learned parameter v, so that
there are more components of v becoming zero or close to
zero. Controlling the sparsity is for better interpretability, as it
makes fewer features have a strong influence on the driver
revenue, while a lot others get a zero weight in the learned
model, meaning that these features are irrelevant to the driver
revenue. On the other hand, using L2 regularization is a com-
mon practice inmachine learning to avoid over-fitting, so that
therewill not be a huge gap between themodel’s performance
on the training and on the test set. It controls theL2-norm ofv
so that any component of v (and features in x) should not
have an overwhelming influence on the driver revenue.
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With the objective function (6) to minimize, we then use
the stochastic gradient descent (SGD) to minimize the func-
tion based on the training set, and obtain a linear regression
model with parameters v and b.

7.2 Evaluation Metrics

In our evaluation in this section, we first examine the corre-
lation between driver revenue and different features, then
evaluate the performance of our model in describing the
relationship between driver revenue and seeking strategies.
Finally we will provide both qualitative and quantitative
discussions on feature contribution in Section 8.

To examine the correlation between driver revenue and
the extracted features about seeking strategies, we use the
Pearson correlation coefficient (PCC) to measure the correla-
tion between driver revenue and extracted features. Higher
PCC means higher correlation, and the corresponding fea-
ture is more relevant to driver revenue. For a particular
numerical feature (i.e., a numerical feature or a component
of a multi-dimensional numerical feature) with values
rið1 � i � NÞ, its PCC, denoted by PCCðr; yÞ, with the
hourly average revenue yi, can be calculated as

PCCðr; yÞ ¼
PN

i¼1ðri � rÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðri � rÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðyi � yÞ2

q : (7)

In evaluating the performance of the model, we randomly
choose 70 percent and the remaining 30 percent entries as the
training and test set, out of our raw feature dataset containing
802,600 entries with a dimension of 3,730. The random selec-
tion is performed for 10 times and the average metric is used
for our evaluation. As to the evaluation metric of model per-
formance, we use MAE (mean absolute error) to evaluate
model accuracy. We use Ntest to denote the number of data
entries in the test set, andMAE is defined as

MAE ¼ 1

Ntest

XNtest

i¼1

jyi � pij: (8)

The target variable, i.e., the hourly average revenue (in
RMB), is already a quantity easy to interpret and under-
stand; and the absolute error itself also has significant mean-
ing. Thus, it is not necessary to use a scale-independent
evaluation metric such as symmetric mean absolute per-
centage error (sMAPE).

7.3 Experiment Results

7.3.1 Correlation Analysis

We calculate the Pearson correlation coefficient between
driver revenue and features relevant to seeking strategies to
see the effectiveness of our extracted features. Table 3 shows
the PCC between driver revenue and some selected numeri-
cal basic features. Basically, we select some (2 or 3) basic fea-
tures extracted from each of our multi-source urban
datasets that have the highest PCC. For simplification, we
only consider the ending points of seeking trips when
choosing relevant features. Features relevant to the starting
points of seeking trips have similar but slightly smaller
PCCs, and are now shown in Table 3. For temporal differen-
ces in PCC, we show the PCC of each feature in each time-
slot on weekdays.

We have the following observations regarding Table 3:

� Except for features in ending points’ POI counts, top
features from other datasets show relatively close
PCCs. In other words, all these features are correlated,
to some extent, with the hourly average revenue of a
driver, but non of them is purely linearly correlated
with the hourly average revenue – indicating that a
linear regression model with only basic features is not
enough to characterize the relationship between
driver revenue and seeking strategies.

� The PCCs of one particular feature may vary sig-
nificantly in different timeslots-of-day. For exam-
ple, The highest PCC between hourly average
revenue and average delivery speed (i.e., in timeslot-
3) is 91.84 percent more than the lowest corre-
sponding PCC (i.e., in timeslot-2). This is another
perspective showing that it is not enough to con-
sider only basic features: a composite feature
from timeslot-of-day and average delivery speed
should add useful information to our model.

� Features extracted from POI information (i.e., ending
points’ POI counts) have much smaller correlation
coefficients, compared with other features. This indi-
cates that POI counts features are less correlated
with driver revenue–we hypothesize that the reasons
are the inability of POI counts to accurately describe
location characteristics and the fact that location
information is also revealed by features from other
datasets such as the status of taxi, bus and metro. We
will discuss them later.

In summary, results from correlation analysis verify that
simply calculating the Pearson correlation coefficients is not
enough to describe the complex relationship between driver
revenue and seeking strategies. A linear regression model
with only basic features is not enough neither. It is thus nec-
essary to use a linear regression model with composite fea-
tures to mine the desired relationship.

TABLE 3
The PCC between Driver Revenue and Some Selected

Numerical Basic Features, on Weekdays

Feature PCC in timeslot-0/-1/-2/-3

average delivery speed 0.3290, 0.2207, 0.2119, 0.4065

ending points’ price multipliers:

pmax now 0.3203, 0.3148, 0.3599, 0.2746
pmax next 0.3530, 0.3412, 0.3783, 0.3119

ending points’ bus & metro:

the number of bus stations 0.3472, 0.3818, 0.3944, 0.3338
the number of metro stations 0.3302, 0.4200, 0.4585, 0.3692

ending points’ taxi status:

full taxi ratio, daily 0.3304, 0.2577, 0.2896, 0.2312
down count, daily 0.3175, 0.2199, 0.2627, 0.2411

ending points’ POI counts:
business POI count 0.0121, 0.0317, 0.0335, 0.0047
shopping POI count 0.0088, 0.0245, 0.0323, 0.0051
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7.3.2 Evaluation of the Linear Model

Statistics show that among the test set, the average of the
target variable (i.e., hourly average revenue), is y ¼ 1

Ntest

PNtest
i¼1

yi ¼ 29:113. In other words, the average of “hourly average

revenue” among all data entries in the test set is 29.113 Yuan.
Our linear regression model tries to predict the hourly

average revenue given the input feature vectors in the test
set, and finally calculates the difference between the pre-
dicted revenue and ground truth. The model gives a mean
deviation of about 3.478 Yuan on the test set. Roughly
speaking, the linear model can predict the hourly average
revenue at an accuracy of 88.05 percent. For the prediction
error (i.e., deviation) of individual test set entries, Figs. 10
and 11 show the distribution (i.e., a continuous version of
histogram) of absolute and relative prediction errors.

We have the following observations:

� For absolute prediction error, during timeslot-3 the
errors are smaller compared to other timeslots. Also,
the distributions of absolute prediction errors of
other timeslots very similar shapes.

� For relative prediction error, during timeslot-2 the
relative errors are the smallest, followed by the the
whole day, timeslot-1, -3 and -0. This agrees to earlier
observations with Fig. 4: the hourly average revenue
is probabilistically higher during timeslot-2, fol-
lowed by timeslot-0 and -3.

� For absolute prediction error, the probability decre-
ases steadily between 1 to 7 RMB. For timeslot-3, the
decrease rate is faster, and for other three timeslots
and the whole day, the decrease rate is slower. More-
over, for error larger then 7 RMB, the probability
drops sharply, with very rare cases having an error
greater than 8.5 RMB.

� For relative prediction error, the distributions of all
timeslots have a long-tailed shape, and most relative
prediction errors are between 5 and 20 percent.

To justify our choice of 6-hour timeslots, we also evaluate
the prediction error when we choose 4-hour timeslots. It is
shown that the mean deviation becomes 4.136, about 18.91
percent higher. This proves that our choice leads to better
results.

7.3.3 Linear versus Non-Linear Model

To compare between linear and non-linear model, we also
build a neural network model to perform the exactly the

same task. Neural network is a typical non-linear model,
and the existence of non-linear correlation makes it enough
to use basic features only. Our neural network model uses a
four-layer structure. There are three hidden layers, with
ReLU activation function, between the input and output
layer. The input data fed to the input layer is a feature vec-
tor of 97 dimensions, containing only basic features. After
careful tuning, our neural network model gives a mean
deviation of about 2.977 Yuan on the test set–roughly an
accuracy of 89.77 percent.

The goal of comparing linear and non-linear model is
to justify our model choice. The above results show that a
non-linear model, even as simple as a four-layer neural
network, achieves a higher (though slightly) accuracy
than our linear model with composite features. But the
differences are not only on the model accuracy and we
give some discussions on other differences below, which
justify our model choice:

The Need for Hyper-Parameter Tuning. A non-linear model
such as neural network always requires careful tuning to
perform well–our above-mentioned neural network model
is tuned by trying different sets of hyper-parameters, but it
is hard to determine whether our resulting set of hyper-
parameters is the optimal one. The need for human experi-
ence in parameter tuning makes the model not standardized
enough. Moreover, when the feature set changes, these
hyper-parameters need to be re-tuned; in the linear model,
on the other hand, it is only necessary to reconstruct com-
posite features and re-train the linear model–a much easier
task. Hence, a linear model works better in the case where
features are updated constantly.

The Interpretability of Results. Most importantly, it is easy
and natural to interpret the results in a linear regression
model–simply inspecting the weight of each feature or fea-
ture component is enough. This allows us to judge “what
factors and what seeking strategies lead to a higher revenue,
and by how much?”. A neural network model, on the other
hand, does not offer this level of interpretability with simple
inspection.

7.3.4 Basic versus Composite Features

In the correlation analysis, we observed that only using
basic features in a linear regression model is not enough to
describe the relationship between driver revenue and seek-
ing strategies. In this section we validate this by comparing
the MAE of using different combinations of features.

Fig. 10. The distribution of absolute prediction errors. Fig. 11. The distribution of relative prediction errors.
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As mentioned in Section 7.3.2, with all composite fea-
tures and basic features, our linear regression model gives a
mean deviation in the predicted hourly average revenue of
3.478 Yuan on the test set. We train another linear regression
model with only basic features, and the resulting deviation is
6.231 Yuan. This shows that using composite features from
multi-source urban datasets can reduce the MAE of hourly
average revenue by 44.18 percent.

Regarding the effects of generating composite features
fromdifferent datasets, we also train linear regressionmodels
using both basic and composite features, with features com-
ing from different combinations of datasets. The correspond-
ing MAEs are shown in Table 4. If we only use the RoD data,
but with composite features, the MAE is 4.874, and involving
the additional taxi data, or bus & metro data, or POI data fur-
ther reduces the MAE by 10.59, 12.27, 1.05 percent, respec-
tively. When using all of the datasets, the reduction is 28.64
percent. This is a rough representation of the importance of
multi-source urban datasets–“how much the model’s accuracy
can be improved with the introduction of specific datasets”.

We also try to combine more than two basic features to
form composite features. Combining some groups of three
basic features makes the dimension of feature vector more
than 13,000. We train a linear regression model correspond-
ingly, and the resulting MAE is 3.336. Considering the sig-
nificant increase in memory usage and a training time 3.8
times that of the original model, the slight improvement in
the MAE is not worthwhile.

7.3.5 Effects of L1 and L2 Regularizations

The goal of using L1-regularization is to increase the num-
ber of zero weights in the trained model. In our linear
regression model with L1-regularization, we have 514 zero
weights out of the 3,730-dimension weights. We also train a
linear regression model without L1-regularization, and the
resulting model has 216 zero weights, with a MAE of 3.476.
These results show that, at a relatively the same accuracy,
using L1-regularization almost doubles the number of zero
weights, leading to better interpretability of the model.

L2-regularization, on the other hand, is used to avoid over-
fitting, and we compare the MAE on the training and test set
with and without L2-regularization. To do this, we use the
model learned from the training set to predict the hourly
average revenue based on the feature vectors in the training
set. With L2-regularization, the model achieves a MAE of
3.478 on the test set, and 3.365 on the training set; without
L2-regularization, the corresponding figures are 3.765 on the
test set, and 3.298 on the training set. These results verify that
using L2-regularization indeed reduces the difference of pre-
diction accuracy between the training and test set.

7.3.6 A Summary of Experiment Results

In Section 7.3, we go through every aspect in training and
evaluating our linear regression model. Basically, we train a
linear regression model, with squared-error loss function
and L1/L2-regularizations, based on the training set, and
predict the hourly average revenue given feature vectors in
the test set. In short, our results show that:

� The linearmodel can achieve aMAE close to a non-lin-
ear model, with basic and composite features. In the
meantime, the linearmodel have interpretable results.

� Using composite features can indeed significantly
improve prediction accuracy. Also, using multi-
source urban datasets also improves prediction
results, and we can quantify the improvement with
the introduction of different datasets.

� We combine any two basic features to form compos-
ite features, and do not combine more than two basic
features. Our results show that combining three or
more basic features does not lead to significant
improvement on prediction accuracy while having a
much longer training time.

8 FEATURE CONTRIBUTION AND DISCUSSIONS

In Section 7 we mainly discuss the model and its evaluation.
In this section, we take a different perspective, and dig into
the learned model itself, trying to inspect feature contribu-
tion–“what features are more important in determining hourly
average revenue?”–and seeking strategies–“what seeking strat-
egies lead to a higher revenue?”. Besides, we also provide dis-
cussions on miscellaneous relevant topics.

8.1 Feature Contribution

As mentioned earlier, a very important reason of choosing a
linear regression model is its interpretability–it allows a
quantitative analysis of feature contribution, so that we can
identify the seeking strategies leading to a higher revenue.

We study feature contribution by inspecting the weight v
learned in the model. Specifically, features, either basic or
composite, may be one-dimension (e.g., average delivery
speed) or multi-dimension (e.g., timeslot-of-day or starting
points’ price multipliers). For a multi-dimension feature, we
inspect the weight of each component of this feature. The
weight of a feature or a feature component quantifies the
contribution of this feature or component. We rank features
or feature components according to the absolute values of
their weights, and in Table 5 we show some selected fea-
tures (for one-dimension features) or feature components
(for multi-dimension features) from the top-100 weights.

The interpretability of ourmodel is justified by the distribu-
tion ofweights. The largestweight shown in Table 5 is 8.84512.
Among the absolute values of all the weights, statistics show
that there are about 42 percent falling in between [0.00,0.05),
18 percent in [0.05,0.10), 10.5 percent in [0.10,0.15), 8 percent in
[0.15,0.20), 6 percent in [0.20,0.25), etc. In other words, about
84.5 percent weights have an absolute value smaller than 0.25,
a value far smaller than any one listed in Table 5–this means
only a small number of features are significant. Hence, the
number of significant features, or those that are worth analy-
sis, is much fewer than the number of non-zero weights. In

TABLE 4
The MAE of Using Different Combinations

of Datasets and Composite Features

Feature sources Resulting MAE

all datasets 3.478
RoD + bus & metro 4.276
RoD + taxi 4.358
RoD + POI 4.823
RoD only 4.874
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our study, we only show top-100 weights due to the limited
space, and these weights are already enough to give us
enough findings and insights on the desired relationship.

In Table 5, we group these top features/feature compo-
nents into 6 categories according to the key factor in each fea-
ture. Taxi, and bus &metro are two categories representing the
respective datasets; and we divide the top features from RoD
data into other four categories: delivery speed, dynamic prices,
timeslot, and strategy factor. Because of the limited space, for
each category we only list at most the top-3 basic features,
and one or two composite features’ components that fall in
the top-100 among all. Belowwe discuss our findings regard-
ing feature contribution.

From the level of datasets, the RoD service data has an
overwhelming influence on the driver revenue: there are
more than 90 features out of top-100 that are either from RoD
service data, or combined from at least more than one basic
features from RoD data. This figure becomes 4 and 5 for the
bus & metro data and taxi data, respectively. Even with
smaller impact, the status of taxi, bus and metro services all
have a non-negligible influence on driver revenue.

In the following we discuss feature contribution from the
level of individual features.

Delivery Speed. Among all the features, average delivery speed
has the highest impact on a driver’s revenue. Its weight, being
8.84512, is much higher than other features or feature compo-
nents. As a result, a number of composite features derived
from average delivery speed also have higher weights, but the
fact that average delivery speed itself has a much higher weight
diminishes the importance of these composite features. We
thus do not list these composite features in Table 5.

The importance of average delivery speed shows that driving
faster or choosing faster or clearer routes in delivering passen-
gers leads to a higher revenue. This is natural, as it savesmore
time for the driver to seek for more opportunities. This result
also holds in the traditional taxi service, as suggested in [19].

Increasing the delivery speed is important to increase
driver revenue, but how to operate so that the delivery speed

is maximized is out of the scope of this study–it should be a
job left to navigation systems or applications, including route
planning, real-time traffic information analysis, avoiding con-
gestion, etc.

Dynamic Prices. This is the unique part of RoD service, and
is also the second most influential category of features on
driver revenue. For a seeking trip, the ending point (i.e.,
where to seek for passengers) ismore important, but the start-
ing point (i.e., where a driver drops the last passenger and
starts seeking) also plays a role. This may be due to the fact
that a significant proportion of seeking trips have close start-
ing and ending points. In fact, our data shows that more than
half seeking trips have a straight line distance between the
starting and ending points smaller than 5 km.

It is shown that seeking for passengers in regions with
higher price multipliers increases driver revenue. More spe-
cifically, during one timeslot, the driver should always try
to find some seeking locations with higher price multipliers
so that the maximum price multipliers among all seeking
trips’ ending points gets larger. As to the weights, both the
maximum price multipliers around the seeking locations
during the hour of starting seeking and the next hour have
higher weights, being 4.26815 and 2.92965.

Timeslot. The timeslot-of-day of seeking trips is also a key
role in the profitability. We observe in Section 5.1.1 and
Fig. 4a counter-intuitive fact that the non-rush hours around
noon are more profitable than the morning rush hours. The
weights listed in Table 5 agree to previous observations. The
weights of timeslot-1 (i.e., [10 am, 4 pm)) and timeslot-2 (i.e.,
[4 pm, 10 pm)) are higher, followed by timeslot-0 (i.e., [4 am,
10 am)). In other words, seeking for passengers during the
non-rush hours around noon, as well as during the evening
rush hours, helps the driver to earn more; seeking during
morning rush hour is not as profitable as one may intuitively
guess, and night hours are even less profitable.

This phenomenon can be understood by combining infor-
mation from Section 5.1.1 and Table 5. During non-rush
hours, the average delivery speed is faster, so that a driver

TABLE 5
Selected Top Features/Components Ranked by Weights in the Trained Model

Category Feature (:feature component) Weight Rank

delivery speed average delivery speed 8.84512 1
dynamic prices ending points’ price multipliers: pmax now 4.26815 22

ending points’ price multipliers: pmax next 2.92965 33
ending points’ price multipliers: pmax last 2.46655 42
starting points’ price multipliers: pmax now 2.49441 41
starting points’ price multipliers: pmax last 1.83793 56
starting points’ price multipliers: pmax next 1.53844 79

timeslot timeslot-of-day: 1 2.11808 51
timeslot-of-day: 2 1.44048 85
timeslot-of-day: 0, ending points’ taxi status: full taxi ratio (daily) 1.40173 95

strategy factor strategy factor: chasing future 2.06670 52
strategy factor: no chasing 1.63245 73
strategy factor: chasing current 1.42835 89
strategy factor: chasing future, ending points’ price multipliers: pmax now 1.79426 59

bus & metro ending points’ bus & metro: the number of metro station 1.72366 65
ending points’ bus & metro: the number of bus station 1.39342 98

taxi ending points’ taxi status: full taxi ratio (daily) 1.42848 88
ending points’ taxi status: down count (daily) 1.40559 94
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may have more orders during the whole timeslots. Also, the
lower price multipliers are compensated by the longer order
distance during the non-rush hours. In morning rush hours,
things are just the opposite: even though the price multipliers
are high, the driving speed is much lower, and sometimes
drivers need a very long time to find the next passenger after
dropping the last one in busy regions.

For morning rush hours (i.e., timeslot-0), the relevant
weight suggests that a driver should go to locations where
the full taxi ratio is high, in order to earn more. This is also an
interesting result, considering the concerns on the competi-
tion between RoD and taxi service. The reason may be that
during morning rush hours the supply of cars is not enough
to meet demand, so a high full taxi ratio signifies that the cor-
responding location is highly popular, thus having more
unfulfilled demand. More potential demand brings a higher
revenue to drivers.

Strategy Factor. This is about chasing the price multipliers
or not.Weights in Table 5 show that chasing higher pricemul-
tipliers indeed has positive impacts on driver revenue, but
the target of chasing should be the future price multipliers
instead of the current ones. Specifically, “future” price multi-
pliers means the prices in the next hour–and this requires a
driver to have a clear picture or estimate about how the
dynamic price multipliers may change over time, so that s/
he can chase for a higher one. Another interesting result is
that “no chasing” is better than “chasing current”, which
agrees with the observations from [25] and some blog articles
[2]–they generally propose that “surge chasing” is not a good
way to earnmoremoney.

The profitability of “chasing future” strategy makes dyna-
mic price prediction important. In [16], the authors have dis-
cussed dynamic price prediction in RoD service and pointed
out that it is useful to improve passenger experience. Our
results show that dynamic price prediction is also beneficial
for drivers: if a third party is able to predict the variation of
dynamic price multipliers, drivers can use the results in chas-
ing for future higher prices. The methodologies to perform
price prediction has been discussed in [16] and are not the
scope of our study here.

Bus & Metro. The influence of the status of bus and metro
services on the driver revenue can be studied in our paper
because of the introduction of multi-source urban data. Our
regression results verify that the distribution (or the avail-
ability) of bus and metro services is also an important factor.
According to the weights of top features shown in Table 5,
drivers should go to locations with more metro or bus sta-
tions to look for passengers, and that metro station is much
more important than bus station. “The number of metro
stations” already has a higher weight, and its importance is
further amplified considering the relatively smaller number
of metro stations compared to bus stations.

Similar to previous discussions of the effects of the status
of taxi service during morning rush hours, the number of bus
ormetro stations is a representation of a location’s popularity:
the more stations, the more potential RoD service demand.
We hypothesize the reason behind this is that people may
take a car service to home after leaving ametro or bus station,
so providing this transit service becomes profitable for driv-
ers. Similarly, such transit service can also happenwhen peo-
ple take a car ride towork after leaving ametro or bus station.

Taxi Service. In a similar fashion, we find that the status of
taxi service is an indication of a location’s popularity, rather
than a reflection of the competition between taxi andRoD ser-
vice. In seeking for passengers, drivers should choose loca-
tions with higher full taxi ratio, and with more passengers
getting off taxis. These two indications actually reflect the
popularity of locations, and thus drivers should go to these
more popular locations.

Another interesting observation is that the status of taxi
service is not as crucial as that of bus or metro service,
according to the weights in Table 5. In other words, drivers
should pay more attention to providing transit service to
those passengers from public transportation services. It is
true that both the status of taxi service and that of public
transportation services are indicative of a location’s popu-
larity, but people from bus or metro may take a RoD ride
then; comparatively, people from taxis may not take such a
ride immediately.

Heuristics for Drivers to Earn More. Discussions above jus-
tify the following heuristics for drivers under dynamic pricing
in a RoD service. Note that our work is not on recommending
seeking routes step-by-step to drivers, so these heuristics are
more a suggestion for drivers to keep inmind than a real-time
guidance to choose directions and intersections. They are ten-
able as they are from real-data:

� Most importantly, try to increase the average deliv-
ery speed by choosing better routes or driving faster.

� Seek for passengers in regionswith higher pricemulti-
pliers; and try to increase themaximumof pricemulti-
pliers among all seeking locations in one timeslot.

� Counter-intuitively, the morning rush hours is not
the most profitable timeslot. Instead, seeking for pas-
sengers during the non-rush hours around noon is
helpful to earn more. Evening rush hours is the sec-
ond most profitable timeslot.

� Duringmorning rush hours, go to regionswith higher
full taxi ratio – thismeans highly popular regions.

� Don’t do “Surge chasing”. Instead, try to get a pre-
diction or estimate about the price multiplier in the
next hour in neighboring regions, and chase for that.

� The status of taxi, bus and metro services are impor-
tant signals in choosing seeking locations. Try to seek
for passengers in locations with more metro stations,
bus stations, higher full taxi ratio, and with more pas-
sengers getting off taxis. In particular, paymore atten-
tion to bus andmetro services than taxi service.

8.2 Discussions

The Influence of POI Features. It is clear from Table 5 that POI
counts are not influential as one may anticipate–they don’t
appear in top-100 weights. Characteristics of seeking loca-
tions definitely have impacts on driver revenue, and we
hypothesize that there are two reasons for this phenomenon.

First, the location information is also partly revealed by
features from other datasets, though implicitly. For exam-
ple, the number of full taxis around, the average speed of
taxis, the number of passengers getting on/off taxis, the
number of bus/metro stations all help to describe a picture
about the supply, demand, traffic condition, location popu-
larity that can characterize the location.
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Second, the POI counts features we designmay not be rep-
resentative enough. We have pointed out in Section 4.4 that
using the POI and its category that is nearest to a location is
not enough to characterize a location, but our results suggest
that our description may not be enough neither. An example
around the airport terminal can clearly illustrate this. A pas-
senger is standing in the airport terminal and requests for a
ride. Clearly the “transportation facility” property is the rea-
sonwhy s/he is here. The POI counts, on the other hand, may
not suggest this. The number of “transportation facility” POIs
may be only one–the terminal; but there may be a number of
shops, restaurants or hotels around, and the number may far
exceed that of “transportation facility”. In other words, the
POI counts features emphasize the number of POIs, but in
some cases POIs’ “importance” is the key.

There are multiple solutions to describe a POI’s
“importance”. For example, we can calculate the TF-IDF sta-
tistics of each POI category, so that the more common a cate-
gory of POI is, the more its count gets diminished. In other
words, a POI category that is more common turns out to be
less important. Specifically, for the ith POI category, we use pi
to denote the number of POIs around. For the whole city, we
useN to denote the total number of POIs and useNi to denote
the total number of POIs of this category. Then, instead of
using pi as the POI counts, now we use ptfidf;i ¼ pi � logð N

1þNi
Þ

to involve the importance of this category of POIs. The
replacement of POI features results in a MAE of 3.477 (very
close to the original one), and features relevant to the TF-IDF
features have the largest weight about 13 times than features
related to POI counts. Another example is about obtaining
new datasets. If we can obtain, say, the check-in data of a
location-based service, we are able to claim that the more
check-ins a location receives, the more important it is. We
want to compare the effects of these solutions, and this task is
left as futureworkwhenwe obtain such check-in data.

Sources of Inaccuracies. In Section 7.3 we show that our lin-
ear regression model can achieve an accuracy of 88.05 per-
cent in predicting driver revenue. In the following we
discuss sources of inaccuracies and possible ways to
improve our model.

The first source is the lack of comprehensive urban
data. For example, hourly weather data can help us study
whether bad weather brings higher revenue to drivers;
large scale check-in data can help in making POI informa-
tion more effective; the distribution of buses and metro
trains, possibly from smart-card data, instead of the dis-
tribution of bus and metro stations or lines, can help to
describe the status of public transportation services more
accurately. All these possible improvements require fur-
ther research collaboration or new methodologies of data
collection.

Another source of inaccuracies is in the estimation of
dynamic pricemultipliers and trip fares.We approximate the
pricemultiplier of one trip using the average pricemultipliers
of all trip fare estimation events taking place around this trip
in the same hour, losing some information about sudden
unplanned price changes such as events or traffic accidents.
The estimation of trip fare also omits waiting charge as it is
hard to estimate precisely the total waiting time fromGPS tra-
jectories. The first problem may not be solved easily, as price
information is always sensitive and the core secret in the

service provider. The solution of the second problem requires
techniques with finer granularity to estimate the waiting time
during a trip.

The last source has been discussed in Section 5.1.2: when
describing the starting/ending points of seeking trips in one
timeslot, we use collective properties instead of describing
each location. The reason is that we cannot use a feature vec-
tor of fixed dimension to accommodate a varying number of
seeking trips, unless we reserve a space for each city cell,
which is unrealistic because the number of cells is prohibi-
tively large. Dividing a city into fewer cells makes the results
artificial and not convincing enough. Our methodology is
thus a compromise, and hence a possible solution is to con-
sider this trade-off between artificiality and feature dimen-
sion and choose a reasonable division of city cells in trying to
describe each of all seeking locations.

Generalizability of Models and Results. We claim that our
study is generalizable and could be applied to other cities. It
is true that the results (i.e., the quantitative relationship
between driver revenue and seeking strategies and feature
contributions) may differ across cities, as different cities have
varying characteristics such as size, demographic patterns,
distributions of functional areas, etc., leading to different
profitable seeking strategies. But the models and methodolo-
gies (i.e., the linear regressionmodel for learning and predict-
ing, the methodologies to construct features and the way to
analyze feature contribution) are not specific to any city, and
could be generalized and applied to other cities, or to similar
problems that require both accuracy and a certain level of
interpretability. In otherwords, as long as one can collect sim-
ilar datasets, s/he can perform feature extraction, model
building, relationship mining and feature contribution analy-
sis, in a similar way to our study, and obtain corresponding
results, for, maybe, other cities.

Even for the results, we try our best to make them repre-
sentative enough, so that it may not be too special to be con-
sidered in further studies. Real operational data from RoD
service is still rare, considering our requirement that the
information of dynamic prices and trips must be involved.
We currently choose Beijing as the target, and it is one of the
most representativemetropolitan cities in China, East Asia or
even around the world, in terms of size, demographic pat-
terns, operational status of different transportation services,
distribution of functional areas, etc. Also, as one of the major
service cities, the RoD service provider has invested enough
resources (e.g., car fleet management, drivers, algorithm
design, etc.), which is the premise for drawing realistic, repre-
sentative and tenable results.

Regarding the datasets, researchers interested in RoD ser-
vice are also able to obtain similar datasets. It may be difficult
to obtain datasets with perfect coverage, precision or accu-
racy, but there are possible ways to approximate such data-
sets. For example, synthetic data could be generalized by
utilizing APIs released by service providers and combining
results frommultiple runs; crowdsourcing applications could
be developed to encourage passengers of different RoD serv-
ices to report their trips and experiences; etc.

As an extension, studying how the results may change
across cities is one of our future work. It is thus possible to
gain insights about different seeking strategies across differ-
ent cities, and to understandhowprofitable seeking strategies
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are related to characteristics of cities. These topics would be
studied as soon aswe obtain the required datasets.

9 CONCLUSION

In this paperwe focus on driver revenue under dynamic pric-
ing in RoD services. Basically, we propose a system, RoD-
Revenue, to mine the relationship between driver revenue
and seeking strategies, and to predict driver revenue based
on features extracted from multi-source urban data. We go
through each level in the RoD-Revenue’s framework, includ-
ing the datasets, feature extraction, and model & prediction.
As to the learning model in RoD-Revenue, we choose a linear
regression model with high-dimensional composite features
for its interpretability.

Our linear regression model has a feature dimension of
3,730, and can predict driver revenue based on features rele-
vant to seeking strategies at an accuracy of 88.05 percent. In
our evaluation, we use correlation analysis to show the
need to involve composite features, compare between linear
and non-linear models, evaluate the effects of using com-
posite features and discuss the effects of regularization
terms.

Our findings suggest that the average delivery speed, the
timeslot of seeking, the way of chasing price multipliers and
the status of taxi, bus and metro services all have significant
impacts on driver revenue in RoD service. Correspondingly,
increasing delivery speed, seeking in non-rush hours, chasing
future price multipliers, and seeking in locations with busier
taxi and public transportation services all are tenable heuris-
tics for drivers to earnmore.
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