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ABSTRACT

In emerging ride-on-demand (RoD) services such as Uber or
Didi (in China), dynamic pricing plays an important role in
regulating supply and demand, trying to make such service,
to some extent, more convenient for passengers. Despite the
convenience, dynamic pricing also exerts mental burden on
passengers: they wonder whether the current price is low
enough to accept, or if it is not, what they could do to get a
lower price. Without extra information, passengers sometimes
feel anxious and lose satisfaction. It is thus necessary to
provide more information to relieve the anxiety, and price
prediction is one of the solutions.

In this paper we predict the dynamic prices to help pas-
sengers understand whether they could get a lower price in
neighboring locations or within a short time. We first divide
a city into rectangular cells, and use entropy and the tem-
poral correlation of prices to characterize the predictability
of prices of each cell. Based on the predictability of prices,
we claim that different prediction algorithms should be used
in different city areas, to balance between efficiency and ac-
curacy. We design and implement two predictors, namely a
Markov predictor and a neural network predictor, and eval-
uate their performance based on the real data we collected
from a major RoD service provider in China. The results
verify that the Markov predictor works well enough in highly-
predictable areas, and the neural network predictor, while
requiring more computation time, works better in areas with
lower predictabilities. Finally, we also evaluate the effects
of our prediction, i.e., the probability that passengers (in
different city areas) could benefit from the prediction and
get a lower price.
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1 INTRODUCTION

Emerging ride-on-demand (RoD) services such as Uber and
Didi have drawn increasing attention recently. As a supple-
ment of the traditional taxi service, RoD service attracts
passengers by its cleanness, convenience, as well as flexible
and affordable prices, and on the other hand, attracts drivers
who want to make use of their idle cars without applying for
licenses. Meanwhile, RoD service also creates concerns that
sometimes its dynamic prices go so high (as high as 5 or 10
times the normal prices) during big event or in bad weather.

Dynamic pricing is the core and distinctive feature in RoD
service, and it reflects the effort in controlling the supply (the
number of cars) and demand (the number of requests) in a
particular location so that an equilibrium is approached: a
higher price reduces demand and increases supply in a busy
area, and vice versa in a not-busy area. Specifically, the effects
of a higher price on the supply include not only bringing
more cars onto the roads, but also motivating surplus supply
to flow from low- to high-demand areas.

On the other hand, dynamic pricing exerts mental burden
on passengers. In traditional taxi service with fixed pricing,
passengers are able to estimate the trip fare based on their
personal experience. In emerging RoD services, however, they
have an extra task before making decisions – predicting the
dynamic prices – based on their estimate of the supply &
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demand condition nearby, and this is invariably inaccurate
for most individual passengers. Without relevant information,
passengers may wonder:

(1) Could I get a lower price if I choose to wait for a short
time (e.g., 10 to 20 minutes)?

(2) Could I get a lower price if I choose to walk away for
a short distance (e.g., hundreds of meters)?

These questions create hesitation and exert mental burden.
Giving more information to passengers help ease the anx-

iety, including, for example, by explaining why the current
price is high or low, giving a recent history of prices to pas-
sengers, predicting the prices in the next time slot in the
neighboring locations, etc. Among these ideas, the most di-
rect one is price prediction, and passengers could answer the
above questions and make decision based on the predicted
prices, instead of relying on a rough and unreliable estimate
of the supply & demand nearby.

Price prediction have not received much attention in RoD
services. [3] tried to predict the future prices by guessing
the relationship between dynamic prices and a combination
of supply and demand. Because most RoD services keep
their dynamic pricing algorithms as secrets, guessing the
relationship from data is not accurate enough to generate a
good prediction.

Instead, we propose to predict dynamic prices based on
the historical data, instead of trying to learn some unknown,
internal relationship from outside. This is inspired by the
demand prediction work that was common in the studies on
taxi service. These studies try to predict the demand in taxi
service by studying the historical data, using methods such
as time-series analysis, SVM or neural networks.

In RoD services, dynamic pricing is represented by a price
multiplier. Specifically, the price of a trip is the product
of a dynamic price multiplier (dependent on the supply &
demand condition) and a fixed normal price (dependent on
the estimate distance & time of the trip). The geographical
and temporal variation of the price multiplier is the source
of anxiety, and is also the target of prediction in our paper.

The regularity of price multipliers varies among different
areas in a city. For example, at the airport terminals or train
stations, the price multiplier is always stable during the day,
not only because the demand is stable throughout the day,
but also because drivers know this and are more inclined to
cruise in these areas looking for passengers. In business areas
(e.g., the Financial Street in Beijing), contrarily, the price
multiplier is more volatile, as there are different kinds of
passengers leaving a business area, including those in travel,
business visit, going/leaving workplaces, etc. and there is not
a regularity of passengers’ behavior from day to day.

This inspires us to use a metric – maximum predictability
Π𝑚𝑎𝑥 – to first characterize the patterns of price multipliers
in different areas of a city. The calculation of predictability
is based on the entropy of price multiplier and captures
both the randomness and the temporal correlation behind
it. The predictability metric expresses both the regularity
and randomness of price multipliers. For example, an area

with a Π𝑚𝑎𝑥 of 0.3 means that for 30% of the time the price
multiplier is regular and predictable, and for the rest 70% of
the time, the price multiplier appears to be random.

We then use different prediction algorithms to predict price
multipliers in areas with different Π𝑚𝑎𝑥. An area with high
Π𝑚𝑎𝑥 have higher regularity in price multipliers, and thus the
prediction could be done by easier and faster algorithm such
as Markov-chain predictor, considering only temporal corre-
lation between price multipliers. Alternatively, the prediction
algorithm should consider more factors when used in an area
with lower Π𝑚𝑎𝑥 including, for example, temperature, precip-
itation, wind speed, local events, etc. A prediction algorithm
such as neural network predictor could accomplish this.

In this paper, we tackle the price multiplier prediction
problem based on the data collected in Beijing from a major
RoD service provider in China. We first introduce the concept
of maximum predictability Π𝑚𝑎𝑥. We then divide the map
of Beijing into small and rectangular cells, and calculate the
Π𝑚𝑎𝑥 of each cell, in an effort to present an overall picture
of Π𝑚𝑎𝑥. We also show that different functional areas (e.g.,
business, residential and transportation area), as a larger
and more representative unit than cells, have different Π𝑚𝑎𝑥s.
This shows that Π𝑚𝑎𝑥 is a metric that could characterize
both city cells and functional areas. We then implement two
predictors, namely a Markov-chain predictor and a neural
network (NN) predictor, and evaluate their performance
in different city cells and functional areas. Our evaluation
results show that while in areas with high predictability the
Markov-chain predictor is both faster and more accurate,
the NN predictor significantly outperforms the Markov-chain
predictor in areas with low predictability. This justifies our
claim that different prediction algorithms should be used
in different areas. Finally, we also show the effect of our
prediction: if passengers in different functional areas follow
our prediction and choose the lowest prices nearby, how many
of them could get a lower price.

The remainder of this paper is organized as follows. §2
presents some background information and our dataset. In §3
we discuss the maximum predictability of price multipliers
and uses it to characterize city cells and areas. Two predictors
are implemented in §4 and we also evaluate the performance
and effect of our prediction. §5 discusses related work and §6
concludes the paper.

2 BACKGROUND AND DATASET

2.1 Ride-on-demand Services

Taxi service is probably the oldest RoD service: people could
request a ride when they wish, by hailing on the road, calling
a taxi dispatch center, or waiting at a taxi stand. The pricing
scheme in taxi is mostly fixed, and is dependent on the time
and distance between two locations. In recent years some new
RoD service providers come into the market, and the major
difference between them and taxi service is the use of dynamic
pricing scheme. The price of a trip now is the product of a
dynamic price multiplier and the normal price (comparative
to the price in taxi). Another difference is that new services
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all rely on GPS-assisted mobile apps to accurately locate
both drivers and passengers.

In this subsection we explain the user interface of a mobile
app of a typical RoD service, shown in Fig. 1, to give a generic
explanation of how such a service works. Usually a passenger
first opens the app on his/her mobile phone when s/he wants
to travel from a boarding location A to an arriving location
B, and types the address of both locations in the app. The
passenger could also choose “when to ride (now or several
minutes later)” and “using coupon”.

Figure 1: The user interface of a typical RoD service.

After the passenger has specified the locations and chosen
all available options, the mobile app sends all the information
to the service provider, and obtains in return (a) the estimat-
ed trip fare and (b) the current dynamic price multiplier. The
price multiplier reflects the current supply and demand con-
dition around the boarding location A. The service provider
sets a lower and upper bound on the price multiplier. The
passenger then chooses either to accept the current price (by
pressing “Ride a Car!” button) or give up the current fare
estimation if s/he considers the price multiplier too high.

2.2 Anxiety from Dynamic Pricing

As mentioned in the introduction, passengers’ anxiety comes
from their uncertainty about the dynamic prices: they don’t
know whether the current dynamic price multiplier is low
enough, or rather, whether they could get a lower one if they
choose to wait for a couple of minutes or to walk away for
hundreds of meters.

The possibility of getting a lower price has been validated
by [7] and [3]. The authors in [7] concludes that during rush
hours, if a passenger is getting a too high price multiplier,
s/he could usually walk away for 1 to 2km to get a lower
multiplier. [3] also proposes a way to avoid getting a high
price multiplier – request a ride starting from hundreds of
meters away, where the price multiplier is lower, and then
walk there before the car arrives.

Passengers’ reaction to dynamic prices also indicates their
anxiety. [6] measures passengers’ reaction, i.e., how many

times of fare estimations they perform before finally giving
up or getting on a car. As mentioned in §2.1, a passenger
may choose to give up or accept the fare estimation. If s/he
considers the price multiplier is too high, he may choose to
wait for a while or walk away and estimate the fare again. [6]
shows that only in 39.77% cases one accepts the price multi-
plier after only one fare estimation. This justifies that most
passengers feel uncertain about the dynamic price multiplier.

2.3 Our Dataset

Our data of the RoD service is collected from Shenzhou
UCar1, one of the major RoD service providers in China.
By the end of 2015, Shenzhou UCar’s service covers more
than 50 cities in China, with a fleet of more than 30,000 cars,
offering more than 300,000 trips per day [12].

We collect the event-log dataset from Shenzhou UCar’s
service in Beijing, China. The event-log dataset contains two
major events: EstimateFee and CreateOrder event. The
EstimateFee event is triggered when the mobile app sends
all the information of a passenger’s request (including the two
locations, the requested group of cars, the time of the request,
etc.) to the service provider, and returns the current price
multiplier and the estimated trip fare. When one performs
multiple fare estimations, the same number of EstimateFee
events are generated. The CreateOrder event is triggered
only when the passenger is satisfied with the current price
multiplier and presses the “Ride a Car!” button.

The event-log dataset contains the complete record of
events in the complete 4 weeks in Oct, 2016 (from Oct. 3 to
Oct. 30) in Beijing. Each entry includes the time it happens,
the event code (i.e., EstimateFee or CreateOrder), the IMEI
of the passenger’s device, location information, the estimated
trip fare and the price multiplier for EstimateFee, etc. The
volume of the dataset is about 5.3 million, and all entries are
properly anonymized.

We also find out from the event-log dataset that the service
provider sets a lower and upper bound for the price multiplier.
The lower bound is 𝑚 = 1.0 and the upper bound is 𝑈 = 1.6.

We also collect climate data for building NN predictor.
Specifically, we collect the daily precipitation and hourly tem-
perature data reported at the Beijing Capital International
Airport from TuTiempo2. The granularity of the precipita-
tion data may not be small enough: we could not find the
hourly precipitation data, and the precipitation data at the
airport doesn’t represent the precipitation in other locations
of Beijing. The temperature data doesn’t have this problem.

3 PREDICTABILITY OF PRICE
MULTIPLIERS

In this section, we first define city cells and areas of Beijing,
and present the variation of price multipliers in different city
areas. We then define the maximum predictability Π𝑚𝑎𝑥, and
show the distribution of Π𝑚𝑎𝑥. The difference of Π𝑚𝑎𝑥 in

1Shenzhou UCar: http://www.10101111.com/
2TuTiempo: https://en.tutiempo.net/records/zbaa
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various city cells and areas makes it necessary to use different
prediction algorithms.

3.1 City Cells and Areas

To show the predictability of price multipliers in different
locations of a city, we first divide the city map into 𝑁 *𝑁
rectangular cells of equal sizes, and cell (𝑖, 𝑗) denotes the cell
on row 𝑖, column 𝑗 (𝑖, 𝑗 = 1, 2, ..., 𝑁). In this paper, we set
𝑁 = 100, so that each cell is small enough to enhance finer
granularity of data analysis, and is also large enough to have
enough events happening inside each cell. When 𝑁 = 100,
each cell is about 420 * 300 square meters.

In addition to cells, we also consider a larger and also
more representative unit – the functional areas of a city. A
large city always has a clear partitioning of functional areas
including, for example:

∙ business area: the place for working. Different indus-
tries (e.g., financial or IT) may have different areas.

∙ residential area: the place for living. In China, some
large residential areas accommodate ≥10,000 residents.

∙ transportation area: typical transportation areas in-
clude airport terminals, railway stations for inter-city
trains, etc.

The partitioning of functional areas could be acquired
either from the city plan of Beijing3, or by analyzing real
data. The task of identifying functional areas of a large city
such as Beijing is a sophisticated task, and has been studied
using various techniques based on different sources of data.
For example, in our previous work [7], we cluster the boarding
and arriving locations of trips from frequent passengers (i.e.,
those passengers having more trips monthly) in RoD service
using the k-means algorithm and verify that the clustering
result matches the city plan as well as our knowledge of the
distribution of functional areas in Beijing.

Fig. 2 shows some typical functional areas found in [7] and
validated by the city plan: area 1 and 2 are typical business
areas; area 3 and 4 are typical residential areas; and area
5 to 7 are the airport terminals and a major train station –
typical transportation areas. We use these typical functional
areas in the remainder of the paper.

3.2 Variation of Price Multipliers

The target of study is the price multiplier a passenger is faced
with when performing a fare estimation. We divide the whole
time range of the data (i.e., 4 weeks) into 𝐾 time slots with
equal time length ∆𝑡. We then calculate the average price
multiplier in all EstimateFee events happening in a particular
city cell/area during each time slot. So for each city cell/area,
we obtain a sequence of length 𝐾, and the 𝑘-th element 𝑅𝑘

of it is the average price multiplier in the 𝑘-th time slot.
In our data, we choose ∆𝑡 = 1 hr to include enough number

of EstimateFee events in each time slot. In other words, we
focus on the hourly average price multiplier in each city
cell/area. In this case, 𝐾 = 24 * 7 * 4 = 672.

3Beijing’s city plan (in Chinese): http://bit.ly/2sDE3e2

Figure 2: The map of Beijing and typical functional
areas.

The variation of price multipliers may have different regu-
larities in different locations. In Fig. 3 we give the variation
of the hourly average price multiplier in typical business,
residential and transportation area during the 4-week time
range of our data (from 0:00 on Day 0 to 23:59 on Day 27).

The variation in transportation area (Fig. 3(c)) exhibits a
strong temporal pattern. The price multiplier is higher than
1.2 from 11pm to 5am, due to the higher demand and lower
supply at midnight. During the evening (from about 6pm
to 11pm), the price multiplier is always 1.1. In other hours
of a weekday, the price multiplier is always as low as 1.0,
as transportation area such as airport terminal is a place
where most drivers are willing to go because of stable and
predictable demand. The highest price multiplier appears at
the end of Sundays (in most cases it is 1.4): most passengers
are eager to go back home to prepare for Monday morning.

The variation in business area (Fig. 3(a)), on the other
hand, seems to be more random. There is no clear temporal
pattern in price multiplier, except that during weekends the
multiplier is lower (smaller than 1.1x in most cases). The
reason for the lack of regularity is that there are different
intentions for passengers leaving the business area including,
for example, business visit, travel, shopping, going to/leaving
from workplaces, etc. Passengers of different intentions have
varying demand patterns, and hence the price multiplier does
not show a high regularity.

For residential area (Fig. 3(b)), the regularity stands in
between the other two areas. In order words, it shows a
combination of randomness and regularity.

The differences of regularity in price multipliers inspires us
that we should define a metric to characterize the regularity,
and that we should consider using different algorithms to
predict future price multipliers.
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Figure 3: The variation of price multipliers in different functional areas.

3.3 Maximum Predictability Π𝑚𝑎𝑥

To characterize the regularity of price multiplier, we try
to answer the following problem, and define the maximum
predictability Π𝑚𝑎𝑥:

Problem 1. Given a sequence of the price multipliers 𝑅(𝑖,𝑗) =

{𝑅(𝑖,𝑗)
𝑘 , 𝑘 = 1, 2, ..., 𝐿, 𝐿 ≤ 𝐾} of cell (𝑖, 𝑗), from time slot

1, 2, ...𝐿, considering both the randomness and the temporal
correlation of the price multipliers, we want to find out the
maximum predictability 0 ≤ Π𝑚𝑎𝑥 ≤ 1 (the highest potential
accuracy of prediction) that any prediction can reach.

Note that in the problem definition, we define the pre-
dictability on a sub-sequence of price multipliers: the total
length of our data is 𝐾, and the length of the sub-sequence
is 𝐿 ≤ 𝐾. This is because in prediction algorithm that will
be discussed later, we need to train the algorithm based on
a training set, which is usually a sub-sequence of the original
data. Tab. 1 summarizes the main symbols used in this paper.

3.3.1 Entropy. The problem of maximum predictability
has been discussed in a number of previous work about the
prediction of, for example, taxi demand, human mobility,
etc. The calculation of Π𝑚𝑎𝑥 is based on the entropy of the
price multiplier sequence, and using different entropies have
different meaning on the predictability. Here we discuss the
Shannon entropy and the real entropy.

Shannon Entropy. The Shannon entropy measures only
the uncertainty of price multipliers, and does not take into
account the temporal correlation:

𝑆
(𝑖,𝑗)
𝑆ℎ𝑎𝑛𝑛𝑜𝑛 = −

𝑁(𝑖,𝑗)∑︁
𝑚=1

𝑝(𝑟(𝑖,𝑗)𝑚 ) log2 𝑝(𝑟
(𝑖,𝑗)
𝑚 ), (1)

with 𝑝(𝑟
(𝑖,𝑗)
𝑚 ) the probability of multiplier 𝑟

(𝑖,𝑗)
𝑚 in cell (𝑖, 𝑗).

Real Entropy. The concept of real entropy has been
discussed in [11, 13], and here it tries to consider both the
uncertainty of price multipliers and the temporal correlation:

𝑆
(𝑖,𝑗)
𝑟𝑒𝑎𝑙 = −

∑︁
𝑠(𝑖,𝑗)∈𝑆(𝑖,𝑗)

𝑝(𝑠(𝑖,𝑗)) log2 𝑝(𝑠
(𝑖,𝑗)) (2)

Table 1: Main symbols used in this paper.

Symbol Meaning

∆𝑡 the length of each time slot

𝐾 the total length of price multiplier sequence

𝑅(𝑖,𝑗) the (sub)-sequence of price multipliers at cell

(𝑖, 𝑗): 𝑅(𝑖,𝑗) = {𝑅(𝑖,𝑗)
𝑘 , 𝑘 = 1, 2, ..., 𝐿, 𝐿 ≤ 𝐾}

𝐿 the length of the (sub)-sequence 𝑅(𝑖,𝑗)

𝑁 (𝑖,𝑗) the number of distinct price multipliers at
cell (𝑖, 𝑗)

𝑟
(𝑖,𝑗)
𝑚 the distinct price multipliers in 𝑅(𝑖,𝑗),

1 ≤ 𝑚 ≤ 𝑁 (𝑖,𝑗)

𝑆
(𝑖,𝑗)
𝑆ℎ𝑎𝑛𝑛𝑜𝑛 Shannon entropy of 𝑅(𝑖,𝑗)

𝑆
(𝑖,𝑗)
𝑟𝑒𝑎𝑙 real entropy of 𝑅(𝑖,𝑗)

𝑆(𝑖,𝑗) the set of time-ordered sub-sequences of

𝑅(𝑖,𝑗), 𝑆(𝑖,𝑗) = {𝑠(𝑖,𝑗)|𝑠(𝑖,𝑗) ⊆ 𝑅(𝑖,𝑗)}
𝑠
′(𝑖,𝑗)
𝑘 the length of the shortest unseen sub-

sequence of 𝑅(𝑖,𝑗) starting at time 𝑘

Π𝑚𝑎𝑥 the maximum predictability of any prediction
algorithm

Here 𝑝(𝑠(𝑖,𝑗)) is the probability of finding a particular time-

ordered sub-sequence 𝑠(𝑖,𝑗) in the price multiplier sequence
𝑅(𝑖,𝑗). We could see that unlike the Shannon entropy, the
real entropy not only considers the frequency of different
price multipliers in 𝑅(𝑖,𝑗), but also the order of the tempo-
ral patterns of the price multipliers. The calculation of (2)
has an exponential complexity, and [13] has proposed an
approximation based on Lempel-Ziv estimator:

𝑆
(𝑖,𝑗)
𝑟𝑒𝑎𝑙 ≈ (

1

𝐿

𝐿∑︁
𝑘=1

𝑠
′(𝑖,𝑗)
𝑘 )−1 ln𝑛 (3)

Here 𝑠
′(𝑖,𝑗)
𝑘 refers to the length of the shortest unseen sub-

sequence of 𝑅(𝑖,𝑗) starting at time 𝑘.

3.3.2 Maximum Predictability. We have already obtained
two different entropy measures for each cell, and could then
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calculate the corresponding predictability measure: the suc-
cess rate that the most accurate algorithm could correctly
predict the future price multiplier at a particular cell. The
predictability measure Π is subject to the Fano’s inequality,
and could be calculated by [13]:

𝑆 = −Π log2(Π)−(1−Π) log2(1−Π)+(1−Π) log2(𝑁
(𝑖,𝑗)−1)

(4)
In (4), we obtain Π𝑆ℎ𝑎𝑛𝑛𝑜𝑛 and Π𝑟𝑒𝑎𝑙 when we let 𝑆 =

𝑆
(𝑖,𝑗)
𝑆ℎ𝑎𝑛𝑛𝑜𝑛 and 𝑆

(𝑖,𝑗)
𝑟𝑒𝑎𝑙 , respectively. It has been proven in [13]

that Π𝑆ℎ𝑎𝑛𝑛𝑜𝑛 ≤ Π𝑟𝑒𝑎𝑙, so that the maximum predictability
is Π𝑚𝑎𝑥 = Π𝑟𝑒𝑎𝑙.

The meaning of these two predictability measures, is the
highest prediction accuracy with and without considering
the temporal correlation of price multipliers (for Π𝑟𝑒𝑎𝑙 and
Π𝑆ℎ𝑎𝑛𝑛𝑜𝑛, respectively). The fact that Π𝑚𝑎𝑥 = Π𝑟𝑒𝑎𝑙 indi-
cates that if we want to have more accurate prediction, we
need to consider the temporal patterns of price multipliers.

3.3.3 Predictability in Different City Cells/Areas. For the
𝑁 * 𝑁 (𝑁 = 100) cells, we count the number of fare es-
timations in each cell during the 4-week period, and only
consider those cells with the number of fare estimations high-
er than the median value. In other words, we exclude the
cells without enough passenger activity – these cells maybe
unreachable areas such as mountains, lakes, parks, etc. After
this exclusion, the total number of cells to study is 3760.

In Fig. 4 we show the probability distribution function of
the predictability measures in all these cells: the Π𝑚𝑎𝑥(=
Π𝑟𝑒𝑎𝑙) and Π𝑆ℎ𝑎𝑛𝑛𝑜𝑛 when we consider the whole dataset,
and when considering only the weekdays in the 4-week period.
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Figure 4: The PDFs of predictabilities in city cells.

We have the following observations from data:

(1) It is necessary to consider temporal correlation in price
multipliers. The mean Π𝑟𝑒𝑎𝑙 is 0.8315 and 0.8089 for all
the days and for weekdays only; while the counterpart
of Π𝑆ℎ𝑎𝑛𝑛𝑜𝑛 is only 0.6097 and 0.5789.

(2) It is necessary to consider all the days instead of only
weekdays. This is a trade-off between regularity and
data size. Price multipliers of only weekdays may have
more regularity, but meanwhile the data size is larger

Table 2: Predictability in different functional areas.

Business Residential Transportation

Π𝑆ℎ𝑎𝑛𝑛𝑜𝑛 0.4739 0.6677 0.6107

Π𝑟𝑒𝑎𝑙 0.8322 0.8622 0.9554

when considering all the days. Fig. 4 shows that con-
sidering the whole week provides higher predictability.

In addition to city cells, we also calculate the Π𝑆ℎ𝑎𝑛𝑛𝑜𝑛

and Π𝑟𝑒𝑎𝑙 for the business, residential and transportation
areas and show the results in Tab. 2. We have the following
observations on the predictability in different functional areas:

(1) Predictability measures could also used to characterize
city areas, and this agrees with our observation in
§3.2 and Fig. 3. Business area has the lowest Π𝑟𝑒𝑎𝑙 at
0.8322 and transportation area has the highest Π𝑟𝑒𝑎𝑙

at 0.9554, and there is significant difference in Π𝑟𝑒𝑎𝑙

between these functional areas.
(2) Again, considering temporal correlation in price multi-

pliers is necessary. This brings a 75.61%, 29.13% and
56.44% increase in predictability for business, residen-
tial and transportation area, respectively.

4 PREDICTING PRICE MULTIPLIERS

In this section, we implement two predictors, namely a
Markov-chain predictor and a neural network (NN) predic-
tor, to predict future price multipliers based on historical
data. We evaluate the performance and effect of these two
predictors in different city cells and functional areas.

4.1 Markov-chain Predictor

We first introduce the Markov-chain predictor. In a Markov-
chain predictor, the price multiplier in the next time slot is
determined only by the price multiplier in the current time
slot (first-order Markov-chain) or in the current and a few
past time slots (high-order Markov chain).

We use the high-order Markov chain to predict price mul-
tipliers. The order is denoted by 𝑞. Assume that we already

have the historical data 𝑅(𝑖,𝑗) = {𝑅(𝑖,𝑗)
𝑘 , 1 ≤ 𝑘 ≤ 𝐿}, an

order-𝑞 Markov-chain predictor predicts the next price multi-

plier 𝑅
(𝑖,𝑗)
𝐿+1 based on the current and past price multipliers

𝑅
(𝑖,𝑗)
𝐿−𝑞+1, ..., 𝑅

(𝑖,𝑗)
𝐿−1, 𝑅

(𝑖,𝑗)
𝐿 . The Markov property assumes that

the transition probability 𝑃 (𝑅
(𝑖,𝑗)
𝐿+1|𝑅

(𝑖,𝑗)
𝐿−𝑞+1, ..., 𝑅

(𝑖,𝑗)
𝐿−1, 𝑅

(𝑖,𝑗)
𝐿 )

is independent of the current time slot 𝐿:

𝑃 (𝑅
(𝑖,𝑗)
𝐿+1|𝑅

(𝑖,𝑗)
𝐿−𝑞+1, ..., 𝑅

(𝑖,𝑗)
𝐿−1, 𝑅

(𝑖,𝑗)
𝐿 ) =

𝑃 (𝑅
(𝑖,𝑗)
𝑡 |𝑅(𝑖,𝑗)

𝑡−𝑞 , ..., 𝑅
(𝑖,𝑗)
𝑡−2 , 𝑅

(𝑖,𝑗)
𝑡−1 ),∀𝑞 < 𝑡 ≤ 𝐿. (5)

The transition probabilities form the transition matrix 𝑇 ,
and each element of 𝑇 , denoted by 𝑇𝑐,𝑐′ , is:

𝑇𝑐,𝑐′ = 𝑃 (𝑅
(𝑖,𝑗)
𝑡 = 𝑐′|𝑅(𝑖,𝑗)

𝑡−𝑞 , ..., 𝑅
(𝑖,𝑗)
𝑡−2 , 𝑅

(𝑖,𝑗)
𝑡−1 = 𝑐). (6)

Note that in (6), 𝑐 is a sequence of price multipliers of length
𝑞, and 𝑐′ is a single price multiplier.
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Algorithm 1 The Markov-chain Predictor

Input: the Markov-chain order 𝑞, historical data of price

multipliers 𝑅(𝑖,𝑗) = {𝑅(𝑖,𝑗)
𝑘 , 1 ≤ 𝑘 ≤ 𝐿}, transition matrix 𝑇 .

1: Extract the most recent 𝑞 price multipliers 𝑐 from 𝑅(𝑖,𝑗),

i.e., 𝑐 = (𝑅
(𝑖,𝑗)
𝐿−𝑞+1, ..., 𝑅

(𝑖,𝑗)
𝐿−1, 𝑅

(𝑖,𝑗)
𝐿 ).

2: if 𝑐 exists in 𝑇 ’s rows then
3: Find in this row the largest value 𝑇𝑐,𝑐′ .
4: return 𝑐′.
5: else
6: Find the most frequent price multiplier appearing in

𝑅(𝑖,𝑗), denoted by 𝑐′.
7: return 𝑐′.
8: end if
9: Append 𝑐′ to 𝑅(𝑖,𝑗) to form the new historical data

𝑅(𝑖,𝑗) = {𝑅(𝑖,𝑗)
𝑘 , 1 ≤ 𝑘 ≤ 𝐿+ 1}.

10: Update the transition matrix 𝑇 based on 𝑅(𝑖,𝑗).

The probability transition matrix 𝑇 is learned from his-
torical data. We first find out every tuple of length 𝑞 (i.e., a
series of price multipliers in 𝑞 consecutive time slots) from the

historical data of length 𝐿 (i.e., 𝑅(𝑖,𝑗) = {𝑅(𝑖,𝑗)
𝑘 , 1 ≤ 𝑘 ≤ 𝐿}).

The set of distinct tuples are the rows of 𝑇 . For each distinct
tuple 𝑐, we find out all the possible next price multiplier in
every occurrence of tuple 𝑐. The set of all distinct next price
multipliers are the columns of 𝑇 . For each distinct next price
multiplier 𝑐′, we obtain the corresponding element 𝑇𝑐,𝑐′ of
𝑇 – the probability of the next price multiplier 𝑐′ occurring
immediately after the presence of a tuple 𝑐.

Predicting the price multiplier in the next time slot is
straightforward based on the learned probability transition
matrix 𝑇 and historical data. Assume that we already have

the historical data 𝑅(𝑖,𝑗) = {𝑅(𝑖,𝑗)
𝑘 , 1 ≤ 𝑘 ≤ 𝐿} of length 𝐿,

and we first extract the most recent 𝑞 price multipliers to

form a tuple 𝑐 = (𝑅
(𝑖,𝑗)
𝐿−𝑞+1, ..., 𝑅

(𝑖,𝑗)
𝐿−1, 𝑅

(𝑖,𝑗)
𝐿 ). The next step is

to search the rows of 𝑇 for tuple 𝑐:

∙ If tuple 𝑐 exists in 𝑇 ’s rows, then we inspect this row
and obtain the largest value 𝑇𝑐,𝑐′ . Then 𝑐′ is the pre-
dicted next price multiplier.

∙ Otherwise, then tuple 𝑐 has not appeared before, hence
the matrix 𝑇 could not decide what should be the
next price multiplier. In this case, we choose the price
multiplier that are the most frequently seen in the
historical data to be the prediction result.

After having predicted the next price multiplier, this multi-
plier is appended to the historical data, which now becomes

𝑅(𝑖,𝑗) = {𝑅(𝑖,𝑗)
𝑘 , 1 ≤ 𝑘 ≤ 𝐿+ 1}. The transition matrix 𝑇 is

then updated based on the new historical data. Algorithm 1
summarizes the Markov-chain predictor.

4.2 Neural Network Predictor

In this subsection we introduce the neural network (NN)
predictor. Unlike the Markov-chain predictor that predicts the
next price multiplier solely based on the temporal correlation,

in NN predictor we are able to include more factors that
decides the prediction result.

In our implementation of the NN predictor, we consider
four features. Note that we have stated in Tab. 1 that the
length of each time slot is 1 hour, so that we actually collect
hourly average price multiplier in each city cell/functional
area. The features are as below:

(1) hour-of-a-day : the value ranges from 0 to 23, and it
represents the hour of a particular day.

(2) day-of-a-week : the value ranges from 0 to 6, and it
represents the day of a week (from Monday to Sunday).

(3) daily precipitation: we obtain the daily precipitation
(in millimeters) in Beijing International Airport from
a public data source. Note that this data may not be
accurate enough, as the precipitation around the air-
port may not be the precipitation around a particular
city cell or functional area. Also, we only the daily
precipitation instead of hourly data, this adds up to
the inaccuracy. But we consider this enough to catch
the essence, and in the future we will try to get more
accurate data to refine our NN predictor.

(4) hourly temperature: similarly, we also obtain the hourly
temperature (in centigrades) in the airport from a pub-
lic data source. This data is better than the precipita-
tion data because (a) this is an hourly data and (b) the
temperature around the airport is more representative
of the temperature in other city cells/areas.

Our NN predictor uses a two-layer structure: a ReLU
activation layer follows the input layer and then a Softmax
output layer. The data fed to the input layer is a four-element
tuple (i.e., values of the four features above), and the output
from the Softmax layer is a categorical value (each possible
value represents a possible price multiplier, so in our data we
have 7 categories as the service provider sets the lower and
upper bound of price multiplier to be 1.0 and 1.6).

4.3 Evaluation Setup

In this subsection we discuss how to evaluate the perfor-
mance of our price multiplier predictors from three perspec-
tives: preparing the training and test set, choosing evaluation
metrics, and sampling city cells.

4.3.1 Training and Test Set. Both the Markov-chain pre-
dictor and NN predictor need training and test set. In our
dataset, we split the 4-week data into 4 parts – one-week
data for each part. We then use any one part as the test set,
and the remaining three parts as the training set. As a result,
the length of test set, 𝐿𝑡𝑒𝑠𝑡, is 168 (= 24 * 7) and the length
of the training set, 𝐿𝑡𝑟𝑎𝑖𝑛, is 504 (= 3 * 24 * 7).

For the Markov-chain predictor, we choose the first three
weeks of data as the training set, and the last week of data as
the test set. We first generate the transition matrix 𝑇 based
on training set, and then successively predict the next price
multiplier, until we reach the end of the 4th week, while at
the same time updating the matrix 𝑇 in each prediction.

For the NN predictor, we run it for 500 times for each city
cell or functional area, and in each run, we randomly choose
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the test set (and the corresponding training set) and obtain
the evaluation result as an average among multiple runs. In
each run, all the parameters (i.e., weights and biases) of the
neural network are trained based on the training set. The
features corresponding to each hour in the week of the test
set are then fed into the network, with the output as the test
results to be compared by our ground-truth data.

4.3.2 Evaluation Metrics. The usual way to evaluate the
performance of a prediction algorithm is based on the accura-
cy measure, i.e., how many of the predicted items are equal
to the corresponding ground-truth items. In other words,

if we use 𝑅
(𝑖,𝑗)
𝑡𝑒𝑠𝑡 = {𝑅(𝑖,𝑗)

𝑡𝑒𝑠𝑡,𝑘, 𝑘 = 1, 2, ..., 𝐿𝑡𝑒𝑠𝑡} to denote the

price multiplier sequence in cell (𝑖, 𝑗) of the test set and use

𝑅
(𝑖,𝑗)
𝑝𝑟𝑒𝑑 = {𝑅(𝑖,𝑗)

𝑝𝑟𝑒𝑑,𝑘, 𝑘 = 1, 2, ..., 𝐿𝑡𝑒𝑠𝑡} to denote the predicted
price multiplier sequence, then the metric is:

𝐶𝑜𝑢𝑛𝑡
(𝑖,𝑗)
𝑒𝑞𝑢𝑎𝑙 =

𝐿𝑡𝑒𝑠𝑡∑︁
𝑘=1

𝛿
(𝑖,𝑗)
𝑘 , (7)

where 𝛿
(𝑖,𝑗)
𝑘 = 1 if 𝑅

(𝑖,𝑗)
𝑝𝑟𝑒𝑑,𝑘 = 𝑅

(𝑖,𝑗)
𝑡𝑒𝑠𝑡,𝑘, and is 0 otherwise.

In predicting price multipliers, on the other hand, we
don’t care that much about the accuracy measure. In some
cases, even though there is a slight difference between the
predicted price multiplier and the ground truth, it is not a
problem for passengers. For example, a user faced with a
price multiplier 1.3 in a particular location may only want to
know if there is any possibility to get a multiplier lower than
1.3 in neighboring locations or in a short time, but does not
care about whether it is 1.1 or 1.2.

In our evaluation of the predictors, we use the symmetric
mean absolute percentage error (sMAPE) [14], an accuracy
measure based on the relative difference (error):

𝑠𝑀𝐴𝑃𝐸(𝑖,𝑗) =
1

𝐿𝑡𝑒𝑠𝑡

𝐿𝑡𝑒𝑠𝑡∑︁
𝑘=1

|𝑅(𝑖,𝑗)
𝑝𝑟𝑒𝑑,𝑘 −𝑅

(𝑖,𝑗)
𝑡𝑒𝑠𝑡,𝑘|

𝑅
(𝑖,𝑗)
𝑝𝑟𝑒𝑑,𝑘 +𝑅

(𝑖,𝑗)
𝑡𝑒𝑠𝑡,𝑘

(8)

To sum up, a higher sMAPE means lower prediction accu-
racy, and a lower 𝐶𝑜𝑢𝑛𝑡𝑒𝑞𝑢𝑎𝑙 means the same.

4.3.3 Sampling of City Cells. We evaluate the two pre-
dictors in both functional areas and city cells. The limited
number of functional areas in our study makes it easy to
evaluate the predictors, but as we mentioned earlier in §3.3.3,
we still have 3760 city cells to study after excluding those
cells with few fare estimation events.

We sample some representative city cells for the evaluation.
We first sort all the city cells according to the ascending order
of their maximum predictability Π𝑚𝑎𝑥, and then split them
into ten groups of equal sizes. In our case, each group contains
376 city cells. For examle, the first group (denoted by “0%-
10%”) means the bottom 10% cells according to Π𝑚𝑎𝑥. For
each group, we take out the median 10 cells as samples, and
use the average sMAPE of these 10 cells as the sMAPE of
this group of cells. In all we have 100 sample cells. Tab. 3
summarizes the median Π𝑚𝑎𝑥 of sample cells in each group.

Table 3: Π𝑚𝑎𝑥 of sample cells in each group.

group median Π𝑚𝑎𝑥 group median Π𝑚𝑎𝑥

0%-10% 0.7460 50%-60% 0.8436

10%-20% 0.7632 60%-70% 0.8564

20%-30% 0.7799 70%-80% 0.8705

30%-40% 0.8107 80%-90% 0.8932

40%-50% 0.8306 90%-100% 0.9196

4.4 Performance Evaluation of Predictors

In this subsection, we evaluate the performance of the two
predictors, on both city cells and functional areas.

In the following evaluation, the order used in the Markov-
chain predictor (§4.1) is set to 𝑞 = 3, as we find from running
the predictor that increasing 𝑞 over this value does not sig-
nificantly increase the accuracy of the prediction. For the
NN predictor (§4.2), the dimension of the input layer is 4, as
we have four features; the number of neurons in the ReLU
activation layer is 5, and this is the result from our parameter
tuning; the number of neurons in the Softmax output layer
is 7, as the range of price multiplier is from 1.0 to 1.6.

We first run both predictors on each of the sampled cells
for 500 times, and calculate the average sMAPE values. In
Fig. 5 we show the sMAPE values for both predictors in
the ten sampled groups: group 1 means the “0%-10%” cells;
group 2 means the “10%-20%” cells, and so on.
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Figure 5: The sMAPE of two predictors in city cells.

Functional areas are much larger than city cells, and we
also run both predictors on the three functional areas: busi-
ness, residential and transportation area. In Tab. 4 we show
the result, including the sMAPE and 𝐶𝑜𝑢𝑛𝑡𝑒𝑞𝑢𝑎𝑙 (only for
reference), of running both predictors.

The Markov-chain predictor has a prediction accuracy
changing obviously with the corresponding maximum pre-
dictability. For city cells with highest median of Π𝑚𝑎𝑥 =
0.9196, the average sMAPE of the prediction is as low as
0.0372, and for those with lowest median of Π𝑚𝑎𝑥 = 0.7460,
the average sMAPE climbs to 0.0702 – 88.7% higher.

The NN predictor’s behavior is just the opposite: the
prediction accuracy is much more stable, and the sMAPE
fluctuates only slightly. In Fig. 5, the highest and the lowest
sMAPE are 0.0490 and 0.0435, respectively. We could safely
claim that the maximum predictability does not have a big
impact on the prediction accuracy in the NN predictor.
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Table 4: The sMAPE of two predictors in functional
areas.

Markov-chain predictor

Business Residential Transportation

𝐶𝑜𝑢𝑛𝑡𝑒𝑞𝑢𝑎𝑙 47.3 54.5 71.6

𝑠𝑀𝐴𝑃𝐸 0.0548 0.0468 0.0366

Neural network predictor

Business Residential Transportation

𝐶𝑜𝑢𝑛𝑡𝑒𝑞𝑢𝑎𝑙 90.2 86.3 82.4

𝑠𝑀𝐴𝑃𝐸 0.0448 0.0457 0.0513

Comparing the sMAPE of the two predictors in Fig. 5, if
a city cell’s Π𝑚𝑎𝑥 <= 0.8564, the NN predictor has smaller
sMAPE, hence higher prediction accuracy; otherwise, the
Markov-chain predictor has higher prediction accuracy.

Regarding the prediction accuracy in functional areas, we
compare the evaluation results in business and transportation
area. Residential area stands in between, so comparing the
two extremes is enough. We have the following discussion:

(1) For a functional area with high predictability (e.g., the
transportation area), while the NN predictor brings a
small increase of 15.1% in 𝐶𝑜𝑢𝑛𝑡𝑒𝑞𝑢𝑎𝑙, it results in a
sMAPE 40.2% higher, compared to the Markov-chain
predictor.

(2) For a functional area with low predictability (e.g., the
business area), the NN predictor not only increases the
𝐶𝑜𝑢𝑛𝑡𝑒𝑞𝑢𝑎𝑙 by 90.3%, but also results in a 18.2% lower
sMAPE.

Considering the fact that the NN predictor needs more com-
putation time (in our case about 20 times the Markov-chain
predictor’s computation time) and more feature data (i.e.,
the temperature and precipitation data in our case), we con-
clude that only in functional area with low predictability the
NN predictor is necessary, and the Markov-chain predictor
provides enough prediction accuracy in other functional areas.
This justifies our earlier claim that we should use different
prediction algorithms in different city cells/functional areas.

4.5 Effects of Price Multiplier Prediction

In this subsection, we put aside the price multiplier prediction
problem, and return to our initial goal of predicting price
multipliers – relieving the anxiety from dynamic pricing.

The anxiety comes from passengers’ uncertainty about the
price multipliers nearby, or within a short time. We envision
that our work on price multiplier prediction could reduce
this uncertainty and make passengers informed about “how
to get a lower price multiplier?”.

We try to answer the following two questions:

∙ Q1: If there are indeed chances to get a lower price
multiplier in neighboring cells at the same time, by
what probability could our price multiplier prediction
find out such a chance?

∙ Q2: With our price multiplier prediction, by what prob-
ability a passenger in a particular location could really

get a lower price multiplier in neighboring cells at the
same time?

Before answering these questions, we first define “neighbor-
ing cells”: for cell (𝑖, 𝑗), its neighboring cells are𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑖,𝑗) =
{(𝑖′, 𝑗′)|𝑖− 1 ≤ 𝑖′ ≤ 𝑖+ 1, 𝑗 − 1 ≤ 𝑗′ ≤ 𝑗 + 1}.

We only consider those passengers in business and trans-
portation areas, as these are two representative functional
areas with low and high price multiplier predictability, respec-
tively. We use the Markov-chain predictor in transportation
area, and the NN predictor in business area.

For Q1, if we indeed find from our data that a passenger
standing in a cell in a particular functional area is able
to get a lower price multiplier in 8 neighboring cells, our
evaluation shows that on average in the transportation area
the probability that our predictor could find out such a chance
is 89.4%, and in the business area the probability is 82.3%.

For Q2, the difference with Q1 is that we have to con-
sider the fact that in some cells there is not any lower price
multiplier in neighboring cells. Similarly, on average in trans-
portation area the probability a passenger could use the price
multiplier prediction to get a lower price in neighboring cells
is 18.7% – because in transportation area the price multiplier
is relatively stable and low (see §3.2). In business area, the
probability is much higher and reaches 35.4%.

Furthermore, for Q2 we also try to focus only on those
cells on the edge of a functional area. In practice, passengers
in these cells are more easier to get lower multipliers, as
walking away to a neighboring cell may enter a different
functional area. Our evaluation shows that in the edge cells
of transportation area, the corresponding probability rises to
31.2%. The probability in business area rises to 67.3%.

These results verify that (a) price multiplier prediction
is effective in obtaining lower prices and thus relieving pas-
sengers’ anxiety and (b) passengers standing on the edge of
functional areas are more easier to find lower prices.

5 RELATED WORK

We discuss related work from three perspectives.
Ride-on-demand Service. Most studies on emerging

RoD services are centered on dynamic pricing. [3] tries to
evaluate Uber’s surge pricing mechanism based on the mea-
surement treating Uber as a black-box, and to predict the
prices in the coming minutes or nearby locations based on
the learned relationship between price multipliers and supply
& demand. In our previous work [6, 7] the demand pattern,
the effect of dynamic pricing, and passengers’ reaction to dy-
namic pricing in RoD service have been carefully studied and
analyzed. Other related studies focus on economic analysis
of the effect and impact of dynamic pricing [8], the supply
elasticity [4] and consumer surplus [5] in Uber, etc.

Taxi demand prediction. Our work on price multipli-
er prediction is inspired by previous work on taxi demand
prediction. The availability of public taxi dataset leads to
a number of related studies. Examples include using neural
network to forecast the taxi demand from historical data [10],
using SVM to select the most related feature that determines
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the taxi demand [9], using taxi GPS trajectories to detect
anamalous trips [2], etc.

Temporal patterns and predictability. Many studies
have found that urban human mobility have strong regu-
larities: people usually go to work, go back home, go shop-
ping/entertaining at specific time and locations. For example,
[1] finds this out by studying cell phone user’s location record-
s and shows that human mobility exhibits a high degree of
spatio-temporal pattern. Furthermore, [13] employs the con-
cept of maximum predictability, and uses it to study the
temporal pattern of the individual human mobility. Similarly,
[15] also uses this concept to choose different algorithms to
predict taxi demand at each building block in New York.

6 CONCLUSION AND FUTURE WORK

In this paper we use price multiplier prediction to relieve the
anxiety brought by dynamic pricing in RoD services. The
core problem passengers worry about is “Could I get a lower
price multiplier within a short time/distance?”, and price
multiplier prediction helps to answer it.

Based on the data collected from a service provider in
China, we divide the city of Beijing into cells and functional
areas, and use the metric maximum predictability Π𝑚𝑎𝑥 to
characterize the predictability of price multipliers in each
cell/area. Data analysis shows that the mean Π𝑚𝑎𝑥 around
the city is 0.8315 (i.e., around 83.15% price multipliers could
be predicted), and that Π𝑚𝑎𝑥 varies significantly between
cells/areas. It also proves to be necessary to consider temporal
correlation in predicting price multipliers, and this brings an
increase in Π𝑚𝑎𝑥 up to 75.61% in business area.

With the Π𝑚𝑎𝑥 of city cells/areas, we then implement
two predictors, the Markov-chain and neural network (NN)
predictor, and evaluate their performance in city cells/areas.
The prediction accuracy of the NN predictor remains stable
with different Π𝑚𝑎𝑥, but the accuracy of the Markov-chain
predictor decreases significantly with lower Π𝑚𝑎𝑥. We thus
claim that the NN and Markov-chain predictor should be
used in areas with low (e.g., business area) and high (e.g.,
transportation area) Π𝑚𝑎𝑥. Finally, we evaluate the effect of
prediction, and results show that our predictors could find
out lower price multipliers nearby with a probability as high
as 89.4%. Also, the probability that a passenger in business
area could use price prediction to get lower prices nearby is
35.4% and this rises to 67.3% if considering only edge cells.

For the future work, we will collect more data such as wind
speed or local events information to refine the NN predictor
and improve the accuracy. The effects of price prediction will
be evaluated more comprehensively. We will also use deep
learning techniques to make our prediction more accurate.
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