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Abstract
Ride-on-demand (RoD) services use dynamic prices to balance the supply and demand to benefit both drivers and passengers,
as an effort to improve service efficiency. However, dynamic prices also create concerns for passengers: the “unpredictable”
prices sometimes prevent them frommaking quick decisions at ease. It is thus necessary to give passengers more information
to tackle this concern, and predicting dynamic prices is a possible solution. We focus on fine-grained dynamic price
prediction – predicting the price for every single passenger request. Price prediction helps passengers understand whether
they could get a lower price in neighboring locations or within a short time, thus alleviating their concerns. The prediction
is performed by learning the relationship between dynamic prices and features extracted from multi-source urban data.
There are linear or non-linear models as candidates for learning, and using different models leads to varying implications on
accuracy, interpretability, model training procedures, etc. We train one linear and one non-linear model as representatives,
and evaluate their performance from different perspectives based on real service data. In addition, we interpret feature
contribution, at different levels, based on both models and figure out what features or datasets contribute the most to dynamic
prices. Finally, based on evaluation results, we provide discussions on model selection under different circumstances, and
propose a way to combine the two models. Our hope is that the study not only serves as an accurate prediction for passengers,
but also provides concrete guidance on how to choose between models to improve the prediction.
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1 Introduction

Emerging Ride-on-demand (RoD) services such as Uber
and Didi are becoming increasingly popular in recent years.
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They attract passengers by their convenience, as well as
flexible and affordable prices; and attract drivers who want
to drive more flexibly with their own cars.

Dynamic pricing is the core and distinctive feature in
RoD service, and it reflects the effort in balancing the
supply (the number of cars on the road) and demand (the
number of passengers’ requests): a higher price reduces
demand and increases supply in a busy area, and a lower
price does the opposite in a non-busy area. This makes the
service more responsive for both drivers and passengers.
Specifically, dynamic pricing is always represented by a
“price multiplier”: the price of a trip is the product of the
price multiplier (based on the supply & demand condition
nearby) and a fixed normal price (based on the estimated
distance & time of the trip). The fixed normal price is
similar to the price of a taxi trip, so we only focus on the
price multiplier in this paper.

Despite the convenience and flexibility, dynamic pricing
exerts mental burden on passengers and makes them less
satisfied. In traditional taxi service with fixed pricing,
passengers can estimate the trip fare based on personal
experience. In emerging RoD service, however, they have
an extra task before making decisions: guessing the price
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multipliers based on their estimate of the supply & demand
condition nearby. For an individual passenger without
relevant information, the estimate is invariably inaccurate
and usually prevents them from making decisions at ease.
Giving more information to passengers helps, and price
prediction – predicting the prices in the next time slot
or in the neighboring locations – is one of the most
straightforward solutions, and passengers could rely on the
results to make quick decisions.

Price prediction can be coarse- or fine-grained, depend-
ing on who benefits from such results. For example, a
coarse-grained prediction – predicting the hourly average
price multipliers for certain regions – is already enough for
government or policy makers to understand or regulate RoD
services. Predictors of this sort have already been discussed
in [13, 14]. In this study we focus on fine-grained prediction
– predicting the price multipliers for every single passenger
request – and it helps passengers to make decisions. Results
can be used by either an individual passenger or any third
party to answer questions like “what’s the price multiplier
for one particular request? or if one can wait for a while, or
if one can walk away for hundreds of meters?”.

Dynamic price prediction has not received much
attention in RoD services. In general, there are two ways to
predict prices. One way is to predict the supply & demand
and then guess the relationship between dynamic prices
and the supply & demand, as in [8]. Because most RoD
services keep their dynamic pricing algorithms as secrets,
guessing this relationship from data is not accurate enough
to generate a good prediction. Furthermore, the prediction
of supply & demand itself also brings some inaccuracies.
Another way omits the details in between, and predicts the
price multiplier directly based on historical data, including
the price multipliers and features relevant to supply &
demand. This way does not try to unveil the “secret
algorithms”, but is easier to generalize: the prediction
is achievable as long as one can collect historical data,
regardless of the service provider-specific algorithms. [13]
have discussed coarse-grained prediction using methods in
this way, and here we discuss fine-grained prediction in a
similar manner.

It depends on the goal of prediction to choose
appropriate models in learning the relationship between
price multipliers and relevant features. For example,
sometimes we focus on the prediction accuracy, and want to
have a simpler feature extraction procedure, and in such case
non-linear models such as neural network or deep learning
models are more suitable. In another case, contrarily, if
the emphasis is on interpretability and inspecting feature
contribution (i.e., “what features contribute the most to
dynamic prices”) with a certain level of accuracy, then
linear models such as the linear regression model fit better.
Additionally, different models may have varying levels of

prediction accuracy and applicability in regions or cities
with different characteristics. It is thus necessary to evaluate
different categories of models and identify how to choose
between them or make use of one or more models to
improve prediction accuracy.

In this paper, we address the fine-grained dynamic price
prediction and its model selection problem by training
representative linear and non-linear models on features
extracted from multi-source urban data. The rationale
behind using multi-source urban data and model selection
is:

Multi-source urban data We collect urban data from multiple
sources, including the RoD and taxi service, public transporta-
tion, weather and the map of a city. This helps to:

– extract more features from data and improves prediction
accuracy;

– takes into account the impact on dynamic prices from
perspectives other than the RoD service itself, e.g., the
status of other means of transportation, weather and
location information.

Model selection The main trade-off in model selection is
on accuracy and interpretability. In general, there are two
categories of predictive models: (a) complicated non-linear
models with a small dimension of features [12, 23] and
(b) simple linear models with a large dimension of features
[22, 33, 39]. For non-linear models, the non-linearity helps
to describe the non-linear correlation between features
and they turn out to be more accurate with only a small
dimension of features, but in the meanwhile it is hard to
determine feature contribution; on the other hand, linear
models have a reduced accuracy due to the absence of
non-linear terms, but feature contribution can be clearly
determined based on corresponding weights. To improve
prediction accuracy of linear models, composite features
are constructed by multiplying features from different data
sources in product-form terms. Specifically, we choose a
neural network model and a linear regression model as the
representatives of these two categories.

In addition, for these two models, we evaluate their effec-
tiveness in price prediction from different perspectives, and
provide a detailed discussion on the level of interpretabil-
ity of these models. Based on the effectiveness evaluation,
we give some concrete suggestions in how to make use of
these models to improve prediction accuracy under different
circumstances.

Contributions Our contributions are three-fold:

– This paper is in the series of our study on RoD services,
and trains two different models for fine-grained dynamic
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price prediction. Based on real service data, we conduct
extensive evaluation of these two models.

– We introduce multi-source urban data in price predic-
tion. This not only improves prediction accuracy, but
enables us to consider the impacts from other per-
spectives as well, such as the status of other means
of transportation, weather and location information.
Unlike traditional studies on taxi services, RoD service
has a complicated relationship with existing transporta-
tion services such as taxi, bus or metro, and this makes
it necessary to use multi-source urban data.

– To the best of our knowledge, this study is the first
to compare the performance of different predictive
models under different circumstances and identify the
way to combine them to improve prediction results.
Relevant discussions can serve as a useful guidance for
passengers, drivers or any other third party.

The remainder of the paper is organized as follows.
Section 2 reviews related work, and Section 3 presents
the multi-source urban data used in this paper. Section 4
discusses feature extraction, and the two models are
presented in Section 5. In Section 6 we carry out extensive
evaluations on these models, based on which discussions on
model selection are given in Section 7. Finally, Section 8
concludes the paper.

2 Related work

RoD service Most studies on RoD services are centered on
dynamic pricing. [8] tries to evaluate Uber’s surge pricing
mechanism based on the measurement treating Uber as a black-
box, and predicts future prices based on a guessed relationship
between price multiplier and supply & demand. The prediction
is not accurate enough, due to the lack of real service data and
the inaccuracies in guessing the relationship. The authors
in [15, 18, 19] study and analyze the demand, the effect of
dynamic pricing and passengers’ reaction to prices in RoD
services. In [13] the authors present a preliminary study
on coarse-grained dynamic price prediction. Specifically,
the authors in [13] define a metric to characterize the
variation pattern and the predictability of price multipliers
in different regions in the city, and use different predictors
such as Markov-chain predictor or neural network predictor
in different regions based on the defined metric. Their
work is a reflection of the varying price multipliers in
different time period and locations, and can tell passengers
“when and where you may get a lower hourly average price
multiplier”. Other works focus on economic analysis of the
effects of dynamic pricing [20], the supply elasticity [9],
consumer surplus [10], etc.

Taxi and other transportation services Our work on price
multiplier prediction is inspired by previous work on taxi
demand prediction. Li et al. [27] uses neural network to
forecast the taxi demand from historical data; [26] uses
SVM to determine the most related feature of taxi demand;
[7] uses taxi GPS trajectories to detect anomalous trips; etc.
The availability of public taxi dataset leads to a number
of related studies. For example, [52] uses taxi trajectory
data to detect flawed urban planning, and [48] recommends
driving directions based on patterns mined from historical
taxi trajectory data. Besides, data from taxi and other
transportation services have also been used in traffic speed
prediction [42], event detection [3], city structure discovery
[41], human mobility [6, 34–36], safe driving [47], crowd
management [11, 49], taxi ride-sharing [21, 30], trajectory
clustering [31], mobile crowd sensing [45], route planning
[28] and other urban computing topics [40, 43, 44].

Dynamic pricing and concerns Dynamic pricing is not an
invention in RoD service, and it has been used in lots of
services and scenarios to either improve service efficiency
or manipulate supply and demand in different forms. For
examples, it has been used in Internet retail [5], inventory
management [4], hotel booking [25] and airline pricing
[32]. For the RoD service, the mental burden created by
dynamic prices have been discussed previously. Guo et al.
[19] shows that during morning rush hours, the probability
of finding a lower price multiplier within 1km is about
75.99%. The probability is 76.10% and 34.21% for evening
rush hours and non-rush hours. Guo et al. [18] shows
that only in 39.77% cases a passenger accepts the price
multiplier after only one fare estimation. Concerns about the
relationship between RoD service and taxi service or public
transportation could also be found in news reports such as
[1, 24, 29].

3Multi-source urban data

We present the multi-source urban datasets used in
predicting price multiplier, including the event-log data
from a RoD service, the GPS trajectory data from taxi
service, the bus & metro distribution data, the POI data and
the weather data. Table 1 summarizes our datasets and their
fields.

3.1 RoD service event-log data

Our data of the RoD service is collected from Shenzhou
UCar, one of the major RoD service providers in China. By
the end of 2015, Shenzhou UCar’s service covers more than
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Table 1 A summary of datasets and fields

Dataset Fields

RoD event time, event location, estimated fare,

price multiplier, passenger device IMEI.

Taxi upload time, latitude, longitude, heading,

speed, full flag, car plate.

Bus & # of bus stations, # of bus lines,

metro # of metro stations, # of metro lines.

POI # of POIs of 14 categories (car service,

restaurant, shopping, sports & entertainment,

hospital, hotel, scenic spot, residence &

apartment, government, education & culture,

transportation facility, finance & insurance,

business and everyday life).

Weather temperature, wind speed, humidity, pressure,

visibility, weather condition.

50 cities in China, with a fleet of more than 30,000 cars,
offering more than 300,000 trips per day [37].

We first explain the user interface of the mobile app,
as shown in Fig. 1, to illustrate the work-flow of a typical
RoD service. A user usually opens the app and types the
boarding location A and arriving location B. S/he could also
choose “when to ride (now or several minutes later)” and
“using coupon”. After the user has specified the locations
and chosen all available options, the app sends the relevant
information back to the service provider and obtains (a)
the estimated trip fare and (b) the current dynamic price
multiplier, which are displayed to the user. Note that the
service provider often sets a lower and upper bound on
the price multiplier in the service policy. The user then
chooses either to accept the current price (by pressing “Ride
a Car!” button) or give up the current fare estimation if s/he
considers the price multiplier too high.

Each time when the mobile app sends all the information
to the service provider and returns the current price
multiplier and the estimated trip fare, an EstimateFee
event is generated, and this is the source of our event-
log dataset. Our dataset contains the complete record of
EstimateFee events in the complete 4 months from Aug to
Nov, 2016 in Beijing. Each entry corresponds to a single
event, and includes fields such as event time, event location
(longitude and latitude), estimated fare, price multiplier,
passenger device IMEI (i.e., an unique identifies of a
passenger), etc. The dataset contains 14,587,353 entries, and
all are properly anonymized.

In the dataset, we find out that the service provider sets
a lower and upper bound for the price multiplier. The lower
bound is m = 1.0 and the upper bound is U = 1.6. So all
possible multipliers are 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6.

Figure 2 illustrates how different price multipliers could
be in different locations or during different time periods by
showing the variation of hourly average price multiplier at
the level of city functional areas. We select some typical
business (i.e., the place for working), residential (i.e., the
place for living) and transportation (e.g., airport terminals
and railway stations) areas in Beijing. The criteria of
selecting these typical functional areas could be found in
[15] and is not discussed here.

There are some basic observations:

– The regularity of the variation of price multipliers is
closely related to the locations of passengers. In some
location (e.g., transportation area) the variation is more
regular, whereas in some locations (e.g., business area)
it is more random.

– The average price multiplier of a location is related to
hour-of-day, day-of-week, and the location itself.

– Passengers’ potential demand (i.e., the number of Esti-
mateFee events) also varies significantly in differ-
ent locations, hour-of-day, and day-of-week. We don’t

Fig. 1 The user interface of a typical RoD service
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Fig. 2 The variation of hourly
average price multipliers in
different functional areas
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illustrate this observation here because of limited space,
and relevant figures can be found in [16].

3.2 Taxi service GPS trajectory data

Taxi is a major competitor of RoD service, and we also
collect GPS trajectory data from the taxi service in Beijing.
The taxi data helps us to (a) capture the operating status of
taxi service in the city and (b) characterize the general traffic
condition of different locations. Examples include “whether
a region is busy during a particular time period” or “the
number of available taxis around a location”.

Our dataset covers the GPS trajectory data of about
30,000 taxis in Beijing in November, 2016. Each taxi
uploads one GPS data entry every 30 seconds during
operation. For each day, the volume of dataset ranges from
45 to 50 million entries. Each entry contains the following
fields:

– upload time: the timestamp of this entry;
– latitude & longitude: the location of the taxi;
– heading & speed: the heading and driving speed of the

taxi;
– full flag: whether the taxi is full or available;
– car plate: the MD5-encrypted string of the taxi’s plate

number.

With GPS trajectory and especially the full flag of a taxi,
we can determine all the trips a particular taxi serves each
day. Specifically, the full flag changing from “available” to
“full” indicates that a passenger is getting on a taxi; and the
reverse direction indicates that a trip is finished.

3.3 Bus andmetro distribution data

The distribution of bus & metro helps to characterize
the availability of public transportation around different
locations, and this may have impacts on RoD service.

The most accurate description of the bus and metro
distribution should be like “the number of buses around a
particular location during a particular time period”, and

could be obtained by, for example, examining the smart-card
usage data (i.e., “how many people wipe their smart-card on
a bus”) or collecting the GPS data of bus & metro. However,
bus & metro have relatively fixed time tables, and most
people decide whether to take public transportation based on
the availability of bus & metro lines/stations nearby, instead
of the availability of bus & metro nearby. So we turn to an
easier method to acquire our datasets by simply counting the
number of bus & metro lines and stations nearby.

We crawl the above data from AMap service (one of the
most popular digital map service providers in China) using
its JavaScript API [2]. Specifically, for a location (i.e., a
pair of longitude and latitude) given in an entry of the RoD
service dataset, we count the number of bus & metro lines
and stations within a 500-meter radius of the location. As a
result, the volume of this dataset is the same as that of the
RoD service dataset. For the whole city, there are more than
7,700 bus stations and about 380 metro stations.

3.4 POI data

This dataset mainly contains the POI (point of interest)
information. The goal of using POI information is that we
hope some properly selected POI features could represent
the location information given a pair of longitude and
latitude. As mentioned in Section 3.1, either the price
multiplier or the number of events is closely related to the
location in which an EstimateFee event takes place. For
example, the number of events is significantly higher around
airport terminals or railway stations; the price multiplier
is, on average, much higher in some business areas during
evening rush hour than in other locations. We seek for
some features to accurately describe this sort of location
information.

Similar to the bus and metro distribution data, we also
crawl POI data from AMap service. This map service
provider categorizes each POI on the map into 14 coarse
categories: car service, restaurant, shopping, sports &
entertainment, hospital, hotel, scenic spot, residence &
apartment, government, education & culture, transportation
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facility, finance & insurance, business and everyday life. For
a location (i.e., a pair of longitude and latitude) given in
an entry of the RoD service dataset, we count the number
of POIs of each of these 14 categories within a 500-meter
radius of the location, and use the resulting vector as our
POI data. The volume of the POI dataset is the same as
that of the RoD service dataset. In Fig. 3, we show, for all
locations, the distribution of POI categories that have the
largest count around each location – the shopping, business
and everyday life POIs are the most prevailing. Figure 4
focuses on the total number of POIs around each location,
and the histogram shows while in most cases there are less
than 20 POIs around a location, in much rarer cases there
are up to 300 POIs within a 500-meter radius of some
locations.

Some previous work may associate a location with its
nearest POI and use its category to describe the location. We
consider this way to be not accurate enough. For example,
a passenger is standing out of a big shopping mall and
there are also some restaurants or lifestyle services around
him. It is possible that a particular restaurant is the nearest
POI, but the big shopping mall turns out to be the reason
why the passenger is standing here requesting for the RoD
service.

3.5Weather data

Weather should also be a factor that influences either
the dynamic prices or the number of EstimateFee events.
Intuitively, a higher demand is triggered when there is a bad
weather, such as rain or extreme temperature.

We turn to timeanddate.com for the weather data. We
crawl the weather data in every 3 hours in the complete
4 months from August to November, 2016 in Beijing,
corresponding to the time range of the RoD service data.
The weather data includes the following fields: temperature,
wind speed, humidity, pressure, visibility and weather
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Fig. 3 The distribution of POI categories
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condition. The first five fields are self-explanatory, and
weather condition categorizes the weather into 17 types: ice
fog, partly sunny, sprinkles, scattered clouds, heavy rain,
dense fog, sunny, clear, overcast, light rain, low clouds,
haze, fog, rain, passing clouds, light fog and light snow.

It is true that the weather dataset has a coarser granularity
than other four datasets. Firstly, we only have the weather
of the whole city of Beijing, instead of having the weather
information associated to each smaller region. Secondly, the
weather information is updated every 3 hours. This is due to
the availability of the weather history data, but we consider
our crawled data is enough to make some sense: compared
to other factors, the weather condition affects a far larger
area and its effect usually lasts much longer.

4 Feature extraction

Based on the multi-source urban data, we extract and
construct features and these features will later be used
to train linear and non-linear models to perform fine-
grained price prediction. For a non-linear model, features
are directly extracted from our datasets, and we call them
as basic features; for a linear model, due to the lack
of non-linear terms, we need to integrate basic features
extracted from different data sources to form new, high-
dimensional composite features, acting as the substitute
for non-linear terms. In this section, we elaborate on how
to extract and construct basic features. Using composite
features with linear model has been discussed in [17], and
relevant key points will be presented later in Section 5.2.
Table 2 summarizes all basic features.

Basic features are extracted from each of our datasets.
Features of the RoD service and taxi dataset are processed
and calculated from their corresponding data fields, whereas
features of other datasets are simply the corresponding data
fields previously shown in Table 1.
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Table 2 Feature extraction:
basic features from
multi-source urban data

Basic features

Dataset Feature Description

RoD month the month the RoD event takes place

hour of day the hour of day the event takes place

day of week the day of week the event takes place

day of month the day of month the event takes place

estimated fare the estimated trip fare for the event

isHoliday whether the event takes place in a holiday

isWeekend whether the event takes place in weekends

historical price multipliers the average price multiplier in the last 1, 2, 3 hours

Taxi up count # of passengers getting on taxis around the location

down count # of passengers getting on taxis around the location

average speed average speed of full taxis around the location

speed variance variance of speed among full taxis around the location

taxi count # of taxis appearing around the location

full taxi count # of full taxis appearing around the location

full taxi ratio the ratio of full taxis to all taxis around the location

variance of taxi count variance of taxi count daily

variance of full taxi count variance of full taxi count daily

Bus & bus station count # of bus stations around the location

metro bus line count # of bus lines around the location

metro station count # of metro stations around the location

metro line count # of metro lines around the location

POI POI counts # of POIs of 14 categories around the location

Weather temperature the temperature of the city at the time of the event

wind speed the wind speed at the time of the event

humidity the humidity at the time of the event

pressure the atmosphere pressure at the time of the event

visibility the visibility at the time of the event

weather condition the type of weather at the time of the event

4.1 RoD service features

We extract the following features from RoD service dataset:
month, hour of day, day of week, day of month, estimated
fare, isHoliday, isWeekend, and historical price multipliers.
The historical price multipliers include the average price
multiplier in the last 1, 2 and 3 hours within a 500-
meter radius of the location of the corresponding RoD data
entry. Because the price multiplier is regular, to different
extents, in different locations as shown in Fig. 2, we expect
the historical price multipliers will influence the current
price multiplier. The estimated fare is an indication of
the travelling distance, and when averaged, the average
estimated fare in a small region describes the travelling
habit of people in this region from a particular perspective.
Other features are temporal features, and as we can see
from Section 3.1, these features play an important role
in predicting the price multiplier. The location of the
EstimateFee event (i.e., a pair of longitude and latitude

values) is not used as a RoD service feature; alternatively,
we use the location of the event to extract features from
the other 4 datasets. In the following, “around the location”
means “within a 500-meter radius of the location”.

4.2 Taxi service features

In Section 3.2, we mention that we have the taxi GPS
trajectory data and also extract the trip information of taxis.
From the trip information, we extract 2 features: up count
and down count – the number of passengers getting on (and
off) taxis around the location (i.e., specified by the pair of
longitude and latitude values in a RoD data entry). From the
taxi GPS trajectory, we extract 5 features:

– aveage speed: the average speed of full taxis (i.e., with
passengers on-board) around the location.

– speed variance: the variance of speed among full taxis
around the location.
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– taxi count: the number of taxis appearing around the
location.

– full taxi count: the number of full taxis appearing
around the location.

– full taxi ratio: the ratio of full taxis to all taxis around
the location.

The up/down count features are an indication of passengers’
demand for taxis and the popularity of the location.
The average speed and speed variance reflect the traffic
condition around the location. The other 3 features describe
the availability of taxis as well as the popularity of the
location.

For the above 7 features, we calculate each of them based
on the taxi GPS entries that fall in the same hour-of-day
(called “hourly taxi features”) and in the same hour-of-day
and day-of-week (called “daily taxi features”). Additionally,
we extract 2 other daily taxi features: variance of taxi count
and variance of full taxi count to characterize the variance
of the availability of taxis and of the location’s popularity.

The above features can not only reveal information about
the taxi service, but also provide clues to a number of useful
facts such as the traffic condition around the location.

5Models for prediction

We have already discussed the multi-source urban data
as well as the construction of basic features based on
such datasets. In this section we present two representative
models for dynamic price prediction – a linear regression
model and a (non-linear) neural network model.

The rationale behind choosing different models is about
the trade-off between prediction accuracy and interpretabil-
ity. In some cases, we desire model interpretability in
addition to prediction accuracy. For example, when we want
to quantify feature contribution and understand what fac-
tors contribute the most to the dynamic prices, we need
an interpretable model, and in this case interpretability
is emphasized over prediction accuracy. Specifically, non-
linear models such as neural network or deep learning
models are hardly interpretable, and they are always viewed
as black-boxes; linear models such as the linear regression
model or simple decision tree model, on the other hand,
are interpretable by nature, and it is very easy to do that
by simply inspecting weights or following decision tree
directions.

Our choice of representative models (i.e., the neural
network model for non-linear models, and the linear
regression model for linear models) is based on the
consideration that they are already accurate enough in price
prediction, and that they are enough to illustrate the trade-
off between linear and non-linear models. For linear models,

some complicated linear models such as ensemble models
or multiple decision trees have a reduced interpretability,
making it harder to judge feature contribution quantitatively.
The linear regression model with composite features, on
the other hand, is the simplest interpretable model and
can achieve a satisfactory accuracy [17]. Secondly, when
choosing the representative non-linear model, the goal
is to justify that a non-linear model can have a higher
prediction accuracy with only limited interpretability. The
neural network model is a simple non-linear model, and if it
can achieve the above goal, it is then unnecessary to involve
those more complicated non-linear models.

In the following we will first present the details of these
models, and then a thorough evaluation in the next section.

5.1 The non-linear model

A neural network model is chosen as the representative for
non-linear models. The prediction target (i.e., the output of
the model) is the dynamic price multiplier for any passenger
request in any location in the city of Beijing. The input
features are those basic features explained in Section 4 and
Table 2, having a dimension of about 130. In other words,
given the following information:

– the temporal features and historical price multipliers
around the location (i.e., the location one requests for a
ride);

– the taxi features around the location, describing both the
status of taxi services and traffic condition around;

– the distribution of buses and metro around the location,
describing the availability of public transportation
services around;

– the POIs around the location, describing the location
characteristics around;

– the weather condition around the location,

the neural network model tries to predict the price multiplier
one will encounter upon his/her request.

Our neural network model uses a four-layer structure.
There are three hidden layers with ReLU activation function
between the input and output layer, and each layer contains
15 neurons. The data fed to the input layer is a tuple of
about 130 dimensions, and the output is a continuous value
between 1.0 and 1.6 (i.e., the lower and upper bound of price
multipliers in our data). Figure 5 illustrates the structure.

Neural network model can also offer certain level
of interpretability. With multi-source urban datasets, we
choose to identify the importance of each dataset – whether
a particular dataset can improve the prediction accuracy
more than another. With a neural network model, we train
it on different combinations of datasets, and identify the
importance of each dataset based on the corresponding
accuracy measure.
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Fig. 5 The structure of the neural network model

5.2 The linear model

The construction of the linear regression model in dynamic
price prediction has already been discussed in [17], and
in this section we list some key points so that readers
can follow the main idea in the following sections about
evaluation results and model selection.

Besides basic features used in the non-linear model, we
introduce composite features in the linear model. In a non-
linear model, the model itself will automatically discover
the relationship between features; but in a linear model,
the lack of non-linearity makes it necessary to construct
composite features. Without non-linear terms, a linear
model is unable to characterize the non-linear relationship
between features, and thus has a relatively lower accuracy
in fitting the data.

Composite features are the multiplicative product of multiple
basic features. Addinvg product-form terms into a linear model
transforms the model into a non-linear one, while the model
still retains the same level of interpretability. For example,

assuming we have two features x1 and x2 and the target
variable is y, a simple form of a linear regression model can
be written as

y = ω1x1 + ω2x2 + b. (1)

If we multiply x1 and x2 and use x3 = x1x2 to denote the
resulting feature, and then use x1, x2 and x3 to build the
linear regression model, the result becomes:

y = ω′
1x1 + ω′

2x2 + ω′
3x1x2 + b′. (2)

In Eqs. 1 and 2, ω1, ω2, b, ω′
1, ω′

2, ω′
3 and b′ are the

model parameters learned. Changing from Eqs. 1-2 with the
introduction of x3 makes the model non-linear, but we can
still use ω′

i (i = 1, 2, 3) and b′ to interpret the model. Hence,
product-form terms are equivalent to non-linear terms. The
construction procedures of composite features can be found
in [17], and selected examples of composite features are
shown in Table 3. The total dimension of features, including
basic and composite ones, reaches about 4,000.

Similar to the non-linear model, given a passenger
request (i.e., an EstimateFee event at a particular time
and location), we extract the basic and composite features
and build a feature vector containing these features. The
feature vector is the input to the linear regression model,
and the output of the model is a predicted dynamic price
multiplier. In training the model, the target to optimize is
a squared-error loss of price multiplier, and we add L1,
L2 and a spatio-temporal regularization, as an effort to
control sparsity and over-fitting, as well as to maintain
the smoothness of price multipliers among neighbouring
locations. Finally, we use the stochastic gradient descent
(SGD) algorithm to minimize the objective function based
on the training data, and obtain a linear regression model to
predict dynamic prices.

Table 3 Selected examples of composite features

Type Datasets Examples of combinations

Combining basic features RoD+RoD (hour of day, day of week), (hour of day, isWeekend)...

from the same dataset Taxi+Taxi (full taxi count, full taxi ratio), (average speed, up count)...

Bus&metro+Bus&metro (bus station count, metro station count)...

... ...

Combining basic features RoD+Taxi (day of week, average speed), (hour of day, up count)...

from different datasets RoD+Bus&metro (hour of day, bus station count), (isHoliday, bus line count)...

RoD+POI (day of week, POI counts), (isWeekend, POI counts)...

ROD+Weather (day of week, weather condition), (historical price multipliers

,temperature), (day of week, visibility)...

Taxi+POI (full taxi count, POI counts), (average speed, POI counts)...

Taxi+Bus&metro (taxi count, bus station count), (up count, bus line count)...
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6Model evaluation

We present the evaluation of both the linear and non-linear
models, compare their effects and performance in different
situations and provide relevant discussions.

6.1 Evaluationmetrics

The usual way to evaluate the performance of a prediction
algorithm is based on the “absolute” accuracy measure,
i.e., how many of the predicted items, pi , are equal to
the ground-truth yi . In predicting price multipliers, on the
other hand, we don’t care that much about the “absolute”
accuracy. In some cases, even though there are a slight
difference between the predicted multiplier and the ground
truth, it is not a problem for passengers. For example, a
passenger getting a price multiplier 1.3 only wants to know
if it would be possible to get a lower multiplier nearby or
within a short distance, but doesn’t care that much whether
it is 1.1 or 1.2.

Instead, we use the symmetric mean absolute percentage
error (sMAPE) [46], a metric based on the relative error:

sMAPE = 1

Ntest

Ntest∑

i=1

|yi − pi |
yi + pi

. (3)

In Eq. 3, Ntest is the size of the testing set. A higher sMAPE
means lower prediction accuracy. There are multiple
considerations on choosing sMAPE as our evaluation
metric:

– The sMAPE metric has the advantage of being
scale-independent and easily interpretable, with its
percentage form. Furthermore, as the price multiplier is
always positive, we can avoid getting undefined values
in sMAPE.

– More importantly, because of the special properties of
price multipliers, other metrics such as MAE, MSE or
RMSE can be directly represented from the prediction
accuracy (i.e., in what percentage we have a absolute
difference being 0, 0.1, 0.2,...,0.6 between the predicted
price multiplier and the ground truth), while sMAPE
cannot. This is because the price multiplier only takes
discrete values such as 1.0, 1.1, ..., 1.6 (and we round
the predicted price multiplier to these values), and so the
difference between the predicted price multiplier and

the ground truth also takes discrete values. As a result,
metrics such as MAE/MSE/RMSE can be calculated
from the prediction accuracy directly.

– Using sMAPE to measure the relative prediction error
is a common practice in evaluating forecast accuracy
on, for example, human mobility pattern, taxi demand
prediction and so on [38, 39, 50, 51]. Moreover,
the baseline predictors we use in our evaluation (see
Section 6.2) also use the sMAPE metric. To compare
our results with baselines, we also use sMAPE so that
it can give a sense as to how our prediction model
performs.

6.2 Baselines

We have discussed and evaluated coarse-grained dynamic
price prediction in [13] – predicting the hourly average
price multiplier in specific city functional areas or cells –
using two predictors, namely a Markov-chain predictor and
a neural network predictor. Different from the fine-grained
prediction in this paper, these coarse-grained predictors only
try to predict multipliers in specific areas, and the goal
is the hourly average price multipliers. By comparison,
the two models in our paper are used to predict the exact
price multiplier given a set of features in any individual
passenger request, in any location of the city. But the
baseline predictors can still give us a sense of the sMAPE
metric. Table 4 shows the sMAPE of the baseline predictors
in selected business, residential and transportation areas,
with “M” and “N” denoting the Markov-chain and neural
network predictor respectively. Similar to Fig. 2, the criteria
of selecting these typical functional areas is not discussed
here.

6.3 Experiment results

6.3.1 Non-linear v.s. Linear model

In this section, we compare the accuracy of the linear
and non-linear models in dynamic price prediction. We
randomly choose 70% of our 14,587,353 entries as the
training set, and the remaining 30% as the test set. Each
model is trained based on the training set, and we perform
the training process for 10 times.

Averaged across the whole city, the average sMAPE for
the non-linear (neural network) model is 0.0385, and the
sMAPE for the linear regression model is 0.0431. These

Table 4 sMAPE of the baseline
coarse-grained predictors in
different functional areas

Predictor Business Residential Transportation

M 0.0548 0.0468 0.0366

N 0.0448 0.0457 0.0513
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sMAPE values could be considered a much better result than
our baseline predictors of coarse-grained prediction, for the
following two reasons:

– The sMAPE of the linear and non-linear models
in this paper is already lower than the baseline
predictors, except in the case of transportation area
with the Markov-chain predictor. The reason why in
the transportation area our previous baselines perform
better is that the demand and price multipliers in this
area exhibit certain level of regularity and are much
more predictable. By comparison, the models in this
paper are for any location in the city, where the price
multipliers are more random.

– The sMAPE of our models in this paper is averaged
among every single EstimateFee event, instead of from
the predicted hourly average price multiplier.

In addition to the sMAPE, we also calculate the absolute
difference between the predicted price multiplier and the
ground truth based on the test set. For the neural network
model, the percentage of predicting exactly the ground
truth multiplier is 53.21%, and the percentage of having a
difference of 0.1 is 32.47%. The percentage of having a
different of 0.2 to 0.6 are 10.12%, 2.98%, 0.73%, 0.42% and
0.07%. For the linear regression model, the corresponding
figures are 40.28%, 40.89%, 15.32%, 2.25%, 0.86%, 0.38%
and 0.02%, respectively. In other words, the neural network
and the linear regression model can have a very good
prediction (i.e., having a difference less than or equal to 0.1)
in about 85.68% and 81.17% cases.

The differences between linear and non-linear models
become more apparent when we go into smaller areas
instead of calculating the abovementioned metrics across
the whole city. [13] point out that the regularity of the
variation of dynamic prices, and hence the predictability
of price multipliers, differ between different city cells
or functional areas. We take city functional areas as
examples: transportation areas such as airports or railway
stations generally have more regular and highly predictable
dynamic prices; business areas such as CBD exhibit just
the opposite characteristics and prices are much less
predictable; residential areas are in between, showing more
stable dynamic prices than business areas, but still with
certain level of randomness. We then show the average
sMAPE of the linear and non-linear models in these three
representative functional areas in Table 5. Different from

Table 4, in Table 5 we show the sMAPE averaged across
all individual passenger requests taking place in each
functional area.

Results from Table 5 gives us the following observations:

– For areas with regular and highly predictable price mul-
tipliers (e.g., transportation areas), the linear model has
a better (lower) sMAPE than the non-linear model. The
linear model with both basic and composite features
is already enough to describe the relationship between
dynamic prices and relevant features, whereas the non-
linear model is more complicated than necessary so that
over-fitting may happen from time to time.

– For areas with more random and less predictable
price multipliers (e.g., business areas), the non-linear
model outperforms the linear model. The relationship
in question is more complex than that in areas with
highly predictable price multipliers, so a linear model,
even coupled with composite features, may be still not
enough to characterize the relationship, leading to a
worse prediction result.

The differences between these two models go beyond
the model accuracy across the whole city or across some
specific areas. Below we give some discussions on other
differences:

The need for composite features The dimension of feature
vector in the neural network model, being only 130, is much
smaller than that in our linear regression model, as we do
not need to artificially compensate for the lack of non-linear
terms. This makes it easy in designing features. In the linear
model, we virtually combine any two basic features to form
composite features, and perform feature selection based on
the corresponding weight in the trained model.

The need for hyper-parameter tuning A non-linear model
such as neural network always requires careful tuning to
perform well – our neural network model is tuned by trying
different sets of hyper-parameters, but it is hard to determine
whether our resulting set of hyper-parameters is the optimal
one. The need for human experience in parameter tuning
makes the model not standardized enough.

The interpretability of results Most importantly, it is easy
and natural to interpret the results in a linear regression
model – simply inspecting the weight of each feature or

Table 5 The average sMAPE
of the linear & non-linear
models across different
functional areas

Predictor Business Residential Transportation

Linear 0.0452 0.0406 0.0391

Non-linear 0.0373 0.0399 0.0423
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feature component is enough. This allows us to judge
“what factors contribute to the dynamic prices, and by how
much?”. A non-linear model, on the other hand, does not
offer this level of interpretability with simple inspection.

6.3.2 Effects of using multi-source urban data

We evaluate the effects of using multi-source urban data
in improving prediction accuracy by inspecting the sMAPE
of using different combination of datasets with the neural
network model (with the same model structure). Table 6
lists the average sMAPE across the whole city by using
some representative dataset combinations. In Table 6, we
also copy the sMAPE of using all datasets in the first row.
We have the following observations:

– Using multi-source urban data indeed improves the
prediction accuracy significantly. Particularly, using all
5 datasets decreases the sMAPE by about 15.01%,
compared with only using the RoD dataset.

– Features extracted from the taxi and weather dataset are
more important than other features, as using these two
datasets can improve the sMAPE more significantly.
This indicates that the availability of taxis and weather
condition have a stronger influence on the dynamic
prices in RoD service.

– Public transportation has a smaller influence on the
dynamic prices in RoD service. This can be verified by
the fact that using datasets from RoD and Bus & Metro
services does not bring a big enough improvement on
sMAPE.

The effects of using multi-source urban data can be
viewed as an interpretation of feature contribution, but at the
level of datasets. In other words, we can answer questions
like “what datasets contribute the most to dynamic price
prediction?”, “what is the ranking of datasets according
to their contribution?”, etc. The contribution of individual
feature is difficult to quantify with the non-linear model,
and we will discuss it in more details with the linear model
in Section 6.3.3.

Table 6 sMAPE of using different combinations of datasets

Datasets sMAPE

RoD+Taxi+Bus&Metro+POI+Weather 0.0385

RoD+Taxi+Weather 0.0399

RoD+Taxi 0.0423

RoD+Bus&Metro 0.0441

RoD+POI 0.0435

RoD+Weather 0.0421

RoD 0.0453

6.3.3 Interpretability in the linear model

Compared with the non-linear model, the linear model is
better in terms of interpretability, e.g., feature contribution
can be quantified. Feature contribution can be helpful for
different parties – passengers, drivers, government agencies,
etc. For example:

– Passengers and drivers can learn “what features are
more important in determining dynamic prices?”,
“under what circumstances one may come across
higher prices?”, etc.

– Government agencies can learn “what features are,
quantitatively, relevant to dynamic prices?”, “Is the
service provider manipulating prices?”, etc.

– Taxi practitioners can learn “Is there any competition
between taxi service and RoD service, and to what
extent?”, “Is the market large enough for both services
to run well?”, etc.

We have already mentioned in Section 6.3.2 that with the
non-linear model, it is possible to quantify the importance of
each dataset by inspecting the corresponding sMAPE values
of training a model using different combination of datasets.

With the linear model, the number of features (basic
and composite) is more than 370 and the dimension
reaches about 4,000. Each dimension (of features) has
a corresponding weight in our trained linear regression
model, and the absolute value of the weight quantifies
the contribution of this dimension/feature to the predicted
dynamic price multiplier. [17] shows the top features that
influence dynamic price prediction and presents quantitative
interpretation, and here we give some qualitative results to
illustrate that a linear model offers better interpretability:

– At the level of dataset, the RoD data, weather data and
taxi data are the three datasets most relevant to dynamic
price prediction. This can be shown by counting the
number of features produced from each dataset among
the top features. In fact, among the top-20 features, all
are relevant to the RoD data, and 9 or 4 are relevant to
the weather and taxi data, respectively.

– At the level of individual feature, the historical price
multipliers are the most influential. This reflects the
consistency of dynamic prices, and the strong corre-
lation between historical and current price multipliers
makes it possible to predict dynamic prices.

– The second most influential features are from weather
condition. For example, when there is higher tempera-
ture, rain, lower air pressure, the price multiplier rises.
In other words, the corresponding weights are posi-
tive value – they are large enough, but smaller than the
weights corresponding to historical price multipliers.
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– The competition from taxis proves to be the third most
influential. Fewer taxis or available taxis lead to higher
price multipliers in RoD services. Analysis based on
feature weights also shows that the competition is only
obvious during evening rush hour.

6.3.4 Effects of using composite features

We have mentioned in Section 5.2 and [17] that composite
features are constructed in a way to compensate for the lack
of non-linear terms in the linear model. At a high level,
similar to using multi-source urban data, using composite
features lowers the sMAPE of the linear model, and we
evaluate these effects by inspecting the sMAPE of using
composite features. At a finer granularity, with the linear
model we can quantify the contribution of each composite
feature, and it has been discussed in Section 6.3.3.

We first train a linear regression model with only basic
features (extracted from all datasets), and its sMAPE is
0.0672. Then we train a linear model with basic features and
composite features from the same dataset, and the resulting
sMAPE is 0.0576. Lastly, a linear model with basic features
and composite features from different datasets gives a
sMAPE of 0.0557.

Based on these results, we observe that:

– Using composite feature improves prediction accuracy.
In fact, using only basic features results a sMAPE
55.92% higher than with composite features.

– Features from different datasets are related to each
other in determining the dynamic prices. Without
combining features from different datasets, the sMAPE
will become 33.64% higher.

– Features within the same datasets also have a significant
impact on dynamic prices. Similarly, without combin-
ing features from the same datasets, the sMAPE will
become 29.23% higher.

6.4 Summary of results

In Section 6.3 we conduct extensive evaluation of and
comparison between the linear and non-linear model
proposed earlier. Below we summarize some key results:

– Our models achieve better prediction accuracy than
baselines, and when averaged across the whole city, the
non-linear model is a little bit better than the linear one.

– The two models exhibit different levels of prediction
accuracy in locations with different characteristics. The
non-linear one performs better in locations with volatile
prices, and the linear one gains more power when prices
are more stable. Plausible reasons include over-fitting
and not-high-enough expressiveness.

– The non-linear model only offers explanation at the
level of datasets, whereas in the linear model we
can explain the contribution of every single feature
quantitatively.

– The use of multi-source urban data and composite
features proves to improve prediction accuracy.

7 Discussions onmodel selection

Based on the multi-source urban data, there are many
possible ways to predict dynamic prices at a fine granularity,
and in this paper we propose two representative linear and
non-linear models. Previous sections have already explained
the structure of each model, evaluate their prediction
accuracy, and compare their performance in locations
with different characteristics, with a brief summary in
Section 6.4.

In this section, we give some discussions and suggestions
about choosing between these models – how to make full
use of these models to meet specific targets.

Goal of model: learning v.s. predicting As we have men-
tioned, different groups of people have various require-
ment on the price prediction model. Government agencies,
consultants and taxi practitioners want to learn, quantita-
tively and qualitatively, the relationship between dynamic
prices and relevant features to ease their concerns about
price manipulation, new service introduction and regula-
tion, competition, etc. Individual drivers or passengers, on
the other hand, mostly need only an accurate enough pre-
diction result. Hence, if the goal of prediction is learning,
the linear model should be selected, and in the meantime
the use of multi-source urban data and composite features
guarantees a satisfactory level of prediction accuracy. If the
goal is predicting, then other criteria will be discussed in the
following.

Concerns about model training We give some examples of
concerns about model training.

– Training time is an important measure frequently
considered in model training. In our case, though both
the linear regression and neural network models support
batch-based training (e.g., stochastic gradient descent),
the training time for a single batch is more than tripled
with the neural network model than with the linear
regression model. So if the training time requirement
cannot be relaxed, a linear model may be a better fit.
For example, when the service policy and the price
prediction models or parameters are constantly updated
(e.g., every several minutes or half an hour, etc.) due
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to rapidly-changing traffic condition, using different
policies for different locations and time, etc., then there
is a tight restriction on model training time.

– Training parameters is another problem. With a non-
linear model such as neural network, when there
are newly designed features or when we change the
extraction technique of some features, all the hyper-
parameters (e.g., number of layers, number of neurons,
learning rate, etc.) need to be carefully re-tuned. Things
get worse with higher complexity of the non-linear
model – in a deep learning model, for example,
extra convolution neurons have to be designed. In a
linear model, on the other hand, such procedures are
simplified to extracting new basic features, constructing
new composite features by multiplication, and using
SGD to train a new model – requiring little or no
parameter tuning based on human experience. So if the
service provider is faced with significant and frequent
changes in service model or government regulation, a
linear model may be a better fit.

Number of basic features combined In the linear model,
the description of the non-linear correlation between basic
features is represented by combining basic features into
composite features. Hence, the lack of expressiveness for
the linear model in areas with more unpredictable prices is,
to some extent, due to the fact that in our study a composite
feature is only combined from two basic features.

In our study, we try combining more than two basic
features (e.g., three), and it indeed reduces the sMAPE by
up to 15%. But this at the same time increases the dimension
of features to a value more than tripled, leading to a notably
longer training time. As a result, under such circumstances
the non-linear model should be selected.

Combining the two models Our evaluation results show
that these two models perform differently in locations with
different characteristics. In fact, the performance of our
models may be specific, to some extent, to the service
provider (e.g., different service providers may have various
targets to optimize in determining their dynamic prices),
the choice of city (e.g., Beijing has a totally different
human mobility patterns compared to some smaller cities),
etc. Hence, the applicability of these models may vary in
different cities or to different service providers. However,
the models themselves and relevant methodologies are
generic – as long as one can collect the required data,
s/he can build these models to predict dynamic prices and
evaluate their performance.

To improve applicability, we propose a weighted
combination of these two models – the predicted price
multiplier is the weighted sum of the predicted price
multipliers of the two models. We denote the single feature

vector containing only basic features as xb, and the feature
vector containing both basic and composite features as xc.
For the predicted price multipliers, we use p, plin and pnon

to denote the predicted result of the weighted combination
model, linear model and non-linear model. Also, flin and
fnon represent the linear and non-linear models. Then we
have,

p = αplin +(1−α)pnon = αflin(xc)+(1−α)fnon(xb) (4)

In Eq. 4, α (0 ≤ α ≤ 1) is the weight between the two
models. The weighted model always produces a weighted
error of the two models and, if the two models have errors
in different signs, the weighted model may produce an
error smaller than either of the two models. We regard α

as a representation of city characteristics, and it is also
acceptable to calculate the values of α at finer granularities
– for example, one may want to calculate an α for each
city functional area or for each day-of-week, as an effort
to distinguish characteristics of dynamic prices across city
functional areas or days-of-week. It should be noted that
a too small granularity is not realistic either, as this may
bring a prohibitively high computational complexity, and
lead to over-fitting, such that α may fluctuate too much
and such fluctuation may not represent any spatio-temporal
characteristics. Here we only use a single α for the whole
city across the time range of our dataset for illustrative
purposes, and we currently do not have large enough
datasets to go into a granularity such as city cells.

Determining the optimal α requires a trial-and-error
process. Basically, the optimal α depends on city charac-
teristics, such as the distribution of functional areas, the
regularity of human mobility patterns, the service provider’s
target and policy in the city, etc. For example, a metropolitan
city such as Beijing has human mobility patterns and func-
tional area distribution much more complex than a smaller
city or a tourism city. This may, to some extent, require a
larger weight for the non-linear model (i.e., a smaller α).
However, such relationship between α and city characteris-
tics may not have a closed-form, and hence trail-and-error
is needed.

In our case, we find out that α = 0.23 gives the
lowest sMAPE 0.0372 (averaged across the whole city). In
our future work, we will try to collect multi-source urban
data in cities with different characteristics, and find the
corresponding αs for these cities, as an effort to quantify the
relationship between α and city characteristics.

The weighted combination of the two models is generic
and improves model applicability – as long as one have the
required data, s/he can train models and find out the optimal
α to combine them. This procedure is not specific to service
provider or the choice of city. Furthermore, the weighted
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combination model helps to improve prediction accuracy,
and is suitable when prediction accuracy is emphasized over
the running time of the model.

8 Conclusion

We focus on the fine-grained dynamic price prediction
problem in RoD services such as Uber and Didi. Predicting
the dynamic prices can help passengers to obtain more
information and make decisions (i.e., whether to take a
ride) at ease. We use a neural network and linear regression
model, as representatives for non-linear and linear models,
based on features extracted from multi-source urban data to
perform prediction. For the linear regression model, to boost
model expressiveness, composite features are constructed
by combining basic features in a product form.

We conduct extensive evaluation of the two models,
including the comparison between the linear and non-linear
model, the effects of using multi-source urban data and
composite features, and the interpretability in the linear
model. Results show that, when averaged across the whole
city, the non-linear model performs a little bit better than
the linear one, but they behave differently in locations with
volatile or stable price variation – in general the non-linear
model is better with volatile prices, and the linear one
becomes better with stable prices. Based on these results,
discussions regarding how to make full use of these models
for prediction accuracy are presented, and we also propose
using a weighted combination of the two models to improve
prediction accuracy as well as model applicability.
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