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Abstract—Recent years witness the increasing popularity
of Ride-on-Demand (RoD) services, such as Uber and Didi.
Compared with traditional taxi, RoD service is more “data-
driven” and adopts dynamic pricing to manipulate the supply
and demand in real time. Dynamic price could be viewed
as an accurate and quantitative indicator of the supply and
demand, and could provide clues to drivers, passengers, and the
service providers, possibly reshaping the ways in which some
problems are solved. In this article, we focus on the seeking
route recommendation problem that aims at increasing driver
revenue by recommending highly profitable seeking routes to
drivers of vacant cars with the help of dynamic prices. We
first justify our motivation by showing the importance of route
recommendation and answering why it is necessary to consider
dynamic prices, based on the analysis of real service data.
We then design a dynamic price prediction model to generate
the dynamic prices at any given time and location based on
multisource urban data. After that, a reinforcement learning
model is adopted to perform seeking route recommendation based
on predicted dynamic prices. We conduct extensive experiments
in different spatiotemporal combinations and make comparisons
with multiple baselines. Results first show that our dynamic price
prediction model achieves an accuracy ranging from 83.82% to
90.67% under different settings. It also proves that considering
the real-time predicted dynamic prices significantly increases
driver revenue by, for example, 12% and 47.5% during weekday
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evening rush hours, than merely using the average prices or
completely ignoring dynamic prices.

Index Terms—Driver revenue, dynamic price, reinforcement
learning, Ride-on-Demand (RoD).

I. INTRODUCTION

DURING the last decade, Ride-on-Demand (RoD)
services, such as Uber and Didi, first emerged as a new

and disruptive mode of transport compared with traditional taxi
service and have gained increasing popularity since then. RoD
service is beneficial for passengers and drivers. For passengers,
it is more convenient to request for service through smart
phones, and the price is more affordable; for drivers, in many
cities, it is not required to apply for licenses or medallions
before driving, and working schedules are more flexible.

RoD service has two unique features, namely, the use of
dynamic pricing, and being data-driven.

Dynamic pricing, also known as “surge pricing” when it
was introduced in Uber, aims to manipulate the supply and
demand in real time, i.e., the service provider sets a higher
price when demand—potential passenger requests—exceeds
supply—vacant cars on the road, and vice versa. Possible
forms of dynamic pricing include auction-based mechanisms,
additive bonus to the trip fare, and multiplying the trip fare
by a real-time factor (called “dynamic price multiplier”),
etc. Most service providers choose the multiplicative form in
practice, and so does our study.

Dynamic pricing could be viewed as a closed-loop feedback
mechanism to manipulate the supply and demand: the price
is determined based on the real-time supply and demand
condition, and it, in turn, controls the supply and demand in a
way leading to a higher service efficiency. Besides, dynamic
prices could also be regarded as an accurate indicator of supply
and demand.

Data-Driven: The use of on-board GPS devices triggers
a large amount of studies and applications in taxi service
since the beginning of the last decade. Examples of studies
based on GPS trajectories include inferring order origins and
destinations, detecting possible detours, optimizing for driver
revenue based on driving habits, etc.

RoD service goes one step further and tremendously
expands the volume and variety of data. It is mainly based
on smart phones and mobile apps, which is a data source
providing much more abundant information. For example,
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accurate order information is now readily available, including
origin, destination, the time getting on/off the car, the time
and location the request is issued, text descriptions (typed by
the user on the mobile app) of origin and destination, etc.
User behavior log is also possible, as it could be recorded
by the mobile app. Typical user behaviors include the type of
mobile device, the number of times one checks for trip fare,
the regions one zooms in and out to view available drivers,
etc. All these new sources of data offer richer information than
the traditional GPS trajectories.

With these two new features, it is now possible to reshape
the ways in which some traditional problems are solved. In
this article, we focus on the seeking route recommendation
problem, a widely studied problem in mobility service, espe-
cially taxi. Basically, seeking route recommendation aims at
increasing driver revenue by recommending profitable seeking
routes to drivers of vacant cars. Drivers themselves may adopt
some naive strategies based on experience or word-of-mouth.
Such strategies may be inaccurate, and may even suggest
a large number of drivers blindly flocking to the same hot
spots such as the central business district, exacerbating the
already imbalanced supply and demand condition. Algorithms
developed in previous taxi-related studies solve this problem
by finding local or global hot spots, modeling driver behavior
using Markov decision process (MDP), simulating driver
behavior using physics-based approaches, etc.

Things are different in RoD service. First, the data-driven
feature enables us to acquire more data sets, such as mul-
tisource urban data, to solve the problem. Second, dynamic
prices could be an accurate and readily available indicator
of supply and demand, which previous studies go into great
lengths to find out. Furthermore, to make full use of dynamic
prices that fluctuate in real time, it should be evaluated on a
fine spatiotemporal granularity, e.g., using recent or average
dynamic price multipliers may not be enough.

In this article, we solve the seeking route recommen-
dation problem by combining reinforcement learning with
dynamic price prediction. We first give intuitive answers to
two questions, i.e., why recommending seeking routes and
why considering dynamic prices, based on the analysis of
real service data. After that, a seeking route recommendation
framework consisting of two parts is built. The first part is a
dynamic price prediction model based on multisource urban
data, trying to obtain a price multiplier given the spatiotempo-
ral condition and other relevant features when a driver picks
up a passenger. Evaluation results show that our dynamic price
prediction model achieves an accuracy ranging from about
83% to 90% in different settings, laying a solid foundation for
the reinforcement learning model. In the second part, we use
MDP to model the seeking behavior, and adopt a reinforcement
learning model to tackle the seeking route recommendation
problem, in which the predicted dynamic prices from the
first part are incorporated into reward design. We evaluate
driver revenue and utilization rates under our model, and
it proves that taking the real-time predicted dynamic prices
into consideration significantly increases driver revenue than
merely using average dynamic prices or completely ignoring
dynamic prices.

Our contributions are listed in the following.
1) We summarize the two unique features of RoD ser-

vice, i.e., dynamic pricing and data-driven, and solve
a common problem, albeit widely studied in previous
taxi service, by making full use of these two features.
By comparison, most previous works do not consider
dynamic pricing and simply treat RoD service as a new
version of taxi. Even the few works that indeed consider
dynamic pricing only calculate the average or historical
prices and ignore its real-time nature.

2) We adopt a reinforcement learning model to solve the
seeking route recommendation problem, and incorporate
dynamic prices. The reinforcement learning model helps
to consider the long-term effects of seeking routes and
thus redistributes drivers more effectively.

3) We conduct extensive experiments and comprehensively
evaluate both our dynamic price prediction and rein-
forcement learning model on real service data set.

The remainder of this article is organized as follows.
Section II reviews the related work. In Section III, we
present our data sets and provide a detailed and intuitive
analysis. Sections IV and V discuss the dynamic price
prediction and the reinforcement learning model, respectively.
Section VI presents a comprehensive evaluation on both mod-
els. Section VII gives a brief summary and some discussions
based on evaluation results. Finally, Section VIII concludes
this article.

II. RELATED WORK

We provide discussions on related work about three topics:
1) RoD service; 2) dynamic price and its prediction in RoD
service; and 3) seeking in taxi or RoD service.

RoD Service: RoD service is also known as on-demand ride-
hailing, and in some cases, people may call it as ride-sharing.
In fact, “RoD” and “ride-sharing” have different emphases.
Ride-sharing emphasizes the share of rides with the same or
similar origins or destinations, either between passengers or
between the driver and passengers. RoD, on the other hand,
emphasizes “on-demand”—the service is available as soon as
one asks for it at any time or location. Under this setting,
RoD service is viewed as a disruptive new version of taxi, by
supporting mobile app, adopting dynamic prices, and being
data-driven. Our study focuses on RoD service, so we omit
the discussions on ride-sharing.

Compared with taxi, RoD service is relatively new, and thus
receives limited attention. Most studies simply treat RoD as
a service similar to taxi, and want to find out the differences
between them. For example, [1] focuses on the passenger
waiting time and make a comparison, of both waiting time
and price, between Uber and taxi; [2] and [3] choose the
market share as the study target; and [4] and [5] discuss the
impacts and market effects of Uber’s entrance—e.g., how
driver behavior is changed since Uber takes place.

Dynamic Price and Its Prediction in RoD Service: Dynamic
pricing plays an important role in many services, as an effort
to either improve service efficiency or manipulate supply and
demand in different forms. For examples, dynamic pricing
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is used in Internet retail [6], hotel pricing [7], flight ticket
pricing [8], [9], inventory management [10], etc.

As a unique feature of RoD service, dynamic pricing
and its effects are studied in a number of works. For
example, [11], [12], and [13] discuss the effects of dynamic
pricing in balancing and redistributing supply and demand,
increasing driver revenue, and reducing passenger waiting
time. Reference [14], as a typical early study of on-demand
ride-hailing service, evaluates Uber’s surge pricing as a black-
box by placing simulated mobile app users across important
locations. References [15] and [16] explore demand pattern,
the effects of dynamic pricing on passengers, and passenger
behavior. Reference [17] combines pricing with dispatching,
which is a more traditional problem, and proposes a distributed
pricing framework. Some studies take an economics perspec-
tive: examples that consider the effects of dynamic pricing on
supply and demand include [11], [18], and [19].

The problem of dynamic price prediction is also tackled
using various methods. For example, [20] defines the pre-
dictability of price multipliers and uses Markov-chain or neural
network models to predict average dynamic price multiplier of
a region based on the predictability. References [21] and [22]
turn to the prediction at a finer granularity and predict the
dynamic price multiplier given time and location using linear
regression or neural network based on multisource urban data.
Reference [23] summarizes the above works, adopts an ensem-
ble learning model, and chooses different models based on
price multiplier predictability. Reference [24] takes a different
path, emphasizes the interpretability of price prediction results,
and presents a simple but quantifiable approach to dynamic
price prediction. It gives a detailed evaluation as to what
features have more obvious impacts on price multipliers.

Seeking in Taxi or RoD Service: Seeking analysis is also
a highly visible topic in traditional taxi service, and in RoD
service, it also receives some, yet limited, attention. Generally
speaking, we could divide such analysis into seeking strategies
analysis and seeking route recommendation, the latter of which
is the target of study in this article.

Seeking strategies analysis could be considered as a macro-
level problem, and tries to uncover the relationship between
driver seeking strategies (e.g., choosing hot spots, driving
faster, etc.) and revenue. For example, [25] and [26] consider
two different strategies, i.e., hunting or waiting for passengers,
and compare their performances under different circumstances,
based on taxi GPS trajectories. In RoD service, [27] collects
multisource urban data and designs a framework to mine
the relationship between driver revenue and the carefully
crafted features that are relevant to seeking strategies. In such
relationship, dynamic prices become an important component.

Seeking route recommendation could, on the other hand, be
treated as a micro-level problem, and aims to recommend the
right road segment or city cell a driver should keep seeking
for so that driver revenue is increased. In these studies, MDP
is frequently used to model the interaction between drivers
and the service itself—e.g., [28], [29], [30], and [31]. Another
example using MDP is [32], and it mainly pays attention
to electric taxis and make charging decisions based on both
battery constraint and GPS trajectories. Besides MDP, [33]

generates recommendation results by minimizing the distance
between taxis and potential passenger requests; [34] and [35]
apply reinforcement learning; [36] solves the problem by
allowing a single driver to be matched to multiple passengers;
and [37] builds theoretical models and optimization problems.
In RoD service, [38] uses Q-learning to recommend profitable
seeking routes.

Different from the above works, our study combines the
power of dynamic pricing and the data-driven feature to
conduct seeking route recommendation. Our methodologies
are justified by analyzing real service data. The dynamic
price prediction model is built on multisource urban data and
achieves a satisfactory prediction accuracy. The prediction
results help to provide references to drivers of vacant cars,
based on which the reinforcement learning model generates
seeking route recommendations. Extensive experiments are
carried out to evaluate the effects of using a reinforcement
learning model and of considering predicted dynamic prices.

III. DATA AND ANALYSIS

We first present the multisource urban data sets used in
this article, and then provide a detailed data analysis to give
intuitive answers that motivate our study.

A. Multisource Urban Data Sets

1) RoD Data Sets: Unlike previous studies on seeking
route recommendation in taxi service that mainly rely on taxi
GPS trajectories, in RoD service, the “data-driven” feature
makes it possible to obtain more data sets. In our study, we
also acquire order data and dynamic price data besides GPS
trajectories.

GPS Trajectories: This is similar to the widely used taxi
GPS trajectories data set. It contains the periodic GPS records,
in longitude and latitude, of every single car in operation.
Each record includes the longitude and latitude, time stamp,
speed, direction, the unique car ID, etc. This data set spans
from August to November 2016, and contains the records of
about 3500–3800 cars daily in Beijing, China. Specifically,
the ranges of longitude and latitude are [116.21, 116.56] and
[39.81, 40.08].

Order and Dynamic Price Data: The information of orders
and dynamic prices are recorded in the same data set. For
the order data, in RoD service, the use of mobile app enables
accurate recording of order information, as order origins and
destinations are now clearly specified by users and recorded
by the service provider. For the dynamic price data, the price
multiplier is recorded when the service provider returns the
estimated trip fare and current price multiplier. Sometimes
getting the trip fare estimates does not mean order creation,
and to accurately associate an order with a price multiplier,
only the price multiplier returned in the trip fare estimate that
is closest to order creation is retained. This data set also covers
same time span, and the total number of orders is 2 742 120.
Each entry includes origin, destination, the time getting on and
off, the unique ID of passenger/driver/car/order, the estimated
trip fare, price multiplier, etc.
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(a) (b) (c) (d)

Fig. 1. Probability distribution functions of revenue efficiency during four representative time periods. (a) [8:00, 9:00). (b) [12:00, 13:00). (c) [18:00, 19:00).
(d) [23:00, 0:00).

(a) (b) (c) (d)

Fig. 2. Probability distribution functions of searching time during four representative time periods. (a) [8:00, 9:00). (b) [12:00, 13:00). (c) [18:00, 19:00).
(d) [23:00, 0:00).

In all the above data sets, all unique IDs of drivers,
passengers, and cars are anonymized so that one cannot relate
an ID to a specific person or car. All the above data sets are
obtained from Shenzhou UCar, a major RoD service provider
in China.

2) Taxi Data Set: Besides RoD data sets, we also use
taxi GPS trajectories as an auxiliary data set. The reasons
are straightforward. First, as mentioned in [24], RoD and
taxi service are similar and complementary to each other,
and hence driver behavior should be similar. For example,
a hot region in taxi service may also be a good choice
for RoD drivers. In other words, taxi GPS trajectories could
serve as a useful guideline for RoD drivers. Second, taxi
service data also describes car movements on the roads and is
helpful in characterizing the traffic in different spatiotemporal
combinations. For example, if the average speed of taxis is
low, then it may be an indication of traffic congestion in a
region. Our taxi GPS trajectories covers the same time span
and contains records of about 30 000 taxis in Beijing.

3) Public Data Sets: Public data sets are used to provide
more information. There are a lot of possible choices, and
in our study, we choose the POI data and public transport
distribution data, as described in the following.

POI Data: POI information is widely used in studies on
location-based service, and it characterizes the type of a
location, such as airport, restaurant, etc. We rely on POI data
to describe the origins and destinations of orders. Our data
is crawled from AMap service [39], one of the most popular
online map service providers in China. Each POI falls in
one of the 14 categories: car service, restaurant, shopping,
sports and entertainment, hospital, hotel, scenic spot, business
and residential building, government, education and culture,
transportation facility, finance and insurance, business, and
lifestyle.

Public Transport Distribution Data: Public transport
services—e.g., bus, metro, tram, and public rental bike—also

play an important role in transportation, and the effects
of considering public transport data are similar to that of
considering taxi data. That is, the status of public transport
services could give a hint on RoD driver behavior and describe
traffic condition. We choose the distribution of bus and metro
service as our public transport distribution data. Specifically,
we acquire the locations of all bus (and metro) stations and
all the buses or metros that stop by these stations, from AMap
service.

B. Data Analysis

We give intuitive answers to two questions, i.e., why
recommending seeking routes and why considering dynamic
prices. They not only help to form a comprehensive picture
of RoD service but also provide inspiration for our study.

1) Why Recommending Seeking Routes?: We first give the
definition of driver revenue. The fare of an RoD trip, i.e., the
driver revenue during this trip, is defined as

r = dpo ·
(
fbase + fd ∗ dtrip

)
. (1)

In (1), dpo, fbase, and fd are the dynamic price multiplier
at the trip origin, the flag-fall price, and the unit price per
kilometer, respectively. dtrip is the trip distance from the origin
to destination. This is an approximation, ignoring the extra
fare of slow driving and minimum distance, and we consider it
acceptable because these two terms are usually much smaller.
In our data set, we have fbase = 15 and fd = 2.8, both in RMB
Yuan.

We then show the distribution of revenue efficiency (i.e., the
revenue obtained in unit time) among all drivers during four
representative time periods, i.e., [8:00, 9:00), [12:00, 13:00),
[18:00, 19:00), and [23:00, 0:00), in Fig. 1. Intuitively, these
four time periods correspond to morning rush hour, nonrush
hour around noon, evening rush hour, and late night hour.
Similarly, in Fig. 2, we also show the distribution of searching
time, i.e., the time a driver seeks for passengers between
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TABLE I
STATISTICS OF REVENUE EFFICIENCY AND SEARCHING TIME DURING FOUR REPRESENTATIVE TIME PERIODS

two consecutive trips, during these time periods. In addition,
Table I summarizes some simple statistics—i.e., the 1st quar-
tile, 3rd quartile, and average—of both revenue efficiency and
searching time from Figs. 1 and 2.

We have the following observations.
1) Both revenue efficiency and searching time vary signif-

icantly across different time periods.
a) For example, in the morning rush hour, the average

revenue efficiency and average searching time are
the highest and the lowest, respectively, among all
four time periods. The late night hour is just the
opposite.

b) Comparing between the late night hour and the
evening rush hour (or the nonrush hour around
noon), it should also be noted that the difference
of searching time is much more obvious than that
of revenue efficiency. This makes the seeking route
recommendation problem more complicated.

2) Both revenue efficiency and searching time vary
significantly across drivers. For revenue efficiency, dur-
ing [8:00, 9:00), the 3rd quartile is 49.30% higher
(1.06 versus 0.71) than the 1st quartile, and during
[23:00, 0:00), the percentage is much higher and
achieves 81.48% (0.98 versus 0.54). For searching time,
the comparison is similar.

3) Therefore, it is necessary to recommend seeking routes.
First, a good seeking strategy or seeking route could
help those lower earning drivers become more efficient
and earn more. Second, such recommendation should
consider carefully as to what features influence the
recommendation results. For example, the above obser-
vations show that the temporal features are important.

2) Why Considering Dynamic Prices?: Previous studies
on seeking route recommendation in taxi service usually
go to great lengths in finding “hot spots” or finding loca-
tions with more high-earning orders. In RoD service, the
dynamic price multiplier is an accurate indicator of the
supply and demand condition—which is just the goal of using
dynamic pricing—and it should be an integrated descrip-
tion of the information that previous studies want to find
out.

To justify that it is necessary to consider dynamic prices in
seeking route recommendation, in the following, we show and
explain the distribution of dynamic price multipliers on both
temporal and spatial dimension. Fig. 3 first shows the temporal
distribution of dynamic price multipliers on both weekdays
and weekends. In Fig. 3, we calculate the average dynamic
price multiplier among all orders every half an hour, across
the whole city of Beijing. It is clear that as follows.

Fig. 3. Temporal distribution of dynamic price multipliers.

1) The average dynamic price multiplier is greater than
1.0 in most of the time, and thus dynamic prices have
a significant impact on driver revenue. In some time
periods, e.g., the evening rush hours on weekdays, the
average dynamic price multiplier reaches as high as 1.35.

2) The dynamic price multiplier has different patterns dur-
ing different hours-of-day or days-of-week, and hence
temporal features are important. For example, on week-
days, there are four obvious peaks: the small hours,
the morning and evening rush hours, and the late night
hours. On weekends, the patterns are different: there are
not morning rush hours, and price multipliers remain at
a low level until evening rush hours.

3) The dynamic price multiplier fluctuates rapidly through-
out a day. This is the result of its real-time nature, as
it is designed to reflect the real time changes of supply
and demand. As a result, when considering dynamic
prices in our study, a fine temporal granularity is needed,
and simply calculating the average or historical price
multipliers may not be enough.

On the spatial dimension, we focus on the evening
rush hours [18:00, 19:00) on weekdays, divide the area of
study (i.e., within longitude [116.21, 116.56] and latitude
[39.81,40.08]) into 900 (= 30× 30) cells, and plot the spatial
distribution of the number of orders (i.e., demand), dynamic
price multipliers, and the number of vacant cars (i.e., supply)
in Figs. 4–6. It is shown that as follows.

1) The distributions of the number of orders as well as
vacant cars are spatially imbalanced, and it is thus
necessary to recommend seeking routes. This agrees
with common intuitions: such numbers are much higher
in the city center, and are drastically reduced in city
suburbs.

2) The distribution of dynamic price multipliers is also
spatially imbalanced, but with more complicated pat-
terns. Intuitively, the price multiplier is higher in the
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Fig. 4. Spatial distribution of the number of orders.

Fig. 5. Spatial distribution of dynamic price multipliers.

Fig. 6. Spatial distribution of the number of vacant cars.

city center. Counter-intuitively, the price multiplier in the
city suburbs surrounding the city center is even higher,
indicating severe supply and demand imbalance.

3) Comparing the above two observations, the reason of
having higher price multipliers but fewer orders and cars
in city suburbs is that drivers tend to flock to city center
to seek for passengers, leaving a very limited number of
drivers in suburbs. Though the orders are indeed fewer
in suburbs, the number of drivers is still not enough to
meet the demand. To the contrary, for those drivers going
to city center, though there are indeed more orders, there
are even more drivers, making price multipliers lower.

4) Therefore, if dynamic price multipliers are observed
and considered in seeking route recommendation, it is
possible to guide more drivers to make better and more
informed decisions, e.g., staying in city suburbs to seek
for passengers. This not only increases driver revenue,

but eases the imbalance between supply and demand and
improves service efficiency as well.

To summarize, the reasons why dynamic prices should be
considered in seeking route recommendation are twofold.

1) Dynamic price multiplier changes rapidly on the tem-
poral dimension and has a significant impact on driver
revenue, so it should be carefully considered in a fine
granularity.

2) The spatial distribution of dynamic price multipliers
reveals some counter-intuitive insights, showing that
considering dynamic prices is helpful in guiding drivers
to make better and more informed decisions.

IV. DYNAMIC PRICE PREDICTION

The rationale behind doing dynamic price prediction is
simple. First, dynamic price multiplier should be considered in
seeking route recommendation so as to guide drivers to make
better decisions. Second, dynamic price multiplier should be
evaluated at a fine spatiotemporal granularity, so simply using
average or historical price multipliers may not be enough.

In RoD service, the price multiplier is usually discrete.
For example, in our data set, the price multiplier falls in the
range DPrange = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6]. Therefore,
predicting the price multiplier could be viewed as a classifi-
cation problem. The input to the classifier is a feature vector
extracted from our multisource urban data that gives further
details based on the spatiotemporal information. The output is
one of the 7 possible price multipliers. We have the following
definition of our dynamic price prediction problem.

Definition 1 (Dynamic Price Prediction Problem): Given
the spatiotemporal information (e.g., time, date, longitude,
latitude, etc.).

Extract an input feature vector, denoted by �X, from our RoD
order and dynamic price data, taxi data, POI data, and public
transport distribution data.

Predict p̂(y = d̄|�X) ∀d̄ ∈ DPrange: the probability of a
candidate price multiplier d̄ being the actual price multiplier
y based on the input feature vector �X. The price multiplier
with the largest probability is the output of the classification
problem.

A. Feature Extraction

In feature extraction, we first obtain the spatiotemporal
information (e.g., time, date, longitude, and latitude) from
every order in our RoD order data, and then generate the
following features corresponding to each order. Features are
divided into four different contexts, namely, temporal context,
spatial context, historical dynamic prices context, and taxi
service context. The price multiplier obtained from our RoD
dynamic price data that corresponds to each order is used as
the ground-truth in model training.

1) Temporal Context: Temporal context features are the
most basic and are simply the time and date obtained from
each order in RoD order and dynamic price data.

Time Feature ET: The hour and minute value (i.e., h and
min) are mapped to the radian of a unit circle. On the circle,
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the 1440 min of a day are represented by a radian value
between [0, 2π). The time feature ET is defined as

ET = [cosθ, sinθ ], θ = h ∗ 60+min

1440
∗ 2π. (2)

Date Features DM, DW, and DH: DM, DW, and DH refer
to the day of month, the day of week, and a Boolean value
describing if the day is a weekday, respectively.

2) Spatial Context: Features describing the spatial context
are extracted mainly from the POI data and public transport
distribution data. Based on the longitude and latitude, we
describe a location by the POIs and the availability of public
transport around it.

POI Features POIn, POIf , and POIu: They are all 14-D
vectors, and reflect the number, frequency and uniqueness of
POIs around a location. The 14 dimensions correspond to
the 14 POI categories explained in Section III-A3. We count
the POIs within a 500-m radius of the location. For the ith
category of POI, the number of POIs of this category around
the location is denoted by POIn,i, and the total number of
POIs of this category in the city is Mi, then the frequency
and uniqueness of the ith category of POI—i.e., POIf ,i and
POIu,i—are defined as

POIf ,i = POIn,i

�14
k=1POIn,k

(3)

POIu,i = POIn,i

Mi
. (4)

Among these three vectors, POIn simply counts the number of
POIs of different categories around the location; POIf focuses
on the proportion of each category of POI to all POIs around
the location; and POIu characterizes the proportion of the
number of a particular category of POIs to the total number
of this category in the whole city, which is a reflection of POI
uniqueness. Then, the POI feature vector is written as

POI = [
POIn, POIf , POIu

]
. (5)

Public Transport Distribution Feature BM: BM is a 4-D
vector, describing the number of bus stations, the number of
bus lines, the number of metro stations and the number of
metro lines within a 500-m radius of the location. It is intuitive
that the public transport distribution nearby has impacts on
dynamic prices. First, it reflects the popularity of a location.
Second, the presence of bus and metro stations also makes
it possible for RoD drivers to provide connecting services—
picking up a passenger who just alighted from a bus or train,
or delivering a passenger to a bus or metro station—and hence
changes passenger demand around a location.

3) Historical Dynamic Prices Context: Dynamic price
multiplier is a perfect and real-time reflection, as claimed by
major RoD service providers, of the supply and demand. As
the current supply and demand may be related to the past sup-
ply and demand, we hypothesize that the past price multipliers
should be helpful in predicting current price multipliers.

Based on the current time on which we want to evaluate the
price multiplier, we extract the average price multiplier among

all orders taking place within a 500-m radius of the location,
during the last three half-hour-length timeslots

HDP = [
APM−1, APM−2, APM−3

]
. (6)

In (6), HDP is the historical dynamic prices feature vector,
and APM−i(i = 1, 2, 3) are the average price multiplier
during the last three timeslots, respectively. For example,
if we want to predict the price multiplier at 17:09, then
APM−1, APM−2, and APM−3 are the average price multiplier
during [16:30, 17:00], [16:00, 16:30], and [15:30, 16:00],
respectively.

4) Taxi Service Context: This context is extracted from taxi
GPS trajectories. Each feature is calculated on a half-hour-
length timeslot basis, and includes the taxis within a 500-m
radius of the location. We extract the following features.

1) Taxi Up Count UC: The number of taxis that start new
orders around the location during the current half-hour-
length timeslot.

2) Taxi Down Count DC: The number of taxis that ter-
minate existing orders around the location during the
current half-hour-length timeslot.

3) Taxi Visit Count VC: The number of taxis that present
around the location during the current half-hour-length
timeslot.

4) Taxi Full Count FC: The number of taxis with passen-
gers on board that present around the location during
the current half-hour-length timeslot.

5) Taxi Full Ratio FR: The ratio of taxi full count FC to
taxi visit count VC.

Then, the taxi service feature vector is written as

TS = [UC, DC, VC, FC, FR]. (7)

5) Input Feature Vector: Before creating the input feature
vector, it is necessary to normalize the above-mentioned
features to guarantee convergence and a shorter training time.
Among these features,

1) Date features DM and DW are categorical features,
and they are represented by one-hot encoding. It is not
necessary to do normalization.

2) Date feature DH is a Boolean, and takes the value of
either 0 or 1. Hence, it is not necessary to normalize
DH.

3) For all other features, we calculate the Z-score (i.e.,
the number of standard deviations from the mean) of
each feature, or of each component of multidimension
features, to perform normalization.

For each order, we gather all the above-mentioned features,
as summarized in Table II, to generate the input feature vector
�X, which are then fed into the dynamic price prediction model

�X = [ET, DM, DW, DH, POI, BM, HDP, TS]. (8)

B. Model Selection

There are a lot of available algorithms for a predictive task,
including the popular deep learning models or more traditional
and simpler machine learning models. Though deep learning
models have achieved a tremendous progress on voice, text,
or image data sets, they may not be good enough for our
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TABLE II
SUMMARY OF FEATURES USED IN DYNAMIC PRICE PREDICTION

dynamic price prediction task. As an example, we compare
between deep models and tree-based models. First, recent
discussions in [40] and [41] point out that tree-based models
perform better than deep learning models on tabular data.
Second, deep models are generally more complex and harder
to fine tune, sometimes leading to overfitting problems. The
more complex structure of deep models also gives rise to a
longer training time. Finally, deep learning models are usually
difficult to interpret or explain, and sometimes sophisticated
techniques are needed. By comparison, tree-based models,
especially those containing only a small number of trees, are
naturally easier to interpret.

We thus choose tree-based models to conduct dynamic price
prediction. Specifically, we adopt XGBoost and LightGBM
models to predict the dynamic price multipliers, and perform
a hit and trial to see which one leads to a higher prediction
accuracy. In addition, we also implement a Random Forest
model and an artificial neural network (ANN) model to serve
as baselines, so that we could compare model performances
and justify our model selection considerations. Below we
briefly explain XGBoost, LightGBM, and Random Forest.

XGBoost: XGBoost [42] is a widely used gradient boosting
decision tree variant that trains multiple base learners to
improve model accuracy. It is highly parallelized and carefully
optimized for a shorter training time. It is also currently one
of the best, in terms of accuracy and training time, boosting-
based tree-models.

LightGBM: LightGBM [43] is another widely used gra-
dient boosting decision tree variant. But, compared with
XGBoost, LightGBM focuses on efficiency and significantly
reduces training time and memory consumption by adopt-
ing techniques, such as exclusive feature bundling (EFB),
histogram-based algorithm, leaf-wise tree growth, gradient-
based one-side sampling (GOSS), etc. On the other hand,
LightGBM is not as robust as XGBoost is, and may be
overfitting in some cases.

Random Forest: Random Forest is a bagging-based decision
tree variant. Though it appears earlier than XGBoost and
LightGBM, it is still widely used in many real world scenarios.

The bagging nature makes it especially suitable for parallel
computation and scale well on large-scale high-dimensional
data sets. Random Forest samples with replacement from the
input data, and also uses feature bagging, or random subspace
method, to ensure convergence and low correlation among
multiple decision trees.

In Section VI, we would compare the performances of
XGBoost, LightGBM, Random Forest, and ANN, in which the
latter two are mainly used as baselines, and provide a detailed
discussion on why certain models work better than others.
Additionally, we also list the main parameters and their values
used in these models.

V. REINFORCEMENT LEARNING MODEL

Now that we have built the dynamic price prediction model,
the next task is to perform seeking route recommendation
by a reinforcement learning model. Route recommendation
could be conducted on different spatial granularities. For
example, it could be done on the cell level, i.e., partitioning
the area of study into rectangular cells and recommending
the next cell a driver should go for seeking after the current
cell, or on the road segment level, i.e., recommending the
next road segment when a seeking driver comes to a road
intersection. Route recommendation on the cell level may
have a coarser spatial granularity, but has the advantage
of being simple and efficiency, and still giving enough
insights.

We choose to study the seeking route recommendation
problem on the cell level. Similar to what we have done in
data analysis in Section III-B2, we partition the area of study,
i.e., the city of Beijing within longitude [116.21, 116.56] and
latitude [39.81, 40.08], into 900 (= 30 × 30) rectangular
cells of equal size. The time range is restricted to a whole
day. In other words, we keep a timer τ and set it as
τ = 0 in the very beginning, and perform seeking route
recommendation until τ ≥ 1440 (in minutes). The goal of
the reinforcement learning model is to solve the following
problem.
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TABLE III
NOTATIONS USED IN OUR REINFORCEMENT LEARNING MODEL

Definition 2 (Seeking Route Recommendation): Given the
cell division of Beijing, GPS trajectories, RoD order data, and
a subset of RoD cars Z.

Find the optimal seeking route for each car in Z to increase
or maximize driver revenue. That is, for a single vacant car,
when it arrives at a cell, determine which neighboring cell
it should go to, or just keep seeking in the current cell.
Recommendation is terminated when τ ≥ 1440.

Basically, we solve the seeking route recommendation
problem in two steps. In the first step, we use MDP to
model the environment. In MDP, the transitions between
cells follow the Markov property. Between transitions, the
rewards—i.e., driver earnings—are calculated based on the
predicted dynamic price multipliers and the possibility of
taking up passenger orders. In the second step, based on
the environment, we use reinforcement learning to simulate
drivers’ behavior and determine the optimal seeking routes.
Notations used in both steps are summarized in Table III.

A. Modeling the Environment

We use MDP to model the environment. An agent has a
starting state. In every state, the agent chooses one action from
many candidates and jumps to another state, getting a reward
from the environment that is determined by the combination
of state and action. The Markov property states that the state

Fig. 7. (a) Reverse of the incoming directions, i.e., e, and (b) actions, i.e., a.

transitions and the corresponding rewards are only dependent
on the current state instead of any previous states.

In the following, we describe the states, actions, state
transitions, and rewards in the MDP model.

States: We denote a state as s = [l, p, t, e] ∈ S. l is the
index of a cell and ranges from 1 to 900. p is the index of
current timeslot, and ranges from 1 to N. t is the number of
minutes in the current timeslot. So, p and t together describe
the current time.

e is defined as the reverse of the incoming direction. The
incoming direction, as its name suggests, is the direction
the driver arrives at the current cell during seeking. The
goals of using the reverse of incoming direction are twofold.
First, the whole seeking path is recorded. Second, to avoid
going into a loop, we require that if a seeking driver does
not pick up passengers in the last cell, he or she should
not go back to the last cell after the current cell. So, the
reverse of the incoming direction is ruled out as a possible
choice of action. Specifically, we let e ∈ E = {↘,↓,↙,←,

↖,↑,↗,→,�,∅}. Among these directions, ∅ means “the
driver has just dropped off a passenger and there is not a
definition of incoming direction,” and � means “the driver
has been in this cell in the last state.” For simplicity, we
also denote these directions as 1–10. Fig. 7(a) illustrates these
directions. In Fig. 7(a), we assume that the driver is now at
the center cell, and the dashed gray arrows represent incoming
directions, whereas the blue solid arrows represent the reverse
of incoming directions.

As an example to explain the definition of a state, a given
state s = [250, 17, 20,∅] means that a driver has just dropped
off passengers and starts seeking at 8:20 A.M. in cell 250.

Actions: At a given state, a driver takes an action and is
transitioned to the next state (e.g., jumping to a neighboring
cell or keep seeking in the current cell). An action a could
be regarded as an outgoing direction. Similarly, we let a ∈
A = {↖,↑,↗,→,↘,↓,↙,←,�}, and also denote these
directions as 1–9, as shown in Fig. 7(b).

Under the above definitions of e and a, it is clear that
we have the following relationship between them. First,
to avoid going into a loop, at a given state snow =
[lnow, pnow, tnow, enow], the actions aunallowed that satisfy the
following requirements are not allowed:

aunallowed =
{

enow + 4, if 1 ≤ enow ≤ 4
enow − 4, if 5 ≤ enow ≤ 8.

(9)

Second, if a driver takes an action a and jumps to the next
state with the reverse of incoming direction e, then e = a.
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State Transitions: Assuming the driver is at state s0 =
[i, p, t, e], there are two different kinds of state transition after
the driver takes an action a and jumps to cell j.

1) The Driver Successfully Picks Up Passengers in Cell j:
This happens with a probability Ppickup(j, p). Then,
passengers are delivered to their destination, denoted by
cell k, with a probability Pdest(j, k, p). The time and
distance of seeking in cell j are denoted by tseek(j, p)

and dseek(j, p), respectively; and the time and distance
of delivering passengers from cell j to k are denoted
by tdrive(j, k, p) and ddrive(j, k, p), respectively. The total
amount of time from cell i to cell k is Ttotal,1 =
tdrive(i, j, p) + tseek(j, p) + tdrive(j, k, p). After the driver
delivers passengers in cell k, the state is transitioned to

s1 =
[
k, p+ (

t + Ttotal,1
)
/P,

(
t + Ttotal,1

)
%P,∅]. (10)

2) The Driver Does Not Pick Up Passengers in Cell j: This
happens with a probability 1−Ppickup(j, p). The time and
distance of driving from cell i to cell j are tdrive(i, j, p)

and ddrive(i, j, p); and the time and distance of seeking
in cell j are tseek(j, p) and dseek(j, p), respectively. The
total amount of time from cell i to seeking in cell j
is Ttotal,2 = tdrive(i, j, p) + tseek(j, p). After the driver
finishes seeking in cell j, the state is transitioned to

s2 =
[
j, p+ (

t + Ttotal,2
)
/P,

(
t + Ttotal,2

)
%P, a

]
. (11)

Rewards: When a driver is transitioned between two states,
a reward is obtained from the environment. We include the
impact of dynamic prices into the rewards.

In the first kind of state transition, the rewards consist of
two parts: 1) a positive trip fare earned by the driver and 2) a
negative fuel consumption. The fuel consumption could be
written as

Rfuel,1 = −fc ·
[
ddrive(i, j, p)+ dseek(j, p)+ ddrive(j, k, p)

]
.

(12)

In (12), fc is the fuel consumption per kilometer, and
ddrive(i, j, p) + dseek(j, p) + ddrive(j, k, p) is the total distance
from state S0 to S1. The trip fare could be written as

Rtrip,1 = dp(j, p) · (fbase + fd · ddrive(j, k, p)). (13)

In (13), fbase is the flag-fall price, and fd is the unit price per
kilometer. dp(j, p) is the predicted dynamic price multiplier
at cell j, based on our dynamic price prediction model in
Section IV. Specifically, dp(j, p) is measured at the location
in cell j that has the largest number of orders in our data or
the center of cell j if such location does not exist.

In the second kind of state transition, as the driver does not
pick up passengers in cell j, the reward is only the negative
fuel consumption in the following form:

Rfuel,2 = −fc ·
[
ddrive(i, j, p)+ dseek(j, p)

]
. (14)

The state transitions and rewards are illustrated in Fig. 8.

Fig. 8. State transitions and rewards.

B. Solving With SARSA-λ

Based on the environment, there are generally two dif-
ferent ways to design seeking routes that maximize driver
revenue. The first way is dynamic programming and solves
for an optimal policy. But as we use real-time dynamic
price prediction, and update the parameters of the MDP
model every P minutes, dynamic programming would become
overwhelmingly complicated. Another way is reinforcement
learning, and tries to obtain the optimal state–action pairs
that lead to higher rewards in the long run. Comparatively,
reinforcement learning is faster but still produces near-optimal
results on convergence.

SARSA-λ is a typical reinforcement learning algorithm that
solves for the optimal state–action pairs. SARSA stands for
“State, Action, Reward, State, Action” and it works in a similar
way to the famous Q-learning algorithm—the driver learns
a Q-table that stores a Q-value for each state–action pair
describing the utility of taking an action given a state, by
trying different actions and observing the rewards returned
from the environment. Unlike Q-learning, SARSA is an on-
policy approach. Based on SARSA, SARSA-λ updates the
Q-values based on all past states and actions instead of only
the current states and actions. To accomplish this, SARSA-λ
introduces the eligibility trace by using an E-table and records
the whole trace with which a driver has been seeking for.

Algorithm 1 shows the SARSA-λ algorithm for a single
driver. The input to the algorithm is the environment modeled
by MDP in Section V-A, and the dynamic price multiplier
predicted by the our model in Section IV; and the output of the
algorithm is a Q-table for the driver, so that the driver could
choose the action with the highest Q-value at any given state.
The inner loop represents the trial-and-error process of the
driver through a whole day, and the outer loop is performing
this process for many times until the Q-table converges. In the
following, we explain some important lines.

1) Initialization (Lines 1–3): We first set the Q-table and
E-table with all zeros. In addition, we also initialize
the timeslot that the driver starts working as pstart. For
example, pstart = 0 means we simulate the seeking
process from 0:00, whereas pstart = 17 means the
starting time is 8:00 A.M.

2) Initialization for the Outer Loop (Lines 5–8): In every
iteration of the outer loop, we initialize the timer τ = 0,
the E-table with all zeros, and randomly choose a cell
where the driver starts seeking.

3) Exploration Versus Exploitation (Lines 9 and 14): At any
given state, the driver could either choose exploration
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Algorithm 1 SARSA-λ Algorithm
Input:
1. the environment modeled by MDP, λ, ε, γ , and α.
2. the dynamic price prediction model in Section IV.
Output: the Q-table Q(s, a) for any state–action pair.

1: Q(s, a) = 0 for any s and a; //Initialize Q-table.
2: E(s, a) = 0 for any s and a; //Initialize the eligibility trace

E-table.
3: p = pstart; //Initialize the timeslot that the driver starts

working.
4: while Q-table not converged do
5: τ = 0;
6: E(s, a) = 0 for any s and a;
7: Generate a random number 1 ≤ linit ≤ 900 that

represent the starting cell;
8: s = (l = linit, p = pstart, t = 0, e = 0); //Initialize

state.
9: Choose action a at state s using ε−greedy policy from

Q-table;
10: while τ < 1440 do
11: Take action a and get the predicted dynamic price

multiplier dp(j, p);
12: Get the new state s′ and the reward Rs→s′ ;
13: Get the new timer τ ′;
14: Choose action a′ at state s′ using ε−greedy policy

from Q-table;
15: δ← Rs→s′ + γ · Q(s′, a′)− Q(s, a);
16: E(s, a)← E(s, a)+1; //Record the eligibility trace.
17: for all a ∈ A and s ∈ S do
18: Q(s, a)← Q(s, a)+ α · δ · E(s, a);
19: E(s, a)← γ · λ · E(s, a);
20: end for
21: s← s′, a← a′, τ ← τ ′;
22: end while
23: end while
24: return Q-table

(i.e., randomly choosing an action) or exploitation (i.e.,
choosing the action with the highest Q-value). This is
called ε-greedy, and ε is the probability of exploration.
This helps avoiding being stuck at suboptimal solutions.

4) Incorporating Dynamic Prices (Lines 11 and 12): The
price multiplier dp(j, p) is the result of the dynamic price
prediction model. The price multiplier is then used in
reward calculation.

5) Updating the E-Table (Lines 16–19): In the Q-learning
or the original SARSA algorithm, the update of Q-value
depends only on the most immediate action. In SARSA-
λ, such update takes into account a series of past actions.
When λ = 0, SARSA-λ reduces to SARSA; and when
λ = 1, SARSA-λ remembers all the past actions.
Specifically, when the driver takes an action a at a state
s, the corresponding E(s, a) is added by 1, and such
E(s, a) gradually fades away as time goes by.

6) Updating the Q-Table (Lines 15–19): The update of
Q-value is on-policy. The driver takes an action a and is

transitioned from state s to s′, obtaining a reward Rs→s′ .
Then, the driver again uses the ε-greedy policy to choose
an action a′ at state s′, and we calculate the TD error
δ—the difference between the immediate reward plus
the discounted Q-value of (s, a) and the current Q-value
estimate. Both δ and E(s, a) are used to generate the
new Q-value estimate (as in line 18).

VI. EVALUATION

We first evaluate our dynamic price prediction model, and
then the reinforcement learning model.

A. Dynamic Price Prediction

1) Evaluation Metrics: We use the common metrics—
accuracy, precision, recall, and F1-score—to evaluate our
dynamic price prediction model. These metrics are calculated
based on true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) samples, as defined in

Accuracy = TP+ TN

TP+ FP+ TN+ FN
, Preicison = TP

TP+ FP

Recall = TP

TP+ FN
, F1 = 2

1/Precision+ 1/Recall
. (15)

As the dynamic price prediction is a multiclass classification
problem, we actually use the macro precision, macro recall,
and macro F1-score in our evaluation, which are the macro
average of the above metrics among all N classes.

2) Evaluation Setup: As mentioned previously, the total
number of orders in our RoD order and dynamic price data is
2 742 120, and we generate an input feature vector for every
single order. We perform two different classification tasks.

1) 7-Classes Prediction: This task has already been
explained. As the price multiplier ranges from 1.0 to 1.6,
it is natural to have seven classes in prediction.

2) 3-Classes Prediction: We also divide the price
multipliers into three categories, namely, the low
price multipliers (i.e., 1.0, 1.1, and 1.2), middle price
multipliers (i.e., 1.3 and 1.4), and high price multipliers
(i.e., 1.5 and 1.6). The goal of 3-classes prediction is to
predict which category the price multiplier falls into.

We use XGBoost and LightGBM to predict dynamic price
multipliers, and also implement a Random Forest and an ANN
model to serve as baselines. We explain the parameters and
setup of these four models below.

1) ANN: There are two hidden layers that contain 256 and
128 neutrons. The drop-out regularization is added to
each hidden layer to control overfitting. The activation
function, output function, and loss function are ReLU,
softmax, and cross-entropy, respectively. The Adam
optimizer is used. The order data are divided into
training set, validation set, and test set in a 7:1:2 ratio.
The learning rate is set as 0.1 out of four candidates
0.01, 0.05, 0.1, and 0.5. The batch size is set as 64 out of
three candidates 32, 64, and 128. These hyperparameters
are selected by grid search.

2) Tree-Based Models: For tree-based models (i.e.,
XGBoost, LightGBM, and Random Forest), we also
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TABLE IV
MAJOR HYPERPARAMETERS IN TREE-BASED MODELS

TABLE V
PERFORMANCES OF DYNAMIC PRICE PREDICTION MODELS IN BOTH 7-CLASSES AND 3-CLASSES TASKS

randomly choose 20% orders as test set, and adopt a
fivefold cross-validation on the remaining 80% orders.
Candidates and ranges of hyperparameters are chosen
based on the results and discussions of previous works
(such as [40], [41], [44], and [45]), and the exact
chosen values of hyperparameters are also selected by
grid search from candidates and ranges, as summarized
in Table IV. For each hyperparameter in Table IV, the
value in bold is selected among candidates.

3) Evaluation Results: To evaluate the performance of our
dynamic price prediction models, we first show the accu-
racy, macro precision, macro recall, and macro F1-score of
XGBoost, LightGBM, Random Forest, and ANN in both the
7-classes and 3-classes prediction tasks in Table V. We have
the following observations.

1) XGBoost has the best performance, according to any of
the four metrics and in both the 7-classes and 3-classes
prediction. Specifically, in the 7-classes prediction, the
XGBoost model has an accuracy of 83.82%, and a
macro F1-score of 0.8000. The figures for the 3-classes
prediction are 90.67% and 0.8532, respectively.

2) Tree-based models indeed perform better than the ANN
model. This observation holds for both the 7-classes and
3-classes prediction, and even the LightGBM model,
which has the weakest performance among tree-based
models, is 21.53% better in accuracy than the ANN
model in 7-classes prediction.

3) The performance improvement in 3-classes prediction
compared with 7-classes prediction is much higher in
the ANN model than in tree-based models. This is an
interesting fact and is more obvious in macro recall

and F1-score. We hypothesize that it is the result of
poor performance of ANN model on unbalanced data
sets. Because dividing price multipliers into three classes
means different classes are more balanced, the ANN
model has a much better performance.

4) Comparing between XGBoost, LightGBM indeed has a
significantly shorter training time. In our simulation with
Intel i7-12700K and GeForce RTX 3070, it takes about
2500 s to converge in XGBoost, whereas the training
time is only about 570 s in LightGBM.

The above results justify that XGBoost is the most suitable
model to perform dynamic price prediction. It should be noted
that we value prediction accuracy more than model training
time, because the dynamic price prediction model could be
offline and it is acceptable to update and retrain the model
every half hour, every hour, or even every day.

We also evaluate the stability of Random Forest, XGBoost
and LightGBM—i.e., whether a model yields similar perfor-
mances when working with different data sets. To do that, we
divide the RoD order and dynamic price data into fivefold,
follow the similar procedures in fivefold cross validation,
calculate the accuracy, macro precision, macro recall, and
macro F1-score when a model works with different folds,
and obtain the standard deviation of each metric across these
folds. Results show that LightGBM has the largest deviation
(i.e., the worst stability) for all metrics. For XGBoost and
Random Forest, results are rather mixed: XGBoost has a lower
standard deviation in macro precision and macro F1, whereas
Random Forest has a lower deviation in accuracy and macro
recall. Combined with the fact that XGBoost has the best
performance, it is now safely to claim that XGBoost, among
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TABLE VI
CONFUSION MATRIX OF 7-CLASSES PREDICTION BY XGBOOST

TABLE VII
CONFUSION MATRIX OF 3-CLASSES (LOW/MID/HIGH PRICE MULTIPLIERS) PREDICTION BY XGBOOST

all four models, is the most appropriate model for dynamic
price prediction in our study.

To further evaluate the performance of the XGBoost model,
Tables VI and VII show the confusion matrix of the 7-classes
and 3-classes prediction by XGBoost, respectively. It is clear
that as follows.

1) The XGBoost has a precision higher than 0.8 for five
price multipliers (i.e., 1.0, 1.1, 1.3, 1.5, and 1.6), and has
a recall higher than 0.9 for four price multipliers (i.e.,
1.0, 1.1, 1.3, and 1.5). This indicates that the XGBoost
model has a satisfactory performance for most of the
price multipliers.

2) Results from Table VII show that the performance is
the best for low price multipliers, followed by high and
middle price multipliers. The corresponding F1-score
are 0.9484, 0.8494, and 0.7618, respectively. A possible
reason is that high and low price multipliers are more
regular and predictable, and middle price multipliers are
more random. It should also be noted that even with the
differences of prediction accuracy among different price
multipliers, our XGBoost model still has a satisfactory
performance on all these price multipliers.

3) Results from Table VI also suggest that our model has a
relatively poor performance for price multiplier 1.2 and
1.4, according to recall, precision, or F1-score. There
are two possible reasons. First, 1.2 and 1.4 are price
multiplies standing in the middle, and may be difficult
to predict due to a high randomness, as we have already
discussed. Second, it is observed from Table VI that
both price multipliers are always mistakenly predicted
as 1.0. This may be the result of an immature pricing
algorithm, as our data set dates back to 2016 when
the dynamic pricing mechanism was still at an early
developing stage. So in some cases the price multipliers

are set to a wrong value, which may be contradictory
to our price prediction model. To improve prediction
performance, we need to either collect new data, or find
out the circumstances in which the price multipliers 1.2
and 1.4 are more common and then design separate
models for such circumstances.

To summarize, the XGBoost model has the best
performance among the four models we implement. In
the 7-classes and 3-classes prediction, the XGBoost model
achieves an accuracy of 83.82% and 90.67%, respectively.
Therefore, we adopt the XGBoost model to perform dynamic
price prediction, and use the predicted value in our reinforce-
ment learning model that is evaluated in Section VI-B.

B. Reinforcement Learning Model

In this section, we evaluate our reinforcing learning model
that uses SARSA-λ to perform seeking route recommendation.
Our main goals are twofold.

1) We evaluate the effectiveness of introducing dynamic
price prediction. Is it necessary to do that? What are the
results if average dynamic prices are used instead or no
dynamic prices are considered?

2) We evaluate the effectiveness of using SARSA-λ. We
compare the performance of SARSA-λ with other com-
mon reinforcement learning models.

1) Evaluation Metrics: We define two metrics, namely,
the revenue efficiency RE and the profit efficiency PE, to
evaluate the effectiveness of seeking route recommendation.
For a driver, we use Rtotal to denote the total revenue the
driver makes during a specified time period; and use Ttotal to
denote the total working time during this period (including the
time of seeking for and delivering passengers). We also use
Tdeliver to represent the total amount of time used for delivering

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:32:53 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: SEEKING IN RIDE-ON-DEMAND SERVICE: A REINFORCEMENT LEARNING MODEL 29903

passengers. Then, we have

RE = Rtotal

Ttotal
(16)

PE = Rtotal

Tdeliver
. (17)

In other words, revenue efficiency RE measures the driver’s
revenue-making capability comprehensively, whereas profit
efficiency PE focuses more on the drivers’ ability to find more
profitable (i.e., better) orders.

2) Evaluation Setup: We simulate our SARSA-λ approach
based on our RoD order data set, RoD GPS trajectories and
the dynamic price prediction model, to evaluate the effec-
tiveness of seeking route recommendation through SARSA-λ.
Across the time range of our data sets, i.e., from August to
November 2016, we choose a random Friday and Saturday,
as a representative weekday and weekend, to simulate our
approach. The chosen days should not be a public holiday
(such as the National Day holiday in China). It should also
be noted that though we only present results on the chosen
Friday and Saturday here, results from other weekdays and
weekends show similar effects.

To achieve our main goals, we first learn the parameters of
the MDP model, and then randomly choose 500 drivers who
work on this Friday or Saturday. The chosen drivers should
satisfy the following criteria.

1) They work for at least 4 h on the chosen day, and their
GPS trajectories contain few errors.

2) They accept more than one order on the chosen day,
and these orders should be effective. For example, orders
with very small trip duration or distance may be the
result of inaccurate or malfunctioning GPS devices.

3) They also work for most of other days.
These criteria ensure that the chosen drivers have regular
working patterns, and their trajectories are not outliers. We
then adopt a prespecified model, simulate the trajectories of the
chosen drivers, and record the orders, revenue, and trajectories
of each driver. The prespecified model could be the SARSA-λ
model, or other variants that serve as baselines, and they are
discussed in Sections VI-B3 and VI-B4 accordingly.

Parameters of the MDP model (i.e., the environment) are
set by the following procedures.

1) Ppickup(j,p): The pickup probability in cell j during
timeslot p is approximated by the ratio of the number of
orders, denoted by Norder(j, p), to the number of vacant
cars passing the cell, denoted by Npassby(j, p). We only
count once if the same vacant car appears continually in
a cell during a timeslot

Ppickup(j, p) = Norder(j, p)

Npassby(j, p)
. (18)

2) Pdest(j, k, p): The destination probability is approxi-
mated by the historical orders. We use Norder(j, k, p) to
record the total number of orders starting from cell j
during timeslot p and ending in cell k, and then

Pdest(j, k, p) = Norder(j, k, p)

Norder(j, p)
. (19)

3) tseek(j, p) and dseek(j, p): The seeking distance dseek(j, p)

in cell j during timeslot p could be either set as a
fixed value—about half of the cell size—or set as a
varying value in different timeslots. We try both ways
and results show that the difference is small. Hence,
we set dseek(j, p) to be 500 m. tseek(j, p) is then set
accordingly, based on the average driving speed in cell
j during timeslot p.

4) tdrive(j, k, p) and ddrive(j, k, p): The driving time and
distance starting from cell j during timeslot p to cell k are
approximated by the average driving time and distance
in our historical orders. If, for some (j, k, p) combination
the number of historical orders is zero, then we resort to
the AMap API to check for the estimated driving time
and distance instead.

5) fbase, fd and fc: fbase and fd are set to 15 and 2.8 (both in
RMB Yuan) according to the service provider’s policy.
fc is set to 0.5, similar to previous studies (e.g., [27]).

Hyperparameters of the SARSA-λ model are also selected
based on grid search, similar to what we do in Section VI-A2.
Candidates and ranges of hyperparameters are chosen based
on the discussions and suggestions in previous works, such
as [35], [38], [46], and [47]. We briefly give the choice of
some major hyperparameters below.

1) α: The learning rate α is set to 0.1 among candidates
[0.03, 0.05, 0.1, 0.2, 0.3].

2) γ : The discount factor of future rewards γ is set to
0.5 among candidates [0.1, 0.3, 0.5, 0.7].

3) ε: The probability of random exploration ε is set to
0.1 among candidates [0.05, 0.1, 0.3, 0.5, 0.7].

4) λ: The parameter controlling the impacts of past states
ε is set to 0.5 among candidates [0, 0.1, 0.3, 0.5, 0.7, 1].

3) Effectiveness of Dynamic Price Prediction: To evalu-
ate the effectiveness of dynamic price and dynamic price
prediction, our simulation compares the SARSA-λ model with
the ground-truth and two baselines.

1) Real: The ground-truth from our data.
2) SL-DPP: Our SARSA-λ model explained in

Section V-B. SL-DPP stands for “SARSA Lambda-
Dynamic Price Prediction.”

3) SL-ADP: SL-ADP is similar to SL-DPP. But instead of
using dynamic price prediction in calculating rewards,
SL-ADP uses the average historical dynamic price
multiplier in a cell. SL-ADP stands for “SARSA
Lambda-Average Dynamic Prices.”

4) SL-1.0: SL-1.0 is similar to SL-DPP, but it ignores
dynamic prices at all. This is equivalent to setting all
dp(j, p)—the price multiplier in cell j during timeslot
p—to 1.0.

We first present the distribution of revenue efficiency RE,
profit efficiency PE, and searching time (the amount of time
used to seek for passengers) of SL-DPP, SL-ADP, and SL-
1.0 on four selected time periods on weekday. The selected
time periods are [8:00, 9:00), [12:00, 13:00), [18:00, 19:00),
and [23:00, 0:00), and cover representative hours, such as
morning and evening rush hours, night hours, and nonrush
hours around noon. The distribution of revenue efficiency,
profit efficiency, and searching time are shown in boxplots in
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TABLE VIII
AVERAGES OF REVENUE EFFICIENCY (RE), PROFIT EFFICIENCY (PE),

AND SEARCHING TIME ON WEEKDAY

Fig. 9. Distribution of revenue efficiency on selected periods on weekday.

Fig. 10. Distribution of profit efficiency on selected periods on weekday.

Fig. 11. Distribution of searching time on selected periods on weekday.

Figs. 9–11, respectively. Table VIII further gives the average
values of these metrics.

Figs. 9–11, together with Table VIII, indicate that as fol-
lows.

1) Using the SARSA-λ Reinforcement Learning Model
Is Effective: In all four selected periods, even the

Fig. 12. Average revenue efficiency throughout the whole day (weekday).

SL-1.0 scheme improves the seeking efficiency than
ground-truth. For example, during [8:00, 9:00), com-
paring between SL-1.0 and ground-truth, the average
revenue efficiency and profit efficiency among all drivers
are increased by 13.6% and 3.6%, and the average
searching time is reduced by about 35%. This indicates
that reinforcement learning is able to help drivers to find
better orders and get orders quickly.

2) It Is Necessary to Consider Dynamic Prices in Seeking
Route Recommendation: In all four selected periods, the
revenue efficiency and profit efficiency are higher with
SL-ADP and SL-DPP than with ground-truth or SL-
1.0. For example, during [18:00, 19:00), the revenue
efficiency in ground-truth and with SL-1.0, SL-ADP,
and SL-DPP are 0.81, 1.01, 1.33, and 1.49, respectively.
During [18:00, 19:00), the two schemes SL-ADP and
SL-DPP that consider dynamic prices increase revenue
efficiency by 31.6% and 47.5% compared to SL-1.0,
respectively.

3) Using Predicted Dynamic Prices Further Increases
Seeking Efficiency Than Simply Using Average
Statistics: In all four selected periods, SL-DPP achieves
higher revenue and profit efficiency than SL-ADP.
Taking the revenue efficiency as an example, SL-
DPP gives a revenue efficiency 10.7%, 5.2%, 12.0%,
and 4.0% higher than SL-ADP does, during [8:00,
9:00), [12:00, 13:00), [18:00, 19:00), and [23:00, 0:00),
respectively. We also learn from these figures that the
increase of revenue efficiency in morning and evening
rush hours is higher than in other two periods. Hence,
dynamic price predictions prove to be effective in
capturing the rapidly fluctuating dynamic prices, which
is beyond the capability of using average statistics.

4) Reinforcement Learning Reduces Searching Time, But
Considering Dynamic Prices Goes to the Opposite
Direction: This is an interesting observation. It is clear
from Fig. 11 that SL-DPP usually leads to a higher
searching time than other schemes, whereas SL-1.0
always has a lower searching time compared with
ground-truth. We consider the reason is that it takes
more time for drivers to find higher price multipliers.
Despite a longer searching time, drivers indeed find
more profitable orders by considering dynamic prices,
especially the predicted dynamic prices.

We then evaluate model performances on different hours
and on weekend. Figs. 12 and 13 plot the average revenue
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Fig. 13. Average revenue efficiency throughout the whole day (weekend).

Fig. 14. Average profit efficiency throughout the whole day (weekday).

efficiency throughout the day on weekday and weekend,
respectively. Fig. 14 plots the average profit efficiency
throughout the day on weekday. We have the following
observations.

1) Our above insights about the effects of using reinforce-
ment learning, considering dynamic prices or dynamic
price predictions hold throughout the day, either on
weekday or weekend. In other words, SL-DPP gives the
highest revenue, followed by SL-ADP, SL-1.0, and then
the ground-truth.

2) The amount of increase in revenue efficiency varies in
different hours-of-day on weekday and weekend. For
example:

a) SL-DPP Versus SL-ADP on Weekday: The increase
is the highest during [13:00, 16:00), which is a
time period with relatively stable and lower price
multipliers. This shows that considering dynamic
price predictions is especially important when the
price multipliers across the city is lower and stable,
because dynamic price prediction is an extra source
of information other than the average statistics.

b) SL-DPP Versus SL-ADP or SL-1.0 on Weekend:
The increase is the highest during [11:00, 14:00).
Note that passenger demand pattern on week-
end is different from that on weekday, and the
number of orders peak around noon or early
afternoon [38]. And according to Fig. 3, the price
multiplier is relatively low and stable during this
period. This observation shows again that dynamic
price multiplier is helpful as an extra source of
information.

3) Comparing between Figs. 12 and 14 further verifies our
previous observations on profit and revenue efficiency.
For example:

a) Throughout the day, reinforcement learning helps
drivers earn more by reducing the searching time,

Fig. 15. Distribution of revenue efficiency of SL-DPP, Q-DPP, and DRL-DPP
on selected periods on weekday.

but the quality of orders largely remains the same.
This is clear by inspecting the profit efficiency
and revenue efficiency of SL-1.0 and ground-truth.
From Fig. 12, it is shown that drivers indeed earn
more in SL-1.0 than in ground-truth. But Fig. 14
shows that the profit efficiencies of these two
schemes are very close, indicating that drivers
obtain similar orders.

b) Further considering the dynamic prices, regardless
of the averages or predictions, improves both driver
revenue and order quality. In both Figs. 12 and 14,
either SL-DPP or SL-ADP significantly increases
the profit and revenue efficiency throughout the
day than the ground-truth. It also proves that when
considering dynamic prices, the improvement of
order quality is high enough to compensate for the
loss introduced by a longer searching time.

4) Effectiveness of Using SARSA-λ: Similar to
Section VI-B3, to evaluate the effectiveness of using SARSA-
λ, our simulation compares the SL-DPP model with the
following two baselines.

1) Q-DPP: Q-DPP is similar to SL-DPP, as it uses dynamic
price prediction. The difference is that Q-DPP uses
Q-learning to recommend seeking routes instead of
SARSA-λ. Q-learning is also a common reinforcement
learning model based on Q-table, but it is off-policy. We
also set ε = 0.1, as in our SARSA-λ model.

2) DRL-DPP: DRL-DPP is also similar to SL-DPP and
Q-DPP, but it adopts a deep reinforcement learning
model to recommend seeking routes, instead of SARSA-
λ or Q-learning. Specifically, deep Q-networks replace
the Q-table: the input to the Q-network is the cur-
rent state information, and the output is the Q-value.
The deep reinforcement learning model estimates the
Q-values by training a deep learning model, and it also
adopts mechanisms such as experience replay and target
Q-network to improve its performance.

We present the distribution of revenue efficiency and profit
efficiency of SL-DPP, Q-DPP, and DRL-DPP on the four
selected periods on weekday, in Figs. 15 and 16, respectively.
We also show the average revenue efficiency and profit
efficiency throughout the whole day, in Figs. 17 and 18. It is
clear from these figures that as follows,

1) Compared to the Ground-Truth, SL-DPP, Q-DPP, and
DRL-DPP All Significantly Increase Driver Earnings;

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:32:53 UTC from IEEE Xplore.  Restrictions apply. 



29906 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

Fig. 16. Distribution of profit efficiency of SL-DPP, Q-DPP, and DRL-DPP
on selected periods on weekday.

Fig. 17. Average revenue efficiency of SL-DPP, Q-DPP, and DRL-DPP
throughout the whole day (weekday).

Fig. 18. Average profit efficiency of SL-DPP, Q-DPP, and DRL-DPP
throughout the whole day (weekday).

and SL-DPP Indeed Has the Best Performance
Throughout the Day: For example, during [18:00,
19:00), the average revenue efficiency of SL-DPP, Q-
DPP, and DRL-DPP is 1.49, 1.39, and 1.30, respectively;
and the average profit efficiency of SL-DPP, Q-DPP,
and DRL-DPP is 1.80, 1.69, and 1.59, respectively. Our
hypothesis is that SL-DPP performs the best because it
adopts the E-table to record historical traces and this
helps learning good policies. For the reason why DRL-
DPP does not has a satisfactory performance, we give a
more detailed discussion in Section VII.

2) The Difference Between SL-DPP and Q-DPP (or DRL-
DPP) Differs Obviously During Different Hours-of-Day:
For example, during the time periods with more severe
supply–demand imbalance (e.g., evening rush hours),
SL-DPP has a higher increase of revenue efficiency.
We are inspired by this and the last observation that
SL-DPP is more capable to capture the high-quality
orders resulting from supply–demand imbalance and
thus higher price multipliers.

Furthermore, to evaluate the effectiveness of using SARSA-
λ on weekend, Fig. 19 shows the average revenue efficiency of

Fig. 19. Average revenue efficiency of SL-DPP, Q-DPP, and DRL-DPP
throughout the whole day (weekend).

Fig. 20. Distribution of revenue efficiency of SL-DPP throughout the whole
day (weekday versus weekend).

SL-DPP, Q-DPP, and DRL-DPP on weekend, as a comparison
to Fig. 17. Fig. 20 compares the revenue efficiency of SL-DPP
on weekday and weekend. Because of the limited space, we
list some key observations below.

1) The above observations about the performance of SL-
DPP, Q-DPP, and DRL-DPP also hold throughout the
day on weekend.

2) Regarding the SL-DPP model, the revenue efficiencies
on weekday and weekend show different patterns. For
example, during morning or evening rush hours, the
revenue efficiency is higher on weekday; during [11:00,
15:00), i.e., noon and early afternoon, the revenue
efficiency is higher on weekend.

VII. SUMMARY AND DISCUSSION

We give a brief summary based on our evaluation results,
and provide relevant discussions. Our study focuses on using
both reinforcement learning and dynamic price prediction to
provide seeking route recommendations to drivers, and we thus
summarize the effects of considering dynamic price prediction,
and using reinforcement learning, respectively. Furthermore,
the comparison of different reinforcement learning models in
Section VI-B4 gives some intriguing results, and it is necessary
to include a further discussion. Finally, we discuss how
dynamic prices help avoiding recommending nearby drivers to
same locations, which is a common problem with single-agent
reinforcement learning models.

The Effects of Considering Dynamic Price Prediction: In
fact, regarding dynamic prices, we compare three different
circumstances: 1) considering no dynamic prices; 2) using
only the average dynamic price multipliers; and 3) using
the predicted dynamic price multipliers. Among these three
circumstances, our evaluation results show that the revenue
efficiency increases progressively.
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Besides, we also summarize the following findings from
evaluation results.

1) Considering dynamic prices, no matter the average
statistics or the predicted price multipliers, leads to
a significant improvement of order quality and thus
increases driver revenue.

2) Considering dynamic prices, especially the predictions,
increases the searching time, i.e., drivers need more time
to search for better orders. But the improvement of order
quality could offset the longer searching time, and thus
driver revenue is further increased, compared to only
using the average dynamic prices.

3) For busy periods with high demand, dynamic price
multipliers, even the average ones, help drivers to cap-
ture the supply and demand fluctuation and thus obtain
higher revenues.

4) For periods with generally lower price multipliers
and more stable demand, the predicted dynamic price
multipliers are especially important. The predicted price
multipliers serve as an extra source information and help
drivers to find out locations where there are better orders.

The Effects of Using Reinforcement Learning: In our study,
the effects of using reinforcement learning mainly come from
two aspects. First, an agent in SARSA-λ measures the utilities
of taking different actions by considering long-term rewards,
i.e., looking ahead. Second, SARSA-λ remembers the whole
trace with the variable λ, i.e., looking backwards. By trail and
error, the agent finally learns the optimal state–action pairs
that maximize the expectation of the sum of rewards. Our
evaluation results verify and show the following key findings.

1) Even without considering dynamic prices in any form,
reinforcement learning alone could already help drivers
to find better orders and get orders quickly. For example,
our results show that during [8:00, 9:00), the average
revenue efficiency is increased by 13.6%, and the aver-
age searching time is reduced by about 35%, when
only SARSA-λ is used and no dynamic prices are
considered.

2) The effects of reinforcement learning are, to some
extent, in an opposite direction against the effects of
dynamic prices; but combining them together yields
better results. Specifically, considering dynamic prices
means better orders and longer searching time, whereas
using reinforcement learning means better orders and
shorter searching time. Among these effects, shorter
searching time is more obvious in using reinforcement
learning, and better orders is more obvious in consider-
ing dynamic prices. When both reinforcement learning
and dynamic pricing are adopted, these effects offset
each other to some extent and driver revenue is further
increased.

The Comparison Between Different Reinforcement Learning
Models: Our evaluation results show that among the three
chosen reinforcement learning models, SARSA-λ (SL-DPP)
has the best performance, followed by Q-learning (Q-DPP),
and then deep Q-network (DRL-DPP), and this observation
holds throughout the day, either on weekday or weekend. This
observation is intriguing in that deep Q-network has the worst

performance, and in the following, we make a comparison
between them.

First, deep Q-network is more suitable with high-
dimensional or continuous state space, and since our problem
does not involve a high-dimensional state space, the advantage
of deep Q-network is already diminished. Basically, for high-
dimensional or continuous state space, storing the Q-table
costs a large amount of storage, making Q-learning or SARSA-
λ unrealistic. For deep Q-network, only the parameters of the
involved networks are stored, leading to storage space savings.
In our study, we could train our SARSA-λ model for each
timeslot so that the state space size is reduced, and it takes
less than 2-GB memory. Therefore, the problem in our study
does not require using deep Q-network to solve.

Second, to adopt to high-dimensional or continuous state
space problems, deep Q-network uses neural networks to
output Q-values. This, in fact, trades the accuracy of Q-values
for running time and storage space.

Third, the training of deep Q-network is more complicated,
as explained below.

1) Fine-tuning requires more efforts. We find that varying
some hyperparameters may lead to drastic performance
degradation, and sometimes the training may not even
converge. In our evaluations, we already give the best
results, but it still could not outperform SARSA-λ and
Q-learning. This also shows the difficulty of fine-tuning.

2) The training time is also longer. We normally train for
5000–10 000 epochs before convergence. The training
time for SARSA-λ and Q-learning is about 10–15 min,
whereas the training time for deep Q-network ranges
between 50 min and 1 h.

3) The training of deep Q-network requires sophisticated
hardware such as high-end GPUs. By comparison, only
an ordinary CPU is needed in training SARSA-λ and
Q-learning.

Finally, SARSA-λ and Q-learning are more light-weight,
whereas deep Q-network is more heavy-weight. Specifically,
in SARSA-λ and Q-learning, Q-values are stored as tables,
and recommending seeking routes means reading from these
tables, costing little memory and computation resources. To
the opposite, in deep Q-network, either training the neural
networks or calculating neural network outputs requires a lot
of computation resources. Therefore, in future deployment,
it would be possible to deploy the SARSA-λ or Q-learning
models to drivers’ cell phones or on-car mobile devices, but
it would be highly improbable for deep Q-network.

The above discussions mainly focus on the advantages of
SARSA-λ or Q-learning over deep Q-network, but it should
be noted that deep Q-network has some important advantages,
which may be less obvious on low or mid-dimensional
problems such as ours. For example:

1) Deep Q-network could handle continuous or high-
dimensional state space, as mentioned previously.

2) By using the experience replay mechanism, deep
Q-network store and reuse samples, and could thus
effectively handle the data sparsity problem.

3) By using neural networks to approximate Q-values, deep
Q-network is capable to learn complex strategies and
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value functions and could thus better adapt to complex
environment and tasks.

4) Deep Q-network supports end-to-end learning. By using
deep neural networks, it is able to learn from original
inputs such as images or trajectories instead of manually
designed features.

To sum up, normally we may consider that deep Q-network
is better than SARSA-λ or Q-learning. In fact, it would be
more accurate to claim that deep Q-network could handle more
complex situations and achieve a satisfactory performance in
such situations. Yet when it comes to low or mid-dimensional
state space problems such as ours, deep Q-network may
lose its advantages in performance due to reasons such as
inaccurate outputs approximated by neural networks, highly
demanding fine-tuning, longer training time, etc.

The Role of Dynamic Prices in Avoiding Similar or Same
Recommendations: A common problem arising in similar
single-agent studies is that similar or same recommendations
would be possibly made to drivers nearby (e.g., in the same
cell) or drivers with similar properties. Such recommendations
are undesirable, as drivers may then concentrate in a very small
area, leading to a more-than-enough supply and unpredictably
fluctuating dynamic price multipliers. Even multiagent rein-
forcement learning models are not good enough in solving this
problem, as one needs a lot of parameters in order to formulate
accurate models, such as drivers’ emotional state, drivers’
adoption rate of the recommended routes, changes to the
environment (e.g., all those probabilities) after driver adoption,
etc. These parameters are, unfortunately, not easy to obtain
without laborious and arduous field tests and collaboration
from real service providers. We thus consider multiagent mod-
els are not reliable and realistic enough until, in foreseeable
future, when such field tests become possible. There are also
some heuristics to tackle problem, such as generating a list of
possible recommendations (that are equally or almost equally
optimal) and randomly picking one after another for drivers
nearby.

The adoption of dynamic prices in RoD service offers a
new perspective in solving this problem. For example, if the
pricing algorithm is perfectly designed and could respond
to the changes of supply and demand in real time, then
the price multiplier within a small “hot” area would go
down when drivers begin to gather there. This lowers the
rewards of going to this hot area, and keeps other drivers
away. With the adoption of dynamic prices, even single-agent
models such as ours could avoid recommending a particular
cell to a lot of drivers. In our study, on the one hand, we
assume that the dynamic pricing mechanism of the service
provider from which we obtain our data sets satisfies the
above requirement, but how to design such a mechanism is
another story and is out of the scope of this article. On
the other hand, our inclusion of a dynamic price prediction
model could be regarded as a way to imitate the service
provider’s dynamic pricing mechanism: such model provides a
description of the environment at a finer spatial and temporal
granularity, compared with the traditional descriptions by the
pickup probabilities or destination probabilities.

VIII. CONCLUSION

We focus on the seeking route recommendation problem,
i.e., recommending the next cell to a seeking driver so that
driver revenue is higher, in RoD service. Though this problem
has been studied from various perspectives in taxi service, RoD
has two new features—dynamic pricing and data-driven—that
enable us to improve driver revenue to the next level.

By analyzing real service data, we point out that it is
necessary to both recommend seeking routes to drivers and
take into account dynamic price multipliers in generating
recommendations. We first design a dynamic price prediction
model to generate the predicted price multiplier given the time
and location described by features from multisource urban
data. We then adopt a reinforcement learning model, and
calculate the rewards of transitions between cells based on the
predicted price multipliers.

Evaluation results first validate the effectiveness of both
models. The dynamic price prediction model achieves a
satisfactory accuracy of 83.82% and 90.67%, in the 7-classes
prediction (i.e., predicting the exact multiplier) and 3-classes
prediction (i.e., predicting whether the multiplier is high,
mid, or low), respectively. The reinforcement learning model
also significantly increases drivers’ average revenue as well
as profit efficiency and reduces average searching time. We
also emphasize the positive effects of considering dynamic
price predictions: using predicted price multipliers is better
than using average price multipliers, which is better than
considering no dynamic prices at all, in terms of both revenue
and profit efficiency.

Besides effectiveness validation, our results also reveal some
interesting facts. For example, using reinforcement learn-
ing primarily reduces searching time, whereas considering
dynamic prices as well as predictions mainly enables drivers
to improve order quality, though meanwhile the searching time
becomes longer. This shows the different roles reinforcement
learning and dynamic prices play in increasing driver revenue.
We also find out that dynamic price prediction has positive
effects because it serves as a new and reliable source of
information and captures the supply and demand fluctuation.
Furthermore, by comparing between multiple reinforcement
learning models, simple models, such as SARSA-λ and Q-
learning, prove to have better performance than complex
models such as deep reinforcement learning.

For future work, we primarily consider the application and
implementation on real service. Examples include autonomous
driving and implementing our models on on-car low power
platforms that could automatically give suggestions to drivers
throughout working shifts. But there are many details and
perspectives to consider before doing all these. One of the
most important considerations in practical applications may be
the use of multiagent models to comprehensively depict the
picture of a large number of drivers, and it is important to
first obtain a lot more information such as the adoption ratio
of recommended routes, the changes of passenger patterns
after observing new driver behavior, the behavior patterns of
drivers, etc. As an example, Ghosh et al. [48], [49] adopted
an algorithm based on multiarmed bandit to discuss the
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competition and cooperation between multiple agents. These
works inspire us to leave the interaction between drivers as
our future work. We are currently working actively to push our
collaboration with service providers to obtain the necessary
information and data sets.
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