This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

Seeking in Ride-on-demand Service: A
Reinforcement Learning Model with Dynamic Price
Prediction

Suiming Guo, Baoying Deng, Chao Chen, Jintao Ke, Jingyuan Wang, Saiqin Long, and Ke Xu, Fellow, IEEE

Abstract—Recent years witness the increasing popularity of
ride-on-demand (RoD) services such as Uber and Didi. Compared
with traditional taxi, RoD service is more ‘“data-driven” and
adopts dynamic pricing to manipulate the supply and demand
in real time. Dynamic price could be viewed as an accurate
and quantitative indicator of the supply and demand, and could
provide clues to drivers, passengers, and the service providers,
possibly reshaping the ways in which some problems are solved.
In this paper, we focus on the seeking route recommendation
problem that aims at increasing driver revenue by recommending
highly profitable seeking routes to drivers of vacant cars with
the help of dynamic prices. We first justify our motivation by
showing the importance of route recommendation and answering
why it is necessary to consider dynamic prices, based on the
analysis of real service data. We then design a dynamic price
prediction model to generate the dynamic prices at any given
time and location based on multi-source urban data. After that, a
reinforcement learning model is adopted to perform seeking route
recommendation based on predicted dynamic prices. We conduct
extensive experiments in different spatio-temporal combinations
and make comparisons with multiple baselines. Results first show
that our dynamic price prediction model achieves an accuracy
ranging from 83.82% to 90.67% under different settings. It also
proves that considering the real-time predicted dynamic prices
significantly increases driver revenue by, for example, 12% and
47.5% during weekday evening rush hours, than merely using
the average prices or completely ignoring dynamic prices.

Index Terms—Ride-on-demand, dynamic price, driver revenue,
reinforcement learning.

This work was supported by Guangdong Basic and Applied Basic Re-
search Foundation under Grant 2024A1515012094, by the National Natural
Science Foundation of China under Grant 62002135, 62322601, 62425201,
62172066, and by the Excellent Youth Foundation of Chongging under Grant
CSTB2023NSCQJQX0025. This work was also supported by the National
Natural Science Foundation of China under Grant 72222022 and 72171013.
(Corresponding author: Chao Chen)

S. Guo, B. Deng and S. Long are with the National & Local Joint
Engineering Research Center of Network Security Detection and Protection
Technology, Guangdong Provincial Key Laboratory of Data Security and
Privacy Protection, and College of Information Science and Technology, Jinan
University, Guangzhou, China.

E-mail: guosuiming@email.jnu.edu.cn

Chao Chen is with Chongging University, Chongqing, China.
E-mail: cschaochen@cqu.edu.cn

Jintao Ke is with the University of Hong Kong, Hong Kong SAR, China.
E-mail: kejintao@hku.hk

J. Wang is with School of Computer Science and Engineering and School
of Economics and Management, Beihang University, Beijing, China.

E-mail: jywang @buaa.edu.cn

K. Xu is with Department of Computer Science and Technology, Tsinghua
University.

E-mail: xuke@mail.tsinghua.edu.cn

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

I. INTRODUCTION

uring the last decade, ride-on-demand (RoD) service
Dsuch as Uber and Didi first emerged as a new and
disruptive mode of transport compared with traditional taxi
service, and has gained increasing popularity since then. RoD
service is beneficial for passengers and drivers. For passengers,
it is more convenient to request for service through smart
phones, and the price is more affordable; for drivers, in many
cities it is not required to apply for licenses or medallions
before driving, and working schedules are more flexible.

RoD service has two unique features, namely, the use of
dynamic pricing, and being data-driven.

Dynamic pricing, also known as “surge pricing” when it
was introduced in Uber, aims to manipulate the supply and
demand in real time, i.e., the service provider sets a higher
price when demand — potential passenger requests — exceeds
supply — vacant cars on the road, and vice versa. Possible
forms of dynamic pricing include auction-based mechanisms,
additive bonus to the trip fare, and multiplying the trip fare
by a real-time factor (called “dynamic price multiplier”),
etc. Most service providers choose the multiplicative form in
practice, and so does our study.

Dynamic pricing could be viewed as a closed-loop feedback
mechanism to manipulate the supply and demand: the price
is determined based on the real-time supply and demand
condition, and it, in turn, controls the supply and demand in a
way leading to a higher service efficiency. Besides, dynamic
prices could also be regarded as an accurate indicator of supply
and demand.

Data-driven. The use of on-board GPS devices triggers
a large amount of studies and applications in taxi service
since the beginning of the last decade. Examples of studies
based on GPS trajectories include inferring order origins and
destinations, detecting possible detours, optimizing for driver
revenue based on driving habits, etc.

RoD service goes one step further and tremendously ex-
pands the volume and variety of data. It is mainly based
on smart phones and mobile apps, which is a data source
providing much more abundant information. For example,
accurate order information is now readily available, including
origin, destination, the time getting on/off the car, the time
and location the request is issued, text descriptions (typed by
the user on the mobile app) of origin and destination, etc.
User behavior log is also possible, as it could be recorded
by the mobile app. Typical user behaviors include the type of

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

mobile device, the number of times one checks for trip fare,
the regions one zooms in and out to view available drivers,
etc. All these new sources of data offer richer information than
the traditional GPS trajectories.

With these two new features, it is now possible to reshape
the ways in which some traditional problems are solved. In this
paper we focus on the seeking route recommendation problem,
a widely studied problem in mobility service, especially taxi.
Basically, seeking route recommendation aims at increasing
driver revenue by recommending profitable seeking routes to
drivers of vacant cars. Drivers themselves may adopt some
naive strategies based on experience or word-of-mouth. Such
strategies may be inaccurate, and may even suggest a large
number of drivers blindly flocking to the same hot spots such
as the central business district, exacerbating the already im-
balanced supply and demand condition. Algorithms developed
in previous taxi-related studies solve this problem by finding
local or global hot spots, modelling driver behavior using
Markov decision process, simulating driver behavior using
physics-based approaches, etc.

Things are different in RoD service. Firstly, the data-driven
feature enables us to acquire more datasets, such as multi-
source urban data, to solve the problem. Secondly, dynamic
prices could be an accurate and readily available indicator
of supply and demand, which previous studies go into great
lengths to find out. Furthermore, to make full use of dynamic
prices that fluctuate in real-time, it should be evaluated on a
fine spatio-temporal granularity, e.g., using recent or average
dynamic price multipliers may not be enough.

In this paper, we solve the seeking route recommenda-
tion problem by combining reinforcement learning with dy-
namic price prediction. We first give intuitive answers to
two questions, i.e., why recommending seeking routes and
why considering dynamic prices, based on the analysis of
real service data. After that, a seeking route recommendation
framework consisting of two parts is built. The first part
is a dynamic price prediction model based on multi-source
urban data, trying to obtain a price multiplier given the
spatio-temporal condition and other relevant features when a
driver picks up a passenger. Evaluation results show that our
dynamic price prediction model achieves an accuracy ranging
from about 83% to 90% in different settings, laying a solid
foundation for the reinforcement learning model. In the second
part, we use Markov decision process to model the seeking
behavior, and adopt a reinforcement learning model to tackle
the seeking route recommendation problem, in which the
predicted dynamic prices from the first part are incorporated
into reward design. We evaluate driver revenue and utilization
rates under our model, and it proves that taking the real-
time predicted dynamic prices into consideration significantly
increases driver revenue than merely using average dynamic
prices or completely ignoring dynamic prices.

Our contributions are listed in the following:

e We summarize the two unique features of RoD ser-

vice, i.e., dynamic pricing and data-driven, and solve
a common problem, albeit widely studied in previous
taxi service, by making full use of these two features.
By comparison, most previous works do not consider

dynamic pricing and simply treat RoD service as a new
version of taxi. Even the few works that indeed consider
dynamic pricing only calculate the average or historical
prices and ignore its real time nature.

o We adopt a reinforcement learning model to solve the
seeking route recommendation problem, and incorporate
dynamic prices. The reinforcement learning model helps
to consider the long term effects of seeking routes and
thus redistributes drivers more effectively.

o We conduct extensive experiments and comprehensively
evaluate both our dynamic price prediction and reinforce-
ment learning model on real service dataset.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. In section III we present
our datasets and provide a detailed and intuitive analysis.
Section IV and section V discuss the dynamic price prediction
and the reinforcement learning model, respectively. Section VI
presents a comprehensive evaluation on both models. Sec-
tion VII gives a brief summary and some discussions based on
evaluation results. Finally, section VIII concludes the paper.

II. RELATED WORK

We provide discussions on related work about three topics:
RoD service, dynamic price and its prediction in RoD service,
and seeking in taxi or RoD service.

RoD service. RoD service is also known as on-demand ride-
hailing, and in some cases, people may call it as ride-sharing.
In fact, “RoD” and “ride-sharing” have different emphases.
Ride-sharing emphasizes the share of rides with the same or
similar origins or destinations, either between passengers or
between the driver and passengers. RoD, on the other hand,
emphasizes “on-demand” — the service is available as soon
as one asks for it at any time or location. Under this setting,
RoD service is viewed as a disruptive new version of taxi, by
supporting mobile app, adopting dynamic prices, and being
data-driven. Our study focuses on RoD service, so we omit
the discussions on ride-sharing.

Compared with taxi, RoD service is relatively new, and thus
receives limited attention. Most studies simply treat RoD as a
service similar to taxi, and want to find out the differences
between them. For example, [1] focuses on the passenger
waiting time and make a comparison, of both waiting time
and price, between Uber and taxi; [2], [3] choose the market
share as the study target; [4], [5] discuss the impacts and
market effects of Uber’s entrance — e.g., how driver behavior
is changed since Uber takes place.

Dynamic price and its prediction in RoD service. Dy-
namic pricing plays an important role in many services, as
an effort to either improve service efficiency or manipulate
supply and demand in different forms. For examples, dynamic
pricing is used in Internet retail [6], hotel pricing [7], flight
ticket pricing [8], [9], inventory management [10], etc.

As a unique feature of RoD service, dynamic pricing and its
effects are studied in a number of works. For example, [11]-
[13] discuss the effects of dynamic pricing in balancing and
redistributing supply and demand, increasing driver revenue,
and reducing passenger waiting time. [14], as a typical early

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

study of on-demand ride-hailing service, evaluates Uber’s
surge pricing as a black-box by placing simulated mobile app
users across important locations. [15], [16] explore demand
pattern, the effects of dynamic pricing on passengers, and
passenger behavior. [17] combines pricing with dispatching,
which is a more traditional problem, and proposes a distributed
pricing framework. Some studies take an economics perspec-
tive: examples that consider the effects of dynamic pricing on
supply and demand include [11], [18], [19].

The problem of dynamic price prediction is also tackled
using various methods. For example, [20] defines the pre-
dictability of price multipliers and uses Markov-chain or neural
network models to predict average dynamic price multiplier
of a region based on the predictability. [21], [22] turn to
the prediction at a finer granularity and predict the dynamic
price multiplier given time and location using linear regression
or neural network based on multi-source urban data. [23]
summarizes the above works, adopts an ensemble learning
model, and chooses different models based on price multiplier
predictability. [24] takes a different path, emphasizes the
interpretability of price prediction results and presents a simple
but quantifiable approach to dynamic price prediction. It gives
a detailed evaluation as to what features have more obvious
impacts on price multipliers.

Seeking in taxi or RoD service. Seeking analysis is also
a highly visible topic in traditional taxi service, and in RoD
service it also receives some, yet limited, attention. Generally
speaking, we could divide such analysis into seeking strategies
analysis and seeking route recommendation, the latter of which
is the target of study in this paper.

Seeking strategies analysis could be considered as a macro-
level problem, and tries to uncover the relationship between
driver seeking strategies (e.g., choosing hot spots, driving
faster, etc.) and revenue. For example, [25], [26] consider
two different strategies, i.e., hunting or waiting for passengers,
and compare their performances under different circumstances,
based on taxi GPS trajectories. In RoD service, [27] collects
multi-source urban data and designs a framework to mine
the relationship between driver revenue and the carefully-
crafted features that are relevant to seeking strategies. In such
relationship, dynamic prices become an important component.

Seeking route recommendation could, on the other hand, be
treated as a micro-level problem, and aims to recommend the
right road segment or city cell a driver should keep seeking for
so that driver revenue is increased. In these studies, Markov
decision process is frequently used to model the interaction
between drivers and the service itself —e.g., [28]-[31]. Another
example using Markov decision process is [32], and it mainly
pays attention to electric taxis and make charging decisions
based on both battery constraint and GPS trajectories. Besides
Markov decision process, [33] generates recommendation re-
sults by minimizing the distance between taxis and potential
passenger requests; [34], [35] apply reinforcement learning;
[36] solves the problem by allowing a single driver to be
matched to multiple passengers; [37] builds theoretical models
and optimization problems. In RoD service, [38] uses Q-
learning to recommend profitable seeking routes.

Different from the above works, our study combines the

power of dynamic pricing and the data-driven feature to
conduct seeking route recommendation. Our methodologies
are justified by analyzing real service data. The dynamic
price prediction model is built on multi-source urban data
and achieves a satisfactory prediction accuracy. The prediction
results help to provide references to drivers of vacant cars,
based on which the reinforcement learning model generates
seeking route recommendations. Extensive experiments are
carried out to evaluate the effects of using a reinforcement
learning model and of considering predicted dynamic prices.

III. DATA AND ANALYSIS

We first present the multi-source urban datasets used in our
paper, and then provide a detailed data analysis to give intuitive
answers that motivate our study.

A. Multi-source Urban Datasets

1) RoD Datasets: Unlike previous studies on seeking route
recommendation in taxi service that mainly rely on taxi GPS
trajectories, in RoD service the “data driven” feature makes it
possible to obtain more datasets. In our study, we also acquire
order data and dynamic price data besides GPS trajectories:

GPS trajectories. This is similar to the widely used taxi
GPS trajectories dataset. It contains the periodic GPS records,
in longitude and latitude, of every single car in operation. Each
record includes the longitude and latitude, time stamp, speed,
direction, the unique car ID, etc. This dataset spans from Aug.
to Nov. 2016, and contains the records of about 3,500 to
3,800 cars daily in Beijing, China. Specifically, the ranges of
longitude and latitude are [116.21,116.56] and [39.81, 40.08].

Order and dynamic price data. The information of orders
and dynamic prices are recorded in the same dataset. For the
order data, in RoD service, the use of mobile app enables
accurate recording of order information, as order origins and
destinations are now clearly specified by users and recorded
by the service provider. For the dynamic price data, the price
multiplier is recorded when the service provider returns the
estimated trip fare and current price multiplier. Sometimes
getting the trip fare estimates does not mean order creation,
and to accurately associate an order with a price multiplier,
only the price multiplier returned in the trip fare estimate that
is closest to order creation is retained. This dataset also covers
same time span, and the total number of orders is 2, 742, 120.
Each entry includes origin, destination, the time getting on and
off, the unique ID of passenger/driver/car/order, the estimated
trip fare, price multiplier, etc.

In all the above datasets, all unique IDs of drivers, passen-
gers and cars are anonymized so that one cannot relate an ID
to a specific person or car. All the above datasets are obtained
from Shenzhou UCar, a major RoD service provider in China.

2) Taxi Dataset: Besides RoD datasets, we also use taxi
GPS trajectories as an auxiliary dataset. The reasons are
straightforward. Firstly, as mentioned in [24], RoD and taxi
service are similar and complementary to each other, and
hence driver behavior should be similar. For example, a hot
region in taxi service may also be a good choice for RoD
drivers. In other words, taxi GPS trajectories could serve as a

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

useful guideline for RoD drivers. Secondly, taxi service data
also describes car movements on the roads and is helpful in
characterizing the traffic in different spatio-temporal combina-
tions. For example, if the average speed of taxis is low, then
it may be an indication of traffic congestion in a region. Our
taxi GPS trajectories covers the same time span, and contains
records of about 30,000 taxis in Beijing.

3) Public Datasets: Public datasets are used to provide
more information. There are a lot of possible choices, and
in our study we choose the POI data and public transport
distribution data, as described in the following.

POI data. POI information is widely used in studies on
location-based service, and it characterizes the type of a
location such as airport, restaurant, etc. We rely on POI data
to describe the origins and destinations of orders. Our data
is crawled from AMap service [39], one of the most popular
online map service providers in China. Each POI falls in one
of the 14 categories: car service, restaurant, shopping, sports &
entertainment, hospital, hotel, scenic spot, business & residen-
tial building, government, education & culture, transportation
facility, finance & insurance, business and lifestyle.

Public transport distribution data. Public transport ser-
vices — e.g., bus, metro, tram, public rental bike — also play an
important role in transportation, and the effects of considering
public transport data are similar to that of considering taxi
data. That is, the status of public transport services could give
a hint on RoD driver behavior and describe traffic condition.
We choose the distribution of bus and metro service as our
public transport distribution data. Specifically, we acquire the
locations of all bus (and metro) stations and all the buses or
metros that stop by these stations, from AMap service.

B. Data Analysis

We give intuitive answers to two questions, i.e., why recom-
mending seeking routes and why considering dynamic prices.
They not only help to form a comprehensive picture of RoD
service, but also provide inspiration for our study.

1) Why Recommending Seeking Routes?: We first give the
definition of driver revenue. The fare of a RoD trip, i.e., the
driver revenue during this trip, is defined as,

T =dpo - (frase + fa * dirip)- (1)

In (1), dpo, frase and f; are the dynamic price multiplier at the
trip origin, the flag-fall price, and the unit price per kilometre,
respectively. dyr;, is the trip distance from the origin to
destination. This is an approximation, ignoring the extra fare
of slow driving and minimum distance, and we consider it
acceptable because these two terms are usually much smaller.
In our dataset, we have fp.se = 15 and fg = 2.8, both in
RMB Yuan.

We then show the distribution of revenue efficiency (i.e., the
revenue obtained in unit time) among all drivers during four
representative time periods, i.e., [8:00, 9:00), [12:00, 13:00),
[18:00, 19:00), and [23:00, 0:00), in Fig. 1. Intuitively, these
four time periods correspond to morning rush hour, non-rush
hour around noon, evening rush hour, and late night hour.
Similarly, in Fig. 2 we also show the distribution of searching

time, i.e., the time a driver seeks for passengers between
two consecutive trips, during these time periods. In addition,
Tab. I summarizes some simple statistics — i.e., the 1% quartile,
3" quartile, and average — of both revenue efficiency and
searching time from Fig. 1 and Fig. 2.

We have the following observations:

« Both revenue efficiency and searching time vary signifi-
cantly across different time periods.

— For example, in the morning rush hour, the average
revenue efficiency and average searching time are the
highest and the lowest, respectively, among all four
time periods. The late night hour is just the opposite.

— Comparing between the late night hour and the
evening rush hour (or the non-rush hour around
noon), it should also be noted that the difference
of searching time is much more obvious than that
of revenue efficiency. This makes the seeking route
recommendation problem more complicated.

o Both revenue efficiency and searching time vary sig-
nificantly across drivers. For revenue efficiency, during
[8:00, 9:00), the 3rd quartile is 49.30% higher (1.06 v.s.
0.71) than the 1% quartile, and during [23:00, 0:00), the
percentage is much higher and achieves 81.48% (0.98 v.s.
0.54). For searching time, the comparison is similar.

o Therefore, it is necessary to recommend seeking routes.
Firstly, a good seeking strategy or seeking route could
help those lower-earning drivers become more efficient
and earn more. Secondly, such recommendation should
consider carefully as to what features influence the rec-
ommendation results. For example, the above observa-
tions show that the temporal features are important.

2) Why Considering Dynamic Prices?: Previous studies on
seeking route recommendation in taxi service usually go to
great lengths in finding “hot spots” or finding locations with
more high-earning orders. In RoD service, the dynamic price
multiplier is an accurate indicator of the supply and demand
condition — which is just the goal of using dynamic pricing —
and it should be an integrated description of the information
that previous studies want to find out.

To justify that it is necessary to consider dynamic prices in
seeking route recommendation, in the following we show and
explain the distribution of dynamic price multipliers on both
temporal and spatial dimension. Fig. 3 first shows the temporal
distribution of dynamic price multipliers on both weekdays
and weekends. In Fig. 3, we calculate the average dynamic
price multiplier among all orders every half an hour, across
the whole city of Beijing. It is clear that:

e The average dynamic price multiplier is greater than
1.0 in most of the time, and thus dynamic prices have
a significant impact on driver revenue. In some time
periods, e.g., the evening rush hours on weekdays, the
average dynamic price multiplier reaches as high as 1.35.
o The dynamic price multiplier has different patterns during
different hours-of-day or days-of-week, and hence tem-
poral features are important. For example, on weekdays,
there are four obvious peaks: the small hours, the morn-
ing and evening rush hours, and the late night hours.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

2.0

1.5
[

k=]
1.0

0.5

0.0
02 04 06 08 1.0 1.2 14 16 1.8

revenue efficiency (Yuan/min)

(a) [8:00, 9:00)

2.0
1.5

Gy
=

1.0
0.5

0.0
02 04 06 08 1.0 1.2 14 16 1.8

2.0

1.5

e

=
1.0

0.5

0.0

revenue efficiency (Yuan/min)

(b) [12:00, 13:00)

02 04 06 08 1.0 1.2 14 16 1.8

2.0
1.5

Gt
=l
=4

1.0
0.5

0.0
02 04 06 08 1.0 1.2 14 1.6 1.8

revenue efficiency (Yuan/min)

(d) [23:00, 0:00)

revenue efficiency (Yuan/min)

(c) [18:00, 19:00)

Fig. 1: The probability distribution functions of revenue efficiency during four representative time periods.

0 10 20 30 40 50
searching time (min)

(a) [8:00, 9:00)

60

0.08
0.06

3
£0.04
0.02
0.00

0.08
0.06
B
20.04
0.02

0.00

0 10 20 30 40 50 60 0

searching time (min)

(b) [12:00, 13:00)

0.08
0.06

s
£.0.04
0.02

0.00

10 20 30 40 50 60 0

searching time (min)

(c) [18:00, 19:00)

10 20 30 40 50
searching time (min)

(d) [23:00, 0:00)

Fig. 2: The probability distribution functions of searching time during four representative time periods.

TABLE I: The statistics of revenue efficiency and searching time during four representative time periods.

Time period

Revenue efficiency (Yuan/min)

Searching time (min)

1" quartile | 3" quartile [average

1" quartile | 3 quartile [average

[8:00, 9:00) 0.71 1.06 0.88 8 20 15.49
[12:00, 13:00) 0.62 0.96 0.80 15 29 22.63
[18:00, 19:00) 0.63 0.97 0.81 12 26 19.73
[23:00, 0:00) 0.54 0.98 0.78 20 36 28.14
On weekends, the patterns are different: there are not price multipliers, and the number of vacant cars (i.e., supply)

morning rush hours, and price multipliers remain at a
low level until evening rush hours.

The dynamic price multiplier fluctuates rapidly through-
out a day. This is the result of its real-time nature, as it
is designed to reflect the real time changes of supply
and demand. As a result, when considering dynamic
prices in our study, a fine temporal granularity is needed,
and simply calculating the average or historical price
multipliers may not be enough.

81351
S1.30 1
=
5125
o 1.20
2
=RUEE
(5] 4
2110
]
5 1.051
>
& 1.00 1

\ N\ N Q \] Q N\ N\ N Q \] Q

S Q Q Q N S N N Q Q N N

QQ' Q’». va Q‘c N b ,\Q \q’ \bt‘ \(04 \(b r\/Q '\’)’
time

Fig. 3: The temporal distribution of dynamic price multipliers.

On the spatial dimension, we focus on the evening

rush

hours [18:00, 19:00) on weekdays, divide the area of

study (i.e., within longitude [116.21, 116.56] and latitude
[39.81,40.08]) into 900 (= 30 x 30) cells, and plot the spatial
distribution of the number of orders (i.e., demand), dynamic

in Fig. 4, Fig. 5 and Fig. 6. It is shown that:

The distributions of the number of orders as well as
vacant cars are spatially imbalanced, and it is thus nec-
essary to recommend seeking routes. This agrees with
common intuitions: such numbers are much higher in the
city center, and are drastically reduced in city suburbs.
The distribution of dynamic price multipliers is also
spatially imbalanced, but with more complicated patterns.
Intuitively, the price multiplier is higher in the city center.
Counter-intuitively, the price multiplier in the city suburbs
surrounding the city center is even higher, indicating
severe supply and demand imbalance.

Comparing the above two observations, the reason of
having higher price multipliers but fewer orders and cars
in city suburbs is that drivers tend to flock to city center
to seek for passengers, leaving a very limited number of
drivers in suburbs. Though the orders are indeed fewer
in suburbs, the number of drivers is still not enough to
meet the demand. To the contrary, for those drivers going
to city center, though there are indeed more orders, there
are even more drivers, making price multipliers lower.
Therefore, if dynamic price multipliers are observed
and considered in seeking route recommendation, it is
possible to guide more drivers to make better and more
informed decisions, e.g., staying in city suburbs to seek
for passengers. This not only increases driver revenue,
but eases the imbalance between supply and demand and

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

improves service efficiency as well.

To summarize, the reasons why dynamic prices should be
considered in seeking route recommendation are two-fold:

o Dynamic price multiplier changes rapidly on the temporal
dimension and has a significant impact on driver revenue,
so it should be carefully considered in a fine granularity.

o The spatial distribution of dynamic price multipliers
reveals some counter-intuitive insights, showing that con-
sidering dynamic prices is helpful in guiding drivers to
make better and more informed decisions.

IV. DYNAMIC PRICE PREDICTION

The rationale behind doing dynamic price prediction is
simple. Firstly, dynamic price multiplier should be considered
in seeking route recommendation so as to guide drivers to
make better decisions. Secondly, dynamic price multiplier
should be evaluated at a fine spatio-temporal granularity, so
simply using average or historical price multipliers may not
be enough.

In RoD service, the price multiplier is usually discrete.
For example, in our dataset the price multiplier falls in the
range DP,gn4e = [1.0,1.1,1.2,1.3,1.4,1.5,1.6]. Therefore,
predicting the price multiplier could be viewed as a classifi-
cation problem. The input to the classifier is a feature vector
extracted from our multi-source urban data that gives further
details based on the spatio-temporal information. The output is
one of the 7 possible price multipliers. We have the following
definition of our dynamic price prediction problem:

Definition IV.1 (Dynamic Price Prediction Problem). Given
the spatio-temporal information (e.g., time, date, longitude,
latitude, etc.),

Extract an input feature vector, denoted by X , from our
RoD order and dynamic price data, taxi data, POI data and
public transport distribution data.

Predict j(y = d|X),¥d € DP,apg.: the probability of a
candidate price multiplier d being the actual price multiplier
y based on the input feature vector X. The price multiplier
with the largest probability is the output of the classification
problem. O

A. Feature Extraction

In feature extraction, we first obtain the spatio-temporal
information (e.g., time, date, longitude and latitude) from
every order in our RoD order data, and then generate the
following features corresponding to each order. Features are
divided into four different contexts, namely temporal context,
spatial context, historical dynamic prices context, and taxi
service context. The price multiplier obtained from our RoD
dynamic price data that corresponds to each order is used as
the ground truth in model training.

1) Temporal Context: Temporal context features are the
most basic, and are simply the time and date obtained from
each order in RoD order and dynamic price data.

Time feature E7T. The hour and minute value (i.e., h and
man) are mapped to the radian of a unit circle. On the circle,

the 1,440 minutes of a day are represented by a radian value
between [0, 27). The time feature ET is defined as:
) h * 60 + min
ET = [cosb, sinb], 0 = 1440 * 27T 2)

Date features DM, DW and DH. DM, DW and DH
refer to the day of month, the day of week, and a boolean
value describing if the day is a weekday, respectively.

2) Spatial Context: Features describing the spatial context
are extracted mainly from the POI data and public transport
distribution data. Based on the longitude and latitude, we
describe a location by the POIs and the availability of public
transport around it.

POI features POI,, POI¢, and POI,. They are all
14-dimension vectors, and reflect the number, frequency and
uniqueness of POIs around a location. The 14 dimensions cor-
respond to the 14 POI categories explained in section ITI-A3.
We count the POIs within a 500-meter radius of the location.
For the i-th category of POI, the number of POIs of this
category around the location is denoted by POI, ;, and the
total number of POIs of this category in the city is M;, then
the frequency and uniqueness of the i-th category of POI —
ie., POIy; and POI, ; — are defined as:

POI,, ;
POI;; = ——— "t 3
HTNIE POL)
por,,; = L9ni O{"’i.)

Among these three vectors, POI,, simply counts the number
of POIs of different categories around the location; POIy
focuses on the proportion of each category of POI to all POIs
around the location; and POI,, characterizes the proportion of
the number of a particular category of POIs to the total number
of this category in the whole city, which is a reflection of POI
uniqueness. Then the POI feature vector is written as,

POI = [POI,, POI;, POL,]. (5)

Public transport distribution feature BM. BM is a
4-dimension vector, describing the number of bus stations,
the number of bus lines, the number of metro stations and
the number of metro lines within a 500-meter radius of the
location. It is intuitive that the public transport distribution
nearby has impacts on dynamic prices. Firstly, it reflects the
popularity of a location. Secondly, the presence of bus and
metro stations also makes it possible for RoD drivers to
provide connecting services — picking up a passenger who
just alighted from a bus or train, or delivering a passenger to
a bus or metro station — and hence changes passenger demand
around a location.

3) Historical Dynamic Prices Context: Dynamic price mul-
tiplier is a perfect and real-time reflection, as claimed by major
RoD service providers, of the supply and demand. As the
current supply and demand may be related to the past supply
and demand, we hypothesize that the past price multipliers
should be helpful in predicting current price multipliers.

Based on the current time on which we want to evaluate
the price multiplier, we extract the average price multiplier

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

Y
| EE
42-46
-5
s3-62
6371
72-80
81-88
8998
99-114
115- 141
142-180
181-241
242-329
330-597

1.000 - 1.015

1.016 - 1050 AR
1.051 - 1081 A \
1.082 - 1.107

1.108 - 1125

0-11
12-25
26-42
359
€-77
|7
[g7
18- 135
136155
156- 180
181-205
206-231
232-259
260-290
291-337
338- 405
406- 489

1142 - 1158
11591175
1.176-1.194
11951212
12131231
12321247
1.248-1.269
1270-1292
1.293-1315
13161344
1.345-1.386
1.387 - 1440
1.441-1517
1518 - 1.600

490 - 604
605- 786
787- 1103

Fig. 4: The spatial dlStrlbuthIl of the Fig. 5: The spatial dlstrlbutlon of dy- Flg 6: The spatial dlStrlbllthl’l of the

number of orders.

among all orders taking place within a 500-meter radius of
the location, during the last three half-hour-length timeslots:

HDP = [APM_,, APM_,, APM_3). (6)

In (6), HDP is the historical dynamic prices feature vector,
and APM_;(i = 1,2,3) are the average price multiplier
during the last three timeslots, respectively. For example, if we
want to predict the price multiplier at 17:09, then APM_1,
APM_5 and APM_3 are the average price multiplier during
[16 : 30,17 : 00], [16 : 00,16 : 30], and [15 : 30,16 : 00],
respectively.

4) Taxi Service Context: This context is extracted from taxi
GPS trajectories. Each feature is calculated on a half-hour-
length timeslot basis, and includes the taxis within a 500-meter
radius of the location. We extract the following features:

o taxi up count UC": the number of taxis that start new
orders around the location during the current half-hour-
length timeslot.

o taxi down count DC" the number of taxis that terminate
existing orders around the location during the current
half-hour-length timeslot.

o taxi visit count VC: the number of taxis that present
around the location during the current half-hour-length
timeslot.

o taxi full count F'C: the number of taxis with passengers
on board that present around the location during the
current half-hour-length timeslot.

o taxi full ratio F'R: the ratio of taxi full count F'C to taxi
visit count VC.

Then the taxi service feature vector is written as,

TS = [UC,DC,VC, FC, FR). 0

5) The Input Feature Vector: Before creating the input fea-
ture vector, it is necessary to normalize the above-mentioned
features to guarantee convergence and a shorter training time.
Among these features,

e Date features DM and DW are categorical features,
and they are represented by one-hot encoding. It is not
necessary to do normalization.

o Date feature DH is a boolean, and takes the value of
either O or 1. Hence it is not necessary to normalize D .

e For all other features, we calculate the Z-score (i.e.,
the number of standard deviations from the mean) of

namic price multipliers.

number of vacant cars.

each feature, or of each component of multi-dimension
features, to perform normalization.

For each order, we gather all the above-mentioned features,
as summarized in Tab. II, to generate the input feature vector
X, which are then fed into the dynamic price prediction model:

X = [ET, DM, DW, DH, POI, BM, HDP,TS]. ~ (8)

B. Model Selection

There are a lot of available algorithms for a predictive task,
including the popular deep learning models or more traditional
and simpler machine learning models. Though deep learning
models have achieved a tremendous progress on voice, text,
or image datasets, they may not be good enough for our
dynamic price prediction task. As an example, we compare
between deep models and tree-based models. Firstly, recent
discussions in [40], [41] point out that tree-based models
perform better than deep learning models on tabular data.
Secondly, deep models are generally more complex and harder
to fine tune, sometimes leading to over-fitting problems. The
more complex structure of deep models also gives rise to a
longer training time. Lastly, deep learning models are usually
difficult to interpret or explain, and sometimes sophisticated
techniques are needed. By comparison, tree-based models,
especially those containing only a small number of trees, are
naturally easier to interpret.

We thus choose tree-based models to conduct dynamic price
prediction. Specifically, we adopt XGBoost and LightGBM
models to predict the dynamic price multipliers, and perform
a hit and trial to see which one leads to a higher prediction
accuracy. In addition, we also implement a Random Forest
model and an ANN (artificial neural network) model to serve
as baselines, so that we could compare model performances
and justify our model selection considerations. Below we
briefly explain XGBoost, LightGBM, and Random Forest.

XGBoost. XGBoost [42] is a widely-used gradient boosting
decision tree variant that trains multiple base learners to
improve model accuracy. It is highly parallelized and carefully
optimized for a shorter training time. It is also currently one
of the best, in terms of accuracy and training time, boosting-
based tree-models.

LightGBM. LightGBM [43] is another widely-used gra-
dient boosting decision tree variant. But, compared with

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023 8

TABLE II: A summary of features used in dynamic price prediction.

Context | Feature | Dim.
ET: the time feature that maps the hour and minute to the radian of a unit circle 2
Temporal Context DM: one-hot encoded vector of the the day-of-month value 30
DW:: one-hot encoded vector of the the day-of-week value 7
DH: a boolean value that equals 1 when the day in question is a weekday 1
POI,: the number of POIs, of 14 different categories, around the location 14
Spatial Context POI;: the POI frequency vector, as defined in (3), around the location 14
POI,: the POI uniqueness vector, as defined in (4), around the location 14
BM: the number of bus/metro lines and stations around the location 4
Historical APM_;: the average price multiplier around the location during the last timeslot 1
Dynamic Prices APDM_5: the average price multiplier around the location during the second last timeslot | 1
Context APM_3: the average price multiplier around the location during the third last timeslot 1
UC: taxi up count around the location during the current time slot 1
DC'" taxi down count around the location during the current time slot 1
Taxi Service V' C': taxi visit count around the location during the current time slot 1
Context FC" taxi full count around the location during the current time slot 1
F'R: taxi full ratio around the location during the current time slot 1

XGBoost, LightGBM focuses on efficiency and significantly
reduces training time and memory consumption by adopt-
ing techniques such as EFB (Exclusive Feature Bundling),
histogram-based algorithm, leaf-wise tree growth, GOSS
(Gradient-based One-Side Sampling), etc. On the other hand,
LightGBM is not as robust as XGBoost is, and may be
overfitting in some cases.

Random Forest. Random Forest is a bagging-based deci-
sion tree variant. Though it appears earlier than XGBoost and
LightGBM, it is still widely-used in many real world scenarios.
The bagging nature makes it especially suitable for parallel
computation and scale well on large-scale high-dimensional
datasets. Random Forest samples with replacement from the
input data, and also uses feature bagging, or random subspace
method, to ensure convergence and low correlation among
multiple decision trees.

In section VI we would compare the performances of
XGBoost, LightGBM, Random Forest and ANN, in which the
latter two are mainly used as baselines, and provide a detailed
discussion on why certain models work better than others.
Additionally, we also list the main parameters and their values
used in these models.

V. THE REINFORCEMENT LEARNING MODEL

Now that we have built the dynamic price prediction model,
the next task is to perform seeking route recommendation by
a reinforcement learning model. Route recommendation could
be conducted on different spatial granularities. For example,
it could be done on the cell level, i.e., partitioning the area
of study into rectangular cells and recommending the next
cell a driver should go for seeking after the current cell, or
on the road segment level, i.e., recommending the next road
segment when a seeking driver comes to a road intersection.
Route recommendation on the cell level may have a coarser
spatial granularity, but has the advantage of being simple and
efficiency, and still giving enough insights.

We choose to study the seeking route recommendation
problem on the cell level. Similar to what we have done in
data analysis in section III-B2, we partition the area of study,
i.e., the city of Beijing within longitude [116.21,116.56] and

latitude [39.81,40.08], into 900 (= 30 x 30) rectangular cells
of equal size. The time range is restricted to a whole day. In
other words, we keep a timer 7 and set it as 7 = 0 in the
very beginning, and perform seeking route recommendation
until 7 > 1440 (in minutes). The goal of the reinforcement
learning model is to solve the following problem:

Definition V.1 (Seeking Route Recommendation). Given the
cell division of Beijing, GPS trajectories, RoD order data, and
a subset of RoD cars Z.

Find the optimal seeking route for each car in Z to increase
or maximize driver revenue. That is, for a single vacant car,
when it arrives at a cell, determine which neighboring cell
it should go to, or just keep seeking in the current cell.
Recommendation is terminated when 7 > 1440. O

Basically, we solve the seeking route recommendation prob-
lem in two steps. In the first step, we use Markov decision
process (MDP) to model the environment. In MDP, the tran-
sitions between cells follow the Markov property. Between
transitions, the rewards — i.e., driver earnings — are calculated
based on the predicted dynamic price multipliers and the
possibility of taking up passenger orders. In the second step,
based on the environment, we use reinforcement learning to
simulate drivers’ behavior and determine the optimal seeking
routes. Notations used in both steps are summarized in Tab. III.

A. Modelling the Environment

We use MDP to model the environment. An agent has a
starting state. In every state, the agent chooses one action from
many candidates and jumps to another state, getting a reward
from the environment that is determined by the combination
of state and action. The Markov property states that the state
transitions and the corresponding rewards are only dependent
on the current state instead of any previous states.

In the following, we describe the states, actions, state
transitions, and rewards in the MDP model:

States. We denote a state as s = [I,p,t,e] € S. [is the
index of a cell and ranges from 1 to 900. p is the index of
current timeslot, and ranges from 1 to N. ¢ is the number of

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

TABLE III: Notations used in our reinforcement learning

model.

Variable | Explanation

8,8 a state such that s = [I, p, ¢, €], and S is the set
of all states

l the index of a cell

P the index of current timeslot

P the length of each timeslot (in minutes)

N the total number of timeslots in a whole day

t the number of minutes into the current timeslot

T the timer that keeps the current time (in minutes)

e, & e is the reverse of the incoming direction, and £
is the set of all directions

a, A a is the action a driver takes, and A is the set of
all possible actions

tseek (4, D) the time used to seek for passengers in cell j
during timeslot p

dseek (7, D) the driving distance to seek for passengers in cell

7 during timeslot p

tdrive(j, k7p)

the time used to drive from cell 5 to k during
timeslot p

ddrive(j7 k7p)

the driving distance from cell j to k during
timeslot p

Prickup (J: p)

the probability of picking up a passenger in cell
7 during timeslot p

PdESt(j7 kvp)

the probability of a passenger picked up in cell
7 having a destination in cell £ during timeslot p

dp(j,p) the predicted dynamic price multiplier at cell j
during timeslot p

fe the fuel consumption per kilometre

frase the flag-fall price

fa the unit price per kilometre

a the learning rate in SARSA-), 0 < a < 1

the discount factor of future rewards, 0 < v <1

the probability of random exploration, 0 < € < 1

Mo

the parameter that controls the fade away speed
of past states, 0 < A < 1

minutes in the current timeslot. So, p and ¢ together describe
the current time.

e is defined as the reverse of the incoming direction. The
incoming direction, as its name suggests, is the direction the
driver arrives at the current cell during seeking. The goals of
using the reverse of incoming direction are two-fold. Firstly,
the whole seeking path is recorded. Secondly, to avoid going
into a loop, we require that if a seeking driver does not pick
up passengers in the last cell, he or she should not go back
to the last cell after the current cell. So, the reverse of the
incoming direction is ruled out as a possible choice of action.
Specifically, we lete € E = {\,, |, ./, <, , 1, 7 —, O, 0}
Among these directions, () means “the driver has just dropped
off a passenger and there is not a definition of incoming
direction”, and ¢ means “the driver has been in this cell in
the last state”. For simplicity, we also denote these directions
as 1 to 10. Fig. 7(a) illustrate these directions. In Fig. 7(a), we
assume that the driver is now at the center cell, and the dashed
grey arrows represent incoming directions, whereas the blue
solid arrows represent the reverse of incoming directions.

As an example to explain the definition of a state, a given
state s = [250, 17, 20,] means that a driver has just dropped
off passengers and starts seeking at 8:20am in cell 250.

1\|z/3
PN

Fig. 7: (a) The reverse of the incoming directions, i.e., e, and
(b) actions, i.e., a.

Actions. At a given state, a driver takes an action and is
transitioned to the next state (e.g., jumping to a neighbor-
ing cell or keep seeking in the current cell). An action a
could be regarded as an outgoing direction. Similarly, we let
acA={,1 "= \yd v, <, O}, and also denote these
directions as 1 to 9, as shown in Fig. 7(b).

Under the above definitions of e and a, it is clear that
we have the following relationship between them. First of
all, to avoid going into a loop, at a given state Spoy, =
[Lnow, Prow, tnow, €now)» the aCtions aypnaliowed that satisfy the
following requirements are not allowed:

enow+4a
— 4, if5< enow <8

if 1 <eénow <4
(€))

Aynallowed =
€now

Secondly, if a driver takes an action a and jumps to the next
state with the reverse of incoming direction e, then e = a.

State Transitions. Assuming the driver is at state sy =
[i,p,t, €], there are two different kinds of state transition after
the driver takes an action a and jumps to cell j:

o The driver successfully picks up passengers in cell j. This
happens with a probability Pp;crup(j, p). Then passengers
are delivered to their destination, denoted by cell k,
with a probability Pyes:(j, k,p). The time and distance
of seeking in cell j are denoted by tseer(j,p) and
dseer(4,p), respectively; and the time and distance of
delivering passengers from cell j to k are denoted by
tarive (4, k,p) and dgrive(J, k, p), respectively. The total
amount of time from cell 7 to cell k is Tiotar1 =
tarive (T, J, D) Flseek (J, D) Fdrive (J, k, p). After the driver
delivers passengers in cell k, the state is transitioned to:

S1 = [kvp"’_ (t + Ttotal,l)/P7 (t + Ttotal,l)%Pa (Z)] (10)

o The driver does not pick up passengers in cell j. This
happens with a probability 1—Pp;ckup(J, p). The time and
distance of driving from cell i to cell j are tgrive(Z, J, D)
and dgrive (%, J, p); and the time and distance of seeking
in cell j are tseer (4, p) and dseer (4, p), respectively. The
total amount of time from cell ¢ to seeking in cell j
i8 Tiotar,2 = tarive (i, J,P) + tseer(J, p). After the driver
finishes seeking in cell j, the state is transitioned to:

so = [4,p + (t + Trotar,2)/ P, (t + Tiotar,2) %P, a) (11)

Rewards. When a driver is transitioned between two states,
a reward is obtained from the environment. We include the
impact of dynamic prices into the rewards.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

In the first kind of state transition, the rewards consist of two
parts: a positive trip fare earned by the driver, and a negative
fuel consumption. The fuel consumption could be written as:

Rfuel,l = _fc : [ddrive(iajap) + dseek(jap) + ddrive(ja kvp)]

(12)
In (12), f. is the fuel consumption per kilometre, and
darive(t, J, D) +dseer (J, D) + darive (J, k, p) is the total distance
from state Sy to S7. The trip fare could be written as:

Rtrip,l = dp(jap) ! (fbase + fd . ddrive(j7 k7p))' (13)

In (13), frase is the flag-fall price, and f; is the unit price per
kilometre. dp(j,p) is the predicted dynamic price multiplier
at cell j, based on our dynamic price prediction model in
section IV. Specifically, dp(j,p) is measured at the location
in cell j that has the largest number of orders in our data or
the center of cell j if such location does not exist.

In the second kind of state transition, as the driver does not
pick up passengers in cell j, the reward is only the negative
fuel consumption in the following form:

Rfuel,Z = _fc : [ddrive(iaj7p) + dseek(jvp)]~ (14)

The state transitions and rewards are illustrated in Fig. 8.

[k,

GO o 1) P 14 P) G (TP
1

Reward = R, + Ry (t+ T 1) %P,
2]
SO —_— — incell j
[i, pt.e] ; i i L.
with probability 1— P, (J, p) S P+ (t+ T o)/ P
taking action a Reward =Ry, 2 (4T) %P,

a]

Fig. 8: State transitions and rewards.

B. Solving with SARSA-\

Based on the environment, there are generally two different
ways to design seeking routes that maximize driver revenue.
The first way is dynamic programming, and solves for an opti-
mal policy. But as we use real-time dynamic price prediction,
and update the parameters of the MDP model every P minutes,
dynamic programming would become overwhelmingly com-
plicated. Another way is reinforcement learning, and tries to
obtain the optimal state-action pairs that lead to higher rewards
in the long run. Comparatively, reinforcement learning is faster
but still produces near optimal results on convergence.

SARSA-) is a typical reinforcement learning algorithm
that solves for the optimal state-action pairs. SARSA stands
for “State, Action, Reward, State, Action” and it works in a
similar way to the famous Q-learning algorithm — the driver
learns a Q-table that stores a Q-value for each state-action
pair describing the utility of taking an action given a state,
by trying different actions and observing the rewards returned
from the environment. Unlike Q-learning, SARSA is an on-
policy approach. Based on SARSA, SARSA-) updates the
Q-values based on all past states and actions instead of only
the current states and actions. To accomplish this, SARSA-)

Algorithm 1 SARSA-) algorithm
Input:
1. the environment modelled by MDP, A, ¢, v, and a.
2. the dynamic price prediction model in section IV.
Output: the Q-table Q)(s,a) for any state-action pair.
1: Q(s,a) =0 for any s and a; //Initialize Q-table.
2: E(s,a) = 0 for any s and a; //Initialize the eligibility
trace E-table.
3: p = Pstart; /Mnitialize the timeslot that the driver starts
working.
: while Q-table not converged do
T=0;
E(s,a) =0 for any s and a;
Generate a random number 1 < [;,;: < 900 that
represent the starting cell;
8: s = (I = linit,0 = Pstart,t = 0,e = 0); //Initialize

AN U

state.

9: Choose action a at state s using e—greedy policy from
Q-table;

10: while 7 < 1440 do

11: Take action a and get the predicted dynamic price
multiplier dp(j, p);

12: Get the new state s’ and the reward R,_, ¢ ;

13: Get the new timer 7';

14: Choose action a’ at state s’ using e—greedy policy
from Q-table;

15: 4 Rsye +7-Q(5,d") — Q(s,a);

16: E(s,a) < FE(s,a) + 1; //Record the eligibility
trace.

17: for all a € A and s € S do

18: Q(s,a) « Q(s,a) +a-6- E(s,a);

19: E(sya) < v -\ E(s,a);

20: s«sd,a+d, 77

21: return Q-table

introduces the eligibility trace by using an E-table and records
the whole trace with which a driver has been seeking for.

Algorithm 1 shows the SARSA-A algorithm for a single
driver. The input to the algorithm is the environment modelled
by MDP in section V-A, and the dynamic price multiplier
predicted by the our model in section IV; and the output of
the algorithm is a Q-table for the driver, so that the driver could
choose the action with the highest Q-value at any given state.
The inner loop represents the trial-and-error process of the
driver through a whole day, and the outer loop is performing
this process for many times until the Q-table converges. In the
following, we explain some important lines:

o Initialization (line 1 to 3): we first set the Q-table and
E-table with all zeros. In addition, we also initialize
the timeslot that the driver starts working as psiq.t. For
example, psiort = 0 means we simulate the seeking
process from 0:00, whereas psiqr¢ = 17 means the
starting time is 8:00 am.

« Initialization for the outer loop (line 5 to 8): in every
iteration of the outer loop, we initialize the timer 7 = 0,
the E-table with all zeros, and randomly choose a cell

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

where the driver starts seeking.

« Exploration v.s. exploitation (line 9 and 14): at any
given state, the driver could either choose exploration
(i.e., randomly choosing an action) or exploitation (i.e.,
choosing the action with the highest Q-value). This is
called e-greedy, and e is the probability of exploration.
This helps avoiding being stuck at sub-optimal solutions.

o Incorporating dynamic prices (line 11 to 12): the price
multiplier dp(j,p) is the result of the dynamic price
prediction model. The price multiplier is then used in
reward calculation.

o Updating the E-table (line 16 to 19): in the Q-learning
or the original SARSA algorithm, the update of Q-
value depends only on the most immediate action. In
SARSA-), such update takes into account a series of past
actions. When A = 0, SARSA-) reduces to SARSA; and
when A = 1, SARSA-) remembers all the past actions.
Specifically, when the driver takes an action a at a state
s, the corresponding F(s,a) is added by 1, and such
E(s,a) gradually fades away as time goes by.

« Updating the Q-table (line 15 to 19): the update of Q-
value is on-policy. The driver takes an action a and is
transitioned from state s to s’, obtaining a reward R,_, ..
Then the driver again uses the e-greedy policy to choose
an action a’ at state s’, and we calculate the TD error
0 — the difference between the immediate reward plus
the discounted Q-value of (s,a) and the current Q-value
estimate. Both § and E(s, a) are used to generate the new
Q-value estimate (as in line 18).

VI. EVALUATION

We first evaluate our dynamic price prediction model, and
then the reinforcement learning model.

A. Dynamic Price Prediction

1) Evaluation Metrics: We use the common metrics —
accuracy, precision, recall and Fl-score — to evaluate our
dynamic price prediction model. These metrics are calculated
based on TP (true positive), TN (true negative), FP (false
positive) and FN (false negative) samples, as defined below:

A TP+TN Preici TP
ccuracy = reicison = ————
YT TP+FP+TN+FN’ TP+ FP’
TP 2
Recall = ———, F1 = — .
T TPYFN 1/Precision 4+ 1/Recall

(15)

As the dynamic price prediction is a multi-class classification
problem, we actually use the macro precision, macro recall
and macro Fl-score in our evaluation, which are the macro
average of the above metrics among all N classes.

2) Evaluation Setup: As mentioned previously, the total
number of orders in our RoD order and dynamic price data is
2,742,120, and we generate an input feature vector for every
single order. We perform two different classification tasks:

o 7-classes prediction: this task has already been explained.

As the price multiplier ranges from 1.0 to 1.6, it is natural
to have 7 classes in prediction.

o 3-classes prediction: we also divide the price multipliers
into three categories, namely the low price multipliers
(i.e., 1.0, 1.1 and 1.2), middle price multipliers (i.e., 1.3
and 1.4), and high price multipliers (i.e., 1.5 and 1.6). The
goal of 3-classes prediction is to predict which category
the price multiplier falls into.

We use XGBoost and LightGBM to predict dynamic price
multipliers, and also implement a Random Forest and an ANN
model to serve as baselines. We explain the parameters and
setup of these four models below:

o ANN: there are two hidden layers that contain 256 and
128 neutrons. The drop-out regularization is added to
each hidden layer to control over-fitting. The activa-
tion function, output function, loss function are ReLU,
softmax and cross-entropy, respectively. Adam optimizer
is used. The order data are divided into training set,
validation set and test set in a 7:1:2 ratio. The learning
rate is set as 0.1 out of four candidates 0.01, 0.05, 0.1 and
0.5. The batch size is set as 64 out of three candidates
32, 64 and 128. These hyper-parameters are selected by
grid search.

o Tree-based models: for tree-based models (i.e., XG-
Boost, LightGBM and Random Forest), we also ran-
domly choose 20% orders as test set, and adopt a 5-fold
cross-validation on the remaining 80% orders. Candidates
and ranges of hyper-parameters are chosen based on
the results and discussions of previous works (such as
[40], [41], [44], [45]), and the exact chosen values of
hyper-parameters are also selected by grid search from
candidates and ranges, as summarized in Tab. IV. For
each hyper-parameter in Tab. IV, the value in bold is
selected among candidates.

3) Evaluation Results: To evaluate the performance of our
dynamic price prediction models, we first show the accuracy,
macro precision, macro recall and macro Fl-score of XG-
Boost, LightGBM, Random Forest and ANN in both the 7-
classes and 3-classes prediction tasks in Tab. V. We have the
following observations:

o XGBoost has the best performance, according to any of
the four metrics and in both the 7-classes and 3-classes
prediction. Specifically, in the 7-classes prediction, the
XGBoost model has an accuracy of 83.82%, and a
macro Fl-score of 0.8000. The figures for the 3-classes
prediction are 90.67% and 0.8532, respectively.

o Tree-based models indeed perform better than the ANN
model. This observation holds for both the 7-classes
and 3-classes prediction, and even the LightGBM model,
which has the weakest performance among tree-based
models, is 21.53% better in accuracy than the ANN model
in 7-classes prediction.

e The performance improvement in 3-classes prediction
compared with 7-classes prediction is much higher in
the ANN model than in tree-based models. This is an
interesting fact and is more obvious in macro recall
and Fl-score. We hypothesize that it is the result of
poor performance of ANN model on unbalanced datasets.
Because dividing price multipliers into 3 classes means

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

TABLE IV: Major hyper-parameters in tree-based models.

Model Candidates and

the Selected Value

Hyper-parameter

Explanation

n_estimators 50, 100, 200, 500] the number of trees in the random forest
Random Forest max_depth 5,10, 20, 40] the maximum depth of a tree
min_samples_leaf 1,2,5,10] the minimum number of samples required to be at a leaf node
n_estimators 100, 500, 1000, 2000, 4000] | the number of trees (or boosting iterations)
learning rate 0.01,0.05,0.1,0.5] the learning (or shrinking) rate
LightGBM max_depth 2,5,8,12,20] the maximum depth of a tree
QLightGBM 0.01,0.1,0.2,0.5 the parameter controlling L1-regularization
ALightGBM 0.01,0.1,0.2,0.5 the parameter controlling L2-regularization
n_estimators 100, 500, 100, 2000, 4000] the number of trees
learning rate 0.01,0.05, 0.1, 0.5] the learning rate
max_depth 2,5,8,12,20] the maximum depth of a tree
XGBoost colsample_bytree 0.25,0.5,0.75,1 the fraction of features to be used for a tree
subsample 0.25,0.5,0.75, 1 the fraction of instances to be used for a tree
YX GBoost 0.01,0.05, 0.1, 0.3] the minimum split loss parameter controlling over-fitting

different classes are more balanced, the ANN model has
a much better performance.

o Comparing between XGBoost, LightGBM indeed has
a significantly shorter training time. In our simulation
with Intel i7-12700K and GeForce RTX 3070, it takes
about 2,500 seconds to converge in XGBoost, whereas
the training time is only about 570 seconds in LightGBM.

The above results justify that XGBoost is the most suitable
model to perform dynamic price prediction. It should be noted
that we value prediction accuracy more than model training
time, because the dynamic price prediction model could be
off-line and it is acceptable to update and retrain the model
every half hour, every hour or even every day.

We also evaluate the stability of Random Forest, XGBoost
and LightGBM - i.e., whether a model yields similar per-
formances when working with different datasets. To do that,
we divide the RoD order and dynamic price data into 5
folds, follow the similar procedures in 5-fold cross validation,
calculate the acccuracy, macro precision, macro recall and
macro Fl-score when a model works with different folds,
and obtain the standard deviation of each metric across these
folds. Results show that LightGBM has the largest deviation
(i.e., the worst stability) for all metrics. For XGBoost and
Random Forest, results are rather mixed: XGBoost has a lower
standard deviation in macro precision and macro F1, whereas
Random Forest has a lower deviation in accuracy and macro
recall. Combined with the fact that XGBoost has the best
performance, it is now safely to claim that XGBoost, among
all four models, is the most appropriate model for dynamic
price prediction in our study.

To further evaluate the performance of the XGBoost model,
Tab. VI and Tab. VII show the confusion matrix of the 7-
classes and 3-classes prediction by XGBoost, respectively. It
is clear that:

o The XGBoost has a precision higher than 0.8 for five
price multipliers (i.e., 1.0, 1.1, 1.3, 1.5, and 1.6), and has
a recall higher than 0.9 for four price multipliers (i.e.,
1.0, 1.1, 1.3, and 1.5). This indicates that the XGBoost
model has a satisfactory performance for most of the price
multipliers.

o Results from Tab. VII show that the performance is the
best for low price multipliers, followed by high and
middle price multipliers. The corresponding F1-score
are 0.9484, 0.8494 and 0.7618, respectively. A possible
reason is that high and low price multipliers are more
regular and predictable, and middle price multipliers are
more random. It should also be noted that even with the
differences of prediction accuracy among different price
multipliers, our XGBoost model still has a satisfactory
performance on all these price multipliers.

o Results from Tab. VI also suggest that our model has
a relatively poor performance for price multiplier 1.2
and 1.4, according to recall, precision or Fl-score. There
are two possible reasons. Firstly, 1.2 and 1.4 are price
multiplies standing in the middle, and may be difficult
to predict due to a high randomness, as we have already
discussed. Secondly, it is observed from Tab. VI that both
price multipliers are always mistakenly predicted as 1.0.
This may be the result of an immature pricing algorithm,
as our dataset dates back to 2016 when the dynamic
pricing mechanism was still at an early developing stage.
So in some cases the price multipliers are set to a wrong
value, which may be contradictory to our price prediction
model. To improve prediction performance, we need to
either collect new data, or find out the circumstances in
which the price multipliers 1.2 and 1.4 are more common
and then design separate models for such circumstances.

To summarize, the XGBoost model has the best perfor-

mance among the four models we implement. In the 7-
classes and 3-classes prediction, the XGBoost model achieves
an accuracy of 83.82% and 90.67%, respectively. Therefore,
we adopt the XGBoost model to perform dynamic price
prediction, and use the predicted value in our reinforcement
learning model that is evaluated in section VI-B.

B. Reinforcement Learning Model

In this subsection, we evaluate our reinforcing learning
model that uses SARSA-X to perform seeking route recom-
mendation. Our main goals are two-fold:

o« We evaluate the effectiveness of introducing dynamic

price prediction. Is it necessary to do that? What are the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

TABLE V: The performances of dynamic price prediction models in both 7-classes and 3-classes tasks.

Model Accuracy M-Precision M-Recall M-F1
7-classes | 3-classes | 7-classes | 3-classes | 7-classes | 3-classes | 7-classes [3-classes
XGBoost 0.8382 0.9067 0.8041 0.8608 0.8014 0.8464 0.8000 0.8532
LightGBM 0.7671 0.8672 0.7452 0.8121 0.6662 0.7598 0.6979 0.7812
Random 0.7941 0.8767 0.7440 0.8177 0.7579 0.7901 0.7451 0.8029
Forest
ANN 0.6312 0.7843 0.5064 0.6805 0.3895 0.5590 0.3982 0.5858
TABLE VI: The confusion matrix of 7-classes prediction by XGBoost.
Prediction
Ground 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Recall | Fl-score
truth
1.0 244026 3631 6522 1622 5792 634 2757 0.9209 0.9011
1.1 2914 64252 494 306 311 27 134 0.9388 0.9074
1.2 14798 2928 33702 1731 4834 231 623 0.5727 0.6437
1.3 1129 366 490 34397 1020 108 91 0.9148 0.8713
1.4 10302 1608 3979 2796 30972 1375 3479 | 0.5682 | 0.6054
1.5 242 44 47 133 491 20075 400 0.9367 0.8872
1.6 3211 353 630 368 4393 1375 32281 0.7576 0.7837
Precision 0.8822 | 0.8780 | 0.7348 | 0.8318 | 0.6478 | 0.8426 | 0.8118

TABLE VII: The confusion matrix of 3-classes (low/mid/high price

multipliers) prediction by XGBoost.

Prediction
Ground low mid high Recall | Fl-score
truth
low 375335 | 12767 4168 | 0.9568 | 0.9484
mid 19107 | 67493 5511 0.7327 | 0.7618
high 4792 4829 54422 | 0.8498 | 0.8494
Precision 0.9401 | 0.7932 | 0.8490

results if average dynamic prices are used instead or no
dynamic prices are considered?

o« We evaluate the effectiveness of using SARSA-)A. We
compare the performance of SARSA-) with other com-
mon reinforcement learning models.

1) Evaluation Metrics: We define two metrics, namely
the revenue efficiency RE and the profit efficiency PE, to
evaluate the effectiveness of seeking route recommendation.
For a driver, we use Ry,tq; to denote the total revenue the
driver makes during a specified time period; and use T}otq;
to denote the total working time during this period (including
the time of seeking for and delivering passengers). We also
use Tgeiiver to represent the total amount of time used for
delivering passengers. Then we have:

Rtotal
RE = (16)
Ttotal
Rtotal
PE = —total. (17)
71delive’r

In other words, revenue efficiency RFE measures the driver’s
revenue-making capability comprehensively, whereas profit
efficiency PE focuses more on the drivers’ ability to find
more profitable (i.e., better) orders.

2) Evaluation Setup: We simulate our SARSA-) approach
based on our RoD order dataset, RoD GPS trajectories and
the dynamic price prediction model, to evaluate the effec-
tiveness of seeking route recommendation through SARSA-).
Across the time range of our datasets, i.e., from August to

November 2016, we choose a random Friday and Saturday,
as a representative weekday and weekend, to simulate our
approach. The chosen days should not be a public holiday
(such as the National Day holiday in China). It should also
be noted that though we only present results on the chosen
Friday and Saturday here, results from other weekdays and
weekends show similar effects.

To achieve our main goals, we first learn the parameters of
the MDP model, and then randomly choose 500 drivers who
work on this Friday or Saturday. The chosen drivers should
satisfy the following criteria:

o They work for at least four hours on the chosen day, and
their GPS trajectories contain few errors.

o They accept more than one order on the chosen day, and
these orders should be effective. For example, orders with
very small trip duration or distance may be the result of
inaccurate or malfunctioning GPS devices.

o They also work for most of other days.

These criteria ensure that the chosen drivers have regular work-
ing patterns, and their trajectories are not outliers. We then
adopt a pre-specified model, simulate the trajectories of the
chosen drivers, and record the orders, revenue, and trajectories
of each driver. The pre-specified model could be the SARSA-
A model, or other variants that serve as baselines, and they are
discussed in section VI-B3 and VI-B4 accordingly.

Parameters of the MDP model (i.e., the environment) are
set by the following procedures:

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

o Pyickup(J,p): the pickup probability in cell j during
timeslot p is approximated by the ratio of the number of
orders, denoted by Noy-4er-(4,p), to the number of vacant
cars passing the cell, denoted by Npqsspy(J,p). We only
count once if the same vacant car appears continually in
a cell during a timeslot.

No’r'de’r' (.77 p)
Npassby (]a p)

e Pyest(7,k,p): the destination probability is approximated
by the historical orders. We use Noqer (4, k, p) to record
the total number of orders starting from cell j during
timeslot p and ending in cell k, and then:

Norde'r (.7’ k) p)
Norder (.77 p)

o lseek(J,p) and dseer(j,p): the seeking distance
dseer(4,p) in cell j during timeslot p could be either set
as a fixed value — about half of the cell size — or set as
a varying value in different timeslots. We try both ways
and results show that the difference is small. Hence we
set dseer (4, p) to be 500 meter. tse.x(7,p) is then set
accordingly, based on the average driving speed in cell
j during timeslot p.

o tarive(J, k,p) and dgrive(j, k, p): the driving time and
distance starting from cell j during timeslot p to cell k are
approximated by the average driving time and distance in
our historical orders. If, for some (j,k,p) combination
the number of historical orders is zero, then we resort to
the AMap API to check for the estimated driving time
and distance instead.

o frase> fa and fe: frase and fy are set to 15 and 2.8 (both
in RMB Yuan) according to the service provider’s policy.
fe 1s set to 0.5, similar to previous studies (e.g., [27]).

Hyper-parameters of the SARSA-) model are also selected
based on grid search, similar to what we do in section VI-A2.
Candidates and ranges of hyper-parameters are chosen based
on the discussions and suggestions in previous works such as
[35], [38], [46], [47]. We briefly give the choice of some major
hyper-parameters below:

e «: the learning rate « is set to 0.1 among candidates

[0.03,0.05,0.1,0.2,0.3].

o ~: the discount factor of future rewards v is set to 0.5
among candidates [0.1,0.3,0.5,0.7].

o ¢: the probability of random exploration € is set to 0.1
among candidates [0.05,0.1,0.3,0.5,0.7].

o A: the parameter controlling the impacts of past states e
is set to 0.5 among candidates [0,0.1,0.3,0.5,0.7, 1].

3) The Effectiveness of Dynamic Price Prediction: To eval-
vate the effectiveness of dynamic price and dynamic price
prediction, our simulation compares the SARSA-A model with
the ground-truth and two baselines:

P,

pickup(j7p) = (18)

Pdest(jakvp) = (19)

o Real: the ground-truth from our data;

o SL-DPP: our SARSA-)\ model explained in section V-B.
SL-DPP stands for “SARSA Lambda-Dynamic Price
Prediction”.

o SL-ADP: SL-ADP is similar to SL-DPP. But instead of
using dynamic price prediction in calculating rewards,

SL-ADP uses the average historical dynamic price mul-
tiplier in a cell. SL-ADP stands for “SARSA Lambda-
Average Dynamic Prices”.

e SL-1.0: SL-1.0 is similar to SL-DPP, but it ignores
dynamic prices at all. This is equivalent to setting all
dp(j, p) — the price multiplier in cell j during timeslot p
—to 1.0.

We first present the distribution of revenue efficiency RE,
profit efficiency PE, and searching time (the amount of time
used to seek for passengers) of SL-DPP, SL-ADP and SL-
1.0 on four selected time periods on weekday. The selected
time periods are [8:00, 9:00), [12:00, 13:00), [18:00, 19:00)
and [23:00, 0:00), and cover representative hours such as
morning and evening rush hours, night hours, and non-rush
hours around noon. The distribution of revenue efficiency,
profit efficiency and searching time are shown in boxplots in
Fig. 9, Fig. 10, and Fig. 11, respectively. Tab. VIII further
gives the average values of these metrics.

TABLE VIII: The averages of revenue efficiency (RFE), profit
efficiency (PFE) and searching time on weekday.

Period | Scheme | average | average average
RE PE searching time

Real 0.88 1.11 15.49
3:00 SL-1.0 1.00 1.15 10.05
) SL-ADP 1.31 1.49 9.04
SL-DPP 1.45 1.82 14.93
Real 0.80 1.18 22.63
12:00 SL-1.0 1.01 1.24 13.70
’ SL-ADP 1.16 1.42 13.40
SL-DPP 1.22 1.58 1591
Real 0.81 1.12 19.73
18:00 SL-1.0 1.01 1.22 12.09
SL-ADP 1.33 1.59 11.65
SL-DPP 1.49 1.80 11.95
Real 0.78 1.31 28.14
SL-1.0 1.01 1.38 18.88
2300 ST ADP [125 170 18.85
SL-DPP 1.30 1.82 20.32

Fig. 9 to 11, together with Tab. VIII, indicate that:

o Using the SARSA-)\ reinforcement learning model
is effective. In all four selected periods, even the SL-
1.0 scheme improves the seeking efficiency than ground-
truth. For example, during [8:00, 9:00), comparing be-
tween SL-1.0 and ground-truth, the average revenue
efficiency and profit efficiency among all drivers are
increased by 13.6% and 3.6%, and the average searching
time is reduced by about 35%. This indicates that rein-
forcement learning is able to help drivers to find better
orders and get orders quickly.

« It is necessary to consider dynamic prices in seeking
route recommendation. In all four selected periods, the
revenue efficiency and profit efficiency are higher with
SL-ADP and SL-DPP than with ground-truth or SL-1.0.
For example, during [18:00, 19:00), the revenue efficiency
in ground-truth and with SL-1.0, SL-ADP and SL-DPP
are 0.81, 1.01, 1.33 and 1.49, respectively. During [18:00,
19:00), the two schemes SL-ADP and SL-DPP that

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023 15
2.25 B Real B SL-1.0 3 SL-ADP EEE SL-DPP B Real B SL-1.0 3 SL-ADP BN SL-DPP 50 B Real = SL-10 = SL-ADP BB SL-DPP
25
> .
200 > 40
= [5) 3}
D175 = =)
Q 920 =
i 1.50 E::g o030
© s £
Q 2is 5
= 1.00 = g 20
> 2 2
2 0.75 810 %0
0.50
0.25 8:00 12:00 18:00 23:00 03 8:00 12:00 18:00 23:00 8:00 12:00 18:00 23:00
time time time

Fig. 9: The distribution of revenue effi- Fig. 10: The distribution of profit effi- Fig. 11: The distribution of searching time
ciency on selected periods on weekday. ciency on selected periods on weekday. on selected periods on weekday.

I
o

»
L
3
L

----- Real — = SL-ADP
=== SL-1.0 —— SL-DPP

----- Real —+= SL-ADP
~== SL-1.0 —— SL-DPP

=
|
>
|
= N
w o

'S
'S
L

IS Y
. N
SIS
.
b ES

4
3

average revenue efficiency
°
%

average revenue efficiency
average profit efficiency
o

NI
ENPRN RN RN N
SENESENEAR

T e e
S AP RPRRRRD S A AN PN PP R RARRARRNRRRRRDD
AN RN RN RN B \ RN RN RN RN N ST TN NS SO0 00 Q0 9N

time time

Fig. 12: The average revenue efficiency Fig. 13: The average revenue efficiency Fig. 14: The average profit efficiency
throughout the whole day (weekday). throughout the whole day (weekend). throughout the whole day (weekday).

consider dynamic prices increase revenue efficiency by out the day on weekday. We have the following observations:

31.6% and 47.5% compared to SL-1.0, respectively. « Our above insights about the effects of using reinforce-
o Using predicted dynamic prices further increases ment learning, considering dynamic prices or dynamic

seeking efficiency than simply using average statistics. price predictions hold throughout the day, either on

In all four selected periods, SL-DPP achieves higher weekday or weekend. In other words, SL-DPP gives the

revenue and profit efficiency than SL-ADP. Taking the highest revenue, followed by SL-ADP, SL-1.0 and then

revenue efficiency as an example, SL-DPP gives a rev- the ground-truth.

enue efficiency 10.7%, 5.2%, 12.0% and 4.0% higher than o The amount of increase in revenue efficiency varies in

SL-ADP does, during [8:00, 9:00), [12:00, 13:00), [18:00, different hours-of-day on weekday and weekend. For

19:00) and [23:00, 0:00), respectively. We also learn from example:

these figures that the increase of revenue efficiency in

. . Lo . — SL-DPP v.s. SL-ADP on weekday: the increase
morning and evening rush hours is higher than in other is the highest during [13:00, 16:00), which is a

two periods. Hence, dynamic price predictions prove to
be effective in capturing the rapidly fluctuating dynamic
prices, which is beyond the capability of using average
statistics.

o Reinforcement learning reduces searching time, but
considering dynamic prices goes to the opposite direc-
tion. This is an interesting observation. It is clear from
Fig. 11 that SL-DPP usually leads to a higher searching
time than other schemes, whereas SL-1.0 always has a
lower searching time compared with ground-truth. We
consider the reason is that it takes more time for drivers to
find higher price multipliers. Despite a longer searching
time, drivers indeed find more profitable orders by con-
sidering dynamic prices, especially the predicted dynamic

time period with relatively stable and lower price
multipliers. This shows that considering dynamic
price predictions is especially important when the
price multipliers across the city is lower and stable,
because dynamic price prediction is an extra source
of information other than the average statistics.

— SL-DPP v.s. SL-ADP or SL-1.0 on weekend: the
increase is the highest during [11:00, 14:00). Note
that passenger demand pattern on weekend is dif-
ferent from that on weekday, and the number of
orders peak around noon or early afternoon [38]. And
according to Fig. 3, the price multiplier is relatively
low and stable during this period. This observation
shows again that dynamic price multiplier is helpful

prices. . .
as an extra source of information.

We then evaluate model performances on different hours Comparing between Fig. 14 and Fig. 12 further verifies
and on weekend. Fig. 12 and Fig. 13 plot the average revenue our previous observations on profit and revenue effi-
efficiency throughout the day on weekday and weekend, ciency. For example:
respectively. Fig. 14 plots the average profit efficiency through- — Throughout the day, reinforcement learning helps

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

drivers earn more by reducing the searching time,
but the quality of orders largely remains the same.
This is clear by inspecting the profit efficiency and
revenue efficiency of SL-1.0 and ground-truth. From
Fig. 12 it is shown that drivers indeed earn more in
SL-1.0 than in ground-truth. But Fig. 14 shows that
the profit efficiencies of these two schemes are very
close, indicating that drivers obtain similar orders.

— Further considering the dynamic prices, regardless of
the averages or predictions, improves both driver rev-
enue and order quality. In both Fig. 12 and Fig. 14,
either SL-DPP or SL-ADP significantly increases the
profit and revenue efficiency throughout the day than
the ground-truth. It also proves that when considering
dynamic prices, the improvement of order quality is
high enough to compensate for the loss introduced
by a longer searching time.

4) The Effectiveness of Using SARSA-)\: Similar to sec-
tion VI-B3, to evaluate the effectiveness of using SARSA-),
our simulation compares the SL-DPP model with the following
two baselines:

¢ Q-DPP: Q-DPP is similar to SL-DPP, as it uses dynamic
price prediction. The difference is that Q-DPP uses Q-
learning to recommend seeking routes instead of SARSA-
A. Q-learning is also a common reinforcement learning
model based on Q-table, but it is off-policy. We also set
e = 0.1, as in our SARSA-)\ model.

o« DRL-DPP: DRL-DPP is also similar to SL-DPP and Q-
DPP, but it adopts a deep reinforcement learning model
to recommend seeking routes, instead of SARSA-)A or
Q-learning. Specifically, deep Q-networks replace the Q-
table: the input to the Q-network is the current state
information, and the output is the Q-value. The deep
reinforcement learning model estimates the Q-values by
training a deep learning model, and it also adopts mech-
anisms such as experience replay and target Q-network
to improve its performance.

We present the distribution of revenue efficiency and profit
efficiency of SL-DPP, Q-DPP and DRL-DPP on the four
selected periods on weeday, in Fig. 15 and Fig. 16, respec-
tively. We also show the average revenue efficiency and profit
efficiency throughout the whole day, in Fig. 17 and Fig. 18.
It is clear from these figures that:

o Compared to the ground-truth, SL-DPP, Q-DPP
and DRL-DPP all significantly increase driver earn-
ings; and SL-DPP indeed has the best performance
throughout the day. For example, during [18:00, 19:00),
the average revenue efficiency of SL-DPP, Q-DPP and
DRL-DPP is 1.49, 1.39 and 1.30, respectively; and the
average profit efficiency of SL-DPP, Q-DPP and DRL-
DPP is 1.80, 1.69 and 1.59, respectively. Our hypothesis
is that SL-DPP performs the best because it adopts the
E-table to record historical traces and this helps learning
good policies. For the reason why DRL-DPP does not
has a satisfactory performance, we give a more detailed
discussion in section VIIL.

o The difference between SL-DPP and Q-DPP (or DRL-

16

DPP) differs obviously during different hours-of-day.
For example, during the time periods with more severe
supply-demand imbalance (e.g., evening rush hours), SL-
DPP has a higher increase of revenue efficiency. We are
inspired by this and the last observation that SL-DPP is
more capable to capture the high quality orders resulting
from supply-demand imbalance and thus higher price
multipliers.

Furthermore, to evaluate the effectiveness of using SARSA-
A on weekend, Fig. 19 shows the average revenue efficiency of
SL-DPP, Q-DPP and DRL-DPP on weekend, as a comparison
to Fig. 17. Fig. 20 compares the revenue efficiency of SL-DPP
on weekday and weekend. Because of the limited space, we
list some key observations below:

o The above observations about the performance of SL-
DPP, Q-DPP and DRL-DPP also hold throughout the day
on weekend.

e Regarding the SL-DPP model, the revenue efficiencies on
weekday and weekend show different patterns. For exam-
ple, during morning or evening rush hours, the revenue
efficiency is higher on weekday; during [11:00, 15:00),
i.e., noon and early afternoon, the revenue efficiency is
higher on weekend.

VII. SUMMARY AND DISCUSSIONS

We give a brief summary based on our evaluation results,
and provide relevant discussions. Our study focuses on using
both reinforcement learning and dynamic price prediction to
provide seeking route recommendations to drivers, and we thus
summarize the effects of considering dynamic price prediction,
and using reinforcement learning, respectively. Furthermore,
the comparison of different reinforcement learning models in
section VI-B4 gives some intriguing results, and it is necessary
to include a further discussion. Finally, we discuss how
dynamic prices help avoiding recommending nearby drivers
to same locations, which is a common problem with single
agent reinforcement learning models.

The effects of considering dynamic price prediction. In
fact, regarding dynamic prices, we compare three different
circumstances: considering no dynamic prices, using only the
average dynamic price multipliers, and using the predicted dy-
namic price multipliers. Among these three circumstances, our
evaluation results show that the revenue efficiency increases
progressively.

Besides, we also summarize the following findings from
evaluation results:

o Considering dynamic prices, no matter the average statis-
tics or the predicted price multipliers, leads to a signif-
icant improvement of order quality and thus increases
driver revenue.

o Considering dynamic prices, especially the predictions,
increases the searching time, i.e., drivers need more time
to search for better orders. But the improvement of order
quality could offset the longer searching time, and thus
driver revenue is further increased, compared to only
using the average dynamic prices.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023 17
B DRL-DPP 3 Q-DPP B SL-DPP 275 BN DRL-DPP 3 Q-DPP BN SL-DPP (>)\‘
225 o s CRES IR Real —.- Q-DPP
52.00 o 5164 DRL-DPP —— SL-DPP
= 8225 L=
2175 5 o
Th 2200 W 1.4
=) S z
= 150 L‘c‘gms 212
2125 =150 3
5 3 1.0
% 1.00 2125 <
O gl et e
“o7s 1.00 PO T
0.75 ARV OIENSENN NSNS\ SBEN SBU N SBNSBEN SN AN SBN
0-50 8:00 12:00 18:00 23:00 8:00 12:00 18:00 23:00 NN NN NN U SN HEC R W 0 Y
time time time

Fig. 15: The distribution of revenue effi-
ciency of SL-DPP, Q-DPP and DRL-DPP
on selected periods on weekday.

[N
o

Fig. 16: The distribution of profit effi- Fig. 17: The average revenue efficiency of
ciency of SL-DPP, Q-DPP and DRL-DPP SL-DPP, Q-DPP and DRL-DPP through-
on selected periods on weekday. out the whole day (weekday).

N
o>

o

'S

average profit efficiency
S B

1.0

S AP
NN RN RN RN RN N RN\ P\ RN PN N RN AR N
NN R N N N I 2

2 22
..... Real —-- Q-DPP %1-8’ s==++ Real =+= Q-DPP >0 B Weckday [Weckend
DRL-DPP —— SL-DPP S 1.6+ DRL-DPP —— SL-DPP 2
& S 1.8
5 .9
144 S]
§ %51,6
8121 24
2 212
© 1.0 o
& 2 1.0
Sos e
R A 0.8
T I T T T T T < T T T T = T T T T T T T T T T T T T
S & P NI S A AN AN PR RPTRRRRRRRRdDD PR AN RNIRIRNII®
INPENTEN SIS IEN SNBSS\ SN SIS\ SN SN SN ENSSENIENSIEN SN SN IEN SN SIENSEN SN SIS SN
NEENEESEENEARCIEN, BEAIENIEN ’ R RN NN AN NN

K
time time

Fig. 18: The average profit efficiency of Fig. 19: The average revenue efficiency of Fig. 20: The distribution of revenue effi-
SL-DPP, Q-DPP and DRL-DPP through- SL-DPP, Q-DPP and DRL-DPP through- ciency of SL-DPP throughout the whole

out the whole day (weekday).

« For busy periods with high demand, dynamic price multi-
pliers, even the average ones, help drivers to capture the
supply and demand fluctuation and thus obtain higher
revenues.

o For periods with generally lower price multipliers and
more stable demand, the predicted dynamic price mul-
tipliers are especially important. The predicted price
multipliers serve as an extra source information and help
drivers to find out locations where there are better orders.

The effects of using reinforcement learning. In our study,
the effects of using reinforcement learning mainly come from
two aspects. Firstly, an agent in SARSA-)\ measures the
utilities of taking different actions by considering long-term
rewards, i.e., looking ahead. Secondly, SARSA-)\ remembers
the whole trace with the variable), i.e., looking backwards. By
trail-and-error, the agent finally learns the optimal state-action
pairs that maximize the expectation of the sum of rewards. Our
evaluation results verify and show the following key findings:

o Even without considering dynamic prices in any form,
reinforcement learning alone could already help drivers
to find better orders and get orders quickly. For example,
our results show that during [8:00, 9:00), the average
revenue efficiency is increased by 13.6%, and the average
searching time is reduced by about 35%, when only
SARSA-) is used and no dynamic prices are considered.

o The effects of reinforcement learning are, to some extent,
in an opposite direction against the effects of dynamic
prices; but combining them together yields better re-
sults. Specifically, considering dynamic prices means

out the whole day (weekend).

day (weekday v.s. weekend).

better orders and longer searching time, whereas using
reinforcement learning means better orders and shorter
searching time. Among these effects, shorter searching
time is more obvious in using reinforcement learning,
and better orders is more obvious in considering dynamic
prices. When both reinforcement learning and dynamic
pricing are adopted, these effects offset each other to
some extent and driver revenue is further increased.

The comparison between different reinforcement learn-
ing models. Our evaluation results show that among the three
chosen reinforcement learning models, SARSA-A (SL-DPP)
has the best performance, followed by Q-learning (Q-DPP),
and then deep Q-network (DRL-DPP), and this observation
holds throughout the day, either on weekday or weekend. This
observation is intriguing in that deep Q-network has the worst
performance, and in the following we make a comparison
between them.

Firstly, deep Q-network is more suitable with high-
dimensional or continuous state space, and since our problem
does not involve a high-dimensional state space, the advantage
of deep Q-network is already diminished. Basically, for high-
dimensional or continuous state space, storing the Q-table
costs a large amount of storage, making Q-learning or SARSA-
A unrealistic. For deep Q-network, only the parameters of the
involved networks are stored, leading to storage space savings.
In our study, we could train our SARSA-A model for each
timeslot so that the state space size is reduced, and it takes
less than 2GB memory. Therefore, the problem in our study
does not require using deep Q-network to solve.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

Secondly, to adopt to high-dimensional or continuous state
space problems, deep Q-network uses neural networks to
output Q-values. This, in fact, trades the accuracy of Q-values
for running time and storage space.

Thirdly, the training of deep Q-network is more compli-
cated, as explained below:

o Fine-tuning requires more efforts. We find that varying
some hyper-parameters may lead to drastic performance
degradation, and sometimes the training may not even
converge. In our evaluations, we already give the best
results, but it still could not outperform SARSA-)\ and
Q-learning. This also shows the difficulty of fine-tuning.

e The training time is also longer. We normally train for
5,000 to 10,000 epochs before convergence. The training
time for SARSA-) and Q-learning is about 10 to 15
minutes, whereas the training time for deep Q-network
ranges between 50 minutes to one hour.

o The training of deep Q-network requires sophisticated
hardware such as high-end GPUs. By comparison, only
an ordinary CPU is needed in training SARSA-X and Q-
learning.

Lastly, SARSA-A and Q-learning are more light-weight,
whereas deep Q-network is more heavy-weight. Specifically,
in SARSA-) and Q-learning, Q-values are stored as tables,
and recommending seeking routes means reading from these
tables, costing little memory and computation resources. To
the opposite, in deep Q-network, either training the neural
networks or calculating neural network outputs requires a lot
of computation resources. Therefore, in future deployment,
it would be possible to deploy the SARSA-) or Q-learning
models to drivers’ cell phones or on-car mobile devices, but
it would be highly improbable for deep Q-network.

The above discussions mainly focus on the advantages of
SARSA-X or Q-learning over deep Q-network, but it should
be noted that deep Q-network has some important advantages,
which may be less obvious on low or mid-dimensional prob-
lems such as ours. For example:

e Deep Q-network could handle continuous or high-
dimensional state space, as mentioned previously.

o By using the experience replay mechanism, deep Q-
network store and reuse samples, and could thus effec-
tively handle the data sparsity problem.

« By using neural networks to approximate Q-values, deep
Q-network is capable to learn complex strategies and
value functions and could thus better adapt to complex
environment and tasks.

e Deep Q-network supports end-to-end learning. By using
deep neural networks, it is able to learn from original
inputs such as images or trajectories instead of manually-
designed features.

To sum up, normally we may consider that deep Q-network
is better than SARSA-) or Q-learning. In fact, it would be
more accurate to claim that deep Q-network could handle more
complex situations and achieve a satisfactory performance in
such situations. Yet when it comes to low or mid-dimensional
state space problems such as ours, deep Q-network may
lose its advantages in performance due to reasons such as

inaccurate outputs approximated by neural networks, highly
demanding fine-tuning, longer training time, and etc.

The role of dynamic prices in avoiding similar or same
recommendations. A common problem arising in similar
single-agent studies is that similar or same recommendations
would be possibly made to drivers nearby (e.g., in the same
cell) or drivers with similar properties. Such recommendations
are undesirable, as drivers may then concentrate in a very small
area, leading to a more-than-enough supply and unpredictably-
fluctuating dynamic price multipliers. Even multi-agent rein-
forcement learning models are not good enough in solving
this problem, as one needs a lot of parameters in order to
formulate accurate models, such as drivers’ emotional state,
drivers’ adoption rate of the recommended routes, changes
to the environment (e.g., all those probabilities) after driver
adoption, etc. These parameters are, unfortunately, not easy to
obtain without laborious and arduous field tests and collab-
oration from real service providers. We thus consider multi-
agent models are not reliable and realistic enough until, in
foreseeable future, when such field tests become possible.
There are also some heuristics to tackle problem, such as
generating a list of possible recommendations (that are equally
or almost equally optimal) and randomly picking one after
another for drivers nearby.

The adoption of dynamic prices in RoD service offers a
new perspective in solving this problem. For example, if the
pricing algorithm is perfectly designed and could respond to
the changes of supply and demand in real time, then the price
multiplier within a small “hot” area would go down when
drivers begin to gather there. This lowers the rewards of going
to this “hot” area, and keeps other drivers away. With the
adoption of dynamic prices, even single-agent models such as
ours could avoid recommending a particular cell to a lot of
drivers. In our study, on one hand, we assume that the dynamic
pricing mechanism of the service provider from which we
obtain our datasets satisfies the above requirement, but how
to design such a mechanism is another story and is out of
the scope of this paper. On the other hand, our inclusion of a
dynamic price prediction model could be regarded as a way
to imitate the service provider’s dynamic pricing mechanism:
such model provides a description of the environment at a
finer spatial and temporal granularity, compared with the tra-
ditional descriptions by the pickup probabilities or destination
probabilities.

VIII. CONCLUSION

We focus on the seeking route recommendation problem,
i.e., recommending the next cell to a seeking driver so that
driver revenue is higher, in RoD service. Though this problem
has been studied from various perspectives in taxi service,
RoD has two new features — dynamic pricing and data-driven
— that enable us to improve driver revenue to the next level.

By analyzing real service data, we point out that it is
necessary to both recommend seeking routes to drivers and
take into account dynamic price multipliers in generating
recommendations. We first design a dynamic price prediction
model to generate the predicted price multiplier given the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

time and location described by features from multi-source
urban data. We then adopt a reinforcement learning model,
and calculate the rewards of transitions between cells based
on the predicted price multipliers.

Evaluation results first validate the effectiveness of both
models. The dynamic price prediction model achieves a sat-
isfactory accuracy of 83.82% and 90.67%, in the 7-classes
prediction (i.e., predicting the exact multiplier) and 3-classes
prediction (i.e., predicting whether the multiplier is high,
mid, or low), respectively. The reinforcement learning model
also significantly increases drivers’ average revenue as well
as profit efficiency and reduces average searching time. We
also emphasize the positive effects of considering dynamic
price predictions: using predicted price multipliers is better
than using average price multipliers, which is better than
considering no dynamic prices at all, in terms of both revenue
and profit efficiency.

Besides effectiveness validation, our results also reveal some
interesting facts. For example, using reinforcement learning
primarily reduces searching time, whereas considering dy-
namic prices as well as predictions mainly enables drivers to
improve order quality, though meanwhile the searching time
becomes longer. This shows the different roles reinforcement
learning and dynamic prices play in increasing driver revenue.
We also find out that dynamic price prediction has positive
effects because it serves as a new and reliable source of
information and captures the supply and demand fluctuation.
Furthermore, by comparing between multiple reinforcement
learning models, simple models such as SARSA-) and Q-
learning prove to have better performance than complex mod-
els such as deep reinforcement learning.

For future work, we primarily consider the application and
implementation on real service. Examples include autonomous
driving and implementing our models on on-car low power
platforms that could automatically give suggestions to drivers
throughout working shifts. But there are many details and
perspectives to consider before doing all these. One of the
most important considerations in practical applications may
be the use of multi-agent models to comprehensively depict
the picture of a large number of drivers, and it is important to
first obtain a lot more information such as the adoption ratio
of recommended routes, the changes of passenger patterns
after observing new driver behavior, the behavior patterns
of drivers, etc. As an example, the authors in [48], [49]
adopt an algorithm based on multi-armed bandit to discuss the
competition and cooperation between multiple agents. These
works inspire us to leave the interaction between drivers as our
future work. We are currently working actively to push our
collaboration with service providers to obtain the necessary
information and datasets.

ACKNOWLEDGMENTS

We thank the anonymous editors and reviewers for their
constructive feedback and comments.

REFERENCES

[11 A. Picchi, “Uber vs. Taxi: Which Is Cheaper?” 2016. [Online].
Available: http://bit.ly/2DMgrMc

[4]
[5]

[6]

[7]
[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

Y. M. Nie, “How can the taxi industry survive the tide of ridesourc-
ing? evidence from shenzhen, china,” Transportation Research Part C:
Emerging Technologies, vol. 79, pp. 242-256, 2017.

L. Rayle, D. Dai, N. Chan, R. Cervero, and S. Shaheen, “Just a
better taxi? a survey-based comparison of taxis, transit, and ridesourcing
services in San Francisco,” Transport Policy, vol. 45, pp. 168—178, 2016.
J. D. Hall, C. Palsson, and J. Price, “Is Uber a substitute or complement
for public transit?” 2017. [Online]. Available: https://bit.ly/2K6Vs7L
T. Berger, C. Chen, and C. B. Frey, “Drivers of disruption? estimating
the uber effect,” European Economic Review, vol. 110, pp. 197-210,
2018.

Y. Cao, T. S. Gruca, and B. R. Klemz, “Internet pricing, price satis-
faction, and customer satisfaction,” International Journal of Electronic
Commerce, vol. 8, no. 3, pp. 31-50, 2003.

M. L. Kasavana and A. J. Singh, “Online auctions,” Journal of Hospi-
tality & Leisure Marketing, vol. 9, no. 3-4, pp. 127-140, 2001.

M. D. Wittman and P. P. Belobaba, “Dynamic pricing mechanisms for
the airline industry: a definitional framework,” Journal of Revenue and
Pricing Management, vol. 18, pp. 100-106, 2019.

J. M. Betancourt, A. Hortagsu, A. Oery, and K. R. Williams, “Dynamic
price competition: Theory and evidence from airline markets,” National
Bureau of Economic Research, Working Paper 30347, August 2022.
[Online]. Available: http://www.nber.org/papers/w30347

O. Besbes and A. Zeevi, “Dynamic pricing without knowing the de-
mand function: Risk bounds and near-optimal algorithms,” Operations
Research, vol. 57, no. 6, pp. 1407-1420, 2009.

J. Hall, C. Kendrick, and C. Nosko, “The effects of Uber’s surge pricing:
a case study,” Oct. 2015. [Online]. Available: http://bit.ly/2kayk90

J. Gan, B. An, H. Wang, X. Sun, and Z. Shi, “Optimal pricing for
improving efficiency of taxi systems.” in Proceedings of the 22th
International Joint Conferences on Artificial Intelligence, ser. IICAI *13.
AAAL 2013, pp. 2811-2818.

L. Rayle, S. Shaheen, N. Chan, D. Dai, and R. Cervero, “App-based,
on-demand ride services: Comparing taxi and ridesourcing trips and
user characteristics in San Francisco,” 2014. [Online]. Available:
http://bit.ly/2kVkahg

L. Chen, A. Mislove, and C. Wilson, “Peeking beneath the hood
of Uber,” in Proceedings of the 2015 ACM Conference on Internet
Measurement Conference, ser. IMC *15. New York, NY, USA: ACM,
2015, pp. 495-508.

S. Guo, C. Chen, Y. Liu, K. Xu, and D. M. Chiu, “Modelling passengers’
reaction to dynamic prices in ride-on-demand services: A search for the
best fare,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 1, no. 4, pp. 136:1-136:23, 2018.

S. Guo, Y. Liu, K. Xu, and D. M. Chiu, “Understanding ride-on-demand
service: Demand and dynamic pricing,” in Pervasive Computing and
Communication Workshops (PerCom Workshops), 2017 IEEE Interna-
tional Conference on. 1EEE, 2017, pp. 509-514.

H. Chen, Y. Jiao, Z. Qin, X. Tang, H. Li, B. An, H. Zhu, and J. Ye,
“InBEDE: Integrating contextual bandit with TD learning for joint
pricing and dispatch of ride-hailing platforms,” in Proceedings of the
2019 IEEE International Conference on Data Mining, ser. ICDM 19,
2019, pp. 61-70.

M. K. Chen, “Dynamic pricing in a labor market: Surge pricing and
flexible work on the uber platform,” in Proceedings of the 2016 ACM
Conference on Economics and Computation, ser. EC 16. New York,
NY, USA: ACM, 2016, pp. 455-455.

P. Cohen, R. Hahn, J. Hall, S. Levitt, and R. Metcalfe, “Using big
data to estimate consumer surplus: The case of uber,” 2016. [Online].
Available: http://bit.ly/2pgXiWo

S. Guo, C. Chen, Y. Liu, K. Xu, and D. M. Chiu, “It can be cheaper:
Using price prediction to obtain better prices from dynamic pricing in
ride-on-demand services,” in Proceedings of the 14th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, ser. MobiQuitous *17. ACM, 2017, pp. 146—-155.

S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, and D. M. Chiu, “Fine-
grained dynamic price prediction in ride-on-demand services: Models
and evaluations,” Mobile Networks and Applications, vol. 25, pp. 505—
520, 2020.

——, “Dynamic price prediction in ride-on-demand service with multi-
source urban data,” in Proceedings of the 15th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, ser. MobiQuitous "18. ACM, 2018, pp. 412—-421.

S. Guo, C. Chen, Y. Liu, K. Xu, B. Guo, and D. M. Chiu, “How to pay
less: a location-specific approach to predict dynamic prices in ride-on-
demand services,” IET Intelligent Transport Systems, vol. 12, no. 7, pp.
610-618, 2018.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3407119

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, XXXX 2023

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, D. Zhang, and D. M. Chiu,
“A simple but quantifiable approach to dynamic price prediction in ride-
on-demand services leveraging multi-source urban data,” Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., vol. 2, no. 3, pp. 112:1—
112:24, 2018.

B. Li, D. Zhang, L. Sun, C. Chen, S. Li, G. Qi, and Q. Yang, “Hunting
or waiting? discovering passenger-finding strategies from a large-scale
real-world taxi dataset,” in Pervasive Computing and Communication
Workshops (PerCom Workshops), 2011 IEEE International Conference
on. 1EEE, 2011, pp. 63-68.

D. Zhang, L. Sun, B. Li, C. Chen, G. Pan, S. Li, and Z. Wu, “Under-
standing taxi service strategies from taxi gps traces,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 1, pp. 123-135, 2015.
S. Guo, C. Chen, J. Wang, Y. Liu, K. Xu, Z. Yu, D. Zhang, and
D. M. Chiu, “ROD-Revenue: Seeking strategies analysis and revenue
prediction in ride-on-demand service using multi-source urban data,”
IEEE Transactions on Mobile Computing, vol. 19, no. 9, pp. 2202-2220,
2020.

H. Rong, X. Zhou, C. Yang, Z. Shafiq, and A. Liu, “The rich and the
poor: A markov decision process approach to optimizing taxi driver
revenue efficiency,” in Proceedings of the 25th ACM International
Conference on Information and Knowledge Management, ser. CIKM
’16. ACM, 2016, pp. 2329-2334.

X. Yu, S. Gao, X. Hu, and H. Park, “A markov decision process approach
to vacant taxi routing with e-hailing,” Transportation Research Part B:
Methodological, vol. 121, pp. 114134, 2019.

X. Zhou, H. Rong, C. Yang, Q. Zhang, A. V. Khezerlou, H. Zheng,
Z. Shafiq, and A. X. Liu, “Optimizing taxi driver profit efficiency:
A spatial network-based markov decision process approach,” IEEE
Transactions on Big Data, vol. 6, no. 1, pp. 145-158, 2020.

Z. Shou, X. Di, J. Ye, H. Zhu, and R. Hampshire, “Where to find
next passengers on e-hailing platforms? - a markov decision process
approach,” arXiv preprint arXiv:1905.09906, 2020.

C.-M. Tseng, S. C.-K. Chau, and X. Liu, “Improving viability of electric
taxis by taxi service strategy optimization: A big data study of new york
city,” IEEE Transactions on Intelligent Transportation Systems, vol. 20,
no. 3, pp. 817-829, 2019.

N. Garg and S. Ranu, “Route recommendations for idle taxi drivers:
Find me the shortest route to a customer!” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, 2018, pp. 1425-1434.

Y. Gao, D. Jiang, and Y. Xu, “Optimize taxi driving strategies based
on reinforcement learning,” International Journal of Geographical In-
Jformation Science, vol. 32, no. 8, pp. 1677-1696, 2018.

M. Han, P. Senellart, S. Bressan, and H. Wu, “Routing an autonomous
taxi with reinforcement learning,” in Proceedings of the 25th ACM
International Conference on Information and Knowledge Management,
ser. CIKM ’16. ACM, 2016, pp. 2421-2424.

C. Yan, H. Zhu, N. Korolko, and D. Woodard, “Dynamic pricing and
matching in ride-hailing platforms,” Naval Research Logistics (NRL),
vol. 67, no. 8, pp. 705-724, 2020.

H. A. Chaudhari, J. W. Byers, and E. Terzi, “Putting data in the driver’s
seat: Optimizing earnings for on-demand ride-hailing,” in Proceedings
of the Eleventh ACM International Conference on Web Search and Data
Mining. ACM, 2018, pp. 90-98.

S. Guo, Q. Shen, Z. Liu, C. Chen, C. Chen, J. Wang, Z. Li, and
K. Xu, “Seeking based on dynamic prices: Higher earnings and better
strategies in ride-on-demand services,” IEEE Transactions on Intelligent
Transportation Systems, vol. 24, no. 5, pp. 5527-5542, 2023.

AMap, “API of AMap Service,” 2023. [Online]. Available: https:
//Ibs.amap.com/

L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in
Proceedings of the 36th Conference on Neural Information Processing
Systems, ser. NeurIPS 22, 2022, pp. 507-520.

R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” Information Fusion, vol. 81, pp. 84-90, 2022.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD 16, 2016, pp. 785—
794.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “LightGBM: A highly efficient gradient boosting decision tree,” in
Proceedings of the 31st Conference on Neural Information Processing
Systems, ser. NIPS °17, 2017, pp. 1-9.

[44]

[45]

[46]

[47]

(48]

[49]

-

)
”

¢
?

20

C. Bentéjac, A. Csorgd, and G. Martinez-Mufioz, “A comparative
analysis of gradient boosting algorithms,” Artif. Intell. Rev., vol. 54,
no. 3, p. 1937-1967, 2021.

X. Shi, Y. D. Wong, M. Z.-F. Li, C. Palanisamy, and C. Chai, “A feature
learning approach based on XGBoost for driving assessment and risk
prediction,” Accident Analysis & Prevention, vol. 129, pp. 170-179,
2019.

H. Anas, W. H. Ong, and O. A. Malik, “Comparison of deep Q-Learning,
Q-Learning and SARSA reinforced learning for robot local navigation,”
in Robot Intelligence Technology and Applications 6. Cham: Springer
International Publishing, 2022, pp. 443-454.

I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending
the OpenAl gym for robotics: a toolkit for reinforcement learning using
ROS and Gazebo,” arXiv preprint arXiv:1608.05742, 2017.

A. Ghosh, A. Sankararaman, K. Ramchandran, T. Javidi, and A. Mazum-
dar, “Competing bandits in non-stationary matching markets,” IEEE
Transactions on Information Theory, vol. 70, no. 4, pp. 2831-2850,
2024.

——, “Decentralized competing bandits in non-stationary matching
markets,” arXiv preprint arXiv:2206.00120, 2022.

Suiming Guo received his Ph.D. from the Chinese University
of Hong Kong. He is currently an associate professor in Col-
lege of Information Science and Technology, Jinan University,
Guangzhou, China. His research interests include data mining,
urban computing, pervasive computing and smart cities studies.

Baoying Deng is currently pursuing the Master degree in Col-
lege of Information Science and Technology, Jinan University,
Guangzhou, China. His research interests include urban comput-
ing and smart cities studies.

Chao Chen received his Ph.D. from UMPC (Paris 6) and
Telecom SudParis. He is currently a full professor of computer
science at Chongqing University, China. His research interests
include pervasive computing, social network analysis, and mobile
crowdsensing.

Jintao Ke is an Assistant Professor in the Department of Civil
Engineering at the University of Hong Kong (HKU). He received
his PhD degree (2020) from Hong Kong University of Science
and Technology. His research interests include shared mobility
on demand, transportation big data analytics, multimodal intelli-

gent transportation systems, transportation pricing, short-term travel demand
forecasting, etc.

Jingyuan Wang received his Ph.D. from Tsinghua University.
He is currently a full professor at Beihang University. His general
area of research is data mining and machine learning, with special
interests in smart cities.

Saiqin Long received her PhD degree from the South China
University of Technology. She is currently a professor with the
College of Information Science and Technology, Jinan University,
China. Her research interests include cloud computing, edge com-
puting, parallel and distributed systems, and Internet of things.

Ke Xu received his Ph.D. from Tsinghua University. He is cur-
rently a full professor in the Department of Computer Science and
Technology, Tsinghua University. His research interests include
next generation Internet, P2P systems, Internet of Things(IoT),
network virtualization and optimization.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 03,2024 at 03:14:38 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

