
IET Intelligent Transport Systems

Research Article

How to pay less: a location-specific approach
to predict dynamic prices in ride-on-demand
services

ISSN 1751-956X
Received on 29th September 2017
Revised 13th April 2018
Accepted on 8th May 2018
E-First on 29th May 2018
doi: 10.1049/iet-its.2017.0300
www.ietdl.org

Suiming Guo1,2, Chao Chen3 , Yaxiao Liu4, Ke Xu4, Bin Guo5, Dah Ming Chiu2

1College of Information Science and Technology, Jinan University, Guangzhou, People's Republic of China
2Department of Information Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong
3College of Computer Science, Chongqing University, Chongqing, People's Republic of China
4Department of Computer Science and Technology, Tsinghua University, Beijing, People's Republic of China
5School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an, People's Republic of China

 E-mail: cschaochen@cqu.edu.cn

Abstract: In emerging ride-on-demand (RoD) services, dynamic pricing plays an important role in regulating supply and
demand and improving service efficiency. Despite this, it also makes passenger anxious: whether the current price is low
enough, or otherwise, how to get a lower price. It is thus necessary to provide more information to ease the anxiety, and
predicting the prices is one possible solution. In this study, the authors predict the dynamic prices to help passengers learn if
there is a lower price around. They first use entropy of historical prices to characterize the predictability of prices in different
locations and claim that different prediction algorithms should be used to balance between efficiency and accuracy. They
present an ensemble learning approach to price prediction and compare it with two baseline predictors, namely a Markov and a
neural network predictor. The performance evaluation is based on the real data from a major RoD service provider. Results
verify that the two baseline predictors work well in locations with different levels of predictabilities, and that ensemble learning
significantly increases the prediction accuracy. Finally, they also evaluate the effects of prediction, i.e., the probability that
passengers could benefit from the prediction and get a lower price.

 Nomenclature
Δt length of each time slot
K total length of price multiplier sequence
R(i, j) (sub)-sequence of price multipliers at cell (i, j):

R(i, j) = Rk
(i, j), k = 1, 2, …, L, L ≤ K

L length of the (sub)-sequence R(i, j)

N (i, j) number of distinct price multipliers at cell (i, j)
rm

(i, j) distinct price multipliers in R(i, j), 1 ≤ m ≤ N (i, j)

SShannon
(i, j) Shannon entropy of R(i, j)

Sreal
(i, j) real entropy of R(i, j)

S(i, j) set of time-ordered sub-sequences of R(i, j),
S(i, j) = s(i, j) |s(i, j) ⊆ R(i, j)

sk
′(i, j) length of the shortest unseen sub-sequence of R(i, j)

starting at time k
Πmax maximum predictability of any prediction algorithm

1 Introduction
Emerging ride-on-demand (RoD) services such as Uber and Didi
have drawn increasing attention recently. They attract passengers
by its cleanness, convenience, as well as flexible and affordable
prices, and on the other hand, attract drivers who want to make use
of their idle cars without applying for licenses. Meanwhile, they
also create concerns that sometimes their dynamic prices go so
high (as high as five or ten times the normal prices) during a big
event or in bad weather.

Dynamic pricing is the core and distinctive feature in RoD
service, and it reflects the effort in controlling the supply (the
number of cars) and demand (the number of requests) in a
particular location so that an equilibrium is approached: a higher
price reduces demand and increases supply in a busy area, and a
lower price does the opposite in a not-busy area. As a result, the
service becomes more responsive for both drivers and passengers.

On the other hand, dynamic pricing exerts mental burden on
passengers. In traditional taxi service with fixed pricing,
passengers are able to estimate the trip fare based on their personal
experience. In emerging RoD services, however, they have an extra
task before making decisions – predicting the dynamic prices –
based on their estimate of the supply & demand condition nearby,
and this is invariably inaccurate for most individual passengers.
Without relevant information, passengers may wonder ‘Could I get
a lower price in neighbouring locations (e.g. within hundreds of
metres) or within a short time (e.g. 10 to 20 min)?’. These
questions create hesitation and exert mental burden on passengers.

Giving more information to passengers help ease the anxiety,
including, for example, by explaining why the current price is high
or low, giving a recent history of prices to passengers, predicting
the prices in the next time slot in the neighbouring locations etc.
Among these ideas, the most direct one is price prediction, and
passengers could answer the above questions and make a decision
based on the predicted prices, instead of relying on a rough and
unreliable estimate of the supply & demand nearby.

Price predictions have not received much attention in RoD
services. Chen et al. [1] tried to predict the future prices by
guessing the relationship between dynamic prices and a
combination of supply and demand. Since most RoD services keep
their dynamic pricing algorithms as secrets, guessing the
relationship from data is not accurate enough to generate a good
prediction. Instead, we propose to predict dynamic prices based on
the historical data, instead of trying to learn some unknown,
internal relationship from outside. This is inspired by the demand
prediction work that was common in the studies on taxi service.
These studies try to predict the demand for taxi service by studying
the historical data, using methods such as time-series analysis,
SVM or neural networks (NNs).

In RoD services, dynamic pricing is represented by a price
multiplier. The price of a trip is the product of a dynamic price
multiplier (dependent on the supply & demand condition) and a
fixed normal price (dependent on the estimate distance & time of
the trip). The geographical and temporal variation of the price
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multiplier is the source of anxiety and is also the target of
prediction in this study.

The regularity of price multipliers varies among different areas
in a city. For example, at the airport terminals or train stations, the
price multiplier is always stable during the day, not only because
the demand is stable throughout the day, but also because drivers
know this and are more inclined to cruise in these areas looking for
passengers. In business areas (e.g. the Financial Street in Beijing),
contrarily, the price multiplier is more volatile, as there are
different kinds of passengers leaving this area, including those in
travel, business visit, going/leaving workplaces etc. and there is not
a regularity of passengers’ behaviour from day to day.

This inspires us to use a metric – maximum predictability Πmax

– to characterise the patterns of price multipliers in different
locations. The calculation of predictability is based on the entropy
of price multiplier and captures both the randomness and the
temporal correlation behind it. This metric expresses both the
regularity and randomness of price multipliers. For example, an
area with a Πmax = 0.3 means that for 30% of the time, the price
multiplier is regular and predictable and for the rest 70% of the
time, the price multiplier appears to be random.

We then use different prediction algorithms to predict price
multipliers in areas with different Πmax. To start with, we first
implement two baseline predictors. For an area with high Πmax, the
prediction could be done by easier and faster algorithm, and we use
a Markov-chain predictor, considering only temporal correlations
between price multipliers. Alternatively, the predictor should
consider more factors such as weather condition in an area with
lower Πmax, and we use a NN predictor in this case. We then
employ an ensemble learning approach, i.e. building multiple
baseline predictors and combining their results to improve the
prediction accuracy and implement a boosted NN predictor. In
short, in ensemble learning, we try to build every new predictor to
focus more on the wrong predictions by the last predictor and
finally combine the predictions of all predictors by a weighted
summation.

In this study, we collaborate with a major RoD service provider
in China and evaluate the performance of different predictors based
on real data collected in Beijing. Our evaluation results show that,
for the two baseline predictors, while in areas with high Πmax the
Markov-chain predictor is both faster and more accurate, the NN
predictor significantly outperformed the Markov-chain predictor in
areas with lower Πmax. This justifies our claim that different
prediction algorithms should be used in different areas. For the
ensemble learning approach, the boosted NN predictor further
reduces the prediction error by up to about 21% in areas with low
Πmax, and about 9% in areas with high Πmax. Finally, we also use our
evaluation to show the effect of our prediction: if passengers in
different functional areas follow our prediction and choose the
lowest prices nearby, how many of them could get a lower price.

The remainder of this paper is organised as follows. Section 2
presents some background information and our dataset. In Section

3, we discuss the maximum predictability of price multipliers and
use it to characterise city cells and areas. Two baseline predictors,
as well as the boosted-NN predictor, are implemented in Section 4
and we also evaluate the performance and effect of our prediction.
Section 5 discusses related work and Section 6 concludes the paper.

2 Background and dataset
2.1 RoD services

Taxi service is probably the oldest RoD service: people could
request a ride when they wish. The pricing scheme is mostly fixed
and is dependent on the time and distance between two locations.
In recent years, some new RoD service providers have come into
the market, and the major difference between them and taxi service
is the use of dynamic pricing scheme. The price of a trip now is the
product of a dynamic price multiplier and the normal price
(comparative to the price in a taxi). Another difference is that new
services rely on global positioning system (GPS)-assisted mobile
apps to accurately locate both drivers and passengers.

In this subsection, we explain the user interface of a mobile app
of a typical RoD service, shown in Fig. 1, to give a generic
explanation of how such a service works. Usually, a passenger first
opens the app on his/her mobile phone when she/he wants to travel
from a boarding location A to an arriving location B, and types the
address of both locations in the app. The passenger could also
choose ‘when to ride (now or several minutes later)’ and ‘using
coupon’. After the passenger has specified the locations and chosen
all available options, the mobile app sends all the information to
the service provider, obtains in return (a) the estimated trip fare and
(b) the current dynamic price multiplier, and displays them. The
price multiplier reflects the current supply and demand condition
around the boarding location A. The service provider sets a lower
and upper bound on the price multiplier in the service policy. The
passenger then chooses either to accept the current price (by
pressing ‘Ride a Car!’ button) or give up the current fare estimation
if she/he considers the price multiplier too high. 

2.2 Anxiety from dynamic pricing

Passengers’ anxiety comes from their uncertainty about the
dynamic prices: they do not know whether the current dynamic
price multiplier is low enough, and, whether they could get a lower
one if they choose to wait for several minutes or to walk away for
hundreds of metres.

The possibility of getting a lower price has been validated in
[2]. The authors of [2] conclude that during rush hours if a
passenger is getting a too high price multiplier, she/he could
usually walk away for 1–2 km to get a lower one. Also, based on
the analysis of our data used in this study, we find that during
morning rush hours (i.e. 7–9 am) the probability of finding a lower
average price multiplier within 1 km is about 75.99%. This
probability is 76.10 and 34.21% for evening rush hours and non-
rush hours.

Passengers’ reaction to dynamic prices also indicates their
anxiety. Guo et al. [3] measured passengers’ reaction, i.e. how
many times they perform fare estimations before finally giving up
or getting on a car. As mentioned in Section 2.1, a passenger may
choose to give up or accept the fare estimation. If she/he considers
the price multiplier is too high, she/he may choose to wait for a
while or walk away and estimate the fare again. Guo et al. [3] show
that only in 39.77% cases one accepts the price multiplier after
only one fare estimation. This justifies that most passengers feel
uncertain about the dynamic price multiplier.

2.3 Our dataset

Our data of the RoD service is collected from Shenzhou UCar
(http://www.10101111.com/), one of the major RoD service
providers in China. By the end of 2015, Shenzhou UCar's service
covers more than 50 cities in China, with a fleet of more than
30,000 cars, offering more than 300,000 trips per day [4].

We collect the event-log dataset from Shenzhou UCar's service
in Beijing, China. The event-log dataset contains two major events:

Fig. 1  User interface of a typical RoD service
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EstimateFee and CreateOrder event. The EstimateFee event is
triggered when the mobile app sends all the information of a
passenger's request (including the two locations, the requested
group of cars, the time of the request etc.) to the service provider,
and returns the current price multiplier and the estimated trip fare.
When one performs multiple fare estimations, the same number of
EstimateFee events are generated. The CreateOrder event is
triggered only when the passenger is satisfied with the current price
multiplier and presses the ‘Ride a Car!’ button.

The event-log dataset contains the complete record of events in
the complete four weeks in October 2016 (from 3 October to 30
October) in Beijing. Each entry includes the time it happened, the
event code (i.e. EstimateFee or CreateOrder), the international
mobile equipment identity (IMEI) of the passenger's device,
location information, the estimated trip fare and the price multiplier
for EstimateFee etc. The volume of the dataset is about 5.3 million,
and all entries are properly anonymised.

We also find out from the event-log dataset that the service
provider sets a lower and upper bound for the price multiplier. The
lower bound is m = 1.0 and the upper bound is U = 1.6.

We also collect climate data for building NN predictor.
Specifically, we collect the daily precipitation and hourly
temperature data reported at the Beijing Capital International
Airport from TuTiempo (https://en.tutiempo.net/records/zbaa). The
granularity of the precipitation data may not be small enough: we
could not find the hourly precipitation data, and the precipitation
data at the airport do not represent the precipitation in other
locations of Beijing. The temperature data do not have this
problem.

3 Predictability of price multipliers
In this section, we first define city cells and areas of Beijing and
present the variation of price multipliers in different city areas. We
then define the maximum predictability Πmax and show the
distribution of Πmax. The difference of Πmax in various city cells and
areas makes it necessary to use different prediction algorithms.

3.1 City cells and areas

To show the predictability of price multipliers in different locations
of a city, we first divide the city map into N × N rectangular cells
of equal sizes, and cell (i, j) denotes the cell on row i, column j
(i, j = 1, 2, …, N). In this study, we set N = 100, so that each cell is
small enough to enable finer granularity of data analysis, and is
also large enough to have enough events happening inside each
cell. When N = 100 each cell is about 420×300 m2.

In addition to cells, we also consider a larger and also more
representative unit – the functional areas of a city. A large city

always has a clear partitioning of functional areas including, for
example:

• Business area: the place for working. Different industries (e.g.
financial or IT) may have different areas.

• Residential area: the place for living. In China, some large
residential areas accommodate ≥ 10, 000 residents.

• Transportation area: typical transportation areas include airport
terminals, railway stations for inter-city trains etc.

The partitioning of functional areas could be performed either
from the city plan of Beijing or by analysing real data. The task of
identifying functional areas of a large city such as Beijing is a
sophisticated task and has been studied using various techniques
based on different sources of data. For example, in our previous
work [2], we cluster the boarding and arriving locations of trips
from frequent passengers (i.e. those passengers having more trips
monthly) in RoD service using the k-means algorithm and verify
that the clustering result matches the city plan as well as our
knowledge of the distribution of functional areas in Beijing.

Fig. 2 shows some typical functional areas found in [2] and
validated by the city plan: areas 1 and 2 are typical business areas;
areas 3 and 4 are typical residential areas; and areas 5–7 are the
airport terminals and a major train station – typical transportation
areas. We use these typical functional areas in the remainder of the
paper. 

3.2 Variation of price multipliers

The target of our study is the price multiplier passengers obtain in
EstimateFee events. We divide the whole time range of data (i.e.
four weeks) into K time slots with equal length Δt and calculate the
average price multiplier in all EstimateFee events. So for each city
cell/area, we obtain a sequence of length K, and the kth element Rk
is the average price multiplier in the kth time slot. In practice, we
choose Δt = 1 h, so K = 24 × 7 × 4 = 672, and we thus focus on
the hourly average price multiplier in each city cell/area.

The variation of price multipliers may have different
regularities in different locations. In Fig. 3, we give the variation of
the hourly average price multiplier in typical business, residential
and transportation area during the four-week time range of our data
(from 0:00 on Day 0 to 23:59 on Day 27). 

The variation in transportation area (Fig. 3c) exhibits a strong
temporal pattern. The price multiplier is higher than 1.2 from 11
pm to 5 am. During the evening (from about 6 pm to 11 pm), the
price multiplier is always 1.1. In other hours of a weekday, the
price multiplier is always as low as 1.0. The highest price
multiplier appears at the end of Sundays (in most cases it is 1.4).

To the other extreme, the variation in the business area (Fig. 3a)
seems to be more random. There is no clear temporal pattern in
price multiplier, except that during weekends the multiplier is
lower (smaller than 1.1× in most cases).

There may be many reasons why the variation of price
multipliers have different regularities in different locations, such as
different travel patterns, different compositions of passengers’
intention etc. In this study, we do not try to find out these reasons;
instead, we define the regularity mathematically and study how to
take it into account in predicting price multipliers.

3.3 Maximum predictability Πmax

To characterise the regularity of price multiplier, we try to answer
the following problem, and define the maximum predictability
Πmax:
 

Problem 1.: Given a sequence of the price multipliers
R(i, j) = Rk

(i, j), k = 1, 2, …, L, L ≤ K  of cell (i, j), from time slot
1, 2, …, L, considering both the randomness and the temporal
correlation of the price multipliers, we want to find out the
maximum predictability 0 ≤ Πmax ≤ 1 (the highest potential
accuracy of prediction) that any prediction can reach.

Fig. 2  Map of Beijing and typical functional areas
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Note that in the problem definition, we define the predictability
on a sub-sequence of price multipliers: the length of the sub-
sequence is L ≤ K. This is because in predicting price multipliers,
we need to train the algorithm based on a training set, which is
usually a sub-sequence of the original data.

The problem of maximum predictability has been discussed in a
number of previous works about the prediction of, for example,
taxi demand, human mobility etc. The calculation of Πmax is based
on the entropy of R(i, j), and using different entropies have a
different meaning on the predictability. Here we discuss the
Shannon entropy and the real entropy.

The Shannon entropy measures only the uncertainty of price
multipliers and does not take into account the temporal correlation.
On the other hand, the real entropy [5, 6] tries to consider both. In
(1) and (2), p rm

(i, j)  is the probability of multiplier rm
(i, j) in cell (i, j),

and p s(i, j)  is the probability of finding a particular time-ordered
sub-sequence s(i, j) in R(i, j)

SShannon
(i, j) = − ∑

m = 1

N(i, j)

p rm
(i, j) log2 p rm

(i, j) , (1)

Sreal
(i, j) = − ∑

s(i, j) ∈ S(i, j)
p s(i, j) log2 p s(i, j) . (2)

We could see that unlike the Shannon entropy, the real entropy
considers not only the frequency of different price multipliers but
also the order of the temporal patterns of price multipliers.

Based on the two entropy measures for each cell, we could then
calculate the corresponding predictability measure: the success rate
that the most accurate algorithm could correctly predict the future
price multiplier at a particular cell. The predictability measure Π is
subject to Fano's inequality and could be calculated by [5]

S = − Πlog2(Π) − (1 − Π)log2(1 − Π) + (1 − Π)log2

N (i, j) − 1 . (3)

In (3), we obtain ΠShannon and Πreal when we let S = SShannon
(i, j)  and

Sreal
(i, j), respectively. It has been proven in [5] that ΠShannon ≤ Πreal so

that the maximum predictability is Πmax = Πreal. This indicates that
if we want to have a more accurate prediction, we need to consider
the temporal patterns of price multipliers.

Now we show the Πmax in different city cells/areas. For the
N × N cells, we count the number of fare estimations in each cell
during the four-week period and only consider those with the
number higher than the median value. In other words, we exclude
the cells without enough passenger activity. After the exclusion, the
total number of cells to study is 3760.

In Fig. 4, we show the probability distribution function (PDF)
of the predictability measures in all these cells: Πmax = Πreal  and
ΠShannon when we consider the whole dataset, and when
considering only the weekdays in the four-week period. We also
calculate the ΠShannon and Πreal for the business, residential and
transportation areas and show the results in Table 1. 

We have the following observations on the predictability:

i. It is necessary to consider temporal correlation in price
multipliers. The mean Πreal is 0.8315 and 0.8089 for all the
days and for weekdays only; while the counterpart of ΠShannon

is only 0.6097 and 0.5789. Similarly, considering temporal
correlation also brings a 75.61, 29.13 and 56.44% increase in
predictability for business, residential and transportation area,
respectively.

ii. It is necessary to consider all the days instead of only
weekdays. This is a trade-off between regularity and data size.
Price multipliers of only weekdays may have more regularity,
but meanwhile, the data size is larger when considering all the
days. Fig. 4 shows that considering the whole week provides
higher predictability.

iii. Predictability measures could also be used to characterise city
areas, and this agrees with our observation in Section 3.2 and
Fig. 3. Business area has the lowest Πmax at 0.8322 and
transportation area has the highest Πmax at 0.9554, and there is a
significant difference in Πmax between these functional areas.

Fig. 3  Variation of price multipliers in different functional areasway
(a) Business area, (b) Residential area, (c) Transportation area

 

Fig. 4  PDFs of predictabilities in city cells
 

Table 1 Predictability in different functional areas
Business Residential Transportation

ΠShannon 0.4739 0.6677 0.6107

Πreal 0.8322 0.8622 0.9554
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4 Predicting price multipliers
In this section, we first implement two baseline predictors, namely
a Markov-chain and a NN predictor, to predict future price
multipliers based on historical data. We then use an ensemble
learning approach and build a boosted-NN predictor. These
predictors are evaluated in different city cells/areas.

4.1 Baseline predictors

4.1.1 Markov-chain predictor: In a high-order Markov-chain
predictor, the price multiplier in the next time slot is determined
only by the multiplier in the current and a few past time slots.
Assuming the order is q and that we already have the historical
data R(i, j) = Rk

(i, j), 1 ≤ k ≤ L , an order q Markov-chain predictor
predicts the next multiplier RL + 1

(i, j)  based on the current and past
price multipliers RL − q + 1

(i, j) , …, RL − 1
(i, j) , RL

(i, j). The Markov property
assumes that the transition probability
P RL + 1

(i, j) | RL − q + 1
(i, j) , …, RL − 1

(i, j) , RL
(i, j)  is independent of the current time

slot L

P RL + 1
(i, j) | RL − q + 1

(i, j) , …, RL − 1
(i, j) , RL

(i, j)

= P Rt
(i, j) | Rt − q

(i, j), …, Rt − 2
(i, j), Rt − 1

(i, j) , ∀q < t ≤ L .
(4)

The transition probabilities form the transition matrix T, and each
element of T, denoted by Tc, c′, is

Tc, c′ = P Rt
(i, j) = c′ | Rt − q

(i, j), …, Rt − 2
(i, j), Rt − 1

(i, j) = c . (5)

Note that in (5), c is a sequence of price multipliers of length q, and
c′ is a single price multiplier.

The probability transition matrix T is derived from the historical
data. We first find out every tuple of length q (i.e. a series of price
multipliers in q consecutive time slots) from the historical data of
length L i . e . R(i, j) = Rk

(i, j), 1 ≤ k ≤ L . The set of distinct tuples
are the rows of T. For each distinct tuple c, we find out all the
possible next price multipliers in every occurrence of tuple c. The
set of all distinct next price multipliers are the columns of T. For
each distinct next price multiplier c′, we obtain the corresponding
element Tc, c′ of T – the probability of the next price multiplier c′
occurring immediately after the presence of a tuple c in R(i, j).

Predicting the price multiplier in the next time slot is
straightforward based on the learned matrix T and historical data.
In general, it consists of calculating the next price multiplier,
appending to the historical data and updating the matrix T.
Algorithm 1 summarises the Markov-chain predictor.
 

Algorithm 1: The Markov-chain predictor
Input: the Markov-chain order q, historical data of price

multipliers R(i, j) = Rk
(i, j), 1 ≤ k ≤ L , transition matrix T.

1: Extract the most recent q price multipliers c from R(i, j), i.e.
c = RL − q + 1

(i, j) , …, RL − 1
(i, j) , RL

(i, j) .
2: if c exists in T’s rows then
3:  Find in this row the largest value Tc, c′.
4:  return c′.
5: else
6:  Find the most frequent price multiplier appearing in R(i, j),
denoted by c′.
7:  return c′.
8: end if
9: Append c′ to R(i, j) to form the new historical data
R(i, j) = Rk

(i, j), 1 ≤ k ≤ L + 1 .

10: Update the transition matrix T based on R(i, j).

4.1.2 NN predictor: Unlike the Markov-chain predictor that
predicts the next multiplier solely based on the temporal
correlation, in the NN predictor we are able to include more factors
that decide the prediction result. In our implementation, we
consider four features. Note that we have already stated that the
length of each time slot is 1 h, so we actually collect hourly
average price multiplier in each city cell/area. The features are as
below:

1. Hour-of-a-day: the value ranges from 0 to 23, and it represents
the hour of a particular day.

2. Day-of-a-week: the value ranges from 0 to 6, and it represents
the day of a week (from Monday to Sunday).

3. Daily precipitation: we obtain the daily precipitation (in
millimetres) in Beijing International Airport from a public data
source. Note that this data may not be accurate enough, as the
precipitation around the airport may not be the precipitation
around a particular city cell or functional area. Also, we only
have the daily precipitation instead of hourly data, and this add
up to the inaccuracy. However, we consider this enough to
catch the essence, and in the future, we will try to get more
accurate data to refine our NN predictor.

4. Hourly temperature: similarly, we also obtain the hourly
temperature (in °C) in the airport from a public data source.
This data is better than the precipitation data because (a) this is
an hourly data and (b) the temperature around the airport is
more representative of the temperature in other city cells/areas.

Our NN predictor uses a two-layer structure: a ReLU activation
layer follows the input layer and then a Softmax output layer. The
data fed to the input layer is a four-element tuple (i.e. values of the
four features above), and the output from the Softmax layer is a
categorical value ranging from 1 to 7 (each possible value
represents a possible price multiplier, so in our data we have seven
categories as the service provider sets the lower and upper bound
of price multiplier to be 1.0 and 1.6).

4.2 Ensemble learning and boosted-NN predictor

Ensemble learning is a technique to improve weak learners to
become strong learners. Under the setting of our paper, a weak
learner is a prediction model that may not have a high accuracy, as
long as its performance is better than random guessing. A strong
learner, as its name suggests, is a prediction model that has higher
accuracy. In ensemble learning, the prediction result is a weighted
combination of multiple weak learners. In general, there are three
categories of ensemble learning models:

• Bagging: In the bagging model, the training set of each weak
learner is a subset of the original training set, and is sampled by
randomly selecting training data with replacement. So different
weak learners use different training sets and the final prediction
is based on the majority voting scheme.

• Boosting: In the boosting model, predictors are trained
sequentially, and the next predictor assigns more weights to the
mistakes that the previous predictor made. So those wrongly
predicted data become more important in the next prediction.

• Stacking: In the stacking model, outputs of the first level of
predictors are inputs for the second level.

In this subsection, we use the boosting model and choose the
NN baseline predictor as the weak learner to be improved. The
reason for not choosing the bagging model is that the number of
training data is relatively small (smaller than L = 672), so a
sampled training set is even smaller and may not be accurate
enough. A famous algorithm in the boosting model is AdaBoost
[7], and for the multi-class prediction, the stage-wise additive
modelling using a multi-class exponential loss function (SAMME)
[8] algorithm is one of the most frequently used. Our prediction
target is multi-class, as we have seven categories in the output for
the price multiplier 1.0–1.6.

SAMME is a general multi-class boosting algorithm. Assuming
the number of training data is n, the input feature and output
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prediction result are xk and yk(1 ≤ k ≤ n), respectively, and the
number of class is S. It first initialises equal observation weights
ωk = (1/n)(1 ≤ k ≤ n) for these data and then runs the following
boosting process for M times. For the mth (1 ≤ m ≤ M) boosting
process

1. SAMME first fits a predictor T (m)(x) to the training data using
weights ωk.

2. The weighted error rate errm is calculated

errm =
∑k = 1

n ωkI yk ≠ T (m)(xk)
∑i = k

i = k ωk
. (6)

3. With the error rate, the weight of this predictor T (m)(x) is
calculated as α(m) = log (1 − err(m))/(err(m)) + log(S − 1).

4. The weight ωk of the training data is updated

ωk ← ωkexp α(m)I yk ≠ T (m)(xk) . (7)
5. After the last step, those wrongly predicted training data have

their weights increased. Now we normalise all the weights to
make all ωk sum to 1.

After M times of boosting process, we have M predictors
T (m), 1 ≤ m ≤ M. Also, the way we combine them together is

T(x) = arg max
1 ≤ s ≤ S

∑
m = 1

M
α(m) ∗ I T (m)(x) = s . (8)

In other words, the output of the combined predictor is the class
that has the highest weight.

During any of the above boosting process, if the calculated error
rate is errm ≥ ((S − 1)/(S)), then the corresponding weight of the
predictor αm will be negative. So, this requires a stopping criterion:
if the error rate is greater than ((S − 1)/S), we should break the
boosting process, and combine the predictors that have already
been generated.

In this study, we use a variant of SAMME and build a boosting
model based on the NN predictor in Section 4.1.2. Note that in the
SAMME algorithm mentioned above, a weight is applied to each
training data, but when training a NN, the weight could not be
applied to training data. Hence, we modify the original SAMME
algorithm: instead of training a predictor using weights on the data,
we re-sample the training data with replacement and weights ωk in
every boosting process. We call our predictor as the boosted-NN
predictor, and Algorithm 2 summarises the whole training process.
Similar to the NN predictor, the input to the boosted-NN predictor
is the four-feature vector, and the output is a seven-category value,
ranging from 1 to 7, corresponding to price multipliers from 1.0 to
1.6.
 

Algorithm 2: The boosted-NN predictor
Input: For each cell (i, j), the training set is

Rtrain
(i, j) = Rk

(i, j), 1 ≤ k ≤ Ltrain , and the number of class is 7. The
input four-feature vector is denoted by xk, 1 ≤ k ≤ Ltrain .

1: Initialise equal weights ωk = 1/Ltrain, 1 ≤ k ≤ Ltrain.
2: for m = 1 to M do
3: Train a NN predictor to the training set. Each data point has a
weight ωk, but these weights are not applied to predictor training.
4: Calculate the weighted error rate

errm =
∑k = 1

Ltrain ωkI Rk
(i, j) ≠ T (m)(xk)

∑k = 1
Ltrain ωk

.

if errm ≥ 6/7, then stop the boosting process.
5: Calculate the weight of this predictor T (m)(x)

α(m) = log1 − err(m)

err(m) + log(6) .

6: Update the weight of the training set

ωk ← ωk ∗ exp α(m) ∗ I Rk
(i, j) ≠ T (m)(xk) .

7: Normalise all ωk so that Σk = 1
Ltrainωk = 1.

8: Based on all ωk, re-sample the training set with replacement and
weights ωk, and form the new training set for the next m.
9: end for
10: Combine M predictors T (m)(x), 1 ≤ m ≤ M  to become the
boosted-NN predictor T(x), such that

T(x) = arg max1 ≤ s ≤ 7 ∑
m = 1

M
α(m) ∗ I T (m)(x) = s .

4.3 Evaluation setup

We discuss how to evaluate the performance of our price multiplier
predictors from three perspectives: preparing the training and test
set, choosing evaluation metrics, and sampling city cells.

4.3.1 Training and test set: Both the Markov-chain predictor and
NN predictor need training and test set. In our dataset, we split the
four-week data into four parts – one-week data for each part. We
then use any one part as the test set and the remaining three parts as
the training set. As a result, the length of the test set, Ltest, is 168
(=24 × 7) and the length of the training set, Ltest, is 504 (=3 × 24 × 
7). For the Markov-chain predictor, the first three weeks of data are
the training set, and the last week of data are the test set. We first
generate the transition matrix T based on the training set, and then
successively predict the next multiplier until we reach the end of
the fourth week, while at the same time updating T in each
prediction.

For the NN predictor, we run it for 500 times for each city cell/
area, and in each run, we randomly choose the test set (and the
corresponding training set) and obtain the evaluation result as an
average among multiple runs. After training parameters on the
training set, the features corresponding to each hour in the week of
the test set are then fed into the network, with the output as the test
results to be compared by our ground-truth data.

The procedure for the boosted-NN predictor is similar, except
that in each run, we successively train M NN predictors, and
combine them together. We test different choices of M and find that
M = 20 is enough for the NN predictors to converge. In other
words, the evaluation metric of the resulting boosted-NN predictor
will not change after training 20 NN predictors.

4.3.2 Evaluation metrics: The usual way to evaluate the
performance of a prediction algorithm is based on the accuracy
measure, i.e. how many of the predicted items are equal to the
corresponding ground-truth items. In other words, if we use
Rtest

(i, j) = Rtest, k
(i, j) , k = 1, 2, …, Ltest  to denote the price multiplier

sequence in cell (i, j) of the test set and use
Rpred

(i, j) = Rpred, k
(i, j) , k = 1, 2, …, Ltest  to denote the predicted price

multiplier sequence, then the metric is Countequal
(i, j) = ∑k = 1

Ltest δk
(i, j),

where δk
(i, j) = 1 if Rpred, k

(i, j) = Rtest, k
(i, j) , and is 0 otherwise.

In predicting price multipliers, on the other hand, we do not
care that much about the accuracy measure. In some cases, even
though there is a slight difference between the predicted price
multiplier and the ground truth, it is not a problem for passengers.
For example, a user faced with a price multiplier 1.3 in a particular
location may only want to know if there is any possibility to get a
multiplier lower than 1.3 in neighbouring locations or in a short
time but does not care about whether it is 1.1 or 1.2.

In our evaluation, we use the symmetric mean absolute
percentage error (sMAPE) [9], an accuracy measure based on the
relative difference (error)
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sMAPE(i, j) = 1
Ltest

∑
k = 1

Ltest Rpred, k
(i, j) − Rtest, k

(i, j)

Rpred, k
(i, j) + Rtest, k

(i, j) . (9)

To sum up, a higher sMAPE means lower prediction accuracy and
a lower Countequal means the same.

4.3.3 Sampling of city cells: We evaluate the predictors in both
functional areas and city cells. The limited number of functional
areas in our study makes it easy to evaluate the predictors, but the
3760 city cells (see Section 3.3) may be a large number to evaluate.

We sample some representative city cells for the evaluation. We
first sort all the city cells according to the ascending order of their
maximum predictability Πmax and then split them into ten groups of
equal sizes. In our case, each group contains 376 city cells. For
example, the first group (denoted by ‘0–10%’) means the bottom
10% cells according to Πmax. For each group, we take out the
median 10 cells as samples and use the average sMAPE of these 10
cells as the sMAPE of this group of cells. In all, we have 100
sample cells. Table 2 summarises the median Πmax of sample cells
in each group. 

4.4 Performance evaluation of predictors

In the following evaluation, the order used in the Markov-chain
predictor (Section 4.1.1) is set to q = 3, as we find from running
the predictor that increasing q over this value does not significantly
increase the accuracy of the prediction. For the NN predictor
(Section 4.1.2), the dimension of the input layer is 4, as we have
four features; the number of neurons in the ReLU activation layer
is 5, and this is the result of our parameter tuning; the number of
neurons in the Softmax output layer is 7, as the range of price
multiplier is from 1.0 to 1.6.

We first run all predictors on every sampled cell for 500 times
and calculate the average sMAPE values. In Fig. 5 we show the
sMAPE values for all predictors in the ten sampled groups: group 1
means the ‘0–10%’ cells; group 2 means the ‘10–20%’ cells, and
so on. 

The functional area is a much larger unit, and we also run all
predictors on the three functional areas: business, residential and
transportation area. In Table 3, we show the result, including the
sMAPE and Countequal (only for reference), of running these
predictors. 

For the baseline predictors, the Markov-chain predictor has a
prediction accuracy decreasing quickly when the maximum
predictability decreases. For the group with the highest median of
Πmax = 0.9196, the average sMAPE of the prediction is as low as
0.0372, and for the group with the lowest median, the average
sMAPE climbs to 0.0702–88.7% higher. Comparatively, the
prediction accuracy of the NN predictor is much more stable with
different Πmax.

Comparing the sMAPE of baseline predictors in Fig. 5, when a
city cell's Πmax ≤ 0.8564, the NN predictor has higher prediction
accuracy; otherwise, the Markov-chain predictor performs better.

Regarding the prediction accuracy in functional areas, we
compare the results in business and transportation area. Residential
area stands in between, so comparing the two extremes is enough.
We have the following observations:

i. For a functional area with high predictability (e.g. the
transportation area), while the NN predictor brings a small
increase of 15.1% in Countequal, it results in a sMAPE 40.2%
higher, compared with the Markov-chain predictor.

ii. For a functional area with low predictability (e.g. the business
area), the NN predictor not only increases the Countequal by
90.3% but also results in an 18.2% lower sMAPE.

Considering the fact that the NN predictor needs more
computation time (in our case about 20 times that of the Markov-
chain predictor) and more feature data (i.e. the weather data in our
case), we conclude that only in functional area with low
predictability the NN predictor is necessary, and the Markov-chain

predictor provides enough prediction accuracy in other functional
areas with higher Πmax. This justifies our earlier claim that we
should use different prediction algorithms in different city cells/
functional areas.

The ensemble learning is used to improve the prediction
accuracy based on the NN predictor, which is already better than
the Markov-chain predictor in most cases. Regarding the effects of
the boosting model, we have the following observations:

i. The boosted-NN predictor always has higher prediction
accuracy than the NN predictor, and now for those city cells
with Πmax ≤ 0.8705 the boosted-NN predictor performs better
than the Markov-chain predictor. In particular, for the ‘0–10%’
group of cells, the boosted-NN predictor generates a sMAPE
only 52.28% of that of the Markov-chain predictor.

ii. For the improvement compared with the NN predictor, the
boosted-NN predictor reduces the sMAPE by up to 21% when
Πmax is smaller, and the reduction falls to about 9% in the group
with the highest Πmax. In other words, the improvement is
greater for less predictable locations.

To sum up our evaluation results, we have

i. For locations with highly predictable price multipliers (i.e.
Πmax > 0.8564), the Markov-chain predictor is enough.

ii. For locations with less predictable multipliers (i.e.
Πmax ≤ 0.8564), the NN predictor gives a more accurate
prediction.

iii. For some more unpredictable locations in the city, using the
boosted-NN predictor could further reduce the prediction
inaccuracy by up to 21% compared with the NN predictor, but
may take much longer time to finish.

Table 2 Πmax of sample cells in each group
Group, % Median Πmax Group, % Median Πmax

0–10 0.7460 50–60 0.8436
10–20 0.7632 60–70 0.8564
20–30 0.7799 70–80 0.8705
30–40 0.8107 80–90 0.8932
40–50 0.8306 90–100 0.9196

 

Fig. 5  SMAPE of all three predictors in city cells
 

Table 3 sMAPE of predictors in functional areas
Business Residential Transportation

Markov-chain predictor
Countequal 47.3 54.5 71.6
sMAPE 0.0548 0.0468 0.0366

NN predictor
Countequal 90.2 86.3 82.4
sMAPE 0.0448 0.0457 0.0513

boosted-NN predictor
Countequal 90.5 85.2 82.1
sMAPE 0.0367 0.0366 0.0487

 

616 IET Intell. Transp. Syst., 2018, Vol. 12 Iss. 7, pp. 610-618
© The Institution of Engineering and Technology 2018

 17519578, 2018, 7, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-its.2017.0300 by T

singhua U
niversity L

ibrary, W
iley O

nline L
ibrary on [09/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.5 Effects of price multiplier prediction

We now return to our initial goal of predicting price multipliers –
relieving the anxiety from dynamic pricing. The anxiety comes
from passengers’ uncertainty about the price multipliers nearby, or
within a short time. We envision that our work on price multiplier
prediction could reduce this uncertainty and make passengers
informed about ‘how to get a lower price multiplier?’. We try to
answer:

• Q1: If there are indeed chances to get a lower price multiplier in
neighbouring cells at the same time, by what probability could
our price multiplier prediction find out such a chance?

• Q2: With our price multiplier prediction, by what probability a
passenger in a particular location could really get a lower price
multiplier in neighbouring cells at the same time?

Before answering these questions, we first define ‘neighbouring
cells’: for cell (i, j), its neighbouring cells are
Neighbour(i, j) = {(i′, j′) | i − 1 ≤ i′ ≤ i + 1, j − 1 ≤ j′ ≤ j + 1} ..

We only consider those passengers in business and
transportation areas, as these are two representative functional
areas with low and high price multiplier predictability, respectively.
We use the Markov-chain predictor in the transportation area and
the NN predictor in the business area.

For Q1, if we indeed find from our data that a passenger
standing in a cell in a particular functional area is able to get a
lower price multiplier in eight neighbouring cells, our evaluation
shows that on average in the transportation area the probability that
our predictor could find out such a chance is 89.4%, and in the
business area the probability is 82.3%.

For Q2, the difference with Q1 is that we have to consider the
fact that in some cells there is not any lower price multiplier in
neighbouring cells. Similarly, on average in transportation area the
probability a passenger could use the price multiplier prediction to
get a lower price in neighbouring cells is 18.7% – because in
transportation area the price multiplier is relatively stable and low
(see Section 3.2). In the business area, the probability is much
higher and reaches 35.4%.

For Q2, we also try to focus only on those cells on the edge of a
functional area. In practice, passengers in these cells are easier to
get lower multipliers, as walking away to a neighbouring cell may
enter a different functional area. Our evaluation shows that in the
edge cells of transportation area, the corresponding probability
rises to 31.2%. The probability in the business area rises to 67.3%.

These results verify that (a) price multiplier prediction is
effective in obtaining lower prices and thus relieving passengers’
anxiety and (b) passengers standing on the edge of functional areas
are easier to find lower prices.

5 Related work
RoD service. Most studies on emerging RoD services are centred
on dynamic pricing. Chen et al. [1] tried to evaluate Uber's surge
pricing mechanism based on the measurement treating Uber as a
black-box. In our previous work [2, 3], the demand pattern, the
effect of dynamic pricing, and passengers’ reaction to dynamic
pricing in RoD service have been carefully studied and analysed.
Other works focus on economic analysis of the effect and impact of
dynamic pricing [10], the supply elasticity [11], consumer surplus
[12] etc.

Taxi service. Our work on price multiplier prediction is inspired
by previous work on taxi demand prediction. The availability of
public taxi dataset leads to a number of related studies. Examples
include using a NN to forecast the taxi demand from historical data
[13], using SVM to select the most related feature that determines
the taxi demand [14], using taxi GPS trajectories to detect
anomalous trips [15] etc. Besides, taxi data have also been used in
other applications such as crowd-sourcing [16, 17], trip purpose
inference [18], traffic data collection [19, 20] and data
dissemination [21, 22].

Temporal patterns and predictability. Many studies have found
that urban human mobility has strong regularities: people usually

go to work, go back home, go shopping/entertaining at specific
time and locations. For example, Gonzalez et al. [23] found by
studying cell phone user's location records and show that human
mobility exhibits a high degree of the spatio-temporal pattern.
Furthermore, Song et al. [5] employed the concept of maximum
predictability and uses it to study the temporal pattern of individual
human mobility. Similarly, Zhao et al. [24] also use this concept to
choose different algorithms to predict taxi demand at each building
block in New York.

Ensemble learning methods. Ensemble learning is a
sophisticated and widely-used technique to improve and combine
weak learners to become a strong learner. There are three main
categories of methods, including bagging [25], boosting [7] and
stacking [26]. In boosting, there are a number of algorithms to
handle multi-class boosting, and SAMME [8] is one of the most
widely used.

6 Conclusion
We use price multiplier prediction to relieve the anxiety brought by
dynamic pricing in RoD services, and help passengers to answer
‘Could I get a lower price multiplier within a short time/distance?’.

Based on the data collected from a major service provider in
China, we define a metric maximum predictability Πmax to
characterise the predictability of price multipliers in different
locations. Data analysis shows that the mean Πmax around the city is
0.8315 (i.e. at most 83.15% price multipliers could be predicted)
and that considering temporal correlation is necessary for
prediction and could increase Πmax by up to 75.61% in the business
area.

We then implement two baseline predictors, the Markov-chain
and NN predictor, and use ensemble learning to build a boosted-
NN predictor to further improve the prediction accuracy. Our
evaluation shows that the Markov-chain predictor is suitable in
highly-predictable locations, whereas the NN predictor performs
better in less predictable locations. Also, the boosted-NN predictor
could further reduce prediction inaccuracy by up to 21% for more
unpredictable locations. Finally, we evaluate the effect of
prediction, and results show that our predictors could find out
lower price multipliers nearby with a probability as high as 89.4%
when there indeed exists lower prices in neighbouring cells. Also,
the probability that a passenger in the business area could use price
prediction to get lower prices nearby is 35.4% and this rises to
67.3% if considering only edge cells.
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