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Abstract— The source and path verification in Path-Aware
Networking considers the two critical issues: (1) end hosts
could verify that the network follows their forwarding deci-
sions, and (2) both on-path routers and destination host could
authenticate the source of packets and filter the malicious
traffic. Unfortunately, the state-of-the-art mechanisms require
heavy communication overhead in the network and computation
overhead in the router; moreover, it is difficult to meet the
dynamic requirements of the end host. We propose a user-driven
mechanism, source and path verification based on Multi-AS-
Key (MASK). MASK decreases the communication overhead by
a short additional packet header and reduces the computation
overhead by separating the control and data plane in terms of
the cryptographic operation. Furthermore, it utilizes the stateful
user to instruct the stateless routers to process the packet with a
user-driven policy, thus satisfying the user’s requirements such as
detecting the packet drop and replay attack. With the plausible
design, the communication overhead for realistic path lengths
is 1/2 to 1/10 compared with the state-of-the-art mechanisms.
We implement MASK in the BMv2 environment and commod-
ity Barefoot Tofino programmable switch, testify that MASK
introduces significantly less overhead than the state-of-the-art
mechanisms, and demonstrate that MASK could achieve the
verification in the programmable switch at line rate.
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I. INTRODUCTION

NETWORK attack threats on Internet have been increasing
at an alarming rate in recent years. Flawed designs of

network protocols lead to many security issues [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. In particular,
packet forwarding anomalies become the major threat on the
Internet [15]. Therefore, it is necessary to design the secure
data plane to ensure correctness of packet forwarding on the
Internet [16].

Path-Aware Networking (PAN) [17] has been developed
to address this issue above. It allows end hosts to enforce
their forwarding policies on the data plane of the Internet
to ensure the correctness of the forwarding decisions. It thus
provides an opportunity for establishing a secure data plane
in the network layer. Based on PAN, the source and path
verification in the data plane could fundamentally improve the
network’s trustworthiness, which achieves two fundamental
security properties: (1) The end hosts (the source and the
destination users) could verify that the network follows their
forwarding decisions. (2) The on-path routers and destination
host could authenticate the packets’ source while filtering the
malicious traffic as early as possible.

To achieve source and path verification, the source, on-path
routers, and destination should calculate a Message Authen-
tication Code (MAC)1 with the dynamic key shared between
them [15]. The granularity of the verification is at the AS level
since that an AS is a fate-sharing unit [18]. Existing verifica-
tion mechanisms have been proposed to empower the users
to achieve the verification with a strong security guarantee.
However, the following deficiencies significantly impact the
practicality of these state-of-the-art verification mechanisms:

Heavy communication overhead. The mechanisms, such
as ICING [19], OPT [15], and EPIC [20], which verify the
packet in each on-path router, incur heavy communication
overhead in the network by the long additional packet header.
The probabilistic mechanism (e.g., PPV [21]) only updates the
mark in partial on-path routers. It decreases the communica-
tion overhead. But it also degrades the security performance,
e.g., cannot filter the malicious traffic in routers.

1We name the MAC as mark in this paper.
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Heavy computation overhead. The mechanism utilizes
asymmetric encryption to share the dynamic keys between the
end hosts and routers (e.g., DRKey [15]), which is impracti-
cal with today’s hardware. EPIC decreases this computation
overhead with a practical hierarchical key derivation mecha-
nism [22]. But the on-path routers need to recreate dynamic
keys on the fly, and the symmetric cryptographic operations
with a strong security guarantee (e.g., AES) in the data plane
affect the line rate performance to a large extent.

Difficulty in meeting user requirements. Some users need
to meet their requirements by detecting the packet drop or
replay attack. The state-of-the-art mechanisms cannot detect
the packet drop attack since they only check the received
packets, and cannot verify the forwarding history according to
the policy of a session (e.g., the ratio of the successful packet
forwarding over a period). Meanwhile, some mechanisms
utilize the timestamp to resist the replay attack, which needs
synchronization between the routers and end hosts [23]. It is
also impractical to keep the precise data plane synchronization
between these entities in an inter-domain context.

High deployment barriers. The Internet is a network of
networks connecting billions of hosts in more than 70,000
ASes [24], and the current Internet architecture is firmly
entrenched [25]. That means a backward-compatible veri-
fication mechanism is necessary. The legacy routers need
to communicate with updated routers and vice versa. The
state-of-the-art mechanisms, which utilize the mark with a
strong security guarantee (e.g., AES), take more computation
resources in the router. It allows legacy users to overwhelm the
upgraded router by sending a huge number of false packets that
need to be verified. On the other hand, a practical verification
mechanism should benefit different PANs, e.g., to decrease
their source and path verification overhead (e.g., Nebula [26]),
or benefit the networks which have no verification mechanism
(e.g., SRv6 [27]).

This paper proposes MASK, a practical source and path
verification with an efficient additional packet header and
lightweight overhead in the router. The design of MASK is
based on two insights: One is the observation that a router
should calculate at least one mark to prove it had processed
a packet. The other is that the MAC operation with a strong
security guarantee (e.g., AES) is unnecessary in the data plane
since the mark is ephemeral (the duration of thousands of
packets). The main contributions of this paper are as follows:

• We utilize a probabilistic marking mechanism based on
a specific policy to keep a short and constant addi-
tional packet header, thus having a low communication
overhead. With the policy shared between the source
and destination, MASK keeps the ability to filter the
malicious traffic in on-path routers.

• We reduce the computation overhead of the router by sep-
arating the control and data plane in terms of the crypto-
graphic operation. In the control plane, the router prepares
the dynamic keys calculated by a MAC operation with a
strong security guarantee (e.g., AES); in the data plane,
the on-path router only needs to perform 1 lightweight
MAC operation to derive an ephemeral mark.

• We design a user-driven mechanism that the stateful
users could instruct and verify the processing at stateless
on-path routers. The source and destination users share
the per-session policy without inter-domain negotiation.
It could facilitate the destination to verify each packet
with the policy-based marking. Then it could detect the
packet drop and replay attacks, which could not or are
hard to be achieved by the per-packet verification.

• We implement MASK with different MAC operations
in the BMv2 environment and the Barefoot Tofino
programmable switch and compare MASK with the
state-of-the-art mechanisms. The results show that the
communication overhead is 1/2 to 1/10 compared
with state-of-the-art mechanisms. The implementation
of MASK in a programmable switch demonstrates that
MASK could achieve the verification at a line rate.

The rest of the paper organizes as follows: In the next
section, we analyze the adversary model and our design goals.
Sec. III presents how can we achieve the verification at a high
level, Sec. IV details the MASK protocol, Sec. V analyzes
the security and performance characteristics, Sec. VI presents
the implementation and the evaluation, Sec. VII discusses the
incremental deployment mechanism as well as the limitations.
Sec. VIII describes related works. We conclude the paper in
the last section.

II. PROBLEM STATEMENT

We first present the adversary model and the background of
source and path verification on the Internet. Then we explain
our design goals.

A. Adversary Model and Background

The source and path verification focuses on secure forward-
ing in the data plane, considering a Dolev-Yao adversary could
observe, drop, inject, replay, or alter packets in a compromised
network [28]. We summarize various types of attacks as
follows:

Packet damage. It means that an adversary might damage
any part of the packet, e.g., the source address in the packet
header, or delay, drop a packet, inject a fabricate packet toward
the destination.

Path change. An adversary might forward the packet along
the arbitrary alternative path not the same as the expected
path (selected by the source). Assume the expected path is
(R1, R2, R3, R4) in Fig. 1, the path of (R1, R3, R4) represents
the skipping path, the path (R1, R2, R6, R3, R4) represents the
detoured path, and the path (R1, R3, R2, R4) represents the
disordered path. It might decrease the forwarding performance
or redirect the traffic to the unexpected AS that the users
(source and destination) do not want to transmit.

Replay attack. An adversary might replay a legitimate
packet to deceive the routers or the destination, which wastes
the bandwidth resources or causes more severe security issues.

Colluding attack. More than one adversary might collude
to frame other entities or evade the verification. For example,
R2 and R3 in Fig. 1 might collude to redirect the traffic to
another AS (R6) not on the expected path.

Authorized licensed use limited to: Tsinghua University. Downloaded on August 18,2023 at 07:57:25 UTC from IEEE Xplore.  Restrictions apply. 



1480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 1. The example of path change attacks in network.

Fig. 2. The overview of different verification mechanisms. For the path
length of n, the FULL mechanism has at least n marks for on-path routers
(Ri) in each packet, while the PROBABILISTIC has 2 marks no matter the
path length, MASK has 2 marks and could verify the packet number at each
end of an epoch. Agent-based MASK is nearly the same as MASK except
that Ri only presets the dynamic keys for the agent (A).

Packet flooding. An adversary might exhaust the router’s
computation or storage resource by packet flooding if the ver-
ification incurs the router’s storage and computation overhead.

Therefore, a secure source and path verification mechanism
based on the dynamic key sharing between the end hosts
and the routers is critical. The state-of-the-art secure source
and path verification mechanisms include FULL and PROB-
ABILISTIC processing.

As shown in Fig. 2 (a), the router and the destination
in the FULL operation verify each packet with at least one
mark. ICING [19], OPT [15], and EPIC [20] have the greatest
impact. In ICING, each router calculates both a hash and a
mark over the payload and in addition performs n symmetric
cryptographic operations (one for each router), which is two
orders of magnitude slower than EPIC. To design a practical
verification mechanism, we only compare with the lightweight
counterparts (OPT and EPIC) in this paper. The marksrci

provides source authentication to a single on-path router, and
markri is the mark updated by the Ri and verified by the
destination. Besides that, we call the mark for the end-to-end
authentication as markpkt, which is generated by the source
and verified by the destination. We omit it in Fig. 2 since

there is one markpkt for each packet in the three types of
mechanisms.

As shown in Fig. 2 (b), the state-of-the-art PROBABILIS-
TIC mechanism [21] verifies the packet based on a session.
Two adjacent on-path routers probabilistically updates the
markri . After receiving a certain number of packets (e.g.,
3 packets in Fig. 2 (b)), the destination reconstructs the actual
path based on the marks.

B. Design Goals and Assumptions

To achieve a practical source and path verification, the
design goals of MASK are achieved as following:

Low communication and computation overhead. To
achieve low communication overhead in the network, as shown
in Fig. 2 (c), MASK utilizes the probabilistic marksrci and
accumulated markr to keep the constant additional packet
header. To achieve low computation overhead in the router,
each router presets dynamic key from the control plane.

Satisfaction of user requirements. The source and the
destination share a per-session policy to support the verifi-
cation. As shown in Fig. 2 (c), assuming the policy is each
on-path router verifies n1, n2, n3, n4 packets respectively, the
destination could verify the number of packets based on the
received packets. This user-driven mechanism empowers the
destination to detect packet drop attack and resist the replay
attack without the synchronization in the data plane.

Deployability. The emerging programmable switch [7],
which supports packet processing using domain specific lan-
guages (e.g., P4 [29]), provides an exciting opportunity to
design protocols that manipulate arbitrary parts of packet
header at line rate [30]. It still has some challenges to utilize
the programmable switch since the ASIC constraints, e.g.,
the P4 language did not support the heavy computation [31].
However, MASK’s design is devoted to addressing these
challenges by minimizing the verification’s operation.

To preset the dynamic keys in the router, we begin with the
following assumptions:

Hierarchical key establishment. We leverage the Key Dis-
tribution Server (KDS) to establish the two levels key system.
The AS-Key (AK) is the top-level key infrequently renewed
(e.g., days), which is only shared among the KDSes [32]. The
KDS could derive the router’s dynamic key (RDK) and the
host’s dynamic key (HDK). We will detail how to derive
dynamic keys (second-level key) based on the Multi-AS-Key
in section IV-A.

Secure intra-AS communication. The end host (source
and destination) and the router could get the relative keys
from the local KDS. We assume a secure channel to com-
municate between a host (router) and KDS in local AS to
get the keys. In particular, an AS may prevent source address
spoofing within its network using a specific anti-spoofing
method [33], [34].

III. OVERVIEW

To achieve the verification, we design the additional MASK
header. We could load the MASK header in a specific PAN
packet header. For example, in SRv6, we could load the

Authorized licensed use limited to: Tsinghua University. Downloaded on August 18,2023 at 07:57:25 UTC from IEEE Xplore.  Restrictions apply. 



FU et al.: MASK: PRACTICAL SOURCE AND PATH VERIFICATION BASED ON MULTI-AS-KEY 1481

Fig. 3. The packet header of MASK.

Fig. 4. The MASK overview.

MASK header as the IPv6 Extension Header [35] as Fig. 3;
while in SCION, we could embed the MASK header as the
VALHD in EPIC. In the MASK header, flag is the flag field,

epoch and seq are the epoch number and sequence number
of a packet respectively, indicator includes 16-bit time slot
information (ts) and 16-bit user identifier (uid) to indicate
which RDK should be selected, id is the identifier of an
on-path router selected by the source to verify this packet.
Besides that, there are 3 marks in the MASK header:

• marksrc: The mark calculated by the source and verified
by the selected router.

• markr: The mark updated by each on-path router.
• markpkt: The mark calculated by the source and verified

by the destination.

At a high level, MASK offloads most of the router’s
overhead to the end host. As shown in Fig. 4, MASK includes
the processing at the end host and router.

Processing at end host. As shown in Fig. 4 (a), the source
(S) requires the dynamic keys from the KDS in the local AS.
It sends data packets (DAT) towards the destination, nests the
epoch 2 and seq , with the id (an on-path router’s idi)

determined by the policy shared with the destination, as well
as the marksrc and markpkt in the packet header. The
destination (D) requires the dynamic keys from the KDS after
receiving the first packet and achieves the verification of each
packet. At the end of each epoch, the destination validates the
processing of this epoch according to the policy, then sends
an acknowledgment packet (ACK) to the source.

Processing at router: As shown in Fig. 4 (b), after receiving
a packet, a router with the same idi verifies the marksrc to
achieve the source verification. It drops the packet which fails
the source verification. Then it updates markr and forwards
the packet to the next hop.

IV. PROTOCOL DESCRIPTION

We first introduce the dynamic key between the user and
the on-path routers, then describe the processing of MASK.

2In this paper, FIELD represents the FIELD in the packet header.

A. Deriving the Dynamic Key

The KDS derives the dynamic keys from the AK between
two ASes. The end hosts and the routers could require the
relative keys from the KDS in the local AS.

We utilize the IP address of the end hosts, the path infor-
mation, and the timestamp to represent a session. As shown
in Equation (1):

session = H(IP src||IP dst||id1|| · · · ||idn||TS) (1)

In which IP src and IP dst are the IP addresses of the source
and the destination, idn represents the identifier of an on-path
router, TS defines the time slot of the beginning of the session.
All these fields are from the IP, PATH, and MASK header. “||”
represents the concatenation operation, and H(.) represents a
specific hash function (a non-secure hash function is enough).

The dynamic keys include the end host’s HDK and the
router’s RDKsi. The HDK is calculated as Equation (2):

HDK = MACAKsd
(session) (2)

In which AKsd is the AK between the source AS and
the destination AS. As a user-driven verification mechanism,
the HDK derived from a cryptographic operation with strong
security (e.g., AES), guarantees that an adversary could only
guess the dynamic key with negligible probability.

We do not utilize the on-path routers recreates RDK on the
fly since it incurs the heavy computation overhead to achieve
the MAC operation with a strong security guarantee [36].
For example, to achieve the AES operation, the recirculation
bandwidth and the connection between the data plane and
dedicated extern encryption hardware could be the bottleneck
of the forwarding [37]. However, presetting the per-session
dynamic keys incurs each router’s heavy storage overhead.
We utilize a time-slot-based dynamic key deriving mechanism,
ensuring the confidentiality of RDK with no computation
overhead and constant storage overhead. The RDKsi utilized
between the source and a specific router i is calculated as
Equation (3):

RDKsi = MACAKsi(idi||indicator) (3)

In which AKsi is the AK between the source AS and
the AS of router i. idi is on-path router i’s id. In practice,
an AS could use one id (as virtual id) to decrease the scale
of the dynamic key. The indicator includes 16-bit time slot
ts and 16-bit user identifier uid. We assume that the KDS
distributes AKsi to the border routers, and each router derives
the RDKsi of M (more than one) slots in the control plane.
The user could require the on-path router’s RDKsi of M
slots from the local KDS. Then it could utilize the indicator
to instruct each router to select the relative RDKsi.

We could adjust the key switching frequency with ts.
A 16-bit ts could divide 24 hours into 2-second granularity.
In practice, an AS could customize the key switching time by
utilizing different step sizes of ts. For example, an AS switches
dynamic key every 2 seconds could increase the ts with the
step size of 1. Another AS needs to switch the dynamic key
every 200 seconds with a step size of 100.
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We will detail in Sec. VI that the length of a dynamic key
is 24 B (192-bit). Suppose there are 70,000 ASes, each AS
has N uid, and each router presets the key of 2 time slots, the
storage overhead in an on-path router is 70∗103∗2∗24∗N =
3.36 ∗ N MB. The number of uid affects the dynamic key
storage overhead in the router. That means each on-path router
only stores the dynamic keys for a certain number of uid.
We utilize two measures to keep low and constant storage
overhead.

Firstly, the users in a group could use the same uid.
For example, the servers in the edge cloud communicate
with the remote cloud servers [38]. In this case, the servers
controlled by a certain company could utilize the same uid.
It is sustainable for several important users.

Secondly, one uid is for a subnet instead of an end host.
The border router of a subnet as an agent. The agent could
manage the symmetric key for each end host in the same
subnet. With the symmetric key between the end host and
the agent, the end host sends the MASK packet to the agent.
After verifying the packet, the agent operates the packet header
with the dynamic keys between itself and the on-path routers.
The on-path routers and the destination eventually achieve the
verification. Compared with MASK, the difference is the agent
first verifies the source, then calculates the marks for the
on-path routers according to the packet header.

With this design, an AS could customize its dynamic key
policy with other ASes, including the number of uid and the
step size of ts. Assuming each AS has 16 agents, the storage
overhead is at most 53.76 MB.

B. Processing at End Host

As shown in Equation (4), the source in PAN first plans the
PATH information, then it gets the RDKpath of routers, and
the HDK from the KDS.

PATH = (id1, id2, . . . , idn)
RDKpath = (RDKs1, RDKs2, . . . , RDKsn) (4)

The source first determines the policy of the verification.
The policy includes the number of packets in a specific epoch
and the probability of each hop to verify a packet. We utilize
the uniform probability as default, which means each on-path
router has the probability of 1/n (n is the path length) to
verify a packet. When it comes to the number of packets in
a specific epoch, the source could denote the default number,
e.g., 4096, then calculate the adjustment factor with the HDK
and the epoch:

λ = MACHDK(epoch) MOD K (5)

In which K represents an integer, assuming K is 4096, the
value range of λ is from 0 to 4095. Then the number of packets
in an epoch is from 4096 to 8192. The number in different
epochs constitutes the Checkpoint Sequence Hopping (CSH).
The CSH [M ] is an array which includes M sequences for M
epochs, e.g., CSH [M ] = {4500, 5001, . . . , CSH[m], . . .} it
means that there are 4500 packets in epoch 0, 5001 packets
in epoch 1, and CSH [m] packets in epoch m. It is worth
mentioning that there is 8-bit epoch in the packet header,

but the source and the destination could utilize arbitrarily
length of epoch in equation (5). The destination could also
calculate λ with Equation (5). With this design, the source
and the destination share the same CSH without inter-domain
negotiation.

With a specific policy, in each epoch, the source processes
the packet as Alg. 1. In which ← is an initialization or
assignment.

Algorithm 1 Procedure at Source Host

input : PATH, RDKpath, HDK, CSH [M ]

1 for CSH [m] in CSH [M ] do
2 while CSH [m] >= 0 do
3 embed the flag epoch seq

4 determine idi and calculate marks

5 id ← idi, marksrc ← marksrci

6 markr ← markr , markpkt ← markpkt

7 CSH [m]← CSH [m]− 1
8 send packet to the first hop

In Alg. 1, the source has the PATH , RDKpath, HDK ,
and calculates the CSH [M ] for each epoch as Equation (5).
It selects CSH [m] from CSH [M ] (e.g., 5000) in each epoch
(line 1). Then it embeds the flag (the default value is 0),

epoch (m MOD 256) and seq (CSH [m]) in the packet
header (line 2-3). After that, it selects one on-path router
according to the marking probability (e.g., uniform marking)
and calculates the marks as Equation (7), (8), (9), then
embeds them into the packet header (line 4-6). In Equation (6),
the CSTpkt represents the constant packet header. It includes
source IP address, PATH , flag , epoch , seq , and id ,

idi and idi−1 are the link information. The AUTH is the path
authorization of a specific PAN, e.g., the hop authenticator
(in SCION), or HMAC (in SRv6). In Equation (7), [0:32]
represents that we truncate the lowest 32-bit of the marki.

marki = MACRDKsi(CSTpkt||idi−1||idi||AUTH)(6)

marksrci = marki[0 : 32] (7)

In Equation (8), hash is a 32-bit string calculated by the
source, which is the hash of the upper-layer payload, such
as the TCP sequence number and (or) the packet payload.
It could facilitate the destination to verify the packet integrity.
The source performs the XOR operation with each marki’s
highest 32-bit string. Each on-path router will perform the
XOR operation hop by hop, then at the destination, markr =
hash, if all the routers perform as the source expected.

markr = hash⊕mark1[32 : 64] · · · ⊕markn[32 : 64] (8)

The purpose of the mark is to defend against the adversary
evading the verification. From this perspective, EPIC utilized
a short mark (24-bit) to improve the goodput. With the
32-bit mark in MASK, an attacker has to send at most
232 ≈ 4.29 × 109 probe packets to find a correct mark of
a packet, which takes around 40 minutes on a gigabit link.
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As each packet has its unique mark, it is enough to guarantee
the security of verification. The reason we generate 64-bit
mark is that the on-path router can truncate this 64-bit mark
for the source authentication and path validation. With the
truncation, each on-path router only needs to perform 1 MAC
operation, which improves the practicality. We have detailed
that the mark in the data plane is an ephemeral mark, and
in Sec. VI we will testify that the Two-round Even-Mansour
(2EM) [36] operation could satisfy the security requirement.

The source calculates the markpkt as Equation (9). With
markr in the destination’s received packet header, the des-

tination could verify the processing at each hop.

markpkt = MACHDK(CSTpkt||markr)[0 : 32] (9)

In MASK, we utilize the XOR operation and one markr

to load the markri instead of the onion markri for each on-
path router. In practice, the XOR operation of markr has the
same security guarantee as the onion markr in terms of path
verification. The reasons are as follows: Firstly, considering a
single adversary launching the path change attack, it has to
alter the PATH . It could not evade the verification since
the honest downstream router will calculate the wrong marki

with the wrong PATH , e.g., in Fig. (1), the adversary
changes the path from “R1 −R2 −R3” to “R1 −R3 −R2”.
If R2 and (or) R3 are honest, the marki of R2 and (or) R3 will
wrong. Secondly, for the colluding attack, the colluders can
exchange their information. If R2 and R3 are colluders, even
the onion markr could not verify the disorder since the
colluders (R2 and R3) could calculate the markr with the path
information of “R1−R2−R3”. Thirdly, as the destination is
the verifier in the path verification, the mechanism that each
on-path router i processes its own onion markri could not
improve the security performance since an adversary could
change other router’s mark or even drop the packet. We will
discuss this limitation in Sec. VII-B.

Then the source decreases the CSH [m] and sends the
packet to the first hop (line 7-8). The source turns to the
next epoch with the number of CSH [m + 1] after CSH [m]
decreases to 0.

The destination achieves the source and path verification
with Alg. 2.

The destination initializes the counters, which record
the number of packets that passed its verification.
The sCounter[M ][I] is a two-dimensional array, and
sCounter[m][i] represents the counter for on-path router i,
epoch m. The destination receives a packet in epoch m
(line 1). It calculates the mark�

pkt with Equation (9), then

compares it with markpkt (line 2). After a successful
verification, it increases the relative router’s sCounter[m][i],
or else filters the packet (line 3-5). When it receives a certain
number (e.g., 200) of packets in epoch m, the destination
determines that it is the end of epoch m − 1 if m > 0.
The destination verifies whether each sCounter[m − 1][i]
matches the policy as Equation (10). In epoch m, N is the
desirable value of sCounter[m][i], N = CSH [m] × Pi. Pi

is the verification probability of router i, the default value is
1/n with the path length of n. We set β1 = β2 = 5%, which

Algorithm 2 Procedure at Destination Host

input : pkt, HDK, CSH [M ],
sCounter[M ][I] = {{0}, · · · {0}}

1 while receive a packet in epoch m do
2 if markpkt == mark�

pkt then

3 sCounter[m][i] + +
4 else
5 filter the packet

6 if the end of epoch m− 1 then
7 for sCounter[m− 1][i] in sCounter[m− 1][I]

do
8 if sCounter[m− 1][i] violate the policy then
9 verification failed at router i

10 sCounter[m− 1][I]← {0}

means that the packet damage and the packet replay ratio
should be less than 5%. If router i violates the policy, the
verification failed at router i (line 6-9). That does not mean
router i is a false router. For example, an adversary might
frame router i by dropping the packet verified by router i.
As a verification mechanism, MASK is devoted to verifying
whether the network forwards the packet as the user expected.
It could not localize the false router.

N × (1− β1) < sCounter[m][i] < N × (1 + β2) (10)

We do not assume an exact report mechanism towards the
source. The destination could reply to the source with an
ACK, which includes the sCounter[m− 1][i] encrypted with
the HDK . The ACK from the destination to the source on
the reverse path is similar to the forward path. To prevent
an adversary drop the ACK, the destination could set the
markpkt with markpkt + 1 to implicitly indicate it is an

ACK.
The destination records the counters of two epochs for each

session. It clears the sCounter of epoch m− 1 after replying
with the ACK (line 10). To satisfy that the users accomplish
the verification of the epoch m−1 within epoch m, each epoch
should take more than one RTT. The RTT on the Internet
peaks at 100 ms and 200 ms.3 For a packet size of 1500 B,
4000 packets in an epoch make up 48 Mb. The forwarding
delay of the packets in an epoch is nearly 500 ms with an
end-to-end bandwidth of 100 Mbps. One epoch is enough
to receive the ACK . Therefore, MASK utilizes 4096-8192
packets in an epoch. The user could increase or decrease it if
necessary.

C. Processing at Router

When a router receives a packet, it first checks that the
packet was received through the correct interface according to
the idi−1 , to filter the packet without the correct PATH .

Then it processes the packet as Alg. 3.

3https://www.caida.org/catalog/software/walrus/rtt/
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Algorithm 3 Procedure at Router
input : pkt, RDKsi, idi, idi−1

1 calculate marksrci and markri

2 if id == idi then
3 if marksrc != marksrci then
4 drop the packet

5 markr ← markri

6 send packet to the next hop

Each on-path router i at most performs one MAC oper-
ation in the data plane. It calculates the marki with the
router’s dynamic key RDKsi as Equation (6), then derives the
marksrci with Equation (7) and markri with Equation (11)
(line 1). If the idi in the packet header is the same as id ,
it achieves the source verification by comparing the marksrci

with the marksrc . The router drops the packet if the source

verification failed, to filter the malicious traffic (line 2-4). Then
it updates the markr with markri (line 5), and sends the

packet to the next hop (line 6).

markri = markri−1 ⊕marki[32 : 64] (11)

D. Agent-Based MASK

The motivation of Agent-based MASK is offloading the
AS border router’s storage overhead for each session. This
hierarchical design is consistent with the Internet. As shown
in Fig. 2 (d), each agent is a border router of a subnet in an
AS. It has 1 symmetric key SKu with each user (end host
or other entities) which wants to achieve the verification. The
source and agent process the packet as Alg. 4 and 5.

In Alg. 4, the processing at source host is nearly the same
as Alg. 1 except that the source host only has the SKu

instead of RDKsi. Therefore, the marksrc is marksrca =

MACSKu(CSTPKT )[0 : 32], the markr is markr = hash,

and the markpkt is the same as Equation (9).

Algorithm 4 Procedure at Source Host (Agent-Based
MASK)

input : PATH, SKu, HDK, CSH [M ]

1 for CSH [m] in CSH [M ] do
2 while CSH [m] >= 0 do
3 embed the flag epoch seq

4 determine idi and calculate marks

5 id ← idi, marksrc ← marksrca

6 markr ← hash, markpkt ← markpkt

7 CSH [m]← CSH [m]− 1
8 send packet to the agent

In Alg. 5, the agent has the SKu and RDKpath.
After receiving a MASK packet. It first calculates the

marksrca = MACSKu(CSTPKT )[0 : 32] (line 1). Then it
compares it with the marksrc in the packet header (line 2).

After successful verification, it calculates the marksrci with
Equation (7), markr with Equation (8), and updates the
marksrc and markr (line 3-4). Or else, it drops the packet

(line 5-6). With this design, the agent is transparent to the
on-path routers and the destination host, the routers and the
destination process the packet as Alg. 3 and 2.

Algorithm 5 Procedure at Agent
input : pkt, SKu, RDKpath

1 calculate marksrca

2 if marksrc == marksrca then
3 calculate marksrci , markr

4 marksrc ← marksrci , markr ← markr

5 else
6 drop the packet

To improve security, the SKu between the source and the
agent could switch with the ts in the packet header. For
example, SKu = MACSK(IPsrc||ts), in which SK is the
root key, and IPsrc is the IP address of the source.

In Alg. 5, the agent needs to perform n MAC operations
to calculate markr. To decrease the computation overhead of
the agent (as well as the on-path router), the user could set the
lowest bit of flag with 1. In this case, the agent only updates
the markr with markr = hash⊕marki[32 : 64]. Then only

the selected Ri on the path needs to calculate the marki, other
on-path routers forward the packet directly. At the destination,
markr is hash in the two cases. It decreases the computation

overhead of the agent from O(n) to O(1), and an unselected
on-path router has no additional computational overhead.
We will detail in Sec. V that the colluding attackers might
change the path of partial packets and avoid the verification
at the destination.

V. ANALYSIS

In this section, we analyze the security and performance
properties of MASK.

A. Security Analysis

An overview of the security properties in OPT [15],
PPV [21] and EPIC [20] is shown in Tab. [I]. In which �, (�),
and × represent satisfied, partially satisfied, and unsatisfied,
respectively. We first describe the honesty assumptions in
different scenarios. Then we detail the security properties.
In general, path authorization is the ability that packets to
traverse the network only along paths authorized by all honest
on-path ASes (ASi). The packet authentication for destination
(D) is that the destination agrees with the source on the packet
source address, path, and payload. The source authentication
for ASi means that the on-path ASes agree with the source
on the packet source address. The path validation for the
destination means that the destination can verify that the

Authorized licensed use limited to: Tsinghua University. Downloaded on August 18,2023 at 07:57:25 UTC from IEEE Xplore.  Restrictions apply. 



FU et al.: MASK: PRACTICAL SOURCE AND PATH VERIFICATION BASED ON MULTI-AS-KEY 1485

TABLE I

THE SECURITY PROPERTIES IN OPT, PPV AND EPIC

packet traversed all honest ASes on the path from the source
to the destination intended by the source, while the validation
for the source (S) represents that the source can verify that the
original packet traversed all honest ASes on the intended path
by receiving a reply from the destination. The packet drop is
for the destination to detect whether the on-path router drops
(or delays) the packets. In the last, the replay attack resilient
means that packets are uniquely identifiable and cannot be
replayed.

Honesty Assumptions. We assume the adversary could
generate the correct mark with negligible probability without
the dynamic key. Unlike an entity using asymmetric encryp-
tion can prove its honesty through private keys, in sym-
metric encryption mechanisms, one of the entities needs to
be assumed to be honest since two entities keep the same
key. In EPIC and OPT, the source (S) and the destination
(D) require the dynamic key from the source AS (ASs)
and destination AS (ASd), respectively. In MASK, the users
require the keys from their local KDSes (KDSs and KDSd).

For packet authentication at the destination, the destination
assumes that the S, ASs, and ASd are honest in OPT, EPIC,
and PPV. It is the same in MASK, the honesty of KDSs

and KDSd guarantee that the S (agent) and D could get
the correct dynamic keys, and the honesty of the S (agent)
guarantee that the original mark is correct.

For source authentication at the ASi, OPT assumes that
the S, ASs and the ASd, D are honest, while EPIC assumes
that the S and ASs are honest. PPV does not achieve source
authentication. In MASK, it assumes that the S (agent) and
KDSs are honest.

For path validation at the destination, OPT and EPIC assume
the ASs, ASd, S are honest, PPV only needs the ASd to be
honest, while MASK assumes the KDSs, KDSd, S (agent)
are honest. For path validation at the source, OPT and
EPIC need the ASs to be honest, MASK assumes that the
KDSs, KDSd, D are honest.

For packet drop resilience at destination (D), MASK
assumes that the source (S) is honest. Thus the destina-
tion could defend against the packet drop attack with the
per-session policy negotiated with the source.

In a word, MASK is a mechanism to empower the
users (source and destination) to verify whether the network

forwards the packet as their expectation. Therefore, we assume
that the KDS, the agent, the source, and the destination are all
honest. The honesty of the KDS and agent is promised by the
infrastructure (e.g., PKI), while the KDS and agent manage
the local users in a centralized way. However, it might appear
like a strong assumption. An adversary might compromise
any of these entities (KDS, agent, source, or destination)
to launch active attacks. But a compromised entity could
only avoid the verification between itself and other entities.
It could not impersonate other entities since it only has its
keys. An adversary might manipulate a huge number of source
hosts to launch a DDoS attack, which is out of this paper.

Path authorization. OPT could satisfy the path authoriza-
tion with a long mark, but it has limited security since many
packets utilize a specific authenticator. EPIC achieves the path
authorization by utilizing the whole hop authenticator as an
input of the mark, and the whole hop authenticator is not
in the packet header. PPV and MASK do not support path
authorization. We maintain that the path authorization has
already existed in a specific PAN (e.g., in SCION, SRv6).
We could utilize it in MASK in a probabilistic way. For
example, we utilize the hop authenticator in EPIC as an input
of the Equation (7). As the hop authenticator needs another
MAC operation, we could cache it in practice [39].

Packet and source authentication. OPT and EPIC could
authenticate the packet and source with the mark calculated
by the shared key. But OPT assumes that the source authen-
tication on the router is based on the assumption that the
destination is honest, which weakens the source authentication
property compared to EPIC. PPV achieves packet authentica-
tion at the destination but does not support the on-path router
to authenticate the source.

In MASK, the destination could authenticate the packet,
while the on-path router authenticates the source in a proba-
bilistic way. It is relatively weaker than EPIC, in which each
on-path router authenticates each packet. And it might incur
attacks on the probabilistic authentication at the first glance.
We now detail that it does not hurt the verification.

Considering two types of attacks: (1) Attack from a single
adversary, it could modify the id for the downstream router
to evade the probabilistic authentication. But as the id is
part of the input of the mark, the markri of downstream
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routers are wrong. The destination will filter this packet with
the markpkt . (2) The colluding attack, for example, R1 and

R3 in Fig. 1, R1 modifies the id from R2 to R4, R2 does
not authenticate the source, and R3 modifies the id back to
R2 again. This packet can reach the destination, but as the id
is part of the input of the mark, the markr2 is wrong. Then
the destination will filter the packet based on the markpkt .

At the end of each epoch, the destination will find that the
probability is not the same as the policy negotiated with the
source.

In a word, probabilistic authentication only lacks the ability
to filter the malicious traffic at the first honest router. But as
MASK keeps the backward compatibility, and it incurs little
computation and storage overhead in the router, this attack
is the same as an attacker sending the legacy packet into the
network, the colluders have no benefit to launching this attack.
And the packet was eventually filtered by the destination.

It is worth mentioning that the colluders could evade the
authentication if only the selected router updates markr since
it could only guarantee that a packet was processed by the
selected router, not all the on-path routers. It cannot defend
against colluding attacks. From this perspective, to defend
against colluding attacks, each on-path router must update the
markr .

Path validation. OPT and EPIC satisfy the path validation
properties through the relative validation field. PPV does not
allow the source to validate the path and only probabilistically
validates individual links at the destination. MASK could sat-
isfy the path validation at the destination. And the destination
replies to the source with an ACK at each end of an epoch.
We have discussed the honest assumption of the destination.

Packet drop resilience. A malicious router might drop
packets (or delay a packet more than a certain number of
epochs) during the processing; only MASK could detect the
packet drop attack according to the policy. Others could not
achieve that since they do not count the number of packets for
a session. The stateful counter might incur the DDoS attack
towards the destination, especially for the communication
from the client to the server. As the number of sessions in
the network layer is less than the number of sessions in
the transport layer, a DDoS attack detection and mitigation
mechanism [40] can mitigate these attacks effectively. Besides
that, the destination can simply clear the counter information
of a specific session after time out.

Replay attack resilience. To prevent an adversary replay a
legitimate packet, MASK utilizes the unique seq to distinguish
the replay packets at the destination. At each end of an epoch,
the destination compares the number of legitimate packets
with the threshold and reports to the relative entity (e.g., the
source) if there’s a replay attack in this epoch. ASi in MASK
could not detect the replay attack since the on-path router
is stateless. OPT has limited support for replay suppression,
and EPIC could achieve it with a replay-suppression system.
However, the two mechanisms rely on the packet timestamp,
which is impractical in today’s inter-domain context. PPV does
not support replay attack resilience.

TABLE II

THE COMPARISON OF OVERHEAD WITH OPT, PPV AND EPIC

Based on the above analysis, we can conclude that the
relative entity in MASK could defend against different types of
attacks effectively. Specifically, the adversaries, which launch
the packet damage (including packet drop), path change,
replay attack, and colluding attack, could not evade the
verification at the destination and the source. Besides that,
as MASK has minimum computation overhead and constant
storage overhead in the router, packet flooding has little effect
on it.

B. Performance Analysis

We have detailed the constant storage overhead in
Sec. IV-A. In this section, we analyze the computation over-
head in the router and the communication overhead in the
network, which affects the performance of the verification.
As shown in Tab. [II], MASK has lower computation and
communication overhead compared with OPT [15], EPIC
(EPIC L3 as default) [20] and PPV [21].

Computation overhead. The cryptographic operation
accounts for most of the computation overhead. “No asy.”
represents that the router needs not to perform the per-session
asymmetric cryptography. EPIC and MASK could derive the
dynamic keys from the key server; others have to negotiate the
dynamic keys by asymmetric cryptography, which incurs the
computation overhead in the data plane. “No deriving” means
that the router needs not to derive the dynamic key for each
packet on the fly. Only MASK satisfies it, which significantly
minimizes the computation overhead. In MASK, each on-path
router only operates 1 MAC calculation in the data plane.
Therefore, MASK needs n per-packet MAC operations. And
it could decrease the number of MAC operations to 1 if only
the selected router updates the markr . While OPT, PPV, and
EPIC L3 need to derive the dynamic keys on the fly. Besides
the key deriving, OPT operates at least 2n MAC operations
for one packet. PPV operates 4 MAC operations. EPIC L3
processes 1 MAC operation and truncates it into two marks
to achieve the verification, thus having n MAC operations.
We do not take account into the MAC operation for the hop
authenticator. And we will discuss in Sec. VI that we could
cache the hop authenticator in the control plane.

Communication overhead. MASK and PPV have stable
additional packet header sizes, while the OPT and EPIC head-
ers depend on the path length. We illustrate the communication
overhead with 5 and 10 hops since the current average path
length on the Internet is less than 5 AS-level hops, and the
vast majority of Internet AS hops is at most 10 [41]. The
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communication overhead of MASK for realistic path lengths
is 1/2 to 1/10 compared with other mechanisms. Besides that,
the user in MASK requires the dynamic key from the local
KDS. It only sends one ACK at each end of an epoch, thus
having little communication overhead incurred by the control
packets.

VI. EVALUATION

To show that MASK is practical, we evaluated MASK
on both software (Bmv24) and hardware (Barefoot Tofino
programmable switch).

A. Evaluation in BMv2

We first implement MASK and the state-of-the-art mecha-
nisms in the BMv2 environment, the testbed hosts in a virtual
machine with Ubuntu 16.04, with the Intel Core i5-6200U
CPU, 2.4 GHz, and 4 GB RAM.

To achieve the verification in each router, we instantiate
MAC operation with the HMAC based on MD5. The BMv2
could not handle the HMAC operation in the data plane.
We implement it as an extern function. As shown in Fig. 6,
there are three Match-Action tables. The first ((a) FromCon-
troller) is to judge whether the extern has processed the
packet. It sends a processed packet to the third table ((c)
Forward) for forwarding. In contrast, it sends an unprocessed
packet to the second table ((b) CompareID) to judge whether
it needs to verify the packet and update the mark. In OPT
and EPIC, each packet was verified and marked, while in PPV,
two adjacent hops marked a packet with the probability of 1/k,
in which k is the number of remaining hops. In MASK, each
hop compares the idi with its own id to decide whether it sends
the packet to extern or forwards the packet according to the
third table directly. In OPT, EPIC, and PPV, the extern first
derives the dynamic key, then calculates the relative marks,
verifies and updates the packet header. In MASK, the extern
only calculates and updates the mark. We do not implement
MASK with the mechanism that each on-path router updates
its markri since it has nearly the same delay as EPIC and
OPT.

We also instantiate the MAC operation in MASK with
SipHash [42] and 2EM [36] in the data plane. We implement
the SipHash with SipHash-2-4-64,5 and 2EM with 192-bit
dynamic key and 64-bit output (mark). Then we truncate
the mark to 32-bit to achieve the verification.6 We did not
implement the verification in the data plane for OPT, EPIC,
and PPV, since they need a MAC operation with strong
security (e.g., AES) to derive the dynamic key. We will detail
in Sec. VI-B that the AES operation is impractical with today’s
hardware.

As shown in Fig. 5 (a),(b),(c), we evaluate these mech-
anisms in terms of end-to-end delay with the path length
from 2 to 10, which composes the computation and forwarding
delay. The baseline is the IP (IPv6) packet with nearly 50 ms

4https://github.com/p4lang/behavioral-model
5https://github.com/veorq/SipHash/
6https://github.com/programmableNetwork/mask-BMv2

in different path lengths and packet sizes. MASK-E repre-
sents MASK with the extern HMAC operation. In contrast,
MASK-D represents MASK with the SipHash-2-4-64 (or
2EM) in the data plane. The delay of MASK-D is nearly the
same as the baseline. MASK-E and PPV have a constant delay
of 110 ms and 300 ms, respectively. In contrast, OPT and
EPIC have a relatively high delay (300 ms-800 ms) since they
operate the extern HMAC operation at each hop. Although the
BMv2 environment does not represent the actual processing
ability, we can conclude from the simulation that (1) compares
with per-hop MAC operation, probabilistic MAC operation
could reduce the computation overhead of routers from O(n)
to O(1), (2) packet processing in the data plane could decrease
the computation overhead to a large extent.

B. Evaluation in Barefoot Tofino Hardware

We evaluate MASK for the desired performance in com-
modity Barefoot Tofino programmable switch S9180-32X.

The central aspect of MASK is the lightweight processing in
each hop, which has significantly lower computation overhead
than other mechanisms. We evaluate the computation overhead
in terms of per-packet processing latency. The computation
overhead on a certain hop includes (1) source verification
(calculating and verifying the source’s mark), and (2) path
verification (calculating and updating the on-path router’s
mark). We first test the delay from the data plane to the local
controller, which takes 3 ms for one packet. It means that the
external hardware would result in a very high delay.

Therefore, we implement the MAC operation in the data
plane. We first implement it as AES operation in data
plane [37], each packet recirculates 4 times to complete an
AES-128 operation (10 rounds). Then we implement the
HalfSipHash-1-1-32 (the SipHash-2-4-64 could implement in
the BMv2 but could not accomplish in the hardware in a
single pipeline) and 2EM operation in the hardware. The two
mechanisms could generate two 32-bit marks. The number
of stages in one pipeline is limited (12 stages in Tofino and
20 stages in Tofino2). The implementation of HalfSipHash-
1-1-32 takes 23 stages (12 stages in the ingress pipeline,
and 11 stages in the egress pipeline). In contrast, the 2EM
operation only takes 7 stages, it can be finished within one
hardware pipeline.

Besides that, the security guarantee of 2EM operation is
sufficient for an ephemeral mark. It has been proven to
secure up to 22n/3 queries under adaptive chosen-plaintext and
ciphertext adversaries. As detailed in [36], the best-known
practical attacks against 2EM, which are chosen-plaintext
attacks, require more than 289 bits of memory for n =
64 even if the adversary can send more than 1 trillion queries
per second, which generate approximately 2.4 Pbps traffic
(assuming the average packet size is 300 B). In practice, it is
infeasible for an attacker to achieve it within 1 minute. And
generating a large volume of traffic, if possible, can be easily
flagged as DDoS attacks. Furthermore, if MASK utilizes the
hop authenticator (which is not in the packet header) for one
of the inputs of the marki, the adversary could not get the
whole plaintext from the packet header. Therefore, the minute
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Fig. 5. The evaluation in BMv2 environment.

Fig. 6. MASK processing with extern MAC operation in BMv2.

Fig. 7. The computation overhead in Barefoot with different packet size.

granularity synchronization in the control plane is enough for
sharing the dynamic keys. 2EM operation is practical for the
data plane MAC operation in MASK.

It is convenient to utilize the packet’s timestamp leaving
and entering the ingress pipeline to measure the delay in the
hardware. The delay in different packet sizes is shown in
Fig. 7, in which IP represents IPv6 packet forwarding, which is
the baseline with the value of around 668 ns for the packet size
of 1024 B, EM represents the 2EM operation, SIP represents
the HalfSipHash-1-1-32 operation, EM-2 represents two 2EM
operations, SIP-2 represents two HalfSipHash-1-1-32 opera-
tions, AES represents a single AES operation, while AES-2
represents two AES operations. The evaluation testifies that
the EM and SIP operation has nearly the same computation
delay, and nearly the same as the baseline when the packet
size is more than 512 B, the SIP-2 has a delay of twice of
SIP, which has nearly 1302 ns when the packet size is 1024 B,
while the EM-2 has a delay of 1348 ns when the packet size
is 1024 B. One AES operation has a delay of nearly 2445 ns
for the packet size of 1024 B. In contrast, for the packet size
of 1024 B, the two AES operations cost 4911 ns to accomplish
the operation. The results confirm that the recirculation in
the data plane could significantly increase the computation
overhead in each hop.

The MAC operation in different mechanisms behaves the
same on specific hardware, but not all the MAC operations

TABLE III

EACH HOP’S COMPUTATION OVERHEAD IN DIFFERENT MECHANISMS

could satisfy the requirements of any particular mechanism.
For example, the OPT needs the AES operation because the
mark in each hop is 128-bit. We enumerate the number of
MAC operations and the computation delay in Tab. [III] based
on the requirements of these mechanisms.

Then we compare the processing of source and path verifica-
tion at each hop. In OPT, hop i validates the OPVi and updates
the PV Fi in the packet header. Only the AES-128 operation
could satisfy the requirement. In other mechanisms, the 2EM
could satisfy the verification requirements. In PPV, hop i only
achieves the path verification, but it should also calculate
the MFi and updates the MV F in the packet header, thus
needing 2 MAC operations. In EPIC L3, hop i only calculates
Ci with 1 MAC operation. It utilizes C

[1]
i to authenticate

the source, then updates the HV F with C
[2]
i . In MASK,

we truncate the 64-bit mark to two marks (32-bit marksrc

and 32-bit markr). Then we could achieve the source and
path verification with 1 MAC operation. The results show
that MASK incurs little computation delay compared with IP
packet forwarding.

As the average path length of the Internet is nearly 5, and
most of the path lengths are less than 10, we compare the
computation overhead of various mechanisms with different
path lengths. As shown in Fig. 8 (a), with a packet size
of 512 B, MASK has a little more delay than the IP packet
forwarding (baseline). While in Fig. 8 (b), with the packet
size of 1024 B, MASK has nearly the same delay as the
baseline. OPT has much more computation delay since it needs
9 recirculations to achieve 2 AES operations. PPV has less
delay than OPT since it could utilize 2 2EM operations, which
need 1 recirculation in each router, and PPV only processes
the MAC operation in two hops for a specific packet. EPIC
has the same delay since it could utilize the 2EM operation
to generate Ci. The 2EM has weaker security guarantees
compared with AES, MASK could switch the dynamic key
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Fig. 8. The computation overhead with different path lengths. The operations
include the negotiation of dynamic keys (asymmetric operation) in OPT,
deriving the dynamic keys (an AES operation) on the fly in OPT, PPV, and
EPIC, and deriving the hop authenticator in EPIC are not considered. It is
impractical to achieve these operations in OPT, PPV, and EPIC with today’s
programmable hardware.

with the granularity of minutes. PPV and EPIC need to utilize
a similar mechanism to guarantee the security of the marks.
Or else, it needs to utilize a more secure MAC operation (e.g.,
AES), which has the same delay as OPT.

The operations include the negotiation of dynamic keys
(asymmetric operation) in OPT, deriving the dynamic keys
(an AES operation) on the fly in OPT, PPV, and EPIC, and
deriving the hop authenticator in EPIC are not considered. The
reason is that we focus on achieving the practical data plane
processing of relative mechanisms. As detailed in [39], the
authors detailed that the MAC operation is impractical with
today’s programmable hardware. And we assume the key and
the hop authenticator could be cached in the hardware. We will
detail that the AES could decrease the throughput to a large
extent though it could achieve with recirculations. On the other
hand, Intel’s AES-NI hardware could reduce the computation
latency [20]. MASK could also benefit from this dedicated
component.

MASK could achieve higher throughput than other mech-
anisms since it accomplishes the processing in a single
pipeline. As detailed in [37], the throughput of each hop
with AES operation was affected by the hardware’s recir-
culation bottleneck since a packet recirculates several times
to accomplish one AES operation. In [37], the authors
utilize 200 Gbps recirculation bandwidth. The throughput for
an AES-128 operation (requiring 4 recirculations / 5 passes)
on RMT programmable switch is 10.92 Gbps (85.3 Mpps),
while 4.91 Gbps (38.4 Mpps) for 9 recirculations (10 passes),
which could process two AES-128 operations. In practice,
we could achieve a higher bandwidth by reserving more switch
ports as loopback. For example, we could reserve 2n/(2n+1)
times of total ports for n recirculations. It then could achieve
1/(2n + 1) line rate. For example, to achieve 1 recirculation

TABLE IV

THE GOODPUT RATIO IN DIFFERENT PATH LENGTH

in S9180-32X (30 ports with 100 Gbps), we could reserve
20 ports (2/3) for the recirculation, and the throughput could
achieve 1 Tbps (1/3). When n > 5, we could not reserve the
ports with the ratio of 2n/(2n + 1) since we need a certain
number of ports to connect with other networks. MASK could
achieve the verification in a single pipeline, which means it
can process the packets at a hardware line rate, thus improving
its deployability in the realistic network.

C. Communication Overhead

We evaluate the communication overhead of MASK and
compare it with other mechanisms. We only consider the
overhead owed to security since the routing headers (e.g.,
SRv6, SCION) depend on the underlying PAN. Therefore,
we evaluate the goodput in different mechanisms. We use the
additional packet header to load the security-related fields and
define the additional packet header size as HD. The goodput
ratio (GR) is the ratio of payload size (p) and total packet
size (p+HD), namely GR = p/(p+HD). As shown in Tab. [IV],
the goodput ratio is high for MASK. For the payload size
of 1000 B in n = 5, the additional header in EPIC L3 is 49 B,
which corresponds to a goodput ratio of 95.33%, while the
value in OPT is 87.11%. In MASK, the ratio is stable at
97.66% regardless of the path length, while PPV has a stable
ratio with a value of 93.98%.

D. Performance at End Host

In MASK, the end host requests dynamic keys from the
KDS, and the KDS answers with the relative dynamic keys
before a new session. We assume that the underlying PAN
minimizes latency by locally caching public paths. And the
Multi-AS-Key has been synchronized among the KDSes.
Therefore, the additional latency incurred in MASK is insignif-
icant since the paths and keys information is available at
the local KDS. Moreover, an end host can cache both path
information and keys, eliminating extra latency for subsequent
packets. Meanwhile, with the policy shared by Equation (5),
there’s no inter-domain negotiation between the source and the
destination.

We first evaluate the computation overhead at the end
host. The source and destination need to perform the MAC
operations for each packet, which comprises the heaviest
overhead. We test different hash and MAC operations in the
virtual machine with an Intel Core i5-6200U CPU. It could
achieve more than 8,000,000 cycles for SipHash-2-4-64
(1,000,000 cycles for 2EM ) in one second, which could
satisfy the calculation of markpkt. The computation delay in
the end host is detailed in Tab. [V]. At the source, it needs a
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TABLE V

THE COMPUTATION OVERHEAD AT END HOST

SipHash-2-4-64 operation to calculate the markpkt, a 2EM
operation to calculate the marksrc, and the markr of each
on-path router. In contrast, the destination needs to calculate
an markpkt. The end host could calculate the hash of the
payload with a computationally effective hash operation, e.g.,
the CRC32 which only costs less than 20 ns in our virtual
machine. With the total delay of a certain packet, we could
learn from Tab. [V] that an ordinary commodity host could
support more than 1 Gbps with a packet size of 1024 B in
a realistic AS-level path length. We can conclude that the
overhead in the end host is sustainable for the source and
path verification.

E. Performance at Agent

In Agent-based MASK, the performance of border routers
and the destination is the same as in MASK. While the
performance at the source is less than in MASK since it
process only one MAC operation for the agent, then the delay
is 1.125 μ s no matter the path length.

The agent first verifies the source with one mark, and ini-
tializes the markr and marksrc with n (path length) marks.
For the path length of 4, it processes 5 2EM operations, which
need 4 recirculations. The processing latency in S9180-32X
is the same as AES, which takes 2445 ns for the packet
size of 1024 B. For the path length of 9, it processes 10
2EM operations, which takes 4911 ns for the packet size
of 1024 B. Considering that each packet needs 9 recirculations
in S9180-32X, we could reserve 18 ports for 9 recirculations,
the throughput could achieve at least 100 Gbps. In some
scenarios which need the throughput at the magnitude of Tbps,
we could utilize the flag to instruct the agent only to process
one MAC for the selected router. Then the agent only needs
to perform 2 MAC operations for each packet, which could
achieve 1 Tbps in S9180-32X. Therefore, the latency and the
throughput are sustainable for the agent to process the packet
in a subnet.

VII. DISCUSSION

In this section, we discuss incremental deployment issues
and the limitations of MASK. We first discuss a high-level
approach for implementing MASK on the Internet, then dis-
cuss attacks that MASK does not entirely defend.

A. Incremental Deployment

As the Internet’s architecture is a flexible composition of
many networks [43], the dedicated network could use some
new designs [44], [45]. From this perspective, we insist that
MASK could first deploy in some dedicated network. For

example, MASK could be integrated with SRv6 [46] to verify
the source and the segment node in an efficient way. The
integration could directly utilize the segment lists as the path
information and the Type Length Value (TLV) field to load the
additional packet header of MASK [47]. MASK could also be
used in SCION to enjoy lightweight processing in the routers.
For example, MASK can be implemented as the substitute of
VALHD in the EPIC packet header. Some other dedicated

networks, such as satellite networks that need more security
guarantees, could adopt MASK to enjoy a secure data plane.
As MASK could achieve in programmable hardware with
line rate, the operator in a dedicated network could directly
implement it. The legacy router could also benefit from it.
It could utilize the Policy Based Routing to connect the traffic
to an implemented programmable hardware.

Besides PAN, MASK could also use in other networks. For
example, the ASes could exchange the AS-PATH with BGP.
We name it MASK without source authentication in an on-
path router. It has no path information at the source and packet
header. The source initializes the MASK header with markpkt

and indicator. Only one on-path router randomly updates the
id with idi and relative markr , marksrc . The destination

could require the dynamic keys from the KDS, and reconstruct
the actual path based on the verified packets. MASK without
source authentication in an on-path router is just like PPV [21],
except that MASK need not derive the dynamic keys on the
fly, thus only processing 1 MAC operation in the data plane of
the router, and could benefit from the policy shares between
the source and the destination to detect the packet drop and
packet replay attack. It could achieve the verification even with
a partial deployment, thus benefiting the early adopted ISP
to draw traffic towards them and appeal to existing and new
clients who desire adequate protection.

B. Limitations

MASK could not verify the attack from adjacent colluders,
e.g., the on-path routers, Ri and Ri+1 forward the packet
to another colluding router (Rj), not on the expected path.
This weakness exists in any path verification mechanism;
even every packet verified at each hop could not verify the
fault since Ri and Ri+1 could calculate the marks pass any
entities’ verification [15].

Besides that, the verification cares about whether the net-
work forwards the packet according to the end hosts’ policy.
It could not localize the fault entity if the adversary frames
other entities or drops the packet. It needs a fault localization
mechanism to localize the fault entities, in which each on-path
router records the testimony and returns it to the source (or
other entities) [48].

VIII. RELATED WORK

Path-Aware Networking. The PANs, such as NEB-
ULA [26], and SCION [17], give transparency and choices to
end hosts, while SR [49] provides a practical way to program
a dedicated network. These mechanisms are orthogonal with
MASK and provide the basis of path verification by allowing
the hosts to embed a path of their choice in the packet header.
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Cryptographic operation in programmable data plane.
The ability of cryptographic operation in programmable hard-
ware is important for verification in the data plane. Previous
works mostly focus on dedicated hardware, which might
have scalability or compatibility issues [50]. SPINE [51]
implements SipHash in the BMv2 environment. It needs
at least three packet recirculations on a hardware switch
due to resource constraints, which degrades the performance.
P4-AES [37] requires at least four recirculation on hardware
switch, and the highest throughput only achieves 10.92 Gbps.
PINOT [36] could encrypt the IP address with 2EM operation
in a single pipeline on commercial hardware. MASK stores the
dynamic keys, utilizes 2EM operation to calculate two 32-bit
marks in a single pipeline, then achieves the lightweight
source and path verification with the two marks.

Source and path verification. Source and path verification
has been extensively studied in the literature [52], [53], [54],
[55]. The mechanisms like Pi [52] and SNAPP [56] utilize path
identifier to detect the DDoS attack or to pin the forwarding
path, which could achieve path verification. Still, the attacker
could easily forge the identifier. In ICING [19], the router com-
putes a MAC for each downstream on-path router. It requires
each router to compute n + 1 MAC operations per packet.
OPT [15] utilizes DRKey to share the dynamic keys between
the hosts and the routers. RFL [57] could further achieve this
verification on unreliable communication channels. EPIC [20]
proposes a sophisticated mechanism to improve the security
and efficiency of the verification. It provides a hierarchical
security level (named L0-L4) for different security require-
ments. Atlas [58] extends the verification to multipath routing.
Atomos [54] achieves the verification with constant-size proofs
by a scheme of noncommutative homomorphic asymmetric-
key encryption. But these mechanisms incur relatively heavy
computation overhead, while the timestamp synchronization
between the routers and end hosts is also impractical [20].
PPV [21] reduces both computation and communication over-
head by probabilistic marking, but it cannot achieve the
source verification in the router. OSV [59] creates a more
efficient system by using orthogonal sequences instead of the
cryptographic operation. It incurs complexity in the control
plane, thus lacking the capability of deployability. Meanwhile,
vSFC [60], [61] achieves the verification in the cloud to
verify the real enforcement of service function chains as
expected, extending the verification to a dedicated network.
DYNAPFV [62] proposes a lightweight packet forwarding
verification mechanism to detect attacks against packet for-
warding in SDN. PSVM [63] utilizes Credible Guarantee
Agent (CGA) in SDN to perform a flexible source and path
verification. These mechanisms are not tailored for inter-
domain contexts. In MASK, the verification is a service toward
the end host, which offloads most of the router’s overhead to
the end host and KDS to achieve a practical source and path
verification in inter-domain contexts.

IX. CONCLUSION

Existing source and path verification mechanisms faced a
dilemma between security and efficiency in computation and

communication overhead. Our efficient MASK resolves this
dilemma. In contrast to performing per-packet verification
in each entity on the path, MASK offers a dramatically
different design point by leveraging the end host’s ability
to establish a per-session verification, ensuring security and
reducing overhead in the router, as well as providing the
customized capability to meet the end host’s requirements.
It suits Internet inter-domain communication and facilitates
security guarantees in a dedicated network. In a word, MASK
enables on-path routers and the destination to achieve the
source and path verification in the data plane efficiently, thus
providing a secure foundation for the data plane in the network
layer.
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