
MASK: Practical Source and Path Verification
based on Multi-AS-Key

Songtao Fu∗,Ke Xu∗†§,Qi Li†‡, Xiaoliang Wang¶, Su Yao†, Yangfei Guo‡ and Xinle Du∗
∗ Department of Computer Science and Technology, Tsinghua University, Beijing, China

† Beijing National Research Center for Information Science and Technology(BNRist), Beijing, China
‡ Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China
§ Peng Cheng Laboratory, Shenzhen, China ¶Capital Normal University, Beijing, China

{fust18@mails.tsinghua.edu.cn, xuke@tsinghua.edu.cn, qli01@tsinghua.edu.cn, wangxiaoliang@cnu.edu.cn,
yaosu@tsinghua.edu.cn, guoyangf19@mails.tsinghua.edu.cn, dxl18@mails.tsinghua.edu.cn}

Abstract—The source and path verification in path-aware
Internet consider the two critical issues: (1) end hosts could verify
that their forwarding decisions followed by the network, (2) both
intermediate routers and destination host could authenticate the
source of packets and filter the malicious traffic. Unfortunately,
the current verification mechanism requires validation operations
in each router on the path in an inter-domain environment, thus
requiring high communication and computation overhead, reduc-
ing its usefulness; besides, it is also difficult to meet the dynamic
requirements of the end host. Ideally, the verification should be
secure and provide the customized capability to meet the end
host’s requirements. We propose a new mechanism called source
and path verification based on Multi-AS-Key (MASK). Instead
of each packet verified and marked at each router on the path,
MASK improves the verification by empowering the end hosts to
instruct the routers to achieve the verification, thus decreasing
the router’s overhead while ensuring security performance to
meet the end host’s requirements. With the plausible design, the
communication overhead for realistic path lengths is 3–8 times
smaller than the state-of-the-art mechanisms. The computation
overhead in the routers is 2-5 times smaller. We implement our
design in the BMv2 environment and commodity Barefoot Tofino
programmable switch, demonstrating that MASK introduces
significantly less overhead than the existing mechanisms.

Index Terms—path-aware networking, data plane, source and
path verification

I. INTRODUCTION

Security threats and attacks on Internet have been increasing
at an alarming rate in recent years. The untrusted network
layer leads to many problems, such as the TCP hijack by
manipulating the IPID assignment method [1], or Certificate
Authorities (CAs) are vulnerable to attacks by network layer
adversaries [2]. A secure data plane is needed on Internet
[3]. With the exciting research of path-aware networking
architectures on the Internet, the end hosts could impose their
policies to enforce the forwarding decisions on the data plane
[4] [5] [6]. It provides an opportunity for establishing a secure
data plane in the network layer.

The source and path verification in path-aware networking
could fundamentally improve the network’s trustworthiness,
which achieves two fundamental security properties: (1) The
end hosts (the source and the destination) could verify that

978-0-7381-3207-5/21/$31.00 ©2021 IEEE

the network follows their forwarding decisions. (2) The in-
termediate routers and destination hosts could authenticate
the packets’ source while filtering the malicious traffic as
early as possible. To achieve the verification, the source,
intermediate routers as well as destination should calculate
marks with the session keys shared between these entities
[7]. The granularity of verification could be AS level since
that an AS is separately administered as a trust and fate-
sharing unit [8]. Some sophisticated mechanisms devote to
improve efficiency and security, but the following deficiencies
still degrade the practicality of these mechanisms:
High communication overhead. The state-of-the-art addi-
tional packet header still impractical in the inter-domain com-
munication [7] [9], while the existing probabilistic mechanism
[10] devotes to decrease the communication overhead also
degrades the security performance, e.g., lack of the ability to
filter the malicious traffic in routers.
Heavy computation overhead. Sharing the per-session keys
between the end hosts and routers requires sophisticated
actions beyond the capability of today’s routers, e.g., the
asymmetric encryption is impractical at least with today’s
router hardware, the mechanism such as DRKey [7] couldn’t
be used directly. EPIC decreases this overhead with a practical
hierarchical key derivation mechanism [11]. But even symmet-
ric cryptographic operations in the data plane could decrease
the line rate performance, e.g., the cryptographic operation
implemented by the software could be a bottleneck of the
forwarding, while utilizing the dedicated hardware increases
the cost as well as the difficulty to upgrade the relative routers.
Impractical time synchronization. Some mechanisms utilize
the timestamp to resist the attacks, such as replay attack,
which needs synchronization between the routers and end
hosts [12] [13]. It is also impractical to keep the precise data
plane synchronization between these entities for today’s inter-
domain communication.

This paper proposes MASK, a practical source and path
verification with an efficient additional packet header and
lightweight operation in the router. We offload both of the
overhead to the end host and the Key Distribution Server
(KDS). The KDSes in different ASes share Multi-AS-Key with
the state machine in APPA [14], to derive the session keys for

the hosts and intermediate routers, then distribute them to the
end hosts as well as routers in the same AS in a confidential
way. A source host could get the path information and the
session keys from the KDS. Then it could negotiate a per-
session policy with the destination and instruct the routers
to perform a lightweight operation according to the policy.
For a certain packet, only one hop1 on the path performs
one symmetric cryptographic operation, while the source and
the destination could validate the processing according to the
policy. The main contribution of this paper is as follow:
� Empowering the end host to instruct the intermediate

routers to achieve the verification with the policy negoti-
ated by the source and destination.

� Introducing a lightweight mechanism to operate source
and path verification in intermediate routers.

� Evaluating the performance and comparing it with the
state-of-the-art design in the BMv2 environment and
Barefoot Tofino programmable switch.

The rest of the paper organizes as follows: In the next
section, we analyze our design’s background and motivation.
Section III presents the MASK design at a high level, section
IV details the MASK protocol, section V analyzes its charac-
teristics and benefits, section VI presents the implementation
as well as the evaluation, and section VII discusses the
incremental deployment mechanism as well as the limitation.
Section VIII describes related works. We conclude the paper
in the last section.

II. BACKGROUND AND MOTIVATION

This section presents the background of source and path
verification on the Internet, analyzes the challenges in a
realistic network, and then explains our design goals.

A. Background and Challenges

As the source and path verification focus on securing the
data plane, consider a Dolev–Yao adversary could observe,
drop, inject, replay, or alter packets in a compromised network
[15]. The intermediate routers and end hosts must share some
secret information (session keys) with each other [16], to
generate cryptographic marks for each hop in the packet
header for cryptographically verifying the source and path
information during forwarding [7] [9]. The state-of-the-art
cryptographic mechanisms include the FULL and probabilistic
process. The destination achieves the verification with the
marks in both cases. The FULL operation (includes OPT [7],
EPIC [9], et.al.), as shown in Fig. 1 (a), verifies the marksrc

and adds its markr at each hop. In contrast, as shown in
Fig. 1 (b), the probabilistic process (PPV [10]) adds a specific
number of markr (e.g., two hops). The former couldn’t utilize
the source’s (S) and destination’s (D) ability to verify a specific
session. The latter cannot filter the malicious traffic based on
the source’s marksrc.

In a word, a practical verification mechanism in a realistic
network should satisfy the requirement of scalability and

1We denote hop as an AS-level border router in this paper.

(a) FULL

S DR1 R2 R3 R4

marksrc for D marksrc for Ri

S DR1 R2 R3 R4

markr for D

(b) PROBABLISTIC

S DR1 R2 R3 R4

(c) MASK

Fig. 1. The overview of different verification mechanisms

deployability. Today’s designs are lacking in both regards,
which brings the challenges as follows:
Scalability. The verification mechanism shouldn’t cripple the
performance of today’s Internet. A lightweight computation
overhead in routers with hundreds of nanoseconds is necessary
for inter-domain communication [9]. Meanwhile, the signifi-
cant overhead in routers not only degrades the performance
but also gives the attackers the chance to simply flood a router
with illegitimate packets [17].
Deployability. The Internet is a network of networks connect-
ing billions of hosts in more than 60,000 AS [18]. Hardware
routers used to connect the ASes are still extremely hard
to upgrade; even adding simple functionality is difficult to
achieve without vendor support. Meanwhile, legacy routers
need to communicate with updated routers and vice versa.

From this perspective, we believe that a lightweight router
could offload the overhead to other entities, e.g., the end host.
As shown in Fig. 1 (c), a router could achieve the verification
with the source’s instruction to minimize the router’s overhead.
But how can MASK maintain the security guarantees on the
premise of the lightweight router?

B. Design Goals

The design should be implemented on routers within reach
of the present or foreseeable future technology. We begin with
the following assumptions:
� Secure Intra-AS Communications. We assume a secure

channel to communicate between a host and KDS in its
own AS to get the session keys for the routers and hosts
on the forwarding path. In particular, an AS may prevent
source address spoofing within its network using any anti-
spoofing method such as SAVA [19] [20] [21].

� Hierarchical Key Establishment. We leverage the KDSes
to establish the 3 levels key system. As shown in Table
[I], The AS-Key (AK) is the top-level key infrequently
renewed (e.g., hours) with the state machine in APPA
[14], only shared among the KDSes with hash chain [22].

At the same time, the router key (RK) and the session
key (RSK;HSK) is the level 2 and 3 key. The source
and destination could get the RSK and HSK from the
relative KDS; the router can dynamically recreate RSK
on the fly to ensure the confidentiality of RK while
needn’t keep a per-session state.

TABLE I
HIERARCHICAL KEY DERIVED BY KDS

Notation Description Level Storage
AK AS-Key 1 KDS
RK Router Key 2 KDS, router
RSK Router’s Session Key 3 KDS, host
HSK Host’s Session Key 3 KDS, host

As the above assumptions have already been deployed in
the realistic network, based on these assumptions, the router
could offload its overhead to the end host and the KDS. Then
we could achieve the following design goals:
Scalability. We aim to design an edge-based solution to
empower the distributed end host by imposing its policy on
the network. This end host driving mechanism minimizes
the cryptographic operations in the routers while keeping the
security characteristic. For a packet, only one hop on the
path needs to execute a cryptographic operation to verify the
source’s mark and add a new mark to be verified by the
destination.
Deployability. MASK should not be difficult to be deployed
or upgraded in different environments (e.g., an inter-domain
or dedicated network). The emerging programmable switch
[23], which supports packet processing using domain specific
languages (e.g., P4 [24]), provides an exciting opportunity
to design protocols that manipulate arbitrary parts of packet
header at line rate [25]. It still has some challenges to utilize
the programmable switch since the ASIC constraints though
some new extension of P4 has been put forward [26]. However,
MASK’s design is devoted to addressing these challenges by
minimizing the verification’s operation.

III. OVERVIEW

This section overviews the design of MASK. We will first
detail the additional packet header in MASK and then show
how MASK processes at the end host and router.

To achieve the verification, we design the packet header
with IPv6 Extension Header (EH) [27], as shown in Fig. 2,
the additional packet header of MASK are as follow:
� Flag (8-bits): We denote the two least significant bits of
Flag with the value 0, 1, 2, 3 to indicate the packet of
DATA, NegoPkt, ACK, CHECK, respectively.

� ID (32-bits): Identifier of an intermediate router.
� sessionpartial (32-bits): The substring of the partial

session information calculated as Equation (1), in which
IDi is the ID of an intermediate router, TS is the initial
time of a session with the granularity of second, ‘jj’
represents the concatenation, H(:) represents a certain

IP Header Flag(8bits) ID(32bits) sessionpartial(32bits) Pauth(32bits) mark(32bits)

MASK Header

Fig. 2. The packet header of MASK

hash operation, while [0:32] represents truncating the
lowest 32 bits field. A session could be identified by the
concatenation of sessionpartial, IP src and IP dst (the IP
address of the source and the destination).

sessionpartial = H(ID1jj: : : jjIDnjjTS)[0 : 32]

session = IP srcjjIP dstjjsessionpartial

(1)

� P auth (32-bits): The authenticator calculated by the
source as Equation (2), in which MAC(:) represents the
MAC computation, hash is the hash of packet payload, to
guarantee the diversity of the marks while the destination
could verify the source and the integrity of the packet.

P auth = MACHSK(hash)[0 : 32] (2)

� mark (32-bits): The authenticator calculated by the
source as well as the router.

At a high level, MASK offloads most of the router’s
overhead to the end host. Specifically, the router could prob-
abilistically verify and mark a packet. The end host could
achieve a dynamic verification with a negotiating policy.
Processing at end host. As shown in Fig. 3 (a), the source
(S) and destination (D) could require the path information
and the session keys from the KDS in the relative AS, then
the processing consists of two phases: ¬ Initialization: the
source sends a negotiation packet (NegoPkt) includes the path
information as well as the policy towards the destination,
nests an intermediate router’s IDi as well as a marksrci

in the packet header, the destination verifies the packet and
returns the ACK (the NegoPkt and ACK can carry upper
layer protocol data). Verification in each epoch: The source
selects an intermediate router according to the policy, nests
its IDi as well as a marksrci

in the DATA packet (DATA)
header, the destination achieves the verification after receiving
each packet. At the end of each epoch, the source sends
a checkpoint packet (CHECK), the destination validates the
processing according to negotiating policy after successfully
receive a CHECK.
Processing at router: As shown in Fig. 3 (b), for a packet, a
router with the same IDi verifies the marksrci and replaces
it with markri

after a successful source verification, or else
drops the packet which failed of source verification. The
routers without the same IDi forward packets directly.

IV. PROTOCOL DESCRIPTION
In the following subsections, we first introduce the dynamic

processing includes the instruction at the source and the
verification at the destination, then explain the lightweight
processing at the router. After that, we describe the key
switching mechanisms to guarantee communication and then
talk about path stability effects.

Initialization

Epoch 1 …

①

②

…

NegoPkt

ACK

DATA

CHECK

(a) Processing at end host (b) Processing at router

S

ID=IDi?
mark=

marksrc?

Forward the packet

packet

No

Yes

Add markri

Yes

Drop

No

D

Fig. 3. The MASK overview

A. Processing at End Host

The source first requires the path information as well as
the relative session keys from its KDS. Given an AK in that
interval, the KDS could derive the level 2 key, which is the
RKi has sent to the relative router as Equation (3), and the
level 3 key includes the RSKi as Equation (4), as well as the
HSK as Equation (5).

RKi = MACAKIDi
(IDi) (3)

RSKi = MACRKi
(session) (4)

HSK = MACAKsrc
(session) (5)

The source gets the path information and session keys of
routers as Equation (6), as well as the HSK, then sends a
NegoPkt towards the destination, with the policy encrypted
by the HSK. We assume a simple policy with a Check-
point Sequence Hopping (CSH) message, e.g., the CSH
of ’4000|5000 � � � ’ represents the source sends 4000 packets
in the first epoch and 5000 packets in the second epoch.
The destination gets the keys from the KDS in destination
AS, verifies the packet and decrypts the policy, changes the
CSH to CSH 0 = CSHjjIP dst, encrypts the CSH 0 with the
HSK, and sends an ACK towards the source. After the source
decrypts the CSH 0, the end hosts establish the initialization.

path = (ID1; ID2; � � � ; IDn)

RSKpath = (RSK1; RSK2; � � � ; RSKn; HSK)
(6)

After the negotiation, with a certain policy (e.g., routers
marks with the uniform probability), in each epoch, the source
forwards the packet as Algorithm 1.

In Algorithm 1, the source already has the path, RSKpath,
HSK and the CSH , selects CSH[m] from CSH (e.g., 4000)
in each epoch (line 1). Then it selects one router for each
packet according to the policy (e.g., uniform marking) and
nests the marksrci as Equation (8) (line 3-5).

mark = MACRSKi
(P authjjIDi�1jjIDi+1) (7)

marksrci
= mark[0 : 32] (8)

If the CSH[m] decreases to 0, the source sends a CHECK
(line 6-8). A CHECK is different from the DATA, the P auth

was replaced by P csh
auth calculated with the policy in the next

epoch, while the marksrci
is the same as a DATA.

P csh
auth = MACHSK(CSH[m+ 1])[0 : 32] (9)

Algorithm 1: procedure at source host
input : path;RSKpath; HSK;CSH

1 for CSH[m] in CSH do
2 while CSH[m] >= 0 do
3 if CSH[m] > 0 then
4 flag 0; ID IDi

5 Pauth Pauth;mark marksrci

6 else
7 flag 3; ID IDi

8 Pauth P csh
auth;mark marksrci

9 CSH[m] CSH[m]� 1
10 send packet to the first hop

Then the source decreases the CSH[m] and sends the
packet to the first hop (line 9-10). It could begin a new turn
with CSH[0] after all the CSH was over or negotiate a new
policy with the destination.

The destination achieves the source and path verification
with Algorithm 2.

Algorithm 2: procedure at destination host
input : pkt; path;HSK;RSKpath; CSH

1 initialize sCouter[N] = f0g; fCounter[N] = f0g
if (flag == 0) and (Pauth == P 0auth) then

2 if markri == mark0ri
then

3 sCounter[i] + +
4 else
5 fCounter[i] + +

6 else if (flag == 3) and (P csh
auth == P csh

auth

0
) then

7 if markri == mark0ri
then

8 for sCouter[i]; fCounter[i] in
sCouter[N]; fCounter[N] do

9 if all the sCounter[i],fCounter[i]
match the policy then

10 m= (m+1) MOD length (CSH)
11 sCouter[N]; fCounter[N] = f0g
12 else
13 fault router i is located

The destination initializes two counter, the sCouter[N]
represents the counter the relative router successfully pass the
verification, while the fCounter[N] represents the counter
failed the verification (line 1). If the packet is a DATA, the
destination calculates the P 0auth and compares it with Pauth

in the packet, then calculates the mark0ri
, compares with the

markri
in the packet header (line 2-3). If the verification

is successful, the destination increases the relative router’s
sCouter[i], or else increases the fCounter[i] (line 4-5). At
the end of each epoch, the destination receives the CHECK, it
first verifies the P csh

auth in the packet (line 6), then calculates

the markri
0 and compares with markri

(line 7). Whether the
sCouter[i] and fCounter[i] match the policy could be judged
as follow:

� � CSH[m] � (1� �) < sCouter[i]) < ��
CSH[m] � (1 + �)

(10)

fCounter[i] < 2 � � � CSH[m] (11)

In Equation (10) � is the marking probability of each router,
e.g., for a uniform mechanism with 5 hops, � = 0:2, � is the
threshold according to the statistical network performance (e.g.
0.05 for a natural loss of 0.03 [28]). While in Equation (11)
2���CSH[m] is the upper threshold of the failed verification
counter. If the two counters comply with the policy, the
destination turns into the next epoch and resets the counters
(line 8-11). Otherwise, the destination localizes the router i
as a fault node (line 13). With this design, the destination
could detect the replay attack since it violent the policy. The
destination could report the verification encrypted with the
HSK towards the source. We do not assume an exact report
mechanism towards the source or other entities, as the reply
could send with the application layer information. It worth
mentioning that the ACK and the DATA from the destination
to the source on the reverse path are similar to the forward
path.

B. Processing at Router

When a router receives a packet, it processes the packet as
Algorithm 3. It first checks whether it’s a packet of MASK,
and checks that whether the IDi is the same as itself (line 1),
calculates the mark0srci

with the router’s session key RSKi

as Equation (8), then compares mark0srci
with the marksrci

in the packet header. The router would drop the packet if the
source verification failed, to filter the malicious traffic (line
2-3). If the marksrci passes the source verification, the router
replaces the marksrci

with markri
as Equation (12) (line 4-

5), then the router sends it to the next hop (line 6).

markri = mark[32 : 64] (12)

With this design, the router only performs one MAC oper-
ation, truncated it for the source and path verification.

Algorithm 3: procedure at router
input : pkt;RKi; IDi; IDi�1; IDi+1

1 if (flag == MASK) and (IDi == IDi
pkt) then

2 if marksrci
! = mark0srci

then
3 drop the packet
4 else
5 marksrci markri

6 send packet to the next hop

C. Key Switching

The key switching is infrequent since the AK changes with
the granularity of hours. However, a key switching mechanism
is still needed to prevent the session from interrupting since
letting all entities change keys simultaneously is impossible.
We introduce offset time to deal with the switching. Each
entity prepares the new key before the offset time. During
the offset time, the source sets the third least significant bit in
Flag with 1 to announce the entities to use the new key (all
the entities use the old key with 0). After the offset time, all
the entities utilize the new key and drop the old key no matter
the Flag value. Keeping two keys is easy to be accomplished
by the destination host while incurring little overhead in the
router. It’s better than invalidate an entire session and force the
source and destination to execute another handshake simply
because a few entities switch their keys earlier or later than
others.

D. Path Stability Effects

Localized load-balancing does not hurt MASK’s perfor-
mance since MASK works in AS granularity. The large-scale
route flapping is detrimental to communication performance.
It is orthogonal to MASK since the routing decisions should
avoid the route flapping based on the observation that most
networks are nearly quiescent (in terms of routing changes)
[29]. Suppose a path changes during the transmission for some
reasons (e.g., infrastructure failures or temporary outage). In
that case, the relative session keys will change, it will force the
source to renegotiate before sending further marked packets.
An alternative that may mitigate the effect of mid-flow route
changes is that the source can simply demote the packet to
unmarked status during the renegotiation.

V. ANALYSIS

In this section, we analyze the performance as well as secu-
rity properties of MASK. We first compare the characteristics
with the state-of-the-art mechanisms, then analyze how to deal
with various attacks.

A. Performance Analysis

Overhead. As shown in Table [II], we compare the computa-
tion and communication overhead with OPT [7], EPIC L3 [9]
and PPV [10] since they provide similar security guarantees.
� Computation overhead. The cryptographic operation ac-

counts for most of the computation overhead. MASK
efficiently optimizes the per-packet cryptographic oper-
ation with only one hop on the path to operate the MAC
calculation. While OPT and EPIC L3 operate at each hop,
the PPV operates at two adjacent hops.

� Communication overhead. The MASK and PPV addi-
tional packet header size is stable, while the OPT and
EPIC L3 header size depends on the path length. We
illustrate the communication overhead with 5 and 10
hops since the current average path length on the Internet
is less than 5 AS-level hops, and the vast majority of
Internet AS-level path length is at most 10 [30].

TABLE II
THE OVERHEAD COMPARED WITH OPT, PPV AND EPIC

Computation
overhead (hop)

Communication overhead
size (B) for n=5 (B) for n=10 (B)

OPT n 16n+68 148 228
PPV 2 64 64 64
EPIC n 5n+24 49 74

MASK 1 17 17 17

Convergency delay. As we utilize the probabilistic mark
mechanism, the destination will reconstruct the actual for-
warding path after receiving a certain number of packets. We
denote it as convergence delay Tc which indicates the expected
number of received packets used to reconstruct the actual path
in the destination. While Tc is proportional to time for a certain
rate. A useful link defined in MASK is a link not appearing
in the previous packets of the session. As P0 = 1=n, the
probability of receiving a useful link is nP0 and (n � 1)P0

respectively from the first and second received packet, and
(n� j + 1)P0 from the j � th received. As detailed in [10],
Tc could be calculated as Equation (13), in which ! = 0:577.

Tc =
1

n � P0
+ � � �+ 1

(n� j + 1) � P0
+ � � �+ 1

P0

� n(lnn+ !)

(13)

B. Security Analysis

Security properties. An overview of the comparison with
OPT [7], PPV [10] and EPIC L3 [9] is shown in Table [III].
No asymmetric cryptography represents that the router needn’t
perform the per-session asymmetric cryptography. EPIC and
MASK could derive the session keys from the key server;
others have to negotiate the session keys by asymmetric
cryptography. The router’s source and path verification is the
honest router’s capability to filter the traffic from a malicious
source and an on-path attacker. PPV couldn’t achieve this
since the routers only add its own mark, while in MASK,
the source decides which router to perform the verification.
The source and path verification in the destination ensures
that the destination could authenticate the source and verifies
whether the actual path corresponds to the anticipated path.
EPIC achieves replay attack resistance with the timestamp, but
it’s impractical for the entities to keep time synchronization
in a large scale network. We relax it with the policy in the
granularity of an epoch, and the destination could achieve it
at each end of an epoch. Meanwhile, a malicious router might
drop packets during the processing; only MASK could detect
the packet drop attack according to the policy, while others
couldn’t achieve that for that they only achieve the verification
according to received packets.
Packet flooding. In MASK, an unauthorized entity might
forge the appropriate mark by packet flooding. The shorter
length and the less diversity of the mark provide the larger
probability that a randomly chosen mark will pass through the
verification. We have the parameters: z, the length of a mark,
and x, the size of P auth represents the diversity of marks.

The probability that a randomly guessed mark equal to the
particular router is as:

P (x; z) =
1

2min(x�1;z�1)
(14)

In which min(a; b) represents the minimum value between
a and b would be selected. MASK has 32 bits x and 32 bits
z. It’s enough to achieve verification requirements [28].

Attackers could also simply flood a router with illegitimate
marks, causing the router to either overload its computation
capability or fill its buffer with packets. MASK decreases the
overload risk since only one hop on the path operates the
verification. An attacker could also send packets with the ID
not in the forwarding path to evade the verification, which’s
equal to flood with unmarked packets. MASK could efficiently
deal with this case by the design that the MASK packet has
higher priority. At the same time, the destination could easily
filter the packet with the wrong ID. In a word, packet flooding
couldn’t degrade or evade the verification.
Coward attack. An attacker may mount a coward attack [31]
to evade detection after observing the location or the pattern
of ID. To prevent an attacker from observing the location of
ID, we could translate the ID to a dynamic ID in the source
calculated as:

IDi
0 = MACRSKi

(P authjjIDi)[0 : 32] (15)

With this design, a router couldn’t know which router should
verify and mark the packet, except it is the node that needs to
mark the packet.

To prevent an attacker from observing the pattern of ID, the
source and the destination could generate a more sophisticated
policy. For example, the source announces a sequence just like
‘00101011. . . ’, in which ‘0010’, ‘1011’. . . represent a router’s
ordinal number on the path (assuming the path length is less
than 16). Then the source selects the router according to this
sequence repeatedly until the end of each epoch. The sequence
could generate by the session key of the two end hosts with
a pseudorandom function.

Moreover, attackers might compromise the verification sys-
tem from non-deployed domains. In this case, MASK should
verify the non-deployed source’s scheduled path in the ingress
border router of the deployed domain with the mark in the
packet header. A malicious end host might launch a man-
in-the-middle attack. MASK could guarantee security by the
secure intra-AS communication or the access authentication
with identifier [32] [33] [34]. An illegal entity can’t obtain
the correct session key, thus has no opportunity to evade the
verification.

VI. EVALUATION

To show that MASK is practically feasible, we evaluated
MASK on both software (Bmv22) and hardware (Barefoot
Tofino programmable switch). The following evaluation shows

2https://github.com/p4lang/behavioral-model

TABLE III
THE COMPARISON OF SECURITY PROPERTIES WITH OPT, PPV AND EPIC

Router Destination
No asymmetric
cryptography Source verification Path verification Source verification Path verification Replay attack

resistance Packet drop

OPT × X X X X × ×
PPV × × × X X × ×

EPIC L3 X X X X X X ×
MASK X X X X X X X

2 4 6 8 10
Path Length (n)

0

200

400

600

800

1000

D
el

ay
 (m

s)

(a) Packet Size: 1024 B

MASK
PPV
OPT
EPIC
IP

2 4 6 8 10
Path Length (n)

0

200

400

600

800

1000

D
el

ay
 (m

s)

(b) Packet Size: 512 B

MASK
PPV
OPT
EPIC
IP

2 4 6 8 10
Path Length (n)

0

200

400

600

800

1000

D
el

ay
 (m

s)

(c) Packet Size: 256 B

MASK
PPV
OPT
EPIC
IP

Fig. 4. The end-to-end delay in BMv2 environment

Match Action

…… CompareID

12 Forward

Out

FromController CompareID Forward

Match Action

0a000101 Send to extern

…… Forward

Match Action

0a000002/32 Port:2

…… Port:*

In

extern

Fig. 5. The processing of MASK in BMv2

that MASK has significantly lower computation and commu-
nication overhead.

A. Evaluation in BMv2

We implemented MASK in the BMv2 environment, the
testbed hosts in a virtual machine with Ubuntu 16.04, with
the Intel Core i5-6200U CPU, 2.4 GHz, and 4 GB RAM. We
instantiate MAC operation with the HMAC based on MD5
and truncate the mark to 32 bits.

Fig. 5 shows the processing of MASK. There are
three Match-Action tables in the ingress pipeline. The first
(FromController) is to judge whether the extern (MAC oper-
ation) has processed the packet and sends a processed packet to
the third table (Forward) for forwarding. In contrast, it sends
an unprocessed packet to the second table (CompareID). The
second is for comparing the IDi, which decides whether sends
the packet to extern or forwards the packet with the third table
directly. The extern calculates the mark0srci

and achieves the
source verification, then filters the malicious traffic or adds its
markri

after successful verification.
As shown in Fig. 4 (a),(b),(c), we evaluate MASK in terms

of end-to-end delay, which composes of the computation and
forwarding delay. The baseline is the IPv6 packet with nearly
50 ms in different path lengths and packet sizes. MASK
and PPV have the constant delay of 110 ms and 300 ms

2 4 6 8 10
Path Length (n)

5

10

15

20

25

30

C
on

ve
rg

en
ce

 D
el

ay
 (p

kt
s)

Theoretical
Actual

Fig. 6. The convergence delay in different path length

respectively (PPV needs to calculate an additional Marking
Verification Field). In contrast, OPT and EPIC have a relatively
high delay since they operate the MAC operation at each hop.

When it comes to the convergence delay, we calculate the
theoretical delay in different path lengths with Equation (13).
As shown in Fig. 6, the actual delay (the average packets that
the destination reconstructs the path) is consistent with the
theoretical delay with the value around 2n for most situations.

B. Evaluation in Barefoot Tofino Programmable Switch

We evaluate MASK for the desired performance in com-
modity Barefoot Tofino programmable switches S9180-32X.

We first examine the computation overhead in terms of
per-packet computation delay. The computation delay on a
certain hop includes (1) source verification (calculating and
verifying the source’s mark), (2) path verification (calculating
the router’s mark). We implemented the MAC operation as
AES operation [35]. MASK has a significantly lower delay
than other mechanisms.

128 256 512 768 1024 1280 1500
Packet size (B)

0

2

4

6

8

10
C

om
pu

ta
tio

n
D

el
ay

 (μ
s)

(a) The computation overhead in different packet size

IP
S
T

2 3 4 5 6 7 8 9 10
Path Length (n)

0

20

40

60

80

C
om

pu
ta

tio
n

D
el

ay
 (μ

s)

(b) The computation overhead in different path length

IP
MASK
PPV
FULL

2 4 6 8 10
Path Length (n)

85

90

95

G
oo

dp
ut

 R
at

io
 (%

)

(c) The goodput ratio in different path length

OPT
EPIC
PPV
MASK

Fig. 7. The computation overhead and goodput ratio in Barefoot hardware

The delay in different packet sizes is shown in Fig. 7 (a),
in which IP represents IPv6 packet forwarding, which is the
baseline with the value of around 0.55 µs, S represents single
AES operation, while T represents two AES operation. We
found that a single AES operation with the AES-128 algorithm
(10 rounds) is nearly 2.1 µs with the packet size of 512
Bytes. In contrast, two AES operations take nearly 8.8 µs.
The results confirm that the most significant delay comes from
the AES operation, and the delay grows with the packet size
since a packet recirculates several times to complete one AES
operation.

We compared the FULL operation (OPT and EPIC) and
PPV operation with MASK in path length from 2 to 10
with the packet size of 512 Bytes. As shown in Fig. 7 (b),
MASK optimizes the operation. In any case, only one hop
verified and added the mark; in PPV, two adjacent hops
perform one AES operation. In contrast, the FULL operation
has more latency with a longer path. It worth mentioning that a
dedicated cryptography circuit could improve the cryptography
performance, e.g., Intel’s AES-NI hardware [9], but it could
also incur complexity as well as the difficulty to upgrade.

A central aspect of our work is throughput. MASK
could achieve higher throughput than other mechanisms. The
throughput was affected by the hardware’s recirculation bottle-
neck since a packet recirculates several times to complete one
AES operation, the highest throughput achieves 10.92 Gbps in
[35]. We utilize a 10Gbps Intel 82599ES NIC to connect with
the switch hardware. The switch receives the packet from NIC,
deals with the verification, and then forwards back to the NIC
with the highest throughput of 8.02 Gbps. Simultaneously, the
baseline throughput without AES operation is 8.84 Gbps in
the same hardware, which testifies that the FULL operation’s
highest throughput (e.g., OPT, EPIC) is 8.02 Gbps. In contrast,
with the probabilistic design in MASK, only 1/n packets need
to recirculate in a hop. The throughput could achieve 40 Gbps
with a path length of 5. Consider the user can configure more
physical ports to increase throughput, we can conclude that
the throughput is sufficient for supporting the verification.

When it comes to the goodput, we use the IPv6 extension
header to load the security-related header fields and define
the additional packet header size as HD. The goodput ratio
(GR) is the ratio of payload size (p) and total packet size
(p+HD), namely GR = p/(p+HD). As shown in Fig. 7 (c),

the goodput ratio is high for MASK. For the payload size of
1000 Bytes in n = 5, the additional header in EPIC L3 is 49
Bytes, which corresponds to a goodput ratio of 95.3%, while
the value in OPT is 87.1%. In MASK, the ratio is stable at
98.3% regardless of the path length, while PPV has a stable
ratio with a value of 94.0%.

C. Overhead in End Host

In MASK, the end host requests path and session keys from
the KDS, the KDS answers with the path and relative session
keys before a new session. We assume that the underlying
path-aware networking minimizes latency by locally caching
public paths. And the Multi-AS-Key has been synchronized
among the KDSes. The additional latency incurred in MASK is
insignificant since the paths and keys information is available
at local KDS. A host can cache both paths and keys, which
eliminates extra latency for subsequent packets.

In comparison, the negotiating process could combine with
TCP handshake and then decrease the extra latency. As the
source and destination need to perform a MAC operation for
each packet, which comprises the heaviest overhead, we test
AES-128 operation with 10 rounds. It could achieve more than
150,000 cycles per second in the virtual machine with Intel
Core i5-6200U CPU, which indicates that it could support
nearly 1 Gbps with a packet size of more than 500 Bytes in
an ordinary commodity host.

VII. DISCUSSION

In this section, we discuss incremental deployment issues
and the limitations of MASK. We first discuss a high-level ap-
proach for implementing MASK on the Internet, then discuss
attacks that MASK does not entirely defend.

A. Incremental Deployment

We emphasize implementing with IPv6 extension header
to enjoy compatibility. The IPv4 ecosystem could also use
MASK. As the Internet’s architecture is a flexible composition
of many networks [36], a dedicated network could use some
new designs. From this perspective, we insist that MASK
could first deploy in some dedicated network, just like the
verifiable service function chains (SFCs) [37] utilized in the
cloud. For example, MASK could be integrated with SRv6
[38] to verify the source and the segment node efficiently.

